4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
30 /* #pragma ident "@(#)dtrace.h 1.32 06/08/07 SMI" */
37 * DTrace Dynamic Tracing Software: Kernel Interfaces
39 * Note: The contents of this file are private to the implementation of the
40 * Solaris system and DTrace subsystem and are subject to change at any time
41 * without notice. Applications and drivers using these interfaces will fail
42 * to run on future releases. These interfaces should not be used for any
43 * purpose except those expressly outlined in dtrace(7D) and libdtrace(3LIB).
44 * Please refer to the "Solaris Dynamic Tracing Guide" for more information.
49 #if !defined(__APPLE__)
50 #include <sys/types.h>
51 #include <sys/modctl.h>
52 #include <sys/processor.h>
53 #include <sys/systm.h>
54 #include <sys/ctf_api.h>
55 #include <sys/cyclic.h>
56 #include <sys/int_limits.h>
57 #else /* is Apple Mac OS X */
61 #define _KERNEL /* Solaris vs. Darwin */
65 #if defined(__BIG_ENDIAN__)
66 #if !defined(_BIG_ENDIAN)
67 #define _BIG_ENDIAN /* Solaris vs. Darwin */
69 #elif defined(__LITTLE_ENDIAN__)
70 #if !defined(_LITTLE_ENDIAN)
71 #define _LITTLE_ENDIAN /* Solaris vs. Darwin */
74 #error Unknown endian-ness
77 #include <sys/types.h>
81 #define NULL ((void *)0) /* quiets many warnings */
86 #define MICROSEC 1000000
87 #define NANOSEC 1000000000
89 #define S_ROUND(x, a) ((x) + (((a) ? (a) : 1) - 1) & ~(((a) ? (a) : 1) - 1))
90 #define P2ROUNDUP(x, align) (-(-(x) & -(align)))
92 #define CTF_MODEL_ILP32 1 /* object data model is ILP32 */
93 #define CTF_MODEL_NATIVE CTF_MODEL_ILP32
95 typedef uint8_t uchar_t
;
96 typedef uint16_t ushort_t
;
97 typedef uint32_t uint_t
;
98 typedef uint32_t ulong_t
;
99 typedef uint64_t u_longlong_t
;
100 typedef int64_t longlong_t
;
101 typedef int64_t off64_t
;
102 typedef int processorid_t
;
103 typedef int64_t hrtime_t
;
105 typedef enum { B_FALSE
= 0, B_TRUE
= 1 } _dtrace_boolean
;
107 struct modctl
; /* In lieu of Solaris <sys/modctl.h> */
108 /* NOTHING */ /* In lieu of Solaris <sys/processor.h> */
109 #include <sys/ioctl.h> /* In lieu of Solaris <sys/systm.h> */
111 /* NOTHING */ /* In lieu of Solaris <sys/ctf_api.h> */
113 /* In lieu of Solaris <sys/ctf_api.h> */
114 typedef struct ctf_file ctf_file_t
;
115 typedef long ctf_id_t
;
117 /* NOTHING */ /* In lieu of Solaris <sys/cyclic.h> */
118 /* NOTHING */ /* In lieu of Solaris <sys/int_limits.h> */
120 typedef uint32_t zoneid_t
;
122 #include <sys/dtrace_glue.h>
125 typedef va_list __va_list
;
127 #define proc_t struct proc
128 #endif /* __APPLE__ */
131 * DTrace Universal Constants and Typedefs
133 #define DTRACE_CPUALL -1 /* all CPUs */
134 #define DTRACE_IDNONE 0 /* invalid probe identifier */
135 #define DTRACE_EPIDNONE 0 /* invalid enabled probe identifier */
136 #define DTRACE_AGGIDNONE 0 /* invalid aggregation identifier */
137 #define DTRACE_AGGVARIDNONE 0 /* invalid aggregation variable ID */
138 #define DTRACE_CACHEIDNONE 0 /* invalid predicate cache */
139 #define DTRACE_PROVNONE 0 /* invalid provider identifier */
140 #define DTRACE_METAPROVNONE 0 /* invalid meta-provider identifier */
141 #define DTRACE_ARGNONE -1 /* invalid argument index */
143 #define DTRACE_PROVNAMELEN 64
144 #define DTRACE_MODNAMELEN 64
145 #define DTRACE_FUNCNAMELEN 128
146 #define DTRACE_NAMELEN 64
147 #define DTRACE_FULLNAMELEN (DTRACE_PROVNAMELEN + DTRACE_MODNAMELEN + \
148 DTRACE_FUNCNAMELEN + DTRACE_NAMELEN + 4)
149 #define DTRACE_ARGTYPELEN 128
151 typedef uint32_t dtrace_id_t
; /* probe identifier */
152 typedef uint32_t dtrace_epid_t
; /* enabled probe identifier */
153 typedef uint32_t dtrace_aggid_t
; /* aggregation identifier */
154 typedef int64_t dtrace_aggvarid_t
; /* aggregation variable identifier */
155 typedef uint16_t dtrace_actkind_t
; /* action kind */
156 typedef int64_t dtrace_optval_t
; /* option value */
157 typedef uint32_t dtrace_cacheid_t
; /* predicate cache identifier */
159 typedef enum dtrace_probespec
{
160 DTRACE_PROBESPEC_NONE
= -1,
161 DTRACE_PROBESPEC_PROVIDER
= 0,
162 DTRACE_PROBESPEC_MOD
,
163 DTRACE_PROBESPEC_FUNC
,
164 DTRACE_PROBESPEC_NAME
165 } dtrace_probespec_t
;
168 * DTrace Intermediate Format (DIF)
170 * The following definitions describe the DTrace Intermediate Format (DIF), a
171 * a RISC-like instruction set and program encoding used to represent
172 * predicates and actions that can be bound to DTrace probes. The constants
173 * below defining the number of available registers are suggested minimums; the
174 * compiler should use DTRACEIOC_CONF to dynamically obtain the number of
175 * registers provided by the current DTrace implementation.
177 #define DIF_VERSION_1 1 /* DIF version 1: Solaris 10 Beta */
178 #define DIF_VERSION_2 2 /* DIF version 2: Solaris 10 FCS */
179 #define DIF_VERSION DIF_VERSION_2 /* latest DIF instruction set version */
180 #define DIF_DIR_NREGS 8 /* number of DIF integer registers */
181 #define DIF_DTR_NREGS 8 /* number of DIF tuple registers */
183 #define DIF_OP_OR 1 /* or r1, r2, rd */
184 #define DIF_OP_XOR 2 /* xor r1, r2, rd */
185 #define DIF_OP_AND 3 /* and r1, r2, rd */
186 #define DIF_OP_SLL 4 /* sll r1, r2, rd */
187 #define DIF_OP_SRL 5 /* srl r1, r2, rd */
188 #define DIF_OP_SUB 6 /* sub r1, r2, rd */
189 #define DIF_OP_ADD 7 /* add r1, r2, rd */
190 #define DIF_OP_MUL 8 /* mul r1, r2, rd */
191 #define DIF_OP_SDIV 9 /* sdiv r1, r2, rd */
192 #define DIF_OP_UDIV 10 /* udiv r1, r2, rd */
193 #define DIF_OP_SREM 11 /* srem r1, r2, rd */
194 #define DIF_OP_UREM 12 /* urem r1, r2, rd */
195 #define DIF_OP_NOT 13 /* not r1, rd */
196 #define DIF_OP_MOV 14 /* mov r1, rd */
197 #define DIF_OP_CMP 15 /* cmp r1, r2 */
198 #define DIF_OP_TST 16 /* tst r1 */
199 #define DIF_OP_BA 17 /* ba label */
200 #define DIF_OP_BE 18 /* be label */
201 #define DIF_OP_BNE 19 /* bne label */
202 #define DIF_OP_BG 20 /* bg label */
203 #define DIF_OP_BGU 21 /* bgu label */
204 #define DIF_OP_BGE 22 /* bge label */
205 #define DIF_OP_BGEU 23 /* bgeu label */
206 #define DIF_OP_BL 24 /* bl label */
207 #define DIF_OP_BLU 25 /* blu label */
208 #define DIF_OP_BLE 26 /* ble label */
209 #define DIF_OP_BLEU 27 /* bleu label */
210 #define DIF_OP_LDSB 28 /* ldsb [r1], rd */
211 #define DIF_OP_LDSH 29 /* ldsh [r1], rd */
212 #define DIF_OP_LDSW 30 /* ldsw [r1], rd */
213 #define DIF_OP_LDUB 31 /* ldub [r1], rd */
214 #define DIF_OP_LDUH 32 /* lduh [r1], rd */
215 #define DIF_OP_LDUW 33 /* lduw [r1], rd */
216 #define DIF_OP_LDX 34 /* ldx [r1], rd */
217 #define DIF_OP_RET 35 /* ret rd */
218 #define DIF_OP_NOP 36 /* nop */
219 #define DIF_OP_SETX 37 /* setx intindex, rd */
220 #define DIF_OP_SETS 38 /* sets strindex, rd */
221 #define DIF_OP_SCMP 39 /* scmp r1, r2 */
222 #define DIF_OP_LDGA 40 /* ldga var, ri, rd */
223 #define DIF_OP_LDGS 41 /* ldgs var, rd */
224 #define DIF_OP_STGS 42 /* stgs var, rs */
225 #define DIF_OP_LDTA 43 /* ldta var, ri, rd */
226 #define DIF_OP_LDTS 44 /* ldts var, rd */
227 #define DIF_OP_STTS 45 /* stts var, rs */
228 #define DIF_OP_SRA 46 /* sra r1, r2, rd */
229 #define DIF_OP_CALL 47 /* call subr, rd */
230 #define DIF_OP_PUSHTR 48 /* pushtr type, rs, rr */
231 #define DIF_OP_PUSHTV 49 /* pushtv type, rs, rv */
232 #define DIF_OP_POPTS 50 /* popts */
233 #define DIF_OP_FLUSHTS 51 /* flushts */
234 #define DIF_OP_LDGAA 52 /* ldgaa var, rd */
235 #define DIF_OP_LDTAA 53 /* ldtaa var, rd */
236 #define DIF_OP_STGAA 54 /* stgaa var, rs */
237 #define DIF_OP_STTAA 55 /* sttaa var, rs */
238 #define DIF_OP_LDLS 56 /* ldls var, rd */
239 #define DIF_OP_STLS 57 /* stls var, rs */
240 #define DIF_OP_ALLOCS 58 /* allocs r1, rd */
241 #define DIF_OP_COPYS 59 /* copys r1, r2, rd */
242 #define DIF_OP_STB 60 /* stb r1, [rd] */
243 #define DIF_OP_STH 61 /* sth r1, [rd] */
244 #define DIF_OP_STW 62 /* stw r1, [rd] */
245 #define DIF_OP_STX 63 /* stx r1, [rd] */
246 #define DIF_OP_ULDSB 64 /* uldsb [r1], rd */
247 #define DIF_OP_ULDSH 65 /* uldsh [r1], rd */
248 #define DIF_OP_ULDSW 66 /* uldsw [r1], rd */
249 #define DIF_OP_ULDUB 67 /* uldub [r1], rd */
250 #define DIF_OP_ULDUH 68 /* ulduh [r1], rd */
251 #define DIF_OP_ULDUW 69 /* ulduw [r1], rd */
252 #define DIF_OP_ULDX 70 /* uldx [r1], rd */
253 #define DIF_OP_RLDSB 71 /* rldsb [r1], rd */
254 #define DIF_OP_RLDSH 72 /* rldsh [r1], rd */
255 #define DIF_OP_RLDSW 73 /* rldsw [r1], rd */
256 #define DIF_OP_RLDUB 74 /* rldub [r1], rd */
257 #define DIF_OP_RLDUH 75 /* rlduh [r1], rd */
258 #define DIF_OP_RLDUW 76 /* rlduw [r1], rd */
259 #define DIF_OP_RLDX 77 /* rldx [r1], rd */
260 #define DIF_OP_XLATE 78 /* xlate xlrindex, rd */
261 #define DIF_OP_XLARG 79 /* xlarg xlrindex, rd */
263 #define DIF_INTOFF_MAX 0xffff /* highest integer table offset */
264 #define DIF_STROFF_MAX 0xffff /* highest string table offset */
265 #define DIF_REGISTER_MAX 0xff /* highest register number */
266 #define DIF_VARIABLE_MAX 0xffff /* highest variable identifier */
267 #define DIF_SUBROUTINE_MAX 0xffff /* highest subroutine code */
269 #define DIF_VAR_ARRAY_MIN 0x0000 /* lowest numbered array variable */
270 #define DIF_VAR_ARRAY_UBASE 0x0080 /* lowest user-defined array */
271 #define DIF_VAR_ARRAY_MAX 0x00ff /* highest numbered array variable */
273 #define DIF_VAR_OTHER_MIN 0x0100 /* lowest numbered scalar or assc */
274 #define DIF_VAR_OTHER_UBASE 0x0500 /* lowest user-defined scalar or assc */
275 #define DIF_VAR_OTHER_MAX 0xffff /* highest numbered scalar or assc */
277 #define DIF_VAR_ARGS 0x0000 /* arguments array */
278 #define DIF_VAR_REGS 0x0001 /* registers array */
279 #define DIF_VAR_UREGS 0x0002 /* user registers array */
280 #define DIF_VAR_CURTHREAD 0x0100 /* thread pointer */
281 #define DIF_VAR_TIMESTAMP 0x0101 /* timestamp */
282 #define DIF_VAR_VTIMESTAMP 0x0102 /* virtual timestamp */
283 #define DIF_VAR_IPL 0x0103 /* interrupt priority level */
284 #define DIF_VAR_EPID 0x0104 /* enabled probe ID */
285 #define DIF_VAR_ID 0x0105 /* probe ID */
286 #define DIF_VAR_ARG0 0x0106 /* first argument */
