]> git.saurik.com Git - apple/xnu.git/blob - bsd/netinet/tcp_cache.c
xnu-3247.10.11.tar.gz
[apple/xnu.git] / bsd / netinet / tcp_cache.c
1 /*
2 * Copyright (c) 2015 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28
29 /* TCP-cache to store and retrieve TCP-related information */
30
31 #include <net/flowhash.h>
32 #include <net/route.h>
33 #include <netinet/in_pcb.h>
34 #include <netinet/tcp_cache.h>
35 #include <netinet/tcp_seq.h>
36 #include <netinet/tcp_var.h>
37 #include <kern/locks.h>
38 #include <sys/queue.h>
39 #include <dev/random/randomdev.h>
40
41 struct tcp_heuristic_key {
42 union {
43 uint8_t thk_net_signature[IFNET_SIGNATURELEN];
44 union {
45 struct in_addr addr;
46 struct in6_addr addr6;
47 } thk_ip;
48 };
49 sa_family_t thk_family;
50 };
51
52 struct tcp_heuristic {
53 SLIST_ENTRY(tcp_heuristic) list;
54
55 u_int32_t th_last_access;
56
57 struct tcp_heuristic_key th_key;
58
59 /*
60 * If tfo_cookie_loss is changed to a smaller type, it might be worth
61 * checking for integer-overflow in tcp_cache_tfo_inc_loss
62 */
63 u_int32_t th_tfo_cookie_loss; /* The number of times a SYN+cookie has been lost */
64 u_int32_t th_tfo_fallback_trials; /* Number of times we did not try out TFO due to SYN-loss */
65 u_int32_t th_tfo_cookie_backoff; /* Time until when we should not try out TFO */
66
67 u_int8_t th_tfo_in_backoff:1, /* Are we doing TFO due to the backoff timer? */
68 th_tfo_aggressive_fallback:1, /* Agressive fallback due to nasty middlebox */
69 th_tfo_snd_middlebox_supp:1, /* We are sure that the network supports TFO in upstream direction */
70 th_tfo_rcv_middlebox_supp:1; /* We are sure that the network supports TFO in downstream direction*/
71 };
72
73 struct tcp_heuristics_head {
74 SLIST_HEAD(tcp_heur_bucket, tcp_heuristic) tcp_heuristics;
75
76 /* Per-hashbucket lock to avoid lock-contention */
77 lck_mtx_t thh_mtx;
78 };
79
80 struct tcp_cache_key {
81 sa_family_t tck_family;
82
83 struct tcp_heuristic_key tck_src;
84 union {
85 struct in_addr addr;
86 struct in6_addr addr6;
87 } tck_dst;
88 };
89
90 struct tcp_cache {
91 SLIST_ENTRY(tcp_cache) list;
92
93 u_int32_t tc_last_access;
94
95 struct tcp_cache_key tc_key;
96
97 u_int8_t tc_tfo_cookie[TFO_COOKIE_LEN_MAX];
98 u_int8_t tc_tfo_cookie_len;
99 };
100
101 struct tcp_cache_head {
102 SLIST_HEAD(tcp_cache_bucket, tcp_cache) tcp_caches;
103
104 /* Per-hashbucket lock to avoid lock-contention */
105 lck_mtx_t tch_mtx;
106 };
107
108 static u_int32_t tcp_cache_hash_seed;
109
110 size_t tcp_cache_size;
111
112 /*
113 * The maximum depth of the hash-bucket. This way we limit the tcp_cache to
114 * TCP_CACHE_BUCKET_SIZE * tcp_cache_size and have "natural" garbage collection
115 */
116 #define TCP_CACHE_BUCKET_SIZE 5
117
118 static struct tcp_cache_head *tcp_cache;
119
120 decl_lck_mtx_data(, tcp_cache_mtx);
121
122 static lck_attr_t *tcp_cache_mtx_attr;
123 static lck_grp_t *tcp_cache_mtx_grp;
124 static lck_grp_attr_t *tcp_cache_mtx_grp_attr;
125
126 static struct tcp_heuristics_head *tcp_heuristics;
127
128 decl_lck_mtx_data(, tcp_heuristics_mtx);
129
130 static lck_attr_t *tcp_heuristic_mtx_attr;
131 static lck_grp_t *tcp_heuristic_mtx_grp;
132 static lck_grp_attr_t *tcp_heuristic_mtx_grp_attr;
133
134 /* Number of SYN-losses we accept */
135 #define TFO_MAX_COOKIE_LOSS 2
136
137 /*
138 * Round up to next higher power-of 2. See "Bit Twiddling Hacks".
