]> git.saurik.com Git - apple/xnu.git/blob - bsd/kern/uipc_socket2.c
xnu-3247.10.11.tar.gz
[apple/xnu.git] / bsd / kern / uipc_socket2.c
1 /*
2 * Copyright (c) 1998-2015 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */
29 /*
30 * Copyright (c) 1982, 1986, 1988, 1990, 1993
31 * The Regents of the University of California. All rights reserved.
32 *
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
35 * are met:
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
41 * 3. All advertising materials mentioning features or use of this software
42 * must display the following acknowledgement:
43 * This product includes software developed by the University of
44 * California, Berkeley and its contributors.
45 * 4. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)uipc_socket2.c 8.1 (Berkeley) 6/10/93
62 */
63 /*
64 * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
65 * support for mandatory and extensible security protections. This notice
66 * is included in support of clause 2.2 (b) of the Apple Public License,
67 * Version 2.0.
68 */
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/domain.h>
73 #include <sys/kernel.h>
74 #include <sys/proc_internal.h>
75 #include <sys/kauth.h>
76 #include <sys/malloc.h>
77 #include <sys/mbuf.h>
78 #include <sys/mcache.h>
79 #include <sys/protosw.h>
80 #include <sys/stat.h>
81 #include <sys/socket.h>
82 #include <sys/socketvar.h>
83 #include <sys/signalvar.h>
84 #include <sys/sysctl.h>
85 #include <sys/syslog.h>
86 #include <sys/ev.h>
87 #include <kern/locks.h>
88 #include <net/route.h>
89 #include <net/content_filter.h>
90 #include <netinet/in.h>
91 #include <netinet/in_pcb.h>
92 #include <sys/kdebug.h>
93 #include <libkern/OSAtomic.h>
94
95 #if CONFIG_MACF
96 #include <security/mac_framework.h>
97 #endif
98
99 #include <mach/vm_param.h>
100
101 #if MPTCP
102 #include <netinet/mptcp_var.h>
103 #endif
104
105 #define DBG_FNC_SBDROP NETDBG_CODE(DBG_NETSOCK, 4)
106 #define DBG_FNC_SBAPPEND NETDBG_CODE(DBG_NETSOCK, 5)
107
108 SYSCTL_DECL(_kern_ipc);
109
110 __private_extern__ u_int32_t net_io_policy_throttle_best_effort = 0;
111 SYSCTL_INT(_kern_ipc, OID_AUTO, throttle_best_effort,
112 CTLFLAG_RW | CTLFLAG_LOCKED, &net_io_policy_throttle_best_effort, 0, "");
113
114 static inline void sbcompress(struct sockbuf *, struct mbuf *, struct mbuf *);
115 static struct socket *sonewconn_internal(struct socket *, int);
116 static int sbappendaddr_internal(struct sockbuf *, struct sockaddr *,
117 struct mbuf *, struct mbuf *);
118 static int sbappendcontrol_internal(struct sockbuf *, struct mbuf *,
119 struct mbuf *);
120 static void soevent_ifdenied(struct socket *);
121
122 /*
123 * Primitive routines for operating on sockets and socket buffers
124 */
125 static int soqlimitcompat = 1;
126 static int soqlencomp = 0;
127
128 /*
129 * Based on the number of mbuf clusters configured, high_sb_max and sb_max can
130 * get scaled up or down to suit that memory configuration. high_sb_max is a
131 * higher limit on sb_max that is checked when sb_max gets set through sysctl.
132 */
133
134 u_int32_t sb_max = SB_MAX; /* XXX should be static */
135 u_int32_t high_sb_max = SB_MAX;
136
137 static u_int32_t sb_efficiency = 8; /* parameter for sbreserve() */
138 int32_t total_sbmb_cnt __attribute__((aligned(8))) = 0;
139 int32_t total_sbmb_cnt_peak __attribute__((aligned(8))) = 0;
140 int32_t total_snd_byte_count __attribute__((aligned(8))) = 0;
141 int64_t sbmb_limreached __attribute__((aligned(8))) = 0;
142
143 /* Control whether to throttle sockets eligible to be throttled */
144 __private_extern__ u_int32_t net_io_policy_throttled = 0;
145 static int sysctl_io_policy_throttled SYSCTL_HANDLER_ARGS;
146
147 u_int32_t net_io_policy_log = 0; /* log socket policy changes */
148 #if CONFIG_PROC_UUID_POLICY
149 u_int32_t net_io_policy_uuid = 1; /* enable UUID socket policy */
150 #endif /* CONFIG_PROC_UUID_POLICY */
151
152 /*
153 * Procedures to manipulate state flags of socket
154 * and do appropriate wakeups. Normal sequence from the
155 * active (originating) side is that soisconnecting() is
156 * called during processing of connect() call,
157 * resulting in an eventual call to soisconnected() if/when the
158 * connection is established. When the connection is torn down
159 * soisdisconnecting() is called during processing of disconnect() call,
160 * and soisdisconnected() is called when the connection to the peer
161 * is totally severed. The semantics of these routines are such that
162 * connectionless protocols can call soisconnected() and soisdisconnected()
163 * only, bypassing the in-progress calls when setting up a ``connection''
164 * takes no time.