287 #define DIF_VAR_ARG1 0x0107 /* second argument */
288 #define DIF_VAR_ARG2 0x0108 /* third argument */
289 #define DIF_VAR_ARG3 0x0109 /* fourth argument */
290 #define DIF_VAR_ARG4 0x010a /* fifth argument */
291 #define DIF_VAR_ARG5 0x010b /* sixth argument */
292 #define DIF_VAR_ARG6 0x010c /* seventh argument */
293 #define DIF_VAR_ARG7 0x010d /* eighth argument */
294 #define DIF_VAR_ARG8 0x010e /* ninth argument */
295 #define DIF_VAR_ARG9 0x010f /* tenth argument */
296 #define DIF_VAR_STACKDEPTH 0x0110 /* stack depth */
297 #define DIF_VAR_CALLER 0x0111 /* caller */
298 #define DIF_VAR_PROBEPROV 0x0112 /* probe provider */
299 #define DIF_VAR_PROBEMOD 0x0113 /* probe module */
300 #define DIF_VAR_PROBEFUNC 0x0114 /* probe function */
301 #define DIF_VAR_PROBENAME 0x0115 /* probe name */
302 #define DIF_VAR_PID 0x0116 /* process ID */
303 #define DIF_VAR_TID 0x0117 /* (per-process) thread ID */
304 #define DIF_VAR_EXECNAME 0x0118 /* name of executable */
305 #define DIF_VAR_ZONENAME 0x0119 /* zone name associated with process */
306 #define DIF_VAR_WALLTIMESTAMP 0x011a /* wall-clock timestamp */
307 #define DIF_VAR_USTACKDEPTH 0x011b /* user-land stack depth */
308 #define DIF_VAR_UCALLER 0x011c /* user-level caller */
309 #define DIF_VAR_PPID 0x011d /* parent process ID */
310 #define DIF_VAR_UID 0x011e /* process user ID */
311 #define DIF_VAR_GID 0x011f /* process group ID */
312 #define DIF_VAR_ERRNO 0x0120 /* thread errno */
314 #define DIF_SUBR_RAND 0
315 #define DIF_SUBR_MUTEX_OWNED 1
316 #define DIF_SUBR_MUTEX_OWNER 2
317 #define DIF_SUBR_MUTEX_TYPE_ADAPTIVE 3
318 #define DIF_SUBR_MUTEX_TYPE_SPIN 4
319 #define DIF_SUBR_RW_READ_HELD 5
320 #define DIF_SUBR_RW_WRITE_HELD 6
321 #define DIF_SUBR_RW_ISWRITER 7
322 #define DIF_SUBR_COPYIN 8
323 #define DIF_SUBR_COPYINSTR 9
324 #define DIF_SUBR_SPECULATION 10
325 #define DIF_SUBR_PROGENYOF 11
326 #define DIF_SUBR_STRLEN 12
327 #define DIF_SUBR_COPYOUT 13
328 #define DIF_SUBR_COPYOUTSTR 14
329 #define DIF_SUBR_ALLOCA 15
330 #define DIF_SUBR_BCOPY 16
331 #define DIF_SUBR_COPYINTO 17
332 #define DIF_SUBR_MSGDSIZE 18
333 #define DIF_SUBR_MSGSIZE 19
334 #define DIF_SUBR_GETMAJOR 20
335 #define DIF_SUBR_GETMINOR 21
336 #define DIF_SUBR_DDI_PATHNAME 22
337 #define DIF_SUBR_STRJOIN 23
338 #define DIF_SUBR_LLTOSTR 24
339 #define DIF_SUBR_BASENAME 25
340 #define DIF_SUBR_DIRNAME 26
341 #define DIF_SUBR_CLEANPATH 27
342 #define DIF_SUBR_STRCHR 28
343 #define DIF_SUBR_STRRCHR 29
344 #define DIF_SUBR_STRSTR 30
345 #define DIF_SUBR_STRTOK 31
346 #define DIF_SUBR_SUBSTR 32
347 #define DIF_SUBR_INDEX 33
348 #define DIF_SUBR_RINDEX 34
349 #define DIF_SUBR_CHUD 35
351 #define DIF_SUBR_MAX 35 /* max subroutine value */
353 typedef uint32_t dif_instr_t
;
355 #define DIF_INSTR_OP(i) (((i) >> 24) & 0xff)
356 #define DIF_INSTR_R1(i) (((i) >> 16) & 0xff)
357 #define DIF_INSTR_R2(i) (((i) >> 8) & 0xff)
358 #define DIF_INSTR_RD(i) ((i) & 0xff)
359 #define DIF_INSTR_RS(i) ((i) & 0xff)
360 #define DIF_INSTR_LABEL(i) ((i) & 0xffffff)
361 #define DIF_INSTR_VAR(i) (((i) >> 8) & 0xffff)
362 #define DIF_INSTR_INTEGER(i) (((i) >> 8) & 0xffff)
363 #define DIF_INSTR_STRING(i) (((i) >> 8) & 0xffff)
364 #define DIF_INSTR_SUBR(i) (((i) >> 8) & 0xffff)
365 #define DIF_INSTR_TYPE(i) (((i) >> 16) & 0xff)
366 #define DIF_INSTR_XLREF(i) (((i) >> 8) & 0xffff)
368 #define DIF_INSTR_FMT(op, r1, r2, d) \
369 (((op) << 24) | ((r1) << 16) | ((r2) << 8) | (d))
371 #define DIF_INSTR_NOT(r1, d) (DIF_INSTR_FMT(DIF_OP_NOT, r1, 0, d))
372 #define DIF_INSTR_MOV(r1, d) (DIF_INSTR_FMT(DIF_OP_MOV, r1, 0, d))
373 #define DIF_INSTR_CMP(op, r1, r2) (DIF_INSTR_FMT(op, r1, r2, 0))
374 #define DIF_INSTR_TST(r1) (DIF_INSTR_FMT(DIF_OP_TST, r1, 0, 0))
375 #define DIF_INSTR_BRANCH(op, label) (((op) << 24) | (label))
376 #define DIF_INSTR_LOAD(op, r1, d) (DIF_INSTR_FMT(op, r1, 0, d))
377 #define DIF_INSTR_STORE(op, r1, d) (DIF_INSTR_FMT(op, r1, 0, d))
378 #define DIF_INSTR_SETX(i, d) ((DIF_OP_SETX << 24) | ((i) << 8) | (d))
379 #define DIF_INSTR_SETS(s, d) ((DIF_OP_SETS << 24) | ((s) << 8) | (d))
380 #define DIF_INSTR_RET(d) (DIF_INSTR_FMT(DIF_OP_RET, 0, 0, d))
381 #define DIF_INSTR_NOP (DIF_OP_NOP << 24)
382 #define DIF_INSTR_LDA(op, v, r, d) (DIF_INSTR_FMT(op, v, r, d))
383 #define DIF_INSTR_LDV(op, v, d) (((op) << 24) | ((v) << 8) | (d))
384 #define DIF_INSTR_STV(op, v, rs) (((op) << 24) | ((v) << 8) | (rs))
385 #define DIF_INSTR_CALL(s, d) ((DIF_OP_CALL << 24) | ((s) << 8) | (d))
386 #define DIF_INSTR_PUSHTS(op, t, r2, rs) (DIF_INSTR_FMT(op, t, r2, rs))
387 #define DIF_INSTR_POPTS (DIF_OP_POPTS << 24)
388 #define DIF_INSTR_FLUSHTS (DIF_OP_FLUSHTS << 24)
389 #define DIF_INSTR_ALLOCS(r1, d) (DIF_INSTR_FMT(DIF_OP_ALLOCS, r1, 0, d))
390 #define DIF_INSTR_COPYS(r1, r2, d) (DIF_INSTR_FMT(DIF_OP_COPYS, r1, r2, d))
391 #define DIF_INSTR_XLATE(op, r, d) (((op) << 24) | ((r) << 8) | (d))
393 #define DIF_REG_R0 0 /* %r0 is always set to zero */
396 * A DTrace Intermediate Format Type (DIF Type) is used to represent the types
397 * of variables, function and associative array arguments, and the return type
398 * for each DIF object (shown below). It contains a description of the type,
399 * its size in bytes, and a module identifier.
401 typedef struct dtrace_diftype
{
402 uint8_t dtdt_kind
; /* type kind (see below) */
403 uint8_t dtdt_ckind
; /* type kind in CTF */
404 uint8_t dtdt_flags
; /* type flags (see below) */
405 uint8_t dtdt_pad
; /* reserved for future use */
406 uint32_t dtdt_size
; /* type size in bytes (unless string) */
409 #define DIF_TYPE_CTF 0 /* type is a CTF type */
410 #define DIF_TYPE_STRING 1 /* type is a D string */
412 #define DIF_TF_BYREF 0x1 /* type is passed by reference */
415 * A DTrace Intermediate Format variable record is used to describe each of the
416 * variables referenced by a given DIF object. It contains an integer variable
417 * identifier along with variable scope and properties, as shown below. The
418 * size of this structure must be sizeof (int) aligned.
420 typedef struct dtrace_difv
{
421 uint32_t dtdv_name
; /* variable name index in dtdo_strtab */
422 uint32_t dtdv_id
; /* variable reference identifier */
423 uint8_t dtdv_kind
; /* variable kind (see below) */
424 uint8_t dtdv_scope
; /* variable scope (see below) */
425 uint16_t dtdv_flags
; /* variable flags (see below) */
426 dtrace_diftype_t dtdv_type
; /* variable type (see above) */
429 #define DIFV_KIND_ARRAY 0 /* variable is an array of quantities */
430 #define DIFV_KIND_SCALAR 1 /* variable is a scalar quantity */
432 #define DIFV_SCOPE_GLOBAL 0 /* variable has global scope */
433 #define DIFV_SCOPE_THREAD 1 /* variable has thread scope */
434 #define DIFV_SCOPE_LOCAL 2 /* variable has local scope */
436 #define DIFV_F_REF 0x1 /* variable is referenced by DIFO */
437 #define DIFV_F_MOD 0x2 /* variable is written by DIFO */
442 * The upper byte determines the class of the action; the low bytes determines
443 * the specific action within that class. The classes of actions are as
446 * [ no class ] <= May record process- or kernel-related data
447 * DTRACEACT_PROC <= Only records process-related data
448 * DTRACEACT_PROC_DESTRUCTIVE <= Potentially destructive to processes
449 * DTRACEACT_KERNEL <= Only records kernel-related data
450 * DTRACEACT_KERNEL_DESTRUCTIVE <= Potentially destructive to the kernel
451 * DTRACEACT_SPECULATIVE <= Speculation-related action
452 * DTRACEACT_AGGREGATION <= Aggregating action
454 #define DTRACEACT_NONE 0 /* no action */
455 #define DTRACEACT_DIFEXPR 1 /* action is DIF expression */
456 #define DTRACEACT_EXIT 2 /* exit() action */
457 #define DTRACEACT_PRINTF 3 /* printf() action */
458 #define DTRACEACT_PRINTA 4 /* printa() action */
459 #define DTRACEACT_LIBACT 5 /* library-controlled action */
461 #define DTRACEACT_PROC 0x0100
462 #define DTRACEACT_USTACK (DTRACEACT_PROC + 1)
463 #define DTRACEACT_JSTACK (DTRACEACT_PROC + 2)
464 #define DTRACEACT_USYM (DTRACEACT_PROC + 3)
465 #define DTRACEACT_UMOD (DTRACEACT_PROC + 4)
466 #define DTRACEACT_UADDR (DTRACEACT_PROC + 5)
468 #define DTRACEACT_PROC_DESTRUCTIVE 0x0200
469 #define DTRACEACT_STOP (DTRACEACT_PROC_DESTRUCTIVE + 1)
470 #define DTRACEACT_RAISE (DTRACEACT_PROC_DESTRUCTIVE + 2)
471 #define DTRACEACT_SYSTEM (DTRACEACT_PROC_DESTRUCTIVE + 3)
472 #define DTRACEACT_FREOPEN (DTRACEACT_PROC_DESTRUCTIVE + 4)
474 #define DTRACEACT_PROC_CONTROL 0x0300
476 #define DTRACEACT_KERNEL 0x0400
477 #define DTRACEACT_STACK (DTRACEACT_KERNEL + 1)
478 #define DTRACEACT_SYM (DTRACEACT_KERNEL + 2)
479 #define DTRACEACT_MOD (DTRACEACT_KERNEL + 3)
481 #define DTRACEACT_KERNEL_DESTRUCTIVE 0x0500
482 #define DTRACEACT_BREAKPOINT (DTRACEACT_KERNEL_DESTRUCTIVE + 1)
483 #define DTRACEACT_PANIC (DTRACEACT_KERNEL_DESTRUCTIVE + 2)
484 #define DTRACEACT_CHILL (DTRACEACT_KERNEL_DESTRUCTIVE + 3)
486 #define DTRACEACT_SPECULATIVE 0x0600
487 #define DTRACEACT_SPECULATE (DTRACEACT_SPECULATIVE + 1)
488 #define DTRACEACT_COMMIT (DTRACEACT_SPECULATIVE + 2)
489 #define DTRACEACT_DISCARD (DTRACEACT_SPECULATIVE + 3)
491 #define DTRACEACT_CLASS(x) ((x) & 0xff00)
493 #define DTRACEACT_ISDESTRUCTIVE(x) \
494 (DTRACEACT_CLASS(x) == DTRACEACT_PROC_DESTRUCTIVE || \
495 DTRACEACT_CLASS(x) == DTRACEACT_KERNEL_DESTRUCTIVE)
497 #define DTRACEACT_ISSPECULATIVE(x) \
498 (DTRACEACT_CLASS(x) == DTRACEACT_SPECULATIVE)
500 #define DTRACEACT_ISPRINTFLIKE(x) \
501 ((x) == DTRACEACT_PRINTF || (x) == DTRACEACT_PRINTA || \
502 (x) == DTRACEACT_SYSTEM || (x) == DTRACEACT_FREOPEN)
505 * DTrace Aggregating Actions
507 * These are functions f(x) for which the following is true:
509 * f(f(x_0) U f(x_1) U ... U f(x_n)) = f(x_0 U x_1 U ... U x_n)
511 * where x_n is a set of arbitrary data. Aggregating actions are in their own
512 * DTrace action class, DTTRACEACT_AGGREGATION. The macros provided here allow
513 * for easier processing of the aggregation argument and data payload for a few
514 * aggregating actions (notably: quantize(), lquantize(), and ustack()).