139 *
140 * Might be worth moving this to a library so that others
141 * (e.g., scale_to_powerof2()) can use this as well instead of a while-loop.
142 */
143 static u_int32_t tcp_cache_roundup2(u_int32_t a)
144 {
145 a--;
146 a |= a >> 1;
147 a |= a >> 2;
148 a |= a >> 4;
149 a |= a >> 8;
150 a |= a >> 16;
151 a++;
152
153 return a;
154 }
155
156 static void tcp_cache_hash_src(struct inpcb *inp, struct tcp_heuristic_key *key)
157 {
158 struct ifnet *ifn = inp->inp_last_outifp;
159 uint8_t len = sizeof(key->thk_net_signature);
160 uint16_t flags;
161
162 if (inp->inp_vflag & INP_IPV6) {
163 int ret;
164
165 key->thk_family = AF_INET6;
166 ret = ifnet_get_netsignature(ifn, AF_INET6, &len, &flags,
167 key->thk_net_signature);
168
169 /*
170 * ifnet_get_netsignature only returns EINVAL if ifn is NULL
171 * (we made sure that in the other cases it does not). So,
172 * in this case we should take the connection's address.
173 */
174 if (ret == ENOENT || ret == EINVAL)
175 memcpy(&key->thk_ip.addr6, &inp->in6p_laddr, sizeof(struct in6_addr));
176 } else {
177 int ret;
178
179 key->thk_family = AF_INET;
180 ret = ifnet_get_netsignature(ifn, AF_INET, &len, &flags,
181 key->thk_net_signature);
182
183 /*
184 * ifnet_get_netsignature only returns EINVAL if ifn is NULL
185 * (we made sure that in the other cases it does not). So,
186 * in this case we should take the connection's address.
187 */
188 if (ret == ENOENT || ret == EINVAL)
189 memcpy(&key->thk_ip.addr, &inp->inp_laddr, sizeof(struct in_addr));
190 }
191 }
192
193 static u_int16_t tcp_cache_hash(struct inpcb *inp, struct tcp_cache_key *key)
194 {
195 u_int32_t hash;
196
197 bzero(key, sizeof(struct tcp_cache_key));
198
199 tcp_cache_hash_src(inp, &key->tck_src);
200
201 if (inp->inp_vflag & INP_IPV6) {
202 key->tck_family = AF_INET6;
203 memcpy(&key->tck_dst.addr6, &inp->in6p_faddr,
204 sizeof(struct in6_addr));
205 } else {
206 key->tck_family = AF_INET;
207 memcpy(&key->tck_dst.addr, &inp->inp_faddr,
208 sizeof(struct in_addr));
209 }
210
211 hash = net_flowhash(key, sizeof(struct tcp_cache_key),
212 tcp_cache_hash_seed);
213
214 return (hash & (tcp_cache_size - 1));
215 }
216
217 static void tcp_cache_unlock(struct tcp_cache_head *head)
218 {
219 lck_mtx_unlock(&head->tch_mtx);
220 }
221
222 /*
223 * Make sure that everything that happens after tcp_getcache_with_lock()
224 * is short enough to justify that you hold the per-bucket lock!!!
225 *
226 * Otherwise, better build another lookup-function that does not hold the
227 * lock and you copy out the bits and bytes.
228 *
229 * That's why we provide the head as a "return"-pointer so that the caller
230 * can give it back to use for tcp_cache_unlock().