165 *
166 * From the passive side, a socket is created with
167 * two queues of sockets: so_incomp for connections in progress
168 * and so_comp for connections already made and awaiting user acceptance.
169 * As a protocol is preparing incoming connections, it creates a socket
170 * structure queued on so_incomp by calling sonewconn(). When the connection
171 * is established, soisconnected() is called, and transfers the
172 * socket structure to so_comp, making it available to accept().
173 *
174 * If a socket is closed with sockets on either
175 * so_incomp or so_comp, these sockets are dropped.
176 *
177 * If higher level protocols are implemented in
178 * the kernel, the wakeups done here will sometimes
179 * cause software-interrupt process scheduling.
180 */
181 void
182 soisconnecting(struct socket *so)
183 {
184
185 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
186 so->so_state |= SS_ISCONNECTING;
187
188 sflt_notify(so, sock_evt_connecting, NULL);
189 }
190
191 void
192 soisconnected(struct socket *so)
193 {
194 struct socket *head = so->so_head;
195
196 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
197 so->so_state |= SS_ISCONNECTED;
198
199 soreserve_preconnect(so, 0);
200
201 sflt_notify(so, sock_evt_connected, NULL);
202
203 if (head && (so->so_state & SS_INCOMP)) {
204 so->so_state &= ~SS_INCOMP;
205 so->so_state |= SS_COMP;
206 if (head->so_proto->pr_getlock != NULL) {
207 socket_unlock(so, 0);
208 socket_lock(head, 1);
209 }
210 postevent(head, 0, EV_RCONN);
211 TAILQ_REMOVE(&head->so_incomp, so, so_list);
212 head->so_incqlen--;
213 TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
214 sorwakeup(head);
215 wakeup_one((caddr_t)&head->so_timeo);
216 if (head->so_proto->pr_getlock != NULL) {
217 socket_unlock(head, 1);
218 socket_lock(so, 0);
219 }
220 } else {
221 postevent(so, 0, EV_WCONN);
222 wakeup((caddr_t)&so->so_timeo);
223 sorwakeup(so);
224 sowwakeup(so);
225 soevent(so, SO_FILT_HINT_LOCKED | SO_FILT_HINT_CONNECTED |
226 SO_FILT_HINT_CONNINFO_UPDATED);
227 }
228 }
229
230 boolean_t
231 socanwrite(struct socket *so)
232 {
233 return ((so->so_state & SS_ISCONNECTED) ||
234 !(so->so_proto->pr_flags & PR_CONNREQUIRED) ||
235 (so->so_flags1 & SOF1_PRECONNECT_DATA));
236
237 }
238
239 void
240 soisdisconnecting(struct socket *so)
241 {
242 so->so_state &= ~SS_ISCONNECTING;
243 so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
244 soevent(so, SO_FILT_HINT_LOCKED);
245 sflt_notify(so, sock_evt_disconnecting, NULL);
246 wakeup((caddr_t)&so->so_timeo);
247 sowwakeup(so);
248 sorwakeup(so);
249 }
250
251 void
252 soisdisconnected(struct socket *so)
253 {
254 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
255 so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
256 soevent(so, SO_FILT_HINT_LOCKED | SO_FILT_HINT_DISCONNECTED |
257 SO_FILT_HINT_CONNINFO_UPDATED);
258 sflt_notify(so, sock_evt_disconnected, NULL);
259 wakeup((caddr_t)&so->so_timeo);
260 sowwakeup(so);
261 sorwakeup(so);
262
263 #if CONTENT_FILTER
264 /* Notify content filters as soon as we cannot send/receive data */
265 cfil_sock_notify_shutdown(so, SHUT_RDWR);
266 #endif /* CONTENT_FILTER */
267 }
268
269 /*
270 * This function will issue a wakeup like soisdisconnected but it will not
271 * notify the socket filters. This will avoid unlocking the socket
272 * in the midst of closing it.
273 */
274 void
275 sodisconnectwakeup(struct socket *so)
276 {
277 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
278 so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
279 soevent(so, SO_FILT_HINT_LOCKED | SO_FILT_HINT_DISCONNECTED |
280 SO_FILT_HINT_CONNINFO_UPDATED);
281 wakeup((caddr_t)&so->so_timeo);
282 sowwakeup(so);
283 sorwakeup(so);
284
285 #if CONTENT_FILTER
286 /* Notify content filters as soon as we cannot send/receive data */
287 cfil_sock_notify_shutdown(so, SHUT_RDWR);
288 #endif /* CONTENT_FILTER */
289 }
290
291 /*
292 * When an attempt at a new connection is noted on a socket
293 * which accepts connections, sonewconn is called. If the
294 * connection is possible (subject to space constraints, etc.)
295 * then we allocate a new structure, propoerly linked into the
296 * data structure of the original socket, and return this.
297 * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
298 */
299 static struct socket *
300 sonewconn_internal(struct socket *head, int connstatus)
301 {
302 int so_qlen, error = 0;
303 struct socket *so;
304 lck_mtx_t *mutex_held;
305
306 if (head->so_proto->pr_getlock != NULL)
307 mutex_held = (*head->so_proto->pr_getlock)(head, 0);
308 else
309 mutex_held = head->so_proto->pr_domain->dom_mtx;
310 lck_mtx_assert(mutex_held, LCK_MTX_ASSERT_OWNED);
311
312 if (!soqlencomp) {
313 /*
314 * This is the default case; so_qlen represents the
315 * sum of both incomplete and completed queues.