516 #define DTRACEACT_AGGREGATION 0x0700
517 #define DTRACEAGG_COUNT (DTRACEACT_AGGREGATION + 1)
518 #define DTRACEAGG_MIN (DTRACEACT_AGGREGATION + 2)
519 #define DTRACEAGG_MAX (DTRACEACT_AGGREGATION + 3)
520 #define DTRACEAGG_AVG (DTRACEACT_AGGREGATION + 4)
521 #define DTRACEAGG_SUM (DTRACEACT_AGGREGATION + 5)
522 #define DTRACEAGG_STDDEV (DTRACEACT_AGGREGATION + 6)
523 #define DTRACEAGG_QUANTIZE (DTRACEACT_AGGREGATION + 7)
524 #define DTRACEAGG_LQUANTIZE (DTRACEACT_AGGREGATION + 8)
526 #define DTRACEACT_ISAGG(x) \
527 (DTRACEACT_CLASS(x) == DTRACEACT_AGGREGATION)
529 #define DTRACE_QUANTIZE_NBUCKETS \
530 (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1)
532 #define DTRACE_QUANTIZE_ZEROBUCKET ((sizeof (uint64_t) * NBBY) - 1)
534 #define DTRACE_QUANTIZE_BUCKETVAL(buck) \
535 (int64_t)((buck) < DTRACE_QUANTIZE_ZEROBUCKET ? \
536 -(1LL << (DTRACE_QUANTIZE_ZEROBUCKET - 1 - (buck))) : \
537 (buck) == DTRACE_QUANTIZE_ZEROBUCKET ? 0 : \
538 1LL << ((buck) - DTRACE_QUANTIZE_ZEROBUCKET - 1))
540 #define DTRACE_LQUANTIZE_STEPSHIFT 48
541 #define DTRACE_LQUANTIZE_STEPMASK ((uint64_t)UINT16_MAX << 48)
542 #define DTRACE_LQUANTIZE_LEVELSHIFT 32
543 #define DTRACE_LQUANTIZE_LEVELMASK ((uint64_t)UINT16_MAX << 32)
544 #define DTRACE_LQUANTIZE_BASESHIFT 0
545 #define DTRACE_LQUANTIZE_BASEMASK UINT32_MAX
547 #define DTRACE_LQUANTIZE_STEP(x) \
548 (uint16_t)(((x) & DTRACE_LQUANTIZE_STEPMASK) >> \
549 DTRACE_LQUANTIZE_STEPSHIFT)
551 #define DTRACE_LQUANTIZE_LEVELS(x) \
552 (uint16_t)(((x) & DTRACE_LQUANTIZE_LEVELMASK) >> \
553 DTRACE_LQUANTIZE_LEVELSHIFT)
555 #define DTRACE_LQUANTIZE_BASE(x) \
556 (int32_t)(((x) & DTRACE_LQUANTIZE_BASEMASK) >> \
557 DTRACE_LQUANTIZE_BASESHIFT)
559 #define DTRACE_USTACK_NFRAMES(x) (uint32_t)((x) & UINT32_MAX)
560 #define DTRACE_USTACK_STRSIZE(x) (uint32_t)((x) >> 32)
561 #define DTRACE_USTACK_ARG(x, y) \
562 ((((uint64_t)(y)) << 32) | ((x) & UINT32_MAX))
565 #ifndef _LITTLE_ENDIAN
566 #define DTRACE_PTR(type, name) uint32_t name##pad; type *name
568 #define DTRACE_PTR(type, name) type *name; uint32_t name##pad
571 #define DTRACE_PTR(type, name) type *name
575 * DTrace Object Format (DOF)
577 * DTrace programs can be persistently encoded in the DOF format so that they
578 * may be embedded in other programs (for example, in an ELF file) or in the
579 * dtrace driver configuration file for use in anonymous tracing. The DOF
580 * format is versioned and extensible so that it can be revised and so that
581 * internal data structures can be modified or extended compatibly. All DOF
582 * structures use fixed-size types, so the 32-bit and 64-bit representations
583 * are identical and consumers can use either data model transparently.
585 * The file layout is structured as follows:
587 * +---------------+-------------------+----- ... ----+---- ... ------+
588 * | dof_hdr_t | dof_sec_t[ ... ] | loadable | non-loadable |
589 * | (file header) | (section headers) | section data | section data |
590 * +---------------+-------------------+----- ... ----+---- ... ------+
591 * |<------------ dof_hdr.dofh_loadsz --------------->| |
592 * |<------------ dof_hdr.dofh_filesz ------------------------------->|
594 * The file header stores meta-data including a magic number, data model for
595 * the instrumentation, data encoding, and properties of the DIF code within.
596 * The header describes its own size and the size of the section headers. By
597 * convention, an array of section headers follows the file header, and then
598 * the data for all loadable sections and unloadable sections. This permits
599 * consumer code to easily download the headers and all loadable data into the
600 * DTrace driver in one contiguous chunk, omitting other extraneous sections.
602 * The section headers describe the size, offset, alignment, and section type
603 * for each section. Sections are described using a set of #defines that tell
604 * the consumer what kind of data is expected. Sections can contain links to
605 * other sections by storing a dof_secidx_t, an index into the section header
606 * array, inside of the section data structures. The section header includes
607 * an entry size so that sections with data arrays can grow their structures.
609 * The DOF data itself can contain many snippets of DIF (i.e. >1 DIFOs), which
610 * are represented themselves as a collection of related DOF sections. This
611 * permits us to change the set of sections associated with a DIFO over time,
612 * and also permits us to encode DIFOs that contain different sets of sections.
613 * When a DOF section wants to refer to a DIFO, it stores the dof_secidx_t of a
614 * section of type DOF_SECT_DIFOHDR. This section's data is then an array of
615 * dof_secidx_t's which in turn denote the sections associated with this DIFO.
617 * This loose coupling of the file structure (header and sections) to the
618 * structure of the DTrace program itself (ECB descriptions, action
619 * descriptions, and DIFOs) permits activities such as relocation processing
620 * to occur in a single pass without having to understand D program structure.
622 * Finally, strings are always stored in ELF-style string tables along with a
623 * string table section index and string table offset. Therefore strings in
624 * DOF are always arbitrary-length and not bound to the current implementation.
627 #define DOF_ID_SIZE 16 /* total size of dofh_ident[] in bytes */
629 typedef struct dof_hdr
{
630 uint8_t dofh_ident
[DOF_ID_SIZE
]; /* identification bytes (see below) */
631 uint32_t dofh_flags
; /* file attribute flags (if any) */
632 uint32_t dofh_hdrsize
; /* size of file header in bytes */
633 uint32_t dofh_secsize
; /* size of section header in bytes */
634 uint32_t dofh_secnum
; /* number of section headers */
635 uint64_t dofh_secoff
; /* file offset of section headers */
636 uint64_t dofh_loadsz
; /* file size of loadable portion */
637 uint64_t dofh_filesz
; /* file size of entire DOF file */
638 uint64_t dofh_pad
; /* reserved for future use */
641 #define DOF_ID_MAG0 0 /* first byte of magic number */
642 #define DOF_ID_MAG1 1 /* second byte of magic number */
643 #define DOF_ID_MAG2 2 /* third byte of magic number */
644 #define DOF_ID_MAG3 3 /* fourth byte of magic number */
645 #define DOF_ID_MODEL 4 /* DOF data model (see below) */
646 #define DOF_ID_ENCODING 5 /* DOF data encoding (see below) */
647 #define DOF_ID_VERSION 6 /* DOF file format major version (see below) */
648 #define DOF_ID_DIFVERS 7 /* DIF instruction set version */
649 #define DOF_ID_DIFIREG 8 /* DIF integer registers used by compiler */
650 #define DOF_ID_DIFTREG 9 /* DIF tuple registers used by compiler */
651 #define DOF_ID_PAD 10 /* start of padding bytes (all zeroes) */
653 #define DOF_MAG_MAG0 0x7F /* DOF_ID_MAG[0-3] */
654 #define DOF_MAG_MAG1 'D'
655 #define DOF_MAG_MAG2 'O'
656 #define DOF_MAG_MAG3 'F'
658 #define DOF_MAG_STRING "\177DOF"
659 #define DOF_MAG_STRLEN 4
661 #define DOF_MODEL_NONE 0 /* DOF_ID_MODEL */
662 #define DOF_MODEL_ILP32 1
663 #define DOF_MODEL_LP64 2
666 #define DOF_MODEL_NATIVE DOF_MODEL_LP64
668 #define DOF_MODEL_NATIVE DOF_MODEL_ILP32
671 #define DOF_ENCODE_NONE 0 /* DOF_ID_ENCODING */
672 #define DOF_ENCODE_LSB 1
673 #define DOF_ENCODE_MSB 2
676 #define DOF_ENCODE_NATIVE DOF_ENCODE_MSB
678 #define DOF_ENCODE_NATIVE DOF_ENCODE_LSB
681 #define DOF_VERSION_1 1 /* DOF version 1: Solaris 10 FCS */
682 #define DOF_VERSION_2 2 /* DOF version 2: Solaris Express 6/06 */
683 #define DOF_VERSION_3 3 /* DOF version 3: Minimum version for Leopard */
684 #define DOF_VERSION DOF_VERSION_3 /* Latest DOF version */
686 #define DOF_FL_VALID 0 /* mask of all valid dofh_flags bits */
688 typedef uint32_t dof_secidx_t
; /* section header table index type */
689 typedef uint32_t dof_stridx_t
; /* string table index type */
691 #define DOF_SECIDX_NONE (-1U) /* null value for section indices */
692 #define DOF_STRIDX_NONE (-1U) /* null value for string indices */
694 typedef struct dof_sec
{
695 uint32_t dofs_type
; /* section type (see below) */
696 uint32_t dofs_align
; /* section data memory alignment */
697 uint32_t dofs_flags
; /* section flags (if any) */
698 uint32_t dofs_entsize
; /* size of section entry (if table) */
699 uint64_t dofs_offset
; /* offset of section data within file */
700 uint64_t dofs_size
; /* size of section data in bytes */
703 #define DOF_SECT_NONE 0 /* null section */
704 #define DOF_SECT_COMMENTS 1 /* compiler comments */
705 #define DOF_SECT_SOURCE 2 /* D program source code */
706 #define DOF_SECT_ECBDESC 3 /* dof_ecbdesc_t */
707 #define DOF_SECT_PROBEDESC 4 /* dof_probedesc_t */
708 #define DOF_SECT_ACTDESC 5 /* dof_actdesc_t array */
709 #define DOF_SECT_DIFOHDR 6 /* dof_difohdr_t (variable length) */
710 #define DOF_SECT_DIF 7 /* uint32_t array of byte code */
711 #define DOF_SECT_STRTAB 8 /* string table */
712 #define DOF_SECT_VARTAB 9 /* dtrace_difv_t array */
713 #define DOF_SECT_RELTAB 10 /* dof_relodesc_t array */
714 #define DOF_SECT_TYPTAB 11 /* dtrace_diftype_t array */
715 #define DOF_SECT_URELHDR 12 /* dof_relohdr_t (user relocations) */
716 #define DOF_SECT_KRELHDR 13 /* dof_relohdr_t (kernel relocations) */
717 #define DOF_SECT_OPTDESC 14 /* dof_optdesc_t array */
718 #define DOF_SECT_PROVIDER 15 /* dof_provider_t */
719 #define DOF_SECT_PROBES 16 /* dof_probe_t array */
720 #define DOF_SECT_PRARGS 17 /* uint8_t array (probe arg mappings) */
721 #define DOF_SECT_PROFFS 18 /* uint32_t array (probe arg offsets) */
722 #define DOF_SECT_INTTAB 19 /* uint64_t array */
723 #define DOF_SECT_UTSNAME 20 /* struct utsname */
724 #define DOF_SECT_XLTAB 21 /* dof_xlref_t array */
725 #define DOF_SECT_XLMEMBERS 22 /* dof_xlmember_t array */
726 #define DOF_SECT_XLIMPORT 23 /* dof_xlator_t */
727 #define DOF_SECT_XLEXPORT 24 /* dof_xlator_t */
728 #define DOF_SECT_PREXPORT 25 /* dof_secidx_t array (exported objs) */
729 #define DOF_SECT_PRENOFFS 26 /* uint32_t array (enabled offsets) */
731 #define DOF_SECF_LOAD 1 /* section should be loaded */
733 typedef struct dof_ecbdesc
{
734 dof_secidx_t dofe_probes
; /* link to DOF_SECT_PROBEDESC */
735 dof_secidx_t dofe_pred
; /* link to DOF_SECT_DIFOHDR */
736 dof_secidx_t dofe_actions
; /* link to DOF_SECT_ACTDESC */
737 uint32_t dofe_pad
; /* reserved for future use */
738 uint64_t dofe_uarg
; /* user-supplied library argument */
741 typedef struct dof_probedesc
{
742 dof_secidx_t dofp_strtab
; /* link to DOF_SECT_STRTAB section */
743 dof_stridx_t dofp_provider
; /* provider string */
744 dof_stridx_t dofp_mod
; /* module string */
745 dof_stridx_t dofp_func
; /* function string */
746 dof_stridx_t dofp_name
; /* name string */
747 uint32_t dofp_id
; /* probe identifier (or zero) */
750 typedef struct dof_actdesc
{
751 dof_secidx_t dofa_difo
; /* link to DOF_SECT_DIFOHDR */
752 dof_secidx_t dofa_strtab
; /* link to DOF_SECT_STRTAB section */
753 uint32_t dofa_kind
; /* action kind (DTRACEACT_* constant) */
754 uint32_t dofa_ntuple
; /* number of subsequent tuple actions */
755 uint64_t dofa_arg
; /* kind-specific argument */
756 uint64_t dofa_uarg
; /* user-supplied argument */
759 typedef struct dof_difohdr
{
760 dtrace_diftype_t dofd_rtype
; /* return type for this fragment */
761 dof_secidx_t dofd_links
[1]; /* variable length array of indices */
764 typedef struct dof_relohdr
{
765 dof_secidx_t dofr_strtab
; /* link to DOF_SECT_STRTAB for names */
766 dof_secidx_t dofr_relsec
; /* link to DOF_SECT_RELTAB for relos */
767 dof_secidx_t dofr_tgtsec
; /* link to section we are relocating */
770 typedef struct dof_relodesc
{
771 dof_stridx_t dofr_name
; /* string name of relocation symbol */
772 uint32_t dofr_type
; /* relo type (DOF_RELO_* constant) */
773 uint64_t dofr_offset
; /* byte offset for relocation */
774 uint64_t dofr_data
; /* additional type-specific data */
777 #define DOF_RELO_NONE 0 /* empty relocation entry */
778 #define DOF_RELO_SETX 1 /* relocate setx value */
780 typedef struct dof_optdesc
{
781 uint32_t dofo_option
; /* option identifier */
782 dof_secidx_t dofo_strtab
; /* string table, if string option */
783 uint64_t dofo_value
; /* option value or string index */
786 typedef uint32_t dof_attr_t
; /* encoded stability attributes */
788 #define DOF_ATTR(n, d, c) (((n) << 24) | ((d) << 16) | ((c) << 8))
789 #define DOF_ATTR_NAME(a) (((a) >> 24) & 0xff)
790 #define DOF_ATTR_DATA(a) (((a) >> 16) & 0xff)
791 #define DOF_ATTR_CLASS(a) (((a) >> 8) & 0xff)
793 typedef struct dof_provider
{
794 dof_secidx_t dofpv_strtab
; /* link to DOF_SECT_STRTAB section */
795 dof_secidx_t dofpv_probes
; /* link to DOF_SECT_PROBES section */
796 dof_secidx_t dofpv_prargs
; /* link to DOF_SECT_PRARGS section */
797 dof_secidx_t dofpv_proffs
; /* link to DOF_SECT_PROFFS section */
798 dof_stridx_t dofpv_name
; /* provider name string */
799 dof_attr_t dofpv_provattr
; /* provider attributes */
800 dof_attr_t dofpv_modattr
; /* module attributes */
801 dof_attr_t dofpv_funcattr
; /* function attributes */
802 dof_attr_t dofpv_nameattr
; /* name attributes */
803 dof_attr_t dofpv_argsattr
; /* args attributes */
804 dof_secidx_t dofpv_prenoffs
; /* link to DOF_SECT_PRENOFFS section */
807 typedef struct dof_probe
{
808 uint64_t dofpr_addr
; /* probe base address or offset */
809 dof_stridx_t dofpr_func
; /* probe function string */
810 dof_stridx_t dofpr_name
; /* probe name string */
811 dof_stridx_t dofpr_nargv
; /* native argument type strings */
812 dof_stridx_t dofpr_xargv
; /* translated argument type strings */
813 uint32_t dofpr_argidx
; /* index of first argument mapping */
814 uint32_t dofpr_offidx
; /* index of first offset entry */
815 uint8_t dofpr_nargc
; /* native argument count */
816 uint8_t dofpr_xargc
; /* translated argument count */
817 uint16_t dofpr_noffs
; /* number of offset entries for probe */
818 uint32_t dofpr_enoffidx
; /* index of first is-enabled offset */
819 uint16_t dofpr_nenoffs
; /* number of is-enabled offsets */
820 uint16_t dofpr_pad1
; /* reserved for future use */
821 uint32_t dofpr_pad2
; /* reserved for future use */
824 typedef struct dof_xlator
{
825 dof_secidx_t dofxl_members
; /* link to DOF_SECT_XLMEMBERS section */
826 dof_secidx_t dofxl_strtab
; /* link to DOF_SECT_STRTAB section */
827 dof_stridx_t dofxl_argv
; /* input parameter type strings */
828 uint32_t dofxl_argc
; /* input parameter list length */
829 dof_stridx_t dofxl_type
; /* output type string name */
830 dof_attr_t dofxl_attr
; /* output stability attributes */
833 typedef struct dof_xlmember
{
834 dof_secidx_t dofxm_difo
; /* member link to DOF_SECT_DIFOHDR */
835 dof_stridx_t dofxm_name
; /* member name */
836 dtrace_diftype_t dofxm_type
; /* member type */
839 typedef struct dof_xlref
{
840 dof_secidx_t dofxr_xlator
; /* link to DOF_SECT_XLATORS section */
841 uint32_t dofxr_member
; /* index of referenced dof_xlmember */
842 uint32_t dofxr_argn
; /* index of argument for DIF_OP_XLARG */
846 * DTrace Intermediate Format Object (DIFO)
848 * A DIFO is used to store the compiled DIF for a D expression, its return
849 * type, and its string and variable tables. The string table is a single
850 * buffer of character data into which sets instructions and variable
851 * references can reference strings using a byte offset. The variable table
852 * is an array of dtrace_difv_t structures that describe the name and type of
853 * each variable and the id used in the DIF code. This structure is described
854 * above in the DIF section of this header file. The DIFO is used at both
855 * user-level (in the library) and in the kernel, but the structure is never
856 * passed between the two: the DOF structures form the only interface. As a
857 * result, the definition can change depending on the presence of _KERNEL.