231 */
232 static struct tcp_cache *tcp_getcache_with_lock(struct tcpcb *tp, int create,
233 struct tcp_cache_head **headarg)
234 {
235 struct inpcb *inp = tp->t_inpcb;
236 struct tcp_cache *tpcache = NULL;
237 struct tcp_cache_head *head;
238 struct tcp_cache_key key;
239 u_int16_t hash;
240 int i = 0;
241
242 hash = tcp_cache_hash(inp, &key);
243 head = &tcp_cache[hash];
244
245 lck_mtx_lock(&head->tch_mtx);
246
247 /*** First step: Look for the tcp_cache in our bucket ***/
248 SLIST_FOREACH(tpcache, &head->tcp_caches, list) {
249 if (memcmp(&tpcache->tc_key, &key, sizeof(key)) == 0)
250 break;
251
252 i++;
253 }
254
255 /*** Second step: If it's not there, create/recycle it ***/
256 if ((tpcache == NULL) && create) {
257 if (i >= TCP_CACHE_BUCKET_SIZE) {
258 struct tcp_cache *oldest_cache = NULL;
259 u_int32_t max_age = 0;
260
261 /* Look for the oldest tcp_cache in the bucket */
262 SLIST_FOREACH(tpcache, &head->tcp_caches, list) {
263 u_int32_t age = tcp_now - tpcache->tc_last_access;
264 if (age > max_age) {
265 max_age = age;
266 oldest_cache = tpcache;
267 }
268 }
269 VERIFY(oldest_cache != NULL);
270
271 tpcache = oldest_cache;
272
273 /* We recycle, thus let's indicate that there is no cookie */
274 tpcache->tc_tfo_cookie_len = 0;
275 } else {
276 /* Create a new cache and add it to the list */
277 tpcache = _MALLOC(sizeof(struct tcp_cache), M_TEMP,
278 M_NOWAIT | M_ZERO);
279 if (tpcache == NULL)
280 goto out_null;
281
282 SLIST_INSERT_HEAD(&head->tcp_caches, tpcache, list);
283 }
284
285 memcpy(&tpcache->tc_key, &key, sizeof(key));
286 }
287
288 if (tpcache == NULL)
289 goto out_null;
290
291 /* Update timestamp for garbage collection purposes */
292 tpcache->tc_last_access = tcp_now;
293 *headarg = head;
294
295 return (tpcache);
296
297 out_null:
298 tcp_cache_unlock(head);
299 return (NULL);
300 }
301
302 void tcp_cache_set_cookie(struct tcpcb *tp, u_char *cookie, u_int8_t len)
303 {
304 struct tcp_cache_head *head;
305 struct tcp_cache *tpcache;
306
307 /* Call lookup/create function */
308 tpcache = tcp_getcache_with_lock(tp, 1, &head);
309 if (tpcache == NULL)
310 return;
311
312 tpcache->tc_tfo_cookie_len = len;
313 memcpy(tpcache->tc_tfo_cookie, cookie, len);
314
315 tcp_cache_unlock(head);
316 }
317
318 /*
319 * Get the cookie related to 'tp', and copy it into 'cookie', provided that len
320 * is big enough (len designates the available memory.
321 * Upon return, 'len' is set to the cookie's length.
322 *
323 * Returns 0 if we should request a cookie.
324 * Returns 1 if the cookie has been found and written.
325 */
326 int tcp_cache_get_cookie(struct tcpcb *tp, u_char *cookie, u_int8_t *len)
327 {
328 struct tcp_cache_head *head;
329 struct tcp_cache *tpcache;
330
331 /* Call lookup/create function */
332 tpcache = tcp_getcache_with_lock(tp, 1, &head);
333 if (tpcache == NULL)
334 return (0);
335
336 if (tpcache->tc_tfo_cookie_len == 0) {
337 tcp_cache_unlock(head);
338 return (0);
339 }
340
341 /*
342 * Not enough space - this should never happen as it has been checked
343 * in tcp_tfo_check. So, fail here!