316 */
317 so_qlen = head->so_qlen;
318 } else {
319 /*
320 * When kern.ipc.soqlencomp is set to 1, so_qlen
321 * represents only the completed queue. Since we
322 * cannot let the incomplete queue goes unbounded
323 * (in case of SYN flood), we cap the incomplete
324 * queue length to at most somaxconn, and use that
325 * as so_qlen so that we fail immediately below.
326 */
327 so_qlen = head->so_qlen - head->so_incqlen;
328 if (head->so_incqlen > somaxconn)
329 so_qlen = somaxconn;
330 }
331
332 if (so_qlen >=
333 (soqlimitcompat ? head->so_qlimit : (3 * head->so_qlimit / 2)))
334 return ((struct socket *)0);
335 so = soalloc(1, SOCK_DOM(head), head->so_type);
336 if (so == NULL)
337 return ((struct socket *)0);
338 /* check if head was closed during the soalloc */
339 if (head->so_proto == NULL) {
340 sodealloc(so);
341 return ((struct socket *)0);
342 }
343
344 so->so_type = head->so_type;
345 so->so_options = head->so_options &~ SO_ACCEPTCONN;
346 so->so_linger = head->so_linger;
347 so->so_state = head->so_state | SS_NOFDREF;
348 so->so_proto = head->so_proto;
349 so->so_timeo = head->so_timeo;
350 so->so_pgid = head->so_pgid;
351 kauth_cred_ref(head->so_cred);
352 so->so_cred = head->so_cred;
353 so->last_pid = head->last_pid;
354 so->last_upid = head->last_upid;
355 memcpy(so->last_uuid, head->last_uuid, sizeof (so->last_uuid));
356 if (head->so_flags & SOF_DELEGATED) {
357 so->e_pid = head->e_pid;
358 so->e_upid = head->e_upid;
359 memcpy(so->e_uuid, head->e_uuid, sizeof (so->e_uuid));
360 }
361 /* inherit socket options stored in so_flags */
362 so->so_flags = head->so_flags &
363 (SOF_NOSIGPIPE | SOF_NOADDRAVAIL | SOF_REUSESHAREUID |
364 SOF_NOTIFYCONFLICT | SOF_BINDRANDOMPORT | SOF_NPX_SETOPTSHUT |
365 SOF_NODEFUNCT | SOF_PRIVILEGED_TRAFFIC_CLASS| SOF_NOTSENT_LOWAT |
366 SOF_USELRO | SOF_DELEGATED);
367 so->so_usecount = 1;
368 so->next_lock_lr = 0;
369 so->next_unlock_lr = 0;
370
371 so->so_rcv.sb_flags |= SB_RECV; /* XXX */
372 so->so_rcv.sb_so = so->so_snd.sb_so = so;
373 TAILQ_INIT(&so->so_evlist);
374
375 #if CONFIG_MACF_SOCKET
376 mac_socket_label_associate_accept(head, so);
377 #endif
378
379 /* inherit traffic management properties of listener */
380 so->so_traffic_mgt_flags =
381 head->so_traffic_mgt_flags & (TRAFFIC_MGT_SO_BACKGROUND);
382 so->so_background_thread = head->so_background_thread;
383 so->so_traffic_class = head->so_traffic_class;
384
385 if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) {
386 sodealloc(so);
387 return ((struct socket *)0);
388 }
389 so->so_rcv.sb_flags |= (head->so_rcv.sb_flags & SB_USRSIZE);
390 so->so_snd.sb_flags |= (head->so_snd.sb_flags & SB_USRSIZE);
391
392 /*
393 * Must be done with head unlocked to avoid deadlock
394 * for protocol with per socket mutexes.
395 */
396 if (head->so_proto->pr_unlock)
397 socket_unlock(head, 0);
398 if (((*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL) != 0) ||
399 error) {
400 sodealloc(so);
401 if (head->so_proto->pr_unlock)
402 socket_lock(head, 0);
403 return ((struct socket *)0);
404 }
405 if (head->so_proto->pr_unlock) {
406 socket_lock(head, 0);
407 /*
408 * Radar 7385998 Recheck that the head is still accepting
409 * to avoid race condition when head is getting closed.
410 */
411 if ((head->so_options & SO_ACCEPTCONN) == 0) {
412 so->so_state &= ~SS_NOFDREF;
413 soclose(so);
414 return ((struct socket *)0);
415 }
416 }
417
418 atomic_add_32(&so->so_proto->pr_domain->dom_refs, 1);
419
420 /* Insert in head appropriate lists */
421 so->so_head = head;
422
423 /*
424 * Since this socket is going to be inserted into the incomp
425 * queue, it can be picked up by another thread in
426 * tcp_dropdropablreq to get dropped before it is setup..