859 typedef struct dtrace_difo
{
860 dif_instr_t
*dtdo_buf
; /* instruction buffer */
861 uint64_t *dtdo_inttab
; /* integer table (optional) */
862 char *dtdo_strtab
; /* string table (optional) */
863 dtrace_difv_t
*dtdo_vartab
; /* variable table (optional) */
864 uint_t dtdo_len
; /* length of instruction buffer */
865 uint_t dtdo_intlen
; /* length of integer table */
866 uint_t dtdo_strlen
; /* length of string table */
867 uint_t dtdo_varlen
; /* length of variable table */
868 dtrace_diftype_t dtdo_rtype
; /* return type */
869 uint_t dtdo_refcnt
; /* owner reference count */
870 uint_t dtdo_destructive
; /* invokes destructive subroutines */
872 dof_relodesc_t
*dtdo_kreltab
; /* kernel relocations */
873 dof_relodesc_t
*dtdo_ureltab
; /* user relocations */
874 struct dt_node
**dtdo_xlmtab
; /* translator references */
875 uint_t dtdo_krelen
; /* length of krelo table */
876 uint_t dtdo_urelen
; /* length of urelo table */
877 uint_t dtdo_xlmlen
; /* length of translator table */
882 * DTrace Enabling Description Structures
884 * When DTrace is tracking the description of a DTrace enabling entity (probe,
885 * predicate, action, ECB, record, etc.), it does so in a description
886 * structure. These structures all end in "desc", and are used at both
887 * user-level and in the kernel -- but (with the exception of
888 * dtrace_probedesc_t) they are never passed between them. Typically,
889 * user-level will use the description structures when assembling an enabling.
890 * It will then distill those description structures into a DOF object (see
891 * above), and send it into the kernel. The kernel will again use the
892 * description structures to create a description of the enabling as it reads
893 * the DOF. When the description is complete, the enabling will be actually
894 * created -- turning it into the structures that represent the enabling
895 * instead of merely describing it. Not surprisingly, the description
896 * structures bear a strong resemblance to the DOF structures that act as their
899 struct dtrace_predicate
;
901 typedef struct dtrace_probedesc
{
902 dtrace_id_t dtpd_id
; /* probe identifier */
903 char dtpd_provider
[DTRACE_PROVNAMELEN
]; /* probe provider name */
904 char dtpd_mod
[DTRACE_MODNAMELEN
]; /* probe module name */
905 char dtpd_func
[DTRACE_FUNCNAMELEN
]; /* probe function name */
906 char dtpd_name
[DTRACE_NAMELEN
]; /* probe name */
907 } dtrace_probedesc_t
;
909 typedef struct dtrace_repldesc
{
910 dtrace_probedesc_t dtrpd_match
; /* probe descr. to match */
911 dtrace_probedesc_t dtrpd_create
; /* probe descr. to create */
914 typedef struct dtrace_preddesc
{
915 dtrace_difo_t
*dtpdd_difo
; /* pointer to DIF object */
916 struct dtrace_predicate
*dtpdd_predicate
; /* pointer to predicate */
919 typedef struct dtrace_actdesc
{
920 dtrace_difo_t
*dtad_difo
; /* pointer to DIF object */
921 struct dtrace_actdesc
*dtad_next
; /* next action */
922 dtrace_actkind_t dtad_kind
; /* kind of action */
923 uint32_t dtad_ntuple
; /* number in tuple */
924 uint64_t dtad_arg
; /* action argument */
925 uint64_t dtad_uarg
; /* user argument */
926 int dtad_refcnt
; /* reference count */
929 typedef struct dtrace_ecbdesc
{
930 dtrace_actdesc_t
*dted_action
; /* action description(s) */
931 dtrace_preddesc_t dted_pred
; /* predicate description */
932 dtrace_probedesc_t dted_probe
; /* probe description */
933 uint64_t dted_uarg
; /* library argument */
934 int dted_refcnt
; /* reference count */
938 * DTrace Metadata Description Structures
940 * DTrace separates the trace data stream from the metadata stream. The only
941 * metadata tokens placed in the data stream are enabled probe identifiers
942 * (EPIDs) or (in the case of aggregations) aggregation identifiers. In order
943 * to determine the structure of the data, DTrace consumers pass the token to
944 * the kernel, and receive in return a corresponding description of the enabled
945 * probe (via the dtrace_eprobedesc structure) or the aggregation (via the
946 * dtrace_aggdesc structure). Both of these structures are expressed in terms
947 * of record descriptions (via the dtrace_recdesc structure) that describe the
948 * exact structure of the data. Some record descriptions may also contain a
949 * format identifier; this additional bit of metadata can be retrieved from the
950 * kernel, for which a format description is returned via the dtrace_fmtdesc
951 * structure. Note that all four of these structures must be bitness-neutral
952 * to allow for a 32-bit DTrace consumer on a 64-bit kernel.
954 typedef struct dtrace_recdesc
{
955 dtrace_actkind_t dtrd_action
; /* kind of action */
956 uint32_t dtrd_size
; /* size of record */
957 uint32_t dtrd_offset
; /* offset in ECB's data */
958 uint16_t dtrd_alignment
; /* required alignment */
959 uint16_t dtrd_format
; /* format, if any */
960 uint64_t dtrd_arg
; /* action argument */
961 uint64_t dtrd_uarg
; /* user argument */
964 typedef struct dtrace_eprobedesc
{
965 dtrace_epid_t dtepd_epid
; /* enabled probe ID */
966 dtrace_id_t dtepd_probeid
; /* probe ID */
967 uint64_t dtepd_uarg
; /* library argument */
968 uint32_t dtepd_size
; /* total size */
969 int dtepd_nrecs
; /* number of records */
970 dtrace_recdesc_t dtepd_rec
[1]; /* records themselves */
971 } dtrace_eprobedesc_t
;
973 typedef struct dtrace_aggdesc
{
974 DTRACE_PTR(char, dtagd_name
); /* not filled in by kernel */
975 dtrace_aggvarid_t dtagd_varid
; /* not filled in by kernel */
976 int dtagd_flags
; /* not filled in by kernel */
977 dtrace_aggid_t dtagd_id
; /* aggregation ID */
978 dtrace_epid_t dtagd_epid
; /* enabled probe ID */
979 uint32_t dtagd_size
; /* size in bytes */
980 int dtagd_nrecs
; /* number of records */
981 uint32_t dtagd_pad
; /* explicit padding */
982 dtrace_recdesc_t dtagd_rec
[1]; /* record descriptions */
985 typedef struct dtrace_fmtdesc
{
986 DTRACE_PTR(char, dtfd_string
); /* format string */
987 int dtfd_length
; /* length of format string */
988 uint16_t dtfd_format
; /* format identifier */
991 #define DTRACE_SIZEOF_EPROBEDESC(desc) \
992 (sizeof (dtrace_eprobedesc_t) + ((desc)->dtepd_nrecs ? \
993 (((desc)->dtepd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0))
995 #define DTRACE_SIZEOF_AGGDESC(desc) \
996 (sizeof (dtrace_aggdesc_t) + ((desc)->dtagd_nrecs ? \
997 (((desc)->dtagd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0))
1000 * DTrace Option Interface
1002 * Run-time DTrace options are set and retrieved via DOF_SECT_OPTDESC sections
1003 * in a DOF image. The dof_optdesc structure contains an option identifier and
1004 * an option value. The valid option identifiers are found below; the mapping
1005 * between option identifiers and option identifying strings is maintained at
1006 * user-level. Note that the value of DTRACEOPT_UNSET is such that all of the
1007 * following are potentially valid option values: all positive integers, zero
1008 * and negative one. Some options (notably "bufpolicy" and "bufresize") take
1009 * predefined tokens as their values; these are defined with
1010 * DTRACEOPT_{option}_{token}.
1012 #define DTRACEOPT_BUFSIZE 0 /* buffer size */
1013 #define DTRACEOPT_BUFPOLICY 1 /* buffer policy */
1014 #define DTRACEOPT_DYNVARSIZE 2 /* dynamic variable size */
1015 #define DTRACEOPT_AGGSIZE 3 /* aggregation size */
1016 #define DTRACEOPT_SPECSIZE 4 /* speculation size */
1017 #define DTRACEOPT_NSPEC 5 /* number of speculations */
1018 #define DTRACEOPT_STRSIZE 6 /* string size */
1019 #define DTRACEOPT_CLEANRATE 7 /* dynvar cleaning rate */
1020 #define DTRACEOPT_CPU 8 /* CPU to trace */
1021 #define DTRACEOPT_BUFRESIZE 9 /* buffer resizing policy */
1022 #define DTRACEOPT_GRABANON 10 /* grab anonymous state, if any */
1023 #define DTRACEOPT_FLOWINDENT 11 /* indent function entry/return */
1024 #define DTRACEOPT_QUIET 12 /* only output explicitly traced data */
1025 #define DTRACEOPT_STACKFRAMES 13 /* number of stack frames */
1026 #define DTRACEOPT_USTACKFRAMES 14 /* number of user stack frames */
1027 #define DTRACEOPT_AGGRATE 15 /* aggregation snapshot rate */
1028 #define DTRACEOPT_SWITCHRATE 16 /* buffer switching rate */
1029 #define DTRACEOPT_STATUSRATE 17 /* status rate */
1030 #define DTRACEOPT_DESTRUCTIVE 18 /* destructive actions allowed */
1031 #define DTRACEOPT_STACKINDENT 19 /* output indent for stack traces */
1032 #define DTRACEOPT_RAWBYTES 20 /* always print bytes in raw form */
1033 #define DTRACEOPT_JSTACKFRAMES 21 /* number of jstack() frames */
1034 #define DTRACEOPT_JSTACKSTRSIZE 22 /* size of jstack() string table */
1035 #define DTRACEOPT_AGGSORTKEY 23 /* sort aggregations by key */
1036 #define DTRACEOPT_AGGSORTREV 24 /* reverse-sort aggregations */
1037 #define DTRACEOPT_AGGSORTPOS 25 /* agg. position to sort on */
1038 #define DTRACEOPT_AGGSORTKEYPOS 26 /* agg. key position to sort on */
1039 #if defined(__APPLE__)
1040 #define DTRACEOPT_STACKSYMBOLS 27 /* clear to prevent stack symbolication */
1041 #define DTRACEOPT_MAX 28 /* number of options */
1043 #define DTRACEOPT_MAX 27 /* number of options */
1046 #define DTRACEOPT_UNSET (dtrace_optval_t)-2 /* unset option */
1048 #define DTRACEOPT_BUFPOLICY_RING 0 /* ring buffer */
1049 #define DTRACEOPT_BUFPOLICY_FILL 1 /* fill buffer, then stop */
1050 #define DTRACEOPT_BUFPOLICY_SWITCH 2 /* switch buffers */
1052 #define DTRACEOPT_BUFRESIZE_AUTO 0 /* automatic resizing */
1053 #define DTRACEOPT_BUFRESIZE_MANUAL 1 /* manual resizing */
1056 * DTrace Buffer Interface
1058 * In order to get a snapshot of the principal or aggregation buffer,
1059 * user-level passes a buffer description to the kernel with the dtrace_bufdesc
1060 * structure. This describes which CPU user-level is interested in, and
1061 * where user-level wishes the kernel to snapshot the buffer to (the
1062 * dtbd_data field). The kernel uses the same structure to pass back some
1063 * information regarding the buffer: the size of data actually copied out, the
1064 * number of drops, the number of errors, and the offset of the oldest record.
1065 * If the buffer policy is a "switch" policy, taking a snapshot of the
1066 * principal buffer has the additional effect of switching the active and
1067 * inactive buffers. Taking a snapshot of the aggregation buffer _always_ has
1068 * the additional effect of switching the active and inactive buffers.