344 */
345 VERIFY(tpcache->tc_tfo_cookie_len <= *len);
346
347 memcpy(cookie, tpcache->tc_tfo_cookie, tpcache->tc_tfo_cookie_len);
348 *len = tpcache->tc_tfo_cookie_len;
349
350 tcp_cache_unlock(head);
351
352 return (1);
353 }
354
355 unsigned int tcp_cache_get_cookie_len(struct tcpcb *tp)
356 {
357 struct tcp_cache_head *head;
358 struct tcp_cache *tpcache;
359 unsigned int cookie_len;
360
361 /* Call lookup/create function */
362 tpcache = tcp_getcache_with_lock(tp, 1, &head);
363 if (tpcache == NULL)
364 return (0);
365
366 cookie_len = tpcache->tc_tfo_cookie_len;
367
368 tcp_cache_unlock(head);
369
370 return cookie_len;
371 }
372
373 static u_int16_t tcp_heuristics_hash(struct inpcb *inp,
374 struct tcp_heuristic_key *key)
375 {
376 u_int32_t hash;
377
378 bzero(key, sizeof(struct tcp_heuristic_key));
379
380 tcp_cache_hash_src(inp, key);
381
382 hash = net_flowhash(key, sizeof(struct tcp_heuristic_key),
383 tcp_cache_hash_seed);
384
385 return (hash & (tcp_cache_size - 1));
386 }
387
388 static void tcp_heuristic_unlock(struct tcp_heuristics_head *head)
389 {
390 lck_mtx_unlock(&head->thh_mtx);
391 }
392
393 /*
394 * Make sure that everything that happens after tcp_getheuristic_with_lock()
395 * is short enough to justify that you hold the per-bucket lock!!!
396 *
397 * Otherwise, better build another lookup-function that does not hold the
398 * lock and you copy out the bits and bytes.
399 *
400 * That's why we provide the head as a "return"-pointer so that the caller
401 * can give it back to use for tcp_heur_unlock().
402 *
403 *
404 * ToDo - way too much code-duplication. We should create an interface to handle
405 * bucketized hashtables with recycling of the oldest element.
406 */
407 static struct tcp_heuristic *tcp_getheuristic_with_lock(struct tcpcb *tp,
408 int create, struct tcp_heuristics_head **headarg)
409 {
410 struct inpcb *inp = tp->t_inpcb;
411 struct tcp_heuristic *tpheur = NULL;
412 struct tcp_heuristics_head *head;
413 struct tcp_heuristic_key key;
414 u_int16_t hash;
415 int i = 0;
416
417 hash = tcp_heuristics_hash(inp, &key);
418 head = &tcp_heuristics[hash];
419
420 lck_mtx_lock(&head->thh_mtx);
421
422 /*** First step: Look for the tcp_heur in our bucket ***/
423 SLIST_FOREACH(tpheur, &head->tcp_heuristics, list) {
424 if (memcmp(&tpheur->th_key, &key, sizeof(key)) == 0)
425 break;
426
427 i++;
428 }
429
430 /*** Second step: If it's not there, create/recycle it ***/
431 if ((tpheur == NULL) && create) {
432 if (i >= TCP_CACHE_BUCKET_SIZE) {
433 struct tcp_heuristic *oldest_heur = NULL;
434 u_int32_t max_age = 0;
435
436 /* Look for the oldest tcp_heur in the bucket */
437 SLIST_FOREACH(tpheur, &head->tcp_heuristics, list) {
438 u_int32_t age = tcp_now - tpheur->th_last_access;
439 if (age > max_age) {
440 max_age = age;
441 oldest_heur = tpheur;
442 }
443 }
444 VERIFY(oldest_heur != NULL);
445
446 tpheur = oldest_heur;
447