427 * To prevent this race, set in-progress flag which can be
428 * cleared later
429 */
430 so->so_flags |= SOF_INCOMP_INPROGRESS;
431
432 if (connstatus) {
433 TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
434 so->so_state |= SS_COMP;
435 } else {
436 TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list);
437 so->so_state |= SS_INCOMP;
438 head->so_incqlen++;
439 }
440 head->so_qlen++;
441
442 /* Attach socket filters for this protocol */
443 sflt_initsock(so);
444
445 if (connstatus) {
446 so->so_state |= connstatus;
447 sorwakeup(head);
448 wakeup((caddr_t)&head->so_timeo);
449 }
450 return (so);
451 }
452
453
454 struct socket *
455 sonewconn(struct socket *head, int connstatus, const struct sockaddr *from)
456 {
457 int error = sflt_connectin(head, from);
458 if (error) {
459 return (NULL);
460 }
461
462 return (sonewconn_internal(head, connstatus));
463 }
464
465 /*
466 * Socantsendmore indicates that no more data will be sent on the
467 * socket; it would normally be applied to a socket when the user
468 * informs the system that no more data is to be sent, by the protocol
469 * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data
470 * will be received, and will normally be applied to the socket by a
471 * protocol when it detects that the peer will send no more data.
472 * Data queued for reading in the socket may yet be read.
473 */
474
475 void
476 socantsendmore(struct socket *so)
477 {
478 so->so_state |= SS_CANTSENDMORE;
479 soevent(so, SO_FILT_HINT_LOCKED | SO_FILT_HINT_CANTSENDMORE);
480 sflt_notify(so, sock_evt_cantsendmore, NULL);
481 sowwakeup(so);
482 }
483
484 void
485 socantrcvmore(struct socket *so)
486 {
487 so->so_state |= SS_CANTRCVMORE;
488 soevent(so, SO_FILT_HINT_LOCKED | SO_FILT_HINT_CANTRCVMORE);
489 sflt_notify(so, sock_evt_cantrecvmore, NULL);
490 sorwakeup(so);
491 }
492
493 /*
494 * Wait for data to arrive at/drain from a socket buffer.
495 */
496 int
497 sbwait(struct sockbuf *sb)
498 {
499 boolean_t nointr = (sb->sb_flags & SB_NOINTR);
500 void *lr_saved = __builtin_return_address(0);
501 struct socket *so = sb->sb_so;
502 lck_mtx_t *mutex_held;
503 struct timespec ts;
504 int error = 0;
505
506 if (so == NULL) {
507 panic("%s: null so, sb=%p sb_flags=0x%x lr=%p\n",
508 __func__, sb, sb->sb_flags, lr_saved);
509 /* NOTREACHED */
510 } else if (so->so_usecount < 1) {
511 panic("%s: sb=%p sb_flags=0x%x sb_so=%p usecount=%d lr=%p "
512 "lrh= %s\n", __func__, sb, sb->sb_flags, so,
513 so->so_usecount, lr_saved, solockhistory_nr(so));
514 /* NOTREACHED */
515 }
516
517 if (so->so_proto->pr_getlock != NULL)
518 mutex_held = (*so->so_proto->pr_getlock)(so, 0);
519 else
520 mutex_held = so->so_proto->pr_domain->dom_mtx;
521
522 lck_mtx_assert(mutex_held, LCK_MTX_ASSERT_OWNED);
523
524 ts.tv_sec = sb->sb_timeo.tv_sec;
525 ts.tv_nsec = sb->sb_timeo.tv_usec * 1000;
526
527 sb->sb_waiters++;
528 VERIFY(sb->sb_waiters != 0);
529
530 error = msleep((caddr_t)&sb->sb_cc, mutex_held,
531 nointr ? PSOCK : PSOCK | PCATCH,
532 nointr ? "sbwait_nointr" : "sbwait", &ts);
533
534 VERIFY(sb->sb_waiters != 0);
535 sb->sb_waiters--;
536
537 if (so->so_usecount < 1) {
538 panic("%s: 2 sb=%p sb_flags=0x%x sb_so=%p usecount=%d lr=%p "
539 "lrh= %s\n", __func__, sb, sb->sb_flags, so,
540 so->so_usecount, lr_saved, solockhistory_nr(so));
541 /* NOTREACHED */
542 }
543
544 if ((so->so_state & SS_DRAINING) || (so->so_flags & SOF_DEFUNCT)) {
545 error = EBADF;
546 if (so->so_flags & SOF_DEFUNCT) {
547 SODEFUNCTLOG(("%s[%d]: defunct so 0x%llx [%d,%d] "
548 "(%d)\n", __func__, proc_selfpid(),
549 (uint64_t)VM_KERNEL_ADDRPERM(so),
550 SOCK_DOM(so), SOCK_TYPE(so), error));
551 }
552 }
553
554 return (error);
555 }
556
557 void
558 sbwakeup(struct sockbuf *sb)
559 {
560 if (sb->sb_waiters > 0)
561 wakeup((caddr_t)&sb->sb_cc);
562 }
563
564 /*
565 * Wakeup processes waiting on a socket buffer.
566 * Do asynchronous notification via SIGIO
567 * if the socket has the SS_ASYNC flag set.