1070 typedef struct dtrace_bufdesc
{
1071 uint64_t dtbd_size
; /* size of buffer */
1072 uint32_t dtbd_cpu
; /* CPU or DTRACE_CPUALL */
1073 uint32_t dtbd_errors
; /* number of errors */
1074 uint64_t dtbd_drops
; /* number of drops */
1075 DTRACE_PTR(char, dtbd_data
); /* data */
1076 uint64_t dtbd_oldest
; /* offset of oldest record */
1082 * The status of DTrace is relayed via the dtrace_status structure. This
1083 * structure contains members to count drops other than the capacity drops
1084 * available via the buffer interface (see above). This consists of dynamic
1085 * drops (including capacity dynamic drops, rinsing drops and dirty drops), and
1086 * speculative drops (including capacity speculative drops, drops due to busy
1087 * speculative buffers and drops due to unavailable speculative buffers).
1088 * Additionally, the status structure contains a field to indicate the number
1089 * of "fill"-policy buffers have been filled and a boolean field to indicate
1090 * that exit() has been called. If the dtst_exiting field is non-zero, no
1091 * further data will be generated until tracing is stopped (at which time any
1092 * enablings of the END action will be processed); if user-level sees that
1093 * this field is non-zero, tracing should be stopped as soon as possible.
1095 typedef struct dtrace_status
{
1096 uint64_t dtst_dyndrops
; /* dynamic drops */
1097 uint64_t dtst_dyndrops_rinsing
; /* dyn drops due to rinsing */
1098 uint64_t dtst_dyndrops_dirty
; /* dyn drops due to dirty */
1099 uint64_t dtst_specdrops
; /* speculative drops */
1100 uint64_t dtst_specdrops_busy
; /* spec drops due to busy */
1101 uint64_t dtst_specdrops_unavail
; /* spec drops due to unavail */
1102 uint64_t dtst_errors
; /* total errors */
1103 uint64_t dtst_filled
; /* number of filled bufs */
1104 uint64_t dtst_stkstroverflows
; /* stack string tab overflows */
1105 uint64_t dtst_dblerrors
; /* errors in ERROR probes */
1106 char dtst_killed
; /* non-zero if killed */
1107 char dtst_exiting
; /* non-zero if exit() called */
1108 char dtst_pad
[6]; /* pad out to 64-bit align */
1112 * DTrace Configuration
1114 * User-level may need to understand some elements of the kernel DTrace
1115 * configuration in order to generate correct DIF. This information is
1116 * conveyed via the dtrace_conf structure.
1118 typedef struct dtrace_conf
{
1119 uint_t dtc_difversion
; /* supported DIF version */
1120 uint_t dtc_difintregs
; /* # of DIF integer registers */
1121 uint_t dtc_diftupregs
; /* # of DIF tuple registers */
1122 uint_t dtc_ctfmodel
; /* CTF data model */
1123 uint_t dtc_pad
[8]; /* reserved for future use */
1129 * The constants below DTRACEFLT_LIBRARY indicate probe processing faults;
1130 * constants at or above DTRACEFLT_LIBRARY indicate faults in probe
1131 * postprocessing at user-level. Probe processing faults induce an ERROR
1132 * probe and are replicated in unistd.d to allow users' ERROR probes to decode
1133 * the error condition using thse symbolic labels.
1135 #define DTRACEFLT_UNKNOWN 0 /* Unknown fault */
1136 #define DTRACEFLT_BADADDR 1 /* Bad address */
1137 #define DTRACEFLT_BADALIGN 2 /* Bad alignment */
1138 #define DTRACEFLT_ILLOP 3 /* Illegal operation */
1139 #define DTRACEFLT_DIVZERO 4 /* Divide-by-zero */
1140 #define DTRACEFLT_NOSCRATCH 5 /* Out of scratch space */
1141 #define DTRACEFLT_KPRIV 6 /* Illegal kernel access */
1142 #define DTRACEFLT_UPRIV 7 /* Illegal user access */
1143 #define DTRACEFLT_TUPOFLOW 8 /* Tuple stack overflow */
1145 #define DTRACEFLT_LIBRARY 1000 /* Library-level fault */
1148 * DTrace Argument Types
1150 * Because it would waste both space and time, argument types do not reside
1151 * with the probe. In order to determine argument types for args[X]
1152 * variables, the D compiler queries for argument types on a probe-by-probe
1153 * basis. (This optimizes for the common case that arguments are either not
1154 * used or used in an untyped fashion.) Typed arguments are specified with a
1155 * string of the type name in the dtragd_native member of the argument
1156 * description structure. Typed arguments may be further translated to types
1157 * of greater stability; the provider indicates such a translated argument by
1158 * filling in the dtargd_xlate member with the string of the translated type.
1159 * Finally, the provider may indicate which argument value a given argument
1160 * maps to by setting the dtargd_mapping member -- allowing a single argument
1161 * to map to multiple args[X] variables.
1163 typedef struct dtrace_argdesc
{
1164 dtrace_id_t dtargd_id
; /* probe identifier */
1165 int dtargd_ndx
; /* arg number (-1 iff none) */
1166 int dtargd_mapping
; /* value mapping */
1167 char dtargd_native
[DTRACE_ARGTYPELEN
]; /* native type name */
1168 char dtargd_xlate
[DTRACE_ARGTYPELEN
]; /* translated type name */
1172 * DTrace Stability Attributes
1174 * Each DTrace provider advertises the name and data stability of each of its
1175 * probe description components, as well as its architectural dependencies.
1176 * The D compiler can query the provider attributes (dtrace_pattr_t below) in
1177 * order to compute the properties of an input program and report them.
1179 typedef uint8_t dtrace_stability_t
; /* stability code (see attributes(5)) */
1180 typedef uint8_t dtrace_class_t
; /* architectural dependency class */
1182 #define DTRACE_STABILITY_INTERNAL 0 /* private to DTrace itself */
1183 #define DTRACE_STABILITY_PRIVATE 1 /* private to Sun (see docs) */
1184 #define DTRACE_STABILITY_OBSOLETE 2 /* scheduled for removal */
1185 #define DTRACE_STABILITY_EXTERNAL 3 /* not controlled by Sun */
1186 #define DTRACE_STABILITY_UNSTABLE 4 /* new or rapidly changing */
1187 #define DTRACE_STABILITY_EVOLVING 5 /* less rapidly changing */
1188 #define DTRACE_STABILITY_STABLE 6 /* mature interface from Sun */
1189 #define DTRACE_STABILITY_STANDARD 7 /* industry standard */
1190 #define DTRACE_STABILITY_MAX 7 /* maximum valid stability */
1192 #define DTRACE_CLASS_UNKNOWN 0 /* unknown architectural dependency */
1193 #define DTRACE_CLASS_CPU 1 /* CPU-module-specific */
1194 #define DTRACE_CLASS_PLATFORM 2 /* platform-specific (uname -i) */
1195 #define DTRACE_CLASS_GROUP 3 /* hardware-group-specific (uname -m) */
1196 #define DTRACE_CLASS_ISA 4 /* ISA-specific (uname -p) */
1197 #define DTRACE_CLASS_COMMON 5 /* common to all systems */
1198 #define DTRACE_CLASS_MAX 5 /* maximum valid class */
1200 #define DTRACE_PRIV_NONE 0x0000
1201 #define DTRACE_PRIV_KERNEL 0x0001
1202 #define DTRACE_PRIV_USER 0x0002
1203 #define DTRACE_PRIV_PROC 0x0004
1204 #define DTRACE_PRIV_OWNER 0x0008
1205 #define DTRACE_PRIV_ZONEOWNER 0x0010
1207 #define DTRACE_PRIV_ALL \
1208 (DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER | \
1209 DTRACE_PRIV_PROC | DTRACE_PRIV_OWNER | DTRACE_PRIV_ZONEOWNER)
1211 typedef struct dtrace_ppriv
{
1212 uint32_t dtpp_flags
; /* privilege flags */
1213 uid_t dtpp_uid
; /* user ID */
1214 zoneid_t dtpp_zoneid
; /* zone ID */
1217 typedef struct dtrace_attribute
{
1218 dtrace_stability_t dtat_name
; /* entity name stability */
1219 dtrace_stability_t dtat_data
; /* entity data stability */
1220 dtrace_class_t dtat_class
; /* entity data dependency */
1221 } dtrace_attribute_t
;
1223 typedef struct dtrace_pattr
{
1224 dtrace_attribute_t dtpa_provider
; /* provider attributes */
1225 dtrace_attribute_t dtpa_mod
; /* module attributes */
1226 dtrace_attribute_t dtpa_func
; /* function attributes */
1227 dtrace_attribute_t dtpa_name
; /* name attributes */
1228 dtrace_attribute_t dtpa_args
; /* args[] attributes */
1231 typedef struct dtrace_providerdesc
{
1232 char dtvd_name
[DTRACE_PROVNAMELEN
]; /* provider name */
1233 dtrace_pattr_t dtvd_attr
; /* stability attributes */
1234 dtrace_ppriv_t dtvd_priv
; /* privileges required */
1235 } dtrace_providerdesc_t
;
1238 * DTrace Pseudodevice Interface
1240 * DTrace is controlled through ioctl(2)'s to the in-kernel dtrace:dtrace
1241 * pseudodevice driver. These ioctls comprise the user-kernel interface to
1244 #if !defined(__APPLE__)
1245 #define DTRACEIOC (('d' << 24) | ('t' << 16) | ('r' << 8))
1246 #define DTRACEIOC_PROVIDER (DTRACEIOC | 1) /* provider query */
1247 #define DTRACEIOC_PROBES (DTRACEIOC | 2) /* probe query */
1248 #define DTRACEIOC_BUFSNAP (DTRACEIOC | 4) /* snapshot buffer */
1249 #define DTRACEIOC_PROBEMATCH (DTRACEIOC | 5) /* match probes */
1250 #define DTRACEIOC_ENABLE (DTRACEIOC | 6) /* enable probes */
1251 #define DTRACEIOC_AGGSNAP (DTRACEIOC | 7) /* snapshot agg. */
1252 #define DTRACEIOC_EPROBE (DTRACEIOC | 8) /* get eprobe desc. */
1253 #define DTRACEIOC_PROBEARG (DTRACEIOC | 9) /* get probe arg */
1254 #define DTRACEIOC_CONF (DTRACEIOC | 10) /* get config. */
1255 #define DTRACEIOC_STATUS (DTRACEIOC | 11) /* get status */
1256 #define DTRACEIOC_GO (DTRACEIOC | 12) /* start tracing */
1257 #define DTRACEIOC_STOP (DTRACEIOC | 13) /* stop tracing */
1258 #define DTRACEIOC_AGGDESC (DTRACEIOC | 15) /* get agg. desc. */
1259 #define DTRACEIOC_FORMAT (DTRACEIOC | 16) /* get format str */
1260 #define DTRACEIOC_DOFGET (DTRACEIOC | 17) /* get DOF */
1261 #define DTRACEIOC_REPLICATE (DTRACEIOC | 18) /* replicate enab */
1263 /* coding this as IOC_VOID allows this driver to handle its own copyin/copuout */
1264 #define DTRACEIOC _IO('d',0)
1265 #define DTRACEIOC_PROVIDER (DTRACEIOC | 1) /* provider query */
1266 #define DTRACEIOC_PROBES (DTRACEIOC | 2) /* probe query */
1267 #define DTRACEIOC_BUFSNAP (DTRACEIOC | 4) /* snapshot buffer */
1268 #define DTRACEIOC_PROBEMATCH (DTRACEIOC | 5) /* match probes */
1269 #define DTRACEIOC_ENABLE (DTRACEIOC | 6) /* enable probes */
1270 #define DTRACEIOC_AGGSNAP (DTRACEIOC | 7) /* snapshot agg. */
1271 #define DTRACEIOC_EPROBE (DTRACEIOC | 8) /* get eprobe desc. */
1272 #define DTRACEIOC_PROBEARG (DTRACEIOC | 9) /* get probe arg */
1273 #define DTRACEIOC_CONF (DTRACEIOC | 10) /* get config. */
1274 #define DTRACEIOC_STATUS (DTRACEIOC | 11) /* get status */
1275 #define DTRACEIOC_GO (DTRACEIOC | 12) /* start tracing */
1276 #define DTRACEIOC_STOP (DTRACEIOC | 13) /* stop tracing */
1277 #define DTRACEIOC_AGGDESC (DTRACEIOC | 15) /* get agg. desc. */
1278 #define DTRACEIOC_FORMAT (DTRACEIOC | 16) /* get format str */
1279 #define DTRACEIOC_DOFGET (DTRACEIOC | 17) /* get DOF */
1280 #define DTRACEIOC_REPLICATE (DTRACEIOC | 18) /* replicate enab */
1281 #endif /* __APPLE__ */
1286 * In general, DTrace establishes probes in processes and takes actions on
1287 * processes without knowing their specific user-level structures. Instead of
1288 * existing in the framework, process-specific knowledge is contained by the
1289 * enabling D program -- which can apply process-specific knowledge by making
1290 * appropriate use of DTrace primitives like copyin() and copyinstr() to
1291 * operate on user-level data. However, there may exist some specific probes
1292 * of particular semantic relevance that the application developer may wish to
1293 * explicitly export. For example, an application may wish to export a probe
1294 * at the point that it begins and ends certain well-defined transactions. In
1295 * addition to providing probes, programs may wish to offer assistance for
1296 * certain actions. For example, in highly dynamic environments (e.g., Java),
1297 * it may be difficult to obtain a stack trace in terms of meaningful symbol
1298 * names (the translation from instruction addresses to corresponding symbol
1299 * names may only be possible in situ); these environments may wish to define
1300 * a series of actions to be applied in situ to obtain a meaningful stack
1303 * These two mechanisms -- user-level statically defined tracing and assisting
1304 * DTrace actions -- are provided via DTrace _helpers_. Helpers are specified
1305 * via DOF, but unlike enabling DOF, helper DOF may contain definitions of
1306 * providers, probes and their arguments. If a helper wishes to provide
1307 * action assistance, probe descriptions and corresponding DIF actions may be
1308 * specified in the helper DOF. For such helper actions, however, the probe
1309 * description describes the specific helper: all DTrace helpers have the
1310 * provider name "dtrace" and the module name "helper", and the name of the
1311 * helper is contained in the function name (for example, the ustack() helper
1312 * is named "ustack"). Any helper-specific name may be contained in the name
1313 * (for example, if a helper were to have a constructor, it might be named
1314 * "dtrace:helper:<helper>:init"). Helper actions are only called when the
1315 * action that they are helping is taken. Helper actions may only return DIF
1316 * expressions, and may only call the following subroutines:
1318 * alloca() <= Allocates memory out of the consumer's scratch space
1319 * bcopy() <= Copies memory to scratch space
1320 * copyin() <= Copies memory from user-level into consumer's scratch
1321 * copyinto() <= Copies memory into a specific location in scratch
1322 * copyinstr() <= Copies a string into a specific location in scratch
1324 * Helper actions may only access the following built-in variables:
1326 * curthread <= Current kthread_t pointer
1327 * tid <= Current thread identifier
1328 * pid <= Current process identifier
1329 * ppid <= Parent process identifier
1330 * uid <= Current user ID
1331 * gid <= Current group ID
1332 * execname <= Current executable name
1333 * zonename <= Current zone name
1335 * Helper actions may not manipulate or allocate dynamic variables, but they
1336 * may have clause-local and statically-allocated global variables. The
1337 * helper action variable state is specific to the helper action -- variables
1338 * used by the helper action may not be accessed outside of the helper
1339 * action, and the helper action may not access variables that like outside
1340 * of it. Helper actions may not load from kernel memory at-large; they are
1341 * restricting to loading current user state (via copyin() and variants) and
1342 * scratch space. As with probe enablings, helper actions are executed in
1343 * program order. The result of the helper action is the result of the last
1344 * executing helper expression.