448 /* We recycle - set everything to 0 */
449 tpheur->th_tfo_cookie_loss = 0;
450 tpheur->th_tfo_fallback_trials = 0;
451 tpheur->th_tfo_cookie_backoff = 0;
452 tpheur->th_tfo_in_backoff = 0;
453 tpheur->th_tfo_aggressive_fallback = 0;
454 tpheur->th_tfo_snd_middlebox_supp = 0;
455 tpheur->th_tfo_rcv_middlebox_supp = 0;
456 } else {
457 /* Create a new heuristic and add it to the list */
458 tpheur = _MALLOC(sizeof(struct tcp_heuristic), M_TEMP,
459 M_NOWAIT | M_ZERO);
460 if (tpheur == NULL)
461 goto out_null;
462
463 SLIST_INSERT_HEAD(&head->tcp_heuristics, tpheur, list);
464 }
465
466 memcpy(&tpheur->th_key, &key, sizeof(key));
467 }
468
469 if (tpheur == NULL)
470 goto out_null;
471
472 /* Update timestamp for garbage collection purposes */
473 tpheur->th_last_access = tcp_now;
474 *headarg = head;
475
476 return (tpheur);
477
478 out_null:
479 tcp_heuristic_unlock(head);
480 return (NULL);
481 }
482
483 void tcp_heuristic_tfo_success(struct tcpcb *tp)
484 {
485 struct tcp_heuristics_head *head;
486
487 struct tcp_heuristic *tpheur = tcp_getheuristic_with_lock(tp, 1, &head);
488 if (tpheur == NULL)
489 return;
490
491 tpheur->th_tfo_cookie_loss = 0;
492
493 tcp_heuristic_unlock(head);
494 }
495
496 void tcp_heuristic_tfo_rcv_good(struct tcpcb *tp)
497 {
498 struct tcp_heuristics_head *head;
499
500 struct tcp_heuristic *tpheur = tcp_getheuristic_with_lock(tp, 1, &head);
501 if (tpheur == NULL)
502 return;
503
504 tpheur->th_tfo_rcv_middlebox_supp = 1;
505
506 tcp_heuristic_unlock(head);
507
508 tp->t_tfo_flags |= TFO_F_NO_RCVPROBING;
509 }
510
511 void tcp_heuristic_tfo_snd_good(struct tcpcb *tp)
512 {
513 struct tcp_heuristics_head *head;
514
515 struct tcp_heuristic *tpheur = tcp_getheuristic_with_lock(tp, 1, &head);
516 if (tpheur == NULL)
517 return;
518
519 tpheur->th_tfo_snd_middlebox_supp = 1;
520
521 tcp_heuristic_unlock(head);
522
523 tp->t_tfo_flags |= TFO_F_NO_SNDPROBING;
524 }
525
526 void tcp_heuristic_tfo_inc_loss(struct tcpcb *tp)
527 {
528 struct tcp_heuristics_head *head;
529 struct tcp_heuristic *tpheur;
530
531 tpheur = tcp_getheuristic_with_lock(tp, 1, &head);
532 if (tpheur == NULL)
533 return;
534
535 /* Potential integer overflow, but tfo_cookie_loss is 32-bits */
536 tpheur->th_tfo_cookie_loss++;
537
538 tcp_heuristic_unlock(head);
539 }
540
541 void tcp_heuristic_tfo_middlebox(struct tcpcb *tp)
542 {
543 struct tcp_heuristics_head *head;
544 struct tcp_heuristic *tpheur;
545
546 tpheur = tcp_getheuristic_with_lock(tp, 1, &head);
547 if (tpheur == NULL)
548 return;
549
550 tpheur->th_tfo_aggressive_fallback = 1;
551
552 tcp_heuristic_unlock(head);
553 }
554
555 void tcp_heuristic_tfo_reset_loss(struct tcpcb *tp)
556 {
557 struct tcp_heuristics_head *head;
558 struct tcp_heuristic *tpheur;
559
560 /*
561 * Don't attempt to create it! Keep the heuristics clean if the
562 * server does not support TFO. This reduces the lookup-cost on
563 * our side.