568 */
569 void
570 sowakeup(struct socket *so, struct sockbuf *sb)
571 {
572 if (so->so_flags & SOF_DEFUNCT) {
573 SODEFUNCTLOG(("%s[%d]: defunct so 0x%llx [%d,%d] si 0x%x, "
574 "fl 0x%x [%s]\n", __func__, proc_selfpid(),
575 (uint64_t)VM_KERNEL_ADDRPERM(so), SOCK_DOM(so),
576 SOCK_TYPE(so), (uint32_t)sb->sb_sel.si_flags, sb->sb_flags,
577 (sb->sb_flags & SB_RECV) ? "rcv" : "snd"));
578 }
579
580 sb->sb_flags &= ~SB_SEL;
581 selwakeup(&sb->sb_sel);
582 sbwakeup(sb);
583 if (so->so_state & SS_ASYNC) {
584 if (so->so_pgid < 0)
585 gsignal(-so->so_pgid, SIGIO);
586 else if (so->so_pgid > 0)
587 proc_signal(so->so_pgid, SIGIO);
588 }
589 if (sb->sb_flags & SB_KNOTE) {
590 KNOTE(&sb->sb_sel.si_note, SO_FILT_HINT_LOCKED);
591 }
592 if (sb->sb_flags & SB_UPCALL) {
593 void (*sb_upcall)(struct socket *, void *, int);
594 caddr_t sb_upcallarg;
595
596 sb_upcall = sb->sb_upcall;
597 sb_upcallarg = sb->sb_upcallarg;
598 /* Let close know that we're about to do an upcall */
599 so->so_upcallusecount++;
600
601 socket_unlock(so, 0);
602 (*sb_upcall)(so, sb_upcallarg, M_DONTWAIT);
603 socket_lock(so, 0);
604
605 so->so_upcallusecount--;
606 /* Tell close that it's safe to proceed */
607 if ((so->so_flags & SOF_CLOSEWAIT) &&
608 so->so_upcallusecount == 0)
609 wakeup((caddr_t)&so->so_upcallusecount);
610 }
611 #if CONTENT_FILTER
612 /*
613 * Trap disconnection events for content filters
614 */
615 if ((so->so_flags & SOF_CONTENT_FILTER) != 0) {
616 if ((sb->sb_flags & SB_RECV)) {
617 if (so->so_state & (SS_CANTRCVMORE))
618 cfil_sock_notify_shutdown(so, SHUT_RD);
619 } else {
620 if (so->so_state & (SS_CANTSENDMORE))
621 cfil_sock_notify_shutdown(so, SHUT_WR);
622 }
623 }
624 #endif /* CONTENT_FILTER */
625 }
626
627 /*
628 * Socket buffer (struct sockbuf) utility routines.
629 *
630 * Each socket contains two socket buffers: one for sending data and
631 * one for receiving data. Each buffer contains a queue of mbufs,
632 * information about the number of mbufs and amount of data in the
633 * queue, and other fields allowing select() statements and notification
634 * on data availability to be implemented.
635 *
636 * Data stored in a socket buffer is maintained as a list of records.
637 * Each record is a list of mbufs chained together with the m_next
638 * field. Records are chained together with the m_nextpkt field. The upper
639 * level routine soreceive() expects the following conventions to be
640 * observed when placing information in the receive buffer:
641 *
642 * 1. If the protocol requires each message be preceded by the sender's
643 * name, then a record containing that name must be present before
644 * any associated data (mbuf's must be of type MT_SONAME).
645 * 2. If the protocol supports the exchange of ``access rights'' (really
646 * just additional data associated with the message), and there are
647 * ``rights'' to be received, then a record containing this data
648 * should be present (mbuf's must be of type MT_RIGHTS).
649 * 3. If a name or rights record exists, then it must be followed by
650 * a data record, perhaps of zero length.
651 *
652 * Before using a new socket structure it is first necessary to reserve
653 * buffer space to the socket, by calling sbreserve(). This should commit
654 * some of the available buffer space in the system buffer pool for the
655 * socket (currently, it does nothing but enforce limits). The space
656 * should be released by calling sbrelease() when the socket is destroyed.
657 */
658
659 /*
660 * Returns: 0 Success
661 * ENOBUFS
662 */
663 int
664 soreserve(struct socket *so, u_int32_t sndcc, u_int32_t rcvcc)
665 {
666
667 if (sbreserve(&so->so_snd, sndcc) == 0)
668 goto bad;
669 else
670 so->so_snd.sb_idealsize = sndcc;
671
672 if (sbreserve(&so->so_rcv, rcvcc) == 0)
673 goto bad2;
674 else
675 so->so_rcv.sb_idealsize = rcvcc;
676
677 if (so->so_rcv.sb_lowat == 0)
678 so->so_rcv.sb_lowat = 1;
679 if (so->so_snd.sb_lowat == 0)
680 so->so_snd.sb_lowat = MCLBYTES;
681 if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
682 so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
683 return (0);
684 bad2:
685 so->so_snd.sb_flags &= ~SB_SEL;
686 selthreadclear(&so->so_snd.sb_sel);
687 sbrelease(&so->so_snd);
688 bad:
689 return (ENOBUFS);
690 }
691
692 void
693 soreserve_preconnect(struct socket *so, unsigned int pre_cc)
694 {
695 /* As of now, same bytes for both preconnect read and write */
696 so->so_snd.sb_preconn_hiwat = pre_cc;
697 so->so_rcv.sb_preconn_hiwat = pre_cc;
698 }
699
700 /*
701 * Allot mbufs to a sockbuf.