1346 * Helpers -- composed of either providers/probes or probes/actions (or both)
1347 * -- are added by opening the "helper" minor node, and issuing an ioctl(2)
1348 * (DTRACEHIOC_ADDDOF) that specifies the dof_helper_t structure. This
1349 * encapsulates the name and base address of the user-level library or
1350 * executable publishing the helpers and probes as well as the DOF that
1351 * contains the definitions of those helpers and probes.
1353 * The DTRACEHIOC_ADD and DTRACEHIOC_REMOVE are left in place for legacy
1354 * helpers and should no longer be used. No other ioctls are valid on the
1355 * helper minor node.
1357 #if !defined(__APPLE__)
1358 #define DTRACEHIOC (('d' << 24) | ('t' << 16) | ('h' << 8))
1359 #define DTRACEHIOC_ADD (DTRACEHIOC | 1) /* add helper */
1360 #define DTRACEHIOC_REMOVE (DTRACEHIOC | 2) /* remove helper */
1361 #define DTRACEHIOC_ADDDOF (DTRACEHIOC | 3) /* add helper DOF */
1363 #define DTRACEHIOC_REMOVE _IO('h', 2) /* remove helper */
1364 #define DTRACEHIOC_ADDDOF _IOW('h', 4, user_addr_t) /* add helper DOF */
1365 #endif /* __APPLE__ */
1367 typedef struct dof_helper
{
1368 char dofhp_mod
[DTRACE_MODNAMELEN
]; /* executable or library name */
1369 uint64_t dofhp_addr
; /* base address of object */
1370 uint64_t dofhp_dof
; /* address of helper DOF */
1373 #if defined(__APPLE__)
1375 * This structure is used to register one or more dof_helper_t(s).
1376 * For counts greater than one, malloc the structure as if the
1377 * dofiod_helpers field was "count" sized. The kernel will copyin
1380 * sizeof(dof_ioctl_data_t) + ((count - 1) * sizeof(dof_helper_t))
1382 typedef struct dof_ioctl_data
{
1384 * This field must be 64 bits to keep the alignment the same
1385 * when 64 bit user procs are sending data to 32 bit xnu
1387 uint64_t dofiod_count
;
1388 dof_helper_t dofiod_helpers
[1];
1391 #define DOF_IOCTL_DATA_T_SIZE(count) (sizeof(dof_ioctl_data_t) + ((count - 1) * sizeof(dof_helper_t)))
1395 #define DTRACEMNR_DTRACE "dtrace" /* node for DTrace ops */
1396 #define DTRACEMNR_HELPER "dtracehelper" /* node for helpers */
1397 #define DTRACEMNRN_DTRACE 0 /* minor for DTrace ops */
1398 #define DTRACEMNRN_HELPER 1 /* minor for helpers */
1399 #define DTRACEMNRN_CLONE 2 /* first clone minor */
1404 * DTrace Provider API
1406 * The following functions are implemented by the DTrace framework and are
1407 * used to implement separate in-kernel DTrace providers. Common functions
1408 * are provided in uts/common/os/dtrace.c. ISA-dependent subroutines are
1409 * defined in uts/<isa>/dtrace/dtrace_asm.s or uts/<isa>/dtrace/dtrace_isa.c.
1411 * The provider API has two halves: the API that the providers consume from
1412 * DTrace, and the API that providers make available to DTrace.
1414 * 1 Framework-to-Provider API
1418 * The Framework-to-Provider API is represented by the dtrace_pops structure
1419 * that the provider passes to the framework when registering itself. This
1420 * structure consists of the following members:
1422 * dtps_provide() <-- Provide all probes, all modules
1423 * dtps_provide_module() <-- Provide all probes in specified module
1424 * dtps_enable() <-- Enable specified probe
1425 * dtps_disable() <-- Disable specified probe
1426 * dtps_suspend() <-- Suspend specified probe
1427 * dtps_resume() <-- Resume specified probe
1428 * dtps_getargdesc() <-- Get the argument description for args[X]
1429 * dtps_getargval() <-- Get the value for an argX or args[X] variable
1430 * dtps_usermode() <-- Find out if the probe was fired in user mode
1431 * dtps_destroy() <-- Destroy all state associated with this probe
1433 * 1.2 void dtps_provide(void *arg, const dtrace_probedesc_t *spec)
1437 * Called to indicate that the provider should provide all probes. If the
1438 * specified description is non-NULL, dtps_provide() is being called because
1439 * no probe matched a specified probe -- if the provider has the ability to
1440 * create custom probes, it may wish to create a probe that matches the
1441 * specified description.
1443 * 1.2.2 Arguments and notes
1445 * The first argument is the cookie as passed to dtrace_register(). The
1446 * second argument is a pointer to a probe description that the provider may
1447 * wish to consider when creating custom probes. The provider is expected to
1448 * call back into the DTrace framework via dtrace_probe_create() to create
1449 * any necessary probes. dtps_provide() may be called even if the provider
1450 * has made available all probes; the provider should check the return value
1451 * of dtrace_probe_create() to handle this case. Note that the provider need
1452 * not implement both dtps_provide() and dtps_provide_module(); see
1453 * "Arguments and Notes" for dtrace_register(), below.
1455 * 1.2.3 Return value
1459 * 1.2.4 Caller's context
1461 * dtps_provide() is typically called from open() or ioctl() context, but may
1462 * be called from other contexts as well. The DTrace framework is locked in
1463 * such a way that providers may not register or unregister. This means that
1464 * the provider may not call any DTrace API that affects its registration with
1465 * the framework, including dtrace_register(), dtrace_unregister(),
1466 * dtrace_invalidate(), and dtrace_condense(). However, the context is such
1467 * that the provider may (and indeed, is expected to) call probe-related
1468 * DTrace routines, including dtrace_probe_create(), dtrace_probe_lookup(),
1469 * and dtrace_probe_arg().
1471 * 1.3 void dtps_provide_module(void *arg, struct modctl *mp)
1475 * Called to indicate that the provider should provide all probes in the
1478 * 1.3.2 Arguments and notes
1480 * The first argument is the cookie as passed to dtrace_register(). The
1481 * second argument is a pointer to a modctl structure that indicates the
1482 * module for which probes should be created.
1484 * 1.3.3 Return value
1488 * 1.3.4 Caller's context
1490 * dtps_provide_module() may be called from open() or ioctl() context, but
1491 * may also be called from a module loading context. mod_lock is held, and
1492 * the DTrace framework is locked in such a way that providers may not
1493 * register or unregister. This means that the provider may not call any
1494 * DTrace API that affects its registration with the framework, including
1495 * dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and
1496 * dtrace_condense(). However, the context is such that the provider may (and
1497 * indeed, is expected to) call probe-related DTrace routines, including
1498 * dtrace_probe_create(), dtrace_probe_lookup(), and dtrace_probe_arg(). Note
1499 * that the provider need not implement both dtps_provide() and
1500 * dtps_provide_module(); see "Arguments and Notes" for dtrace_register(),
1503 * 1.4 void dtps_enable(void *arg, dtrace_id_t id, void *parg)
1507 * Called to enable the specified probe.
1509 * 1.4.2 Arguments and notes
1511 * The first argument is the cookie as passed to dtrace_register(). The
1512 * second argument is the identifier of the probe to be enabled. The third
1513 * argument is the probe argument as passed to dtrace_probe_create().
1514 * dtps_enable() will be called when a probe transitions from not being
1515 * enabled at all to having one or more ECB. The number of ECBs associated
1516 * with the probe may change without subsequent calls into the provider.
1517 * When the number of ECBs drops to zero, the provider will be explicitly
1518 * told to disable the probe via dtps_disable(). dtrace_probe() should never
1519 * be called for a probe identifier that hasn't been explicitly enabled via
1522 * 1.4.3 Return value
1526 * 1.4.4 Caller's context
1528 * The DTrace framework is locked in such a way that it may not be called
1529 * back into at all. cpu_lock is held. mod_lock is not held and may not
1532 * 1.5 void dtps_disable(void *arg, dtrace_id_t id, void *parg)
1536 * Called to disable the specified probe.
1538 * 1.5.2 Arguments and notes
1540 * The first argument is the cookie as passed to dtrace_register(). The
1541 * second argument is the identifier of the probe to be disabled. The third
1542 * argument is the probe argument as passed to dtrace_probe_create().
1543 * dtps_disable() will be called when a probe transitions from being enabled
1544 * to having zero ECBs. dtrace_probe() should never be called for a probe
1545 * identifier that has been explicitly enabled via dtps_disable().
1547 * 1.5.3 Return value
1551 * 1.5.4 Caller's context
1553 * The DTrace framework is locked in such a way that it may not be called
1554 * back into at all. cpu_lock is held. mod_lock is not held and may not
1557 * 1.6 void dtps_suspend(void *arg, dtrace_id_t id, void *parg)
1561 * Called to suspend the specified enabled probe. This entry point is for
1562 * providers that may need to suspend some or all of their probes when CPUs
1563 * are being powered on or when the boot monitor is being entered for a
1564 * prolonged period of time.
1566 * 1.6.2 Arguments and notes
1568 * The first argument is the cookie as passed to dtrace_register(). The
1569 * second argument is the identifier of the probe to be suspended. The
1570 * third argument is the probe argument as passed to dtrace_probe_create().
1571 * dtps_suspend will only be called on an enabled probe. Providers that
1572 * provide a dtps_suspend entry point will want to take roughly the action
1573 * that it takes for dtps_disable.
1575 * 1.6.3 Return value
1579 * 1.6.4 Caller's context
1581 * Interrupts are disabled. The DTrace framework is in a state such that the
1582 * specified probe cannot be disabled or destroyed for the duration of
1583 * dtps_suspend(). As interrupts are disabled, the provider is afforded
1584 * little latitude; the provider is expected to do no more than a store to
1587 * 1.7 void dtps_resume(void *arg, dtrace_id_t id, void *parg)
1591 * Called to resume the specified enabled probe. This entry point is for
1592 * providers that may need to resume some or all of their probes after the
1593 * completion of an event that induced a call to dtps_suspend().
1595 * 1.7.2 Arguments and notes
1597 * The first argument is the cookie as passed to dtrace_register(). The
1598 * second argument is the identifier of the probe to be resumed. The
1599 * third argument is the probe argument as passed to dtrace_probe_create().
1600 * dtps_resume will only be called on an enabled probe. Providers that
1601 * provide a dtps_resume entry point will want to take roughly the action
1602 * that it takes for dtps_enable.
1604 * 1.7.3 Return value
1608 * 1.7.4 Caller's context
1610 * Interrupts are disabled. The DTrace framework is in a state such that the
1611 * specified probe cannot be disabled or destroyed for the duration of
1612 * dtps_resume(). As interrupts are disabled, the provider is afforded
1613 * little latitude; the provider is expected to do no more than a store to
1616 * 1.8 void dtps_getargdesc(void *arg, dtrace_id_t id, void *parg,
1617 * dtrace_argdesc_t *desc)
1621 * Called to retrieve the argument description for an args[X] variable.
1623 * 1.8.2 Arguments and notes
1625 * The first argument is the cookie as passed to dtrace_register(). The
1626 * second argument is the identifier of the current probe. The third
1627 * argument is the probe argument as passed to dtrace_probe_create(). The
1628 * fourth argument is a pointer to the argument description. This
1629 * description is both an input and output parameter: it contains the
1630 * index of the desired argument in the dtargd_ndx field, and expects
1631 * the other fields to be filled in upon return. If there is no argument
1632 * corresponding to the specified index, the dtargd_ndx field should be set
1633 * to DTRACE_ARGNONE.
1635 * 1.8.3 Return value
1637 * None. The dtargd_ndx, dtargd_native, dtargd_xlate and dtargd_mapping
1638 * members of the dtrace_argdesc_t structure are all output values.
1640 * 1.8.4 Caller's context
1642 * dtps_getargdesc() is called from ioctl() context. mod_lock is held, and
1643 * the DTrace framework is locked in such a way that providers may not
1644 * register or unregister. This means that the provider may not call any
1645 * DTrace API that affects its registration with the framework, including
1646 * dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and
1647 * dtrace_condense().
1649 * 1.9 uint64_t dtps_getargval(void *arg, dtrace_id_t id, void *parg,
1650 * int argno, int aframes)
1654 * Called to retrieve a value for an argX or args[X] variable.
1656 * 1.9.2 Arguments and notes
1658 * The first argument is the cookie as passed to dtrace_register(). The
1659 * second argument is the identifier of the current probe. The third
1660 * argument is the probe argument as passed to dtrace_probe_create(). The
1661 * fourth argument is the number of the argument (the X in the example in
1662 * 1.9.1). The fifth argument is the number of stack frames that were used
1663 * to get from the actual place in the code that fired the probe to
1664 * dtrace_probe() itself, the so-called artificial frames. This argument may
1665 * be used to descend an appropriate number of frames to find the correct
1666 * values. If this entry point is left NULL, the dtrace_getarg() built-in
1669 * 1.9.3 Return value
1671 * The value of the argument.
1673 * 1.9.4 Caller's context
1675 * This is called from within dtrace_probe() meaning that interrupts
1676 * are disabled. No locks should be taken within this entry point.
1678 * 1.10 int dtps_usermode(void *arg, dtrace_id_t id, void *parg)
1682 * Called to determine if the probe was fired in a user context.
1684 * 1.10.2 Arguments and notes
1686 * The first argument is the cookie as passed to dtrace_register(). The
1687 * second argument is the identifier of the current probe. The third
1688 * argument is the probe argument as passed to dtrace_probe_create(). This
1689 * entry point must not be left NULL for providers whose probes allow for
1690 * mixed mode tracing, that is to say those probes that can fire during
1691 * kernel- _or_ user-mode execution
1693 * 1.10.3 Return value
1697 * 1.10.4 Caller's context
1699 * This is called from within dtrace_probe() meaning that interrupts
1700 * are disabled. No locks should be taken within this entry point.
1702 * 1.11 void dtps_destroy(void *arg, dtrace_id_t id, void *parg)
1706 * Called to destroy the specified probe.