564 */
565 tpheur = tcp_getheuristic_with_lock(tp, 0, &head);
566 if (tpheur == NULL)
567 return;
568
569 tpheur->th_tfo_cookie_loss = 0;
570 tpheur->th_tfo_aggressive_fallback = 0;
571
572 tcp_heuristic_unlock(head);
573 }
574
575 boolean_t tcp_heuristic_do_tfo(struct tcpcb *tp)
576 {
577 struct tcp_heuristics_head *head;
578 struct tcp_heuristic *tpheur;
579
580 /* Get the tcp-heuristic. */
581 tpheur = tcp_getheuristic_with_lock(tp, 0, &head);
582 if (tpheur == NULL)
583 return (true);
584
585 if (tpheur->th_tfo_aggressive_fallback) {
586 /* Aggressive fallback - don't do TFO anymore... :'( */
587 tcp_heuristic_unlock(head);
588 return (false);
589 }
590
591 if (tpheur->th_tfo_cookie_loss >= TFO_MAX_COOKIE_LOSS &&
592 (tpheur->th_tfo_fallback_trials < tcp_tfo_fallback_min ||
593 TSTMP_GT(tpheur->th_tfo_cookie_backoff, tcp_now))) {
594 /*
595 * So, when we are in SYN-loss mode we try to stop using TFO
596 * for the next 'tcp_tfo_fallback_min' connections. That way,
597 * we are sure that never more than 1 out of tcp_tfo_fallback_min
598 * connections will suffer from our nice little middelbox.
599 *
600 * After that we first wait for 2 minutes. If we fail again,
601 * we wait for yet another 60 minutes.
602 */
603 tpheur->th_tfo_fallback_trials++;
604 if (tpheur->th_tfo_fallback_trials >= tcp_tfo_fallback_min &&
605 !tpheur->th_tfo_in_backoff) {
606 if (tpheur->th_tfo_cookie_loss == TFO_MAX_COOKIE_LOSS)
607 /* Backoff for 2 minutes */
608 tpheur->th_tfo_cookie_backoff = tcp_now + (60 * 2 * TCP_RETRANSHZ);
609 else
610 /* Backoff for 60 minutes */
611 tpheur->th_tfo_cookie_backoff = tcp_now + (60 * 60 * TCP_RETRANSHZ);
612
613 tpheur->th_tfo_in_backoff = 1;
614 }
615
616 tcp_heuristic_unlock(head);
617 return (false);
618 }
619
620 /*
621 * We give it a new shot, set trials back to 0. This allows to
622 * start counting again from zero in case we get yet another SYN-loss
623 */
624 tpheur->th_tfo_fallback_trials = 0;
625 tpheur->th_tfo_in_backoff = 0;
626
627 if (tpheur->th_tfo_rcv_middlebox_supp)
628 tp->t_tfo_flags |= TFO_F_NO_RCVPROBING;
629 if (tpheur->th_tfo_snd_middlebox_supp)
630 tp->t_tfo_flags |= TFO_F_NO_SNDPROBING;
631
632 tcp_heuristic_unlock(head);
633
634 return (true);
635 }
636
637 static void sysctl_cleartfocache(void)
638 {
639 int i;
640
641 for (i = 0; i < tcp_cache_size; i++) {
642 struct tcp_cache_head *head = &tcp_cache[i];
643 struct tcp_cache *tpcache, *tmp;
644 struct tcp_heuristics_head *hhead = &tcp_heuristics[i];
645 struct tcp_heuristic *tpheur, *htmp;
646
647 lck_mtx_lock(&head->tch_mtx);
648 SLIST_FOREACH_SAFE(tpcache, &head->tcp_caches, list, tmp) {
649 SLIST_REMOVE(&head->tcp_caches, tpcache, tcp_cache, list);
650 _FREE(tpcache, M_TEMP);
651 }
652 lck_mtx_unlock(&head->tch_mtx);
653
654 lck_mtx_lock(&hhead->thh_mtx);
655 SLIST_FOREACH_SAFE(tpheur, &hhead->tcp_heuristics, list, htmp) {
656 SLIST_REMOVE(&hhead->tcp_heuristics, tpheur, tcp_heuristic, list);
657 _FREE(tpheur, M_TEMP);
658 }
659 lck_mtx_unlock(&hhead->thh_mtx);
660 }
661 }
662
663 /* This sysctl is useful for testing purposes only */
664 static int tcpcleartfo = 0;
665
666 static int sysctl_cleartfo SYSCTL_HANDLER_ARGS
667 {
668 #pragma unused(arg1, arg2)
669 int error = 0, val, oldval = tcpcleartfo;
670
671 val = oldval;
672 error = sysctl_handle_int(oidp, &val, 0, req);
673 if (error || !req->newptr)
674 return (error);
675
676 /*
677 * The actual value does not matter. If the value is set, it triggers
678 * the clearing of the TFO cache. If a future implementation does not
679 * use the route entry to hold the TFO cache, replace the route sysctl.