702 * Attempt to scale mbmax so that mbcnt doesn't become limiting
703 * if buffering efficiency is near the normal case.
704 */
705 int
706 sbreserve(struct sockbuf *sb, u_int32_t cc)
707 {
708 if ((u_quad_t)cc > (u_quad_t)sb_max * MCLBYTES / (MSIZE + MCLBYTES))
709 return (0);
710 sb->sb_hiwat = cc;
711 sb->sb_mbmax = min(cc * sb_efficiency, sb_max);
712 if (sb->sb_lowat > sb->sb_hiwat)
713 sb->sb_lowat = sb->sb_hiwat;
714 return (1);
715 }
716
717 /*
718 * Free mbufs held by a socket, and reserved mbuf space.
719 */
720 /* WARNING needs to do selthreadclear() before calling this */
721 void
722 sbrelease(struct sockbuf *sb)
723 {
724 sbflush(sb);
725 sb->sb_hiwat = 0;
726 sb->sb_mbmax = 0;
727 }
728
729 /*
730 * Routines to add and remove
731 * data from an mbuf queue.
732 *
733 * The routines sbappend() or sbappendrecord() are normally called to
734 * append new mbufs to a socket buffer, after checking that adequate
735 * space is available, comparing the function sbspace() with the amount
736 * of data to be added. sbappendrecord() differs from sbappend() in
737 * that data supplied is treated as the beginning of a new record.
738 * To place a sender's address, optional access rights, and data in a
739 * socket receive buffer, sbappendaddr() should be used. To place
740 * access rights and data in a socket receive buffer, sbappendrights()
741 * should be used. In either case, the new data begins a new record.
742 * Note that unlike sbappend() and sbappendrecord(), these routines check
743 * for the caller that there will be enough space to store the data.
744 * Each fails if there is not enough space, or if it cannot find mbufs
745 * to store additional information in.
746 *
747 * Reliable protocols may use the socket send buffer to hold data
748 * awaiting acknowledgement. Data is normally copied from a socket
749 * send buffer in a protocol with m_copy for output to a peer,
750 * and then removing the data from the socket buffer with sbdrop()
751 * or sbdroprecord() when the data is acknowledged by the peer.
752 */
753
754 /*
755 * Append mbuf chain m to the last record in the
756 * socket buffer sb. The additional space associated
757 * the mbuf chain is recorded in sb. Empty mbufs are
758 * discarded and mbufs are compacted where possible.
759 */
760 int
761 sbappend(struct sockbuf *sb, struct mbuf *m)
762 {
763 struct socket *so = sb->sb_so;
764
765 if (m == NULL || (sb->sb_flags & SB_DROP)) {
766 if (m != NULL)
767 m_freem(m);
768 return (0);
769 }
770
771 SBLASTRECORDCHK(sb, "sbappend 1");
772
773 if (sb->sb_lastrecord != NULL && (sb->sb_mbtail->m_flags & M_EOR))
774 return (sbappendrecord(sb, m));
775
776 if (sb->sb_flags & SB_RECV && !(m && m->m_flags & M_SKIPCFIL)) {
777 int error = sflt_data_in(so, NULL, &m, NULL, 0);
778 SBLASTRECORDCHK(sb, "sbappend 2");
779
780 #if CONTENT_FILTER
781 if (error == 0)
782 error = cfil_sock_data_in(so, NULL, m, NULL, 0);
783 #endif /* CONTENT_FILTER */
784
785 if (error != 0) {
786 if (error != EJUSTRETURN)
787 m_freem(m);
788 return (0);
789 }
790 } else if (m) {
791 m->m_flags &= ~M_SKIPCFIL;
792 }
793
794 /* If this is the first record, it's also the last record */
795 if (sb->sb_lastrecord == NULL)
796 sb->sb_lastrecord = m;
797
798 sbcompress(sb, m, sb->sb_mbtail);
799 SBLASTRECORDCHK(sb, "sbappend 3");
800 return (1);
801 }
802
803 /*
804 * Similar to sbappend, except that this is optimized for stream sockets.