1708 * 1.11.2 Arguments and notes
1710 * The first argument is the cookie as passed to dtrace_register(). The
1711 * second argument is the identifier of the probe to be destroyed. The third
1712 * argument is the probe argument as passed to dtrace_probe_create(). The
1713 * provider should free all state associated with the probe. The framework
1714 * guarantees that dtps_destroy() is only called for probes that have either
1715 * been disabled via dtps_disable() or were never enabled via dtps_enable().
1716 * Once dtps_disable() has been called for a probe, no further call will be
1717 * made specifying the probe.
1719 * 1.11.3 Return value
1723 * 1.11.4 Caller's context
1725 * The DTrace framework is locked in such a way that it may not be called
1726 * back into at all. mod_lock is held. cpu_lock is not held, and may not be
1730 * 2 Provider-to-Framework API
1734 * The Provider-to-Framework API provides the mechanism for the provider to
1735 * register itself with the DTrace framework, to create probes, to lookup
1736 * probes and (most importantly) to fire probes. The Provider-to-Framework
1739 * dtrace_register() <-- Register a provider with the DTrace framework
1740 * dtrace_unregister() <-- Remove a provider's DTrace registration
1741 * dtrace_invalidate() <-- Invalidate the specified provider
1742 * dtrace_condense() <-- Remove a provider's unenabled probes
1743 * dtrace_attached() <-- Indicates whether or not DTrace has attached
1744 * dtrace_probe_create() <-- Create a DTrace probe
1745 * dtrace_probe_lookup() <-- Lookup a DTrace probe based on its name
1746 * dtrace_probe_arg() <-- Return the probe argument for a specific probe
1747 * dtrace_probe() <-- Fire the specified probe
1749 * 2.2 int dtrace_register(const char *name, const dtrace_pattr_t *pap,
1750 * uint32_t priv, cred_t *cr, const dtrace_pops_t *pops, void *arg,
1751 * dtrace_provider_id_t *idp)
1755 * dtrace_register() registers the calling provider with the DTrace
1756 * framework. It should generally be called by DTrace providers in their
1757 * attach(9E) entry point.
1759 * 2.2.2 Arguments and Notes
1761 * The first argument is the name of the provider. The second argument is a
1762 * pointer to the stability attributes for the provider. The third argument
1763 * is the privilege flags for the provider, and must be some combination of:
1765 * DTRACE_PRIV_NONE <= All users may enable probes from this provider
1767 * DTRACE_PRIV_PROC <= Any user with privilege of PRIV_DTRACE_PROC may
1768 * enable probes from this provider
1770 * DTRACE_PRIV_USER <= Any user with privilege of PRIV_DTRACE_USER may
1771 * enable probes from this provider
1773 * DTRACE_PRIV_KERNEL <= Any user with privilege of PRIV_DTRACE_KERNEL
1774 * may enable probes from this provider
1776 * DTRACE_PRIV_OWNER <= This flag places an additional constraint on
1777 * the privilege requirements above. These probes
1778 * require either (a) a user ID matching the user
1779 * ID of the cred passed in the fourth argument
1780 * or (b) the PRIV_PROC_OWNER privilege.
1782 * DTRACE_PRIV_ZONEOWNER<= This flag places an additional constraint on
1783 * the privilege requirements above. These probes
1784 * require either (a) a zone ID matching the zone
1785 * ID of the cred passed in the fourth argument
1786 * or (b) the PRIV_PROC_ZONE privilege.
1788 * Note that these flags designate the _visibility_ of the probes, not
1789 * the conditions under which they may or may not fire.
1791 * The fourth argument is the credential that is associated with the
1792 * provider. This argument should be NULL if the privilege flags don't
1793 * include DTRACE_PRIV_OWNER or DTRACE_PRIV_ZONEOWNER. If non-NULL, the
1794 * framework stashes the uid and zoneid represented by this credential
1795 * for use at probe-time, in implicit predicates. These limit visibility
1796 * of the probes to users and/or zones which have sufficient privilege to
1799 * The fifth argument is a DTrace provider operations vector, which provides
1800 * the implementation for the Framework-to-Provider API. (See Section 1,
1801 * above.) This must be non-NULL, and each member must be non-NULL. The
1802 * exceptions to this are (1) the dtps_provide() and dtps_provide_module()
1803 * members (if the provider so desires, _one_ of these members may be left
1804 * NULL -- denoting that the provider only implements the other) and (2)
1805 * the dtps_suspend() and dtps_resume() members, which must either both be
1806 * NULL or both be non-NULL.
1808 * The sixth argument is a cookie to be specified as the first argument for
1809 * each function in the Framework-to-Provider API. This argument may have
1812 * The final argument is a pointer to dtrace_provider_id_t. If
1813 * dtrace_register() successfully completes, the provider identifier will be
1814 * stored in the memory pointed to be this argument. This argument must be
1817 * 2.2.3 Return value
1819 * On success, dtrace_register() returns 0 and stores the new provider's
1820 * identifier into the memory pointed to by the idp argument. On failure,
1821 * dtrace_register() returns an errno:
1823 * EINVAL The arguments passed to dtrace_register() were somehow invalid.
1824 * This may because a parameter that must be non-NULL was NULL,
1825 * because the name was invalid (either empty or an illegal
1826 * provider name) or because the attributes were invalid.
1828 * No other failure code is returned.
1830 * 2.2.4 Caller's context
1832 * dtrace_register() may induce calls to dtrace_provide(); the provider must
1833 * hold no locks across dtrace_register() that may also be acquired by
1834 * dtrace_provide(). cpu_lock and mod_lock must not be held.
1836 * 2.3 int dtrace_unregister(dtrace_provider_t id)
1840 * Unregisters the specified provider from the DTrace framework. It should
1841 * generally be called by DTrace providers in their detach(9E) entry point.
1843 * 2.3.2 Arguments and Notes
1845 * The only argument is the provider identifier, as returned from a
1846 * successful call to dtrace_register(). As a result of calling
1847 * dtrace_unregister(), the DTrace framework will call back into the provider
1848 * via the dtps_destroy() entry point. Once dtrace_unregister() successfully
1849 * completes, however, the DTrace framework will no longer make calls through
1850 * the Framework-to-Provider API.
1852 * 2.3.3 Return value
1854 * On success, dtrace_unregister returns 0. On failure, dtrace_unregister()
1857 * EBUSY There are currently processes that have the DTrace pseudodevice
1858 * open, or there exists an anonymous enabling that hasn't yet
1861 * No other failure code is returned.
1863 * 2.3.4 Caller's context
1865 * Because a call to dtrace_unregister() may induce calls through the
1866 * Framework-to-Provider API, the caller may not hold any lock across
1867 * dtrace_register() that is also acquired in any of the Framework-to-
1868 * Provider API functions. Additionally, mod_lock may not be held.
1870 * 2.4 void dtrace_invalidate(dtrace_provider_id_t id)
1874 * Invalidates the specified provider. All subsequent probe lookups for the
1875 * specified provider will fail, but its probes will not be removed.
1877 * 2.4.2 Arguments and note
1879 * The only argument is the provider identifier, as returned from a
1880 * successful call to dtrace_register(). In general, a provider's probes
1881 * always remain valid; dtrace_invalidate() is a mechanism for invalidating
1882 * an entire provider, regardless of whether or not probes are enabled or
1883 * not. Note that dtrace_invalidate() will _not_ prevent already enabled
1884 * probes from firing -- it will merely prevent any new enablings of the
1885 * provider's probes.
1887 * 2.5 int dtrace_condense(dtrace_provider_id_t id)
1891 * Removes all the unenabled probes for the given provider. This function is
1892 * not unlike dtrace_unregister(), except that it doesn't remove the
1893 * provider just as many of its associated probes as it can.
1895 * 2.5.2 Arguments and Notes
1897 * As with dtrace_unregister(), the sole argument is the provider identifier
1898 * as returned from a successful call to dtrace_register(). As a result of
1899 * calling dtrace_condense(), the DTrace framework will call back into the
1900 * given provider's dtps_destroy() entry point for each of the provider's
1903 * 2.5.3 Return value
1905 * Currently, dtrace_condense() always returns 0. However, consumers of this
1906 * function should check the return value as appropriate; its behavior may
1907 * change in the future.
1909 * 2.5.4 Caller's context
1911 * As with dtrace_unregister(), the caller may not hold any lock across
1912 * dtrace_condense() that is also acquired in the provider's entry points.
1913 * Also, mod_lock may not be held.
1915 * 2.6 int dtrace_attached()
1919 * Indicates whether or not DTrace has attached.
1921 * 2.6.2 Arguments and Notes
1923 * For most providers, DTrace makes initial contact beyond registration.
1924 * That is, once a provider has registered with DTrace, it waits to hear
1925 * from DTrace to create probes. However, some providers may wish to
1926 * proactively create probes without first being told by DTrace to do so.
1927 * If providers wish to do this, they must first call dtrace_attached() to
1928 * determine if DTrace itself has attached. If dtrace_attached() returns 0,
1929 * the provider must not make any other Provider-to-Framework API call.
1931 * 2.6.3 Return value
1933 * dtrace_attached() returns 1 if DTrace has attached, 0 otherwise.
1935 * 2.7 int dtrace_probe_create(dtrace_provider_t id, const char *mod,
1936 * const char *func, const char *name, int aframes, void *arg)
1940 * Creates a probe with specified module name, function name, and name.
1942 * 2.7.2 Arguments and Notes
1944 * The first argument is the provider identifier, as returned from a
1945 * successful call to dtrace_register(). The second, third, and fourth
1946 * arguments are the module name, function name, and probe name,
1947 * respectively. Of these, module name and function name may both be NULL
1948 * (in which case the probe is considered to be unanchored), or they may both
1949 * be non-NULL. The name must be non-NULL, and must point to a non-empty
1952 * The fifth argument is the number of artificial stack frames that will be
1953 * found on the stack when dtrace_probe() is called for the new probe. These
1954 * artificial frames will be automatically be pruned should the stack() or
1955 * stackdepth() functions be called as part of one of the probe's ECBs. If
1956 * the parameter doesn't add an artificial frame, this parameter should be
1959 * The final argument is a probe argument that will be passed back to the
1960 * provider when a probe-specific operation is called. (e.g., via
1961 * dtps_enable(), dtps_disable(), etc.)
1963 * Note that it is up to the provider to be sure that the probe that it
1964 * creates does not already exist -- if the provider is unsure of the probe's
1965 * existence, it should assure its absence with dtrace_probe_lookup() before
1966 * calling dtrace_probe_create().
1968 * 2.7.3 Return value
1970 * dtrace_probe_create() always succeeds, and always returns the identifier
1971 * of the newly-created probe.
1973 * 2.7.4 Caller's context
1975 * While dtrace_probe_create() is generally expected to be called from
1976 * dtps_provide() and/or dtps_provide_module(), it may be called from other
1977 * non-DTrace contexts. Neither cpu_lock nor mod_lock may be held.
1979 * 2.8 dtrace_id_t dtrace_probe_lookup(dtrace_provider_t id, const char *mod,
1980 * const char *func, const char *name)
1984 * Looks up a probe based on provdider and one or more of module name,
1985 * function name and probe name.
1987 * 2.8.2 Arguments and Notes
1989 * The first argument is the provider identifier, as returned from a
1990 * successful call to dtrace_register(). The second, third, and fourth
1991 * arguments are the module name, function name, and probe name,
1992 * respectively. Any of these may be NULL; dtrace_probe_lookup() will return
1993 * the identifier of the first probe that is provided by the specified
1994 * provider and matches all of the non-NULL matching criteria.
1995 * dtrace_probe_lookup() is generally used by a provider to be check the
1996 * existence of a probe before creating it with dtrace_probe_create().
1998 * 2.8.3 Return value
2000 * If the probe exists, returns its identifier. If the probe does not exist,
2001 * return DTRACE_IDNONE.
2003 * 2.8.4 Caller's context
2005 * While dtrace_probe_lookup() is generally expected to be called from
2006 * dtps_provide() and/or dtps_provide_module(), it may also be called from
2007 * other non-DTrace contexts. Neither cpu_lock nor mod_lock may be held.
2009 * 2.9 void *dtrace_probe_arg(dtrace_provider_t id, dtrace_id_t probe)
2013 * Returns the probe argument associated with the specified probe.
2015 * 2.9.2 Arguments and Notes
2017 * The first argument is the provider identifier, as returned from a
2018 * successful call to dtrace_register(). The second argument is a probe
2019 * identifier, as returned from dtrace_probe_lookup() or
2020 * dtrace_probe_create(). This is useful if a probe has multiple
2021 * provider-specific components to it: the provider can create the probe
2022 * once with provider-specific state, and then add to the state by looking
2023 * up the probe based on probe identifier.
2025 * 2.9.3 Return value
2027 * Returns the argument associated with the specified probe. If the
2028 * specified probe does not exist, or if the specified probe is not provided
2029 * by the specified provider, NULL is returned.
2031 * 2.9.4 Caller's context
2033 * While dtrace_probe_arg() is generally expected to be called from
2034 * dtps_provide() and/or dtps_provide_module(), it may also be called from
2035 * other non-DTrace contexts. Neither cpu_lock nor mod_lock may be held.
2037 * 2.10 void dtrace_probe(dtrace_id_t probe, uintptr_t arg0, uintptr_t arg1,
2038 * uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
2042 * The epicenter of DTrace: fires the specified probes with the specified
2045 * 2.10.2 Arguments and Notes
2047 * The first argument is a probe identifier as returned by
2048 * dtrace_probe_create() or dtrace_probe_lookup(). The second through sixth
2049 * arguments are the values to which the D variables "arg0" through "arg4"
2052 * dtrace_probe() should be called whenever the specified probe has fired --
2053 * however the provider defines it.