680 */
681
682 if (val != oldval)
683 sysctl_cleartfocache();
684
685 tcpcleartfo = val;
686
687 return (error);
688 }
689
690 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, clear_tfocache, CTLTYPE_INT | CTLFLAG_RW |
691 CTLFLAG_LOCKED, &tcpcleartfo, 0, &sysctl_cleartfo, "I",
692 "Toggle to clear the TFO destination based heuristic cache");
693
694 void tcp_cache_init(void)
695 {
696 uint64_t sane_size_meg = sane_size / 1024 / 1024;
697 int i;
698
699 /*
700 * On machines with <100MB of memory this will result in a (full) cache-size
701 * of 32 entries, thus 32 * 5 * 64bytes = 10KB. (about 0.01 %)
702 * On machines with > 4GB of memory, we have a cache-size of 1024 entries,
703 * thus about 327KB.
704 *
705 * Side-note: we convert to u_int32_t. If sane_size is more than
706 * 16000 TB, we loose precision. But, who cares? :)
707 */
708 tcp_cache_size = tcp_cache_roundup2((u_int32_t)(sane_size_meg >> 2));
709 if (tcp_cache_size < 32)
710 tcp_cache_size = 32;
711 else if (tcp_cache_size > 1024)
712 tcp_cache_size = 1024;
713
714 tcp_cache = _MALLOC(sizeof(struct tcp_cache_head) * tcp_cache_size,
715 M_TEMP, M_ZERO);
716 if (tcp_cache == NULL)
717 panic("Allocating tcp_cache failed at boot-time!");
718
719 tcp_cache_mtx_grp_attr = lck_grp_attr_alloc_init();
720 tcp_cache_mtx_grp = lck_grp_alloc_init("tcpcache", tcp_cache_mtx_grp_attr);
721 tcp_cache_mtx_attr = lck_attr_alloc_init();
722
723 tcp_heuristics = _MALLOC(sizeof(struct tcp_heuristics_head) * tcp_cache_size,
724 M_TEMP, M_ZERO);
725 if (tcp_heuristics == NULL)
726 panic("Allocating tcp_heuristic failed at boot-time!");
727
728 tcp_heuristic_mtx_grp_attr = lck_grp_attr_alloc_init();
729 tcp_heuristic_mtx_grp = lck_grp_alloc_init("tcpheuristic", tcp_heuristic_mtx_grp_attr);
730 tcp_heuristic_mtx_attr = lck_attr_alloc_init();
731
732 for (i = 0; i < tcp_cache_size; i++) {
733 lck_mtx_init(&tcp_cache[i].tch_mtx, tcp_cache_mtx_grp,
734 tcp_cache_mtx_attr);
735 SLIST_INIT(&tcp_cache[i].tcp_caches);
736
737 lck_mtx_init(&tcp_heuristics[i].thh_mtx, tcp_heuristic_mtx_grp,
738 tcp_heuristic_mtx_attr);
739 SLIST_INIT(&tcp_heuristics[i].tcp_heuristics);
740 }
741
742 tcp_cache_hash_seed = RandomULong();
743 }