805 */
806 int
807 sbappendstream(struct sockbuf *sb, struct mbuf *m)
808 {
809 struct socket *so = sb->sb_so;
810
811 if (m == NULL || (sb->sb_flags & SB_DROP)) {
812 if (m != NULL)
813 m_freem(m);
814 return (0);
815 }
816
817 if (m->m_nextpkt != NULL || (sb->sb_mb != sb->sb_lastrecord)) {
818 panic("sbappendstream: nexpkt %p || mb %p != lastrecord %p\n",
819 m->m_nextpkt, sb->sb_mb, sb->sb_lastrecord);
820 /* NOTREACHED */
821 }
822
823 SBLASTMBUFCHK(sb, __func__);
824
825 if (sb->sb_flags & SB_RECV && !(m && m->m_flags & M_SKIPCFIL)) {
826 int error = sflt_data_in(so, NULL, &m, NULL, 0);
827 SBLASTRECORDCHK(sb, "sbappendstream 1");
828
829 #if CONTENT_FILTER
830 if (error == 0)
831 error = cfil_sock_data_in(so, NULL, m, NULL, 0);
832 #endif /* CONTENT_FILTER */
833
834 if (error != 0) {
835 if (error != EJUSTRETURN)
836 m_freem(m);
837 return (0);
838 }
839 } else if (m) {
840 m->m_flags &= ~M_SKIPCFIL;
841 }
842
843 sbcompress(sb, m, sb->sb_mbtail);
844 sb->sb_lastrecord = sb->sb_mb;
845 SBLASTRECORDCHK(sb, "sbappendstream 2");
846 return (1);
847 }
848
849 #ifdef SOCKBUF_DEBUG
850 void
851 sbcheck(struct sockbuf *sb)
852 {
853 struct mbuf *m;
854 struct mbuf *n = 0;
855 u_int32_t len = 0, mbcnt = 0;
856 lck_mtx_t *mutex_held;
857
858 if (sb->sb_so->so_proto->pr_getlock != NULL)
859 mutex_held = (*sb->sb_so->so_proto->pr_getlock)(sb->sb_so, 0);
860 else
861 mutex_held = sb->sb_so->so_proto->pr_domain->dom_mtx;
862
863 lck_mtx_assert(mutex_held, LCK_MTX_ASSERT_OWNED);
864
865 if (sbchecking == 0)
866 return;
867
868 for (m = sb->sb_mb; m; m = n) {
869 n = m->m_nextpkt;
870 for (; m; m = m->m_next) {
871 len += m->m_len;
872 mbcnt += MSIZE;
873 /* XXX pretty sure this is bogus */
874 if (m->m_flags & M_EXT)
875 mbcnt += m->m_ext.ext_size;
876 }
877 }
878 if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
879 panic("cc %ld != %ld || mbcnt %ld != %ld\n", len, sb->sb_cc,
880 mbcnt, sb->sb_mbcnt);
881 }
882 }
883 #endif
884
885 void
886 sblastrecordchk(struct sockbuf *sb, const char *where)
887 {
888 struct mbuf *m = sb->sb_mb;
889
890 while (m && m->m_nextpkt)
891 m = m->m_nextpkt;
892
893 if (m != sb->sb_lastrecord) {
894 printf("sblastrecordchk: mb 0x%llx lastrecord 0x%llx "
895 "last 0x%llx\n",
896 (uint64_t)VM_KERNEL_ADDRPERM(sb->sb_mb),
897 (uint64_t)VM_KERNEL_ADDRPERM(sb->sb_lastrecord),
898 (uint64_t)VM_KERNEL_ADDRPERM(m));
899 printf("packet chain:\n");
900 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
901 printf("\t0x%llx\n", (uint64_t)VM_KERNEL_ADDRPERM(m));
902 panic("sblastrecordchk from %s", where);
903 }
904 }
905
906 void
907 sblastmbufchk(struct sockbuf *sb, const char *where)
908 {
909 struct mbuf *m = sb->sb_mb;
910 struct mbuf *n;
911
912 while (m && m->m_nextpkt)
913 m = m->m_nextpkt;
914
915 while (m && m->m_next)
916 m = m->m_next;
917
918 if (m != sb->sb_mbtail) {
919 printf("sblastmbufchk: mb 0x%llx mbtail 0x%llx last 0x%llx\n",
920 (uint64_t)VM_KERNEL_ADDRPERM(sb->sb_mb),
921 (uint64_t)VM_KERNEL_ADDRPERM(sb->sb_mbtail),
922 (uint64_t)VM_KERNEL_ADDRPERM(m));
923 printf("packet tree:\n");
924 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
925 printf("\t");
926 for (n = m; n != NULL; n = n->m_next)
927 printf("0x%llx ",
928 (uint64_t)VM_KERNEL_ADDRPERM(n));
929 printf("\n");
930 }
931 panic("sblastmbufchk from %s", where);
932 }
933 }
934
935 /*
936 * Similar to sbappend, except the mbuf chain begins a new record.
937 */
938 int
939 sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
940 {
941 struct mbuf *m;
942 int space = 0;
943
944 if (m0 == NULL || (sb->sb_flags & SB_DROP)) {
945 if (m0 != NULL)
946 m_freem(m0);
947 return (0);
948 }
949
950 for (m = m0; m != NULL; m = m->m_next)
951 space += m->m_len;
952
953 if (space > sbspace(sb) && !(sb->sb_flags & SB_UNIX)) {
954 m_freem(m0);
955 return (0);
956 }
957
958 if (sb->sb_flags & SB_RECV && !(m0 && m0->m_flags & M_SKIPCFIL)) {
959 int error = sflt_data_in(sb->sb_so, NULL, &m0, NULL,
960 sock_data_filt_flag_record);
961
962 #if CONTENT_FILTER
963 if (error == 0)
964 error = cfil_sock_data_in(sb->sb_so, NULL, m0, NULL, 0);
965 #endif /* CONTENT_FILTER */
966
967 if (error != 0) {
968 SBLASTRECORDCHK(sb, "sbappendrecord 1");
969 if (error != EJUSTRETURN)
970 m_freem(m0);
971 return (0);
972 }
973 } else if (m0) {
974 m0->m_flags &= ~M_SKIPCFIL;
975 }
976
977 /*
978 * Note this permits zero length records.