2055 * 2.10.3 Return value
2059 * 2.10.4 Caller's context
2061 * dtrace_probe() may be called in virtually any context: kernel, user,
2062 * interrupt, high-level interrupt, with arbitrary adaptive locks held, with
2063 * dispatcher locks held, with interrupts disabled, etc. The only latitude
2064 * that must be afforded to DTrace is the ability to make calls within
2065 * itself (and to its in-kernel subroutines) and the ability to access
2066 * arbitrary (but mapped) memory. On some platforms, this constrains
2067 * context. For example, on UltraSPARC, dtrace_probe() cannot be called
2068 * from any context in which TL is greater than zero. dtrace_probe() may
2069 * also not be called from any routine which may be called by dtrace_probe()
2070 * -- which includes functions in the DTrace framework and some in-kernel
2071 * DTrace subroutines. All such functions "dtrace_"; providers that
2072 * instrument the kernel arbitrarily should be sure to not instrument these
2075 typedef struct dtrace_pops
{
2076 void (*dtps_provide
)(void *arg
, const dtrace_probedesc_t
*spec
);
2077 void (*dtps_provide_module
)(void *arg
, struct modctl
*mp
);
2078 void (*dtps_enable
)(void *arg
, dtrace_id_t id
, void *parg
);
2079 void (*dtps_disable
)(void *arg
, dtrace_id_t id
, void *parg
);
2080 void (*dtps_suspend
)(void *arg
, dtrace_id_t id
, void *parg
);
2081 void (*dtps_resume
)(void *arg
, dtrace_id_t id
, void *parg
);
2082 void (*dtps_getargdesc
)(void *arg
, dtrace_id_t id
, void *parg
,
2083 dtrace_argdesc_t
*desc
);
2084 uint64_t (*dtps_getargval
)(void *arg
, dtrace_id_t id
, void *parg
,
2085 int argno
, int aframes
);
2086 int (*dtps_usermode
)(void *arg
, dtrace_id_t id
, void *parg
);
2087 void (*dtps_destroy
)(void *arg
, dtrace_id_t id
, void *parg
);
2090 typedef uintptr_t dtrace_provider_id_t
;
2092 extern int dtrace_register(const char *, const dtrace_pattr_t
*, uint32_t,
2093 cred_t
*, const dtrace_pops_t
*, void *, dtrace_provider_id_t
*);
2094 extern int dtrace_unregister(dtrace_provider_id_t
);
2095 extern int dtrace_condense(dtrace_provider_id_t
);
2096 extern void dtrace_invalidate(dtrace_provider_id_t
);
2097 extern dtrace_id_t
dtrace_probe_lookup(dtrace_provider_id_t
, const char *,
2098 const char *, const char *);
2099 extern dtrace_id_t
dtrace_probe_create(dtrace_provider_id_t
, const char *,
2100 const char *, const char *, int, void *);
2101 extern void *dtrace_probe_arg(dtrace_provider_id_t
, dtrace_id_t
);
2102 #if !defined(__APPLE__)
2103 extern void dtrace_probe(dtrace_id_t
, uintptr_t arg0
, uintptr_t arg1
,
2104 uintptr_t arg2
, uintptr_t arg3
, uintptr_t arg4
);
2106 extern void dtrace_probe(dtrace_id_t
, uint64_t arg0
, uint64_t arg1
,
2107 uint64_t arg2
, uint64_t arg3
, uint64_t arg4
);
2108 #endif /* __APPLE__ */
2111 * DTrace Meta Provider API
2113 * The following functions are implemented by the DTrace framework and are
2114 * used to implement meta providers. Meta providers plug into the DTrace
2115 * framework and are used to instantiate new providers on the fly. At
2116 * present, there is only one type of meta provider and only one meta
2117 * provider may be registered with the DTrace framework at a time. The
2118 * sole meta provider type provides user-land static tracing facilities
2119 * by taking meta probe descriptions and adding a corresponding provider
2120 * into the DTrace framework.
2122 * 1 Framework-to-Provider
2126 * The Framework-to-Provider API is represented by the dtrace_mops structure
2127 * that the meta provider passes to the framework when registering itself as
2128 * a meta provider. This structure consists of the following members:
2130 * dtms_create_probe() <-- Add a new probe to a created provider
2131 * dtms_provide_pid() <-- Create a new provider for a given process
2132 * dtms_remove_pid() <-- Remove a previously created provider
2134 * 1.2 void dtms_create_probe(void *arg, void *parg,
2135 * dtrace_helper_probedesc_t *probedesc);
2139 * Called by the DTrace framework to create a new probe in a provider
2140 * created by this meta provider.
2142 * 1.2.2 Arguments and notes
2144 * The first argument is the cookie as passed to dtrace_meta_register().
2145 * The second argument is the provider cookie for the associated provider;
2146 * this is obtained from the return value of dtms_provide_pid(). The third
2147 * argument is the helper probe description.
2149 * 1.2.3 Return value
2153 * 1.2.4 Caller's context
2155 * dtms_create_probe() is called from either ioctl() or module load context.
2156 * The DTrace framework is locked in such a way that meta providers may not
2157 * register or unregister. This means that the meta provider cannot call
2158 * dtrace_meta_register() or dtrace_meta_unregister(). However, the context is
2159 * such that the provider may (and is expected to) call provider-related
2160 * DTrace provider APIs including dtrace_probe_create().
2162 * 1.3 void *dtms_provide_pid(void *arg, dtrace_meta_provider_t *mprov,
2167 * Called by the DTrace framework to instantiate a new provider given the
2168 * description of the provider and probes in the mprov argument. The
2169 * meta provider should call dtrace_register() to insert the new provider
2170 * into the DTrace framework.
2172 * 1.3.2 Arguments and notes
2174 * The first argument is the cookie as passed to dtrace_meta_register().
2175 * The second argument is a pointer to a structure describing the new
2176 * helper provider. The third argument is the process identifier for
2177 * process associated with this new provider. Note that the name of the
2178 * provider as passed to dtrace_register() should be the contatenation of
2179 * the dtmpb_provname member of the mprov argument and the processs
2180 * identifier as a string.
2182 * 1.3.3 Return value
2184 * The cookie for the provider that the meta provider creates. This is
2185 * the same value that it passed to dtrace_register().
2187 * 1.3.4 Caller's context
2189 * dtms_provide_pid() is called from either ioctl() or module load context.
2190 * The DTrace framework is locked in such a way that meta providers may not
2191 * register or unregister. This means that the meta provider cannot call
2192 * dtrace_meta_register() or dtrace_meta_unregister(). However, the context
2193 * is such that the provider may -- and is expected to -- call
2194 * provider-related DTrace provider APIs including dtrace_register().
2196 * 1.4 void dtms_remove_pid(void *arg, dtrace_meta_provider_t *mprov,
2201 * Called by the DTrace framework to remove a provider that had previously
2202 * been instantiated via the dtms_provide_pid() entry point. The meta
2203 * provider need not remove the provider immediately, but this entry
2204 * point indicates that the provider should be removed as soon as possible
2205 * using the dtrace_unregister() API.
2207 * 1.4.2 Arguments and notes
2209 * The first argument is the cookie as passed to dtrace_meta_register().
2210 * The second argument is a pointer to a structure describing the helper
2211 * provider. The third argument is the process identifier for process
2212 * associated with this new provider.
2214 * 1.4.3 Return value
2218 * 1.4.4 Caller's context
2220 * dtms_remove_pid() is called from either ioctl() or exit() context.
2221 * The DTrace framework is locked in such a way that meta providers may not
2222 * register or unregister. This means that the meta provider cannot call
2223 * dtrace_meta_register() or dtrace_meta_unregister(). However, the context
2224 * is such that the provider may -- and is expected to -- call
2225 * provider-related DTrace provider APIs including dtrace_unregister().
2227 typedef struct dtrace_helper_probedesc
{
2228 char *dthpb_mod
; /* probe module */
2229 char *dthpb_func
; /* probe function */
2230 char *dthpb_name
; /* probe name */
2231 uint64_t dthpb_base
; /* base address */
2232 #if !defined(__APPLE__)
2233 uint32_t *dthpb_offs
; /* offsets array */
2234 uint32_t *dthpb_enoffs
; /* is-enabled offsets array */
2236 int32_t *dthpb_offs
; /* (signed) offsets array */
2237 int32_t *dthpb_enoffs
; /* (signed) is-enabled offsets array */
2239 uint32_t dthpb_noffs
; /* offsets count */
2240 uint32_t dthpb_nenoffs
; /* is-enabled offsets count */
2241 uint8_t *dthpb_args
; /* argument mapping array */
2242 uint8_t dthpb_xargc
; /* translated argument count */
2243 uint8_t dthpb_nargc
; /* native argument count */
2244 char *dthpb_xtypes
; /* translated types strings */
2245 char *dthpb_ntypes
; /* native types strings */
2246 } dtrace_helper_probedesc_t
;
2248 typedef struct dtrace_helper_provdesc
{
2249 char *dthpv_provname
; /* provider name */
2250 dtrace_pattr_t dthpv_pattr
; /* stability attributes */
2251 } dtrace_helper_provdesc_t
;
2253 typedef struct dtrace_mops
{
2254 void (*dtms_create_probe
)(void *, void *, dtrace_helper_probedesc_t
*);
2255 void *(*dtms_provide_pid
)(void *, dtrace_helper_provdesc_t
*, pid_t
);
2256 void (*dtms_remove_pid
)(void *, dtrace_helper_provdesc_t
*, pid_t
);
2259 typedef uintptr_t dtrace_meta_provider_id_t
;
2261 extern int dtrace_meta_register(const char *, const dtrace_mops_t
*, void *,
2262 dtrace_meta_provider_id_t
*);
2263 extern int dtrace_meta_unregister(dtrace_meta_provider_id_t
);
2266 * DTrace Kernel Hooks
2268 * The following functions are implemented by the base kernel and form a set of
2269 * hooks used by the DTrace framework. DTrace hooks are implemented in either
2270 * uts/common/os/dtrace_subr.c, an ISA-specific assembly file, or in a
2271 * uts/<platform>/os/dtrace_subr.c corresponding to each hardware platform.
2274 typedef enum dtrace_vtime_state
{
2275 DTRACE_VTIME_INACTIVE
= 0, /* No DTrace, no TNF */
2276 DTRACE_VTIME_ACTIVE
, /* DTrace virtual time, no TNF */
2277 DTRACE_VTIME_INACTIVE_TNF
, /* No DTrace, TNF active */
2278 DTRACE_VTIME_ACTIVE_TNF
/* DTrace virtual time _and_ TNF */
2279 } dtrace_vtime_state_t
;
2281 extern dtrace_vtime_state_t dtrace_vtime_active
;
2282 extern void dtrace_vtime_switch(kthread_t
*next
);
2283 extern void dtrace_vtime_enable_tnf(void);
2284 extern void dtrace_vtime_disable_tnf(void);
2285 extern void dtrace_vtime_enable(void);
2286 extern void dtrace_vtime_disable(void);
2288 #if defined (__ppc__) || defined (__ppc64__)
2289 extern int (*dtrace_pid_probe_ptr
)(ppc_saved_state_t
*regs
);
2290 extern int (*dtrace_return_probe_ptr
)(ppc_saved_state_t
* regs
);
2291 #elif defined (__i386__) || defined(__x86_64__)
2292 extern int (*dtrace_pid_probe_ptr
)(x86_saved_state_t
*regs
);
2293 extern int (*dtrace_return_probe_ptr
)(x86_saved_state_t
* regs
);
2295 #error architecture not supported
2298 extern void (*dtrace_fasttrap_fork_ptr
)(proc_t
*, proc_t
*);
2299 extern void (*dtrace_fasttrap_exec_ptr
)(proc_t
*);
2300 extern void (*dtrace_fasttrap_exit_ptr
)(proc_t
*);
2301 extern void dtrace_fasttrap_fork(proc_t
*, proc_t
*);
2303 typedef uintptr_t dtrace_icookie_t
;
2304 typedef void (*dtrace_xcall_t
)(void *);
2306 extern dtrace_icookie_t
dtrace_interrupt_disable(void);
2307 extern void dtrace_interrupt_enable(dtrace_icookie_t
);
2309 extern void dtrace_membar_producer(void);
2310 extern void dtrace_membar_consumer(void);
2312 extern void (*dtrace_cpu_init
)(processorid_t
);
2313 extern void (*dtrace_modload
)(struct modctl
*);
2314 extern void (*dtrace_modunload
)(struct modctl
*);
2315 extern void (*dtrace_helpers_cleanup
)(proc_t
*);
2316 extern void (*dtrace_helpers_fork
)(proc_t
*parent
, proc_t
*child
);
2317 extern void (*dtrace_cpustart_init
)(void);
2318 extern void (*dtrace_cpustart_fini
)(void);
2320 extern void (*dtrace_kreloc_init
)(void);
2321 extern void (*dtrace_kreloc_fini
)(void);
2323 extern void (*dtrace_debugger_init
)(void);
2324 extern void (*dtrace_debugger_fini
)(void);
2325 extern dtrace_cacheid_t dtrace_predcache_id
;
2327 extern hrtime_t
dtrace_gethrtime(void);
2328 extern void dtrace_sync(void);
2329 extern void dtrace_toxic_ranges(void (*)(uintptr_t, uintptr_t));
2330 extern void dtrace_xcall(processorid_t
, dtrace_xcall_t
, void *);
2331 extern void dtrace_vpanic(const char *, __va_list
);
2332 extern void dtrace_panic(const char *, ...);
2334 extern int dtrace_safe_defer_signal(void);
2335 extern void dtrace_safe_synchronous_signal(void);
2337 #if defined(__i386__) || defined(__x86_64__)
2338 extern int dtrace_instr_size(uchar_t
*instr
);
2339 extern int dtrace_instr_size_isa(uchar_t
*, model_t
, int *);
2340 extern void dtrace_invop_add(int (*)(uintptr_t, uintptr_t *, uintptr_t));
2341 extern void dtrace_invop_remove(int (*)(uintptr_t, uintptr_t *, uintptr_t));
2342 extern void dtrace_invop_callsite(void);
2346 extern int dtrace_blksuword32(uintptr_t, uint32_t *, int);
2347 extern void dtrace_getfsr(uint64_t *);
2350 #if defined(__APPLE__)
2351 #if defined (__ppc__) || defined (__ppc64__)
2352 extern void dtrace_invop_add(int (*)(uintptr_t, uintptr_t *, uintptr_t));
2353 extern void dtrace_invop_remove(int (*)(uintptr_t, uintptr_t *, uintptr_t));
2356 #endif /* __APPLE__ */
2358 #define DTRACE_CPUFLAG_ISSET(flag) \
2359 (cpu_core[CPU->cpu_id].cpuc_dtrace_flags & (flag))
2361 #define DTRACE_CPUFLAG_SET(flag) \
2362 (cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= (flag))
2364 #define DTRACE_CPUFLAG_CLEAR(flag) \
2365 (cpu_core[CPU->cpu_id].cpuc_dtrace_flags &= ~(flag))
2367 #endif /* _KERNEL */
2371 #if defined(__i386__) || defined(__x86_64__)
2373 #define DTRACE_INVOP_PUSHL_EBP 1
2374 #define DTRACE_INVOP_POPL_EBP 2
2375 #define DTRACE_INVOP_LEAVE 3
2376 #define DTRACE_INVOP_NOP 4
2377 #define DTRACE_INVOP_RET 5
2381 #if defined(__APPLE__)
2382 #if defined (__ppc__) || defined (__ppc64__)
2383 #define DTRACE_INVOP_NOP 4
2384 #define DTRACE_INVOP_RET 5
2385 #define DTRACE_INVOP_BCTR 6
2386 #define DTRACE_INVOP_TAILJUMP 7
2388 #endif /* __APPLE__ */
2394 #endif /* _SYS_DTRACE_H */