979 */
980 sballoc(sb, m0);
981 SBLASTRECORDCHK(sb, "sbappendrecord 2");
982 if (sb->sb_lastrecord != NULL) {
983 sb->sb_lastrecord->m_nextpkt = m0;
984 } else {
985 sb->sb_mb = m0;
986 }
987 sb->sb_lastrecord = m0;
988 sb->sb_mbtail = m0;
989
990 m = m0->m_next;
991 m0->m_next = 0;
992 if (m && (m0->m_flags & M_EOR)) {
993 m0->m_flags &= ~M_EOR;
994 m->m_flags |= M_EOR;
995 }
996 sbcompress(sb, m, m0);
997 SBLASTRECORDCHK(sb, "sbappendrecord 3");
998 return (1);
999 }
1000
1001 /*
1002 * As above except that OOB data
1003 * is inserted at the beginning of the sockbuf,
1004 * but after any other OOB data.
1005 */
1006 int
1007 sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
1008 {
1009 struct mbuf *m;
1010 struct mbuf **mp;
1011
1012 if (m0 == 0)
1013 return (0);
1014
1015 SBLASTRECORDCHK(sb, "sbinsertoob 1");
1016
1017 if ((sb->sb_flags & SB_RECV && !(m0->m_flags & M_SKIPCFIL)) != 0) {
1018 int error = sflt_data_in(sb->sb_so, NULL, &m0, NULL,
1019 sock_data_filt_flag_oob);
1020
1021 SBLASTRECORDCHK(sb, "sbinsertoob 2");
1022
1023 #if CONTENT_FILTER
1024 if (error == 0)
1025 error = cfil_sock_data_in(sb->sb_so, NULL, m0, NULL, 0);
1026 #endif /* CONTENT_FILTER */
1027
1028 if (error) {
1029 if (error != EJUSTRETURN) {
1030 m_freem(m0);
1031 }
1032 return (0);
1033 }
1034 } else if (m0) {
1035 m0->m_flags &= ~M_SKIPCFIL;
1036 }
1037
1038 for (mp = &sb->sb_mb; *mp; mp = &((*mp)->m_nextpkt)) {
1039 m = *mp;
1040 again:
1041 switch (m->m_type) {
1042
1043 case MT_OOBDATA:
1044 continue; /* WANT next train */
1045
1046 case MT_CONTROL:
1047 m = m->m_next;
1048 if (m)
1049 goto again; /* inspect THIS train further */
1050 }
1051 break;
1052 }
1053 /*
1054 * Put the first mbuf on the queue.
1055 * Note this permits zero length records.
1056 */
1057 sballoc(sb, m0);
1058 m0->m_nextpkt = *mp;
1059 if (*mp == NULL) {
1060 /* m0 is actually the new tail */
1061 sb->sb_lastrecord = m0;
1062 }
1063 *mp = m0;
1064 m = m0->m_next;
1065 m0->m_next = 0;
1066 if (m && (m0->m_flags & M_EOR)) {
1067 m0->m_flags &= ~M_EOR;
1068 m->m_flags |= M_EOR;
1069 }
1070 sbcompress(sb, m, m0);
1071 SBLASTRECORDCHK(sb, "sbinsertoob 3");
1072 return (1);
1073 }
1074
1075 /*
1076 * Append address and data, and optionally, control (ancillary) data
1077 * to the receive queue of a socket. If present,
1078 * m0 must include a packet header with total length.
1079 * Returns 0 if no space in sockbuf or insufficient mbufs.
1080 *
1081 * Returns: 0 No space/out of mbufs
1082 * 1 Success
1083 */
1084 static int
1085 sbappendaddr_internal(struct sockbuf *sb, struct sockaddr *asa,
1086 struct mbuf *m0, struct mbuf *control)
1087 {
1088 struct mbuf *m, *n, *nlast;
1089 int space = asa->sa_len;
1090
1091 if (m0 && (m0->m_flags & M_PKTHDR) == 0)
1092 panic("sbappendaddr");
1093
1094 if (m0)
1095 space += m0->m_pkthdr.len;
1096 for (n = control; n; n = n->m_next) {
1097 space += n->m_len;
1098 if (n->m_next == 0) /* keep pointer to last control buf */
1099 break;
1100 }
1101 if (space > sbspace(sb))
1102 return (0);
1103 if (asa->sa_len > MLEN)
1104 return (0);
1105 MGET(m, M_DONTWAIT, MT_SONAME);
1106 if (m == 0)
1107 return (0);
1108 m->m_len = asa->sa_len;
1109 bcopy((caddr_t)asa, mtod(m, caddr_t), asa->sa_len);
1110 if (n)
1111 n->m_next = m0; /* concatenate data to control */
1112 else
1113 control = m0;
1114 m->m_next = control;
1115
1116 SBLASTRECORDCHK(sb, "sbappendadddr 1");
1117
1118 for (n = m; n->m_next != NULL; n = n->m_next)
1119 sballoc(sb, n);
1120 sballoc(sb, n);
1121 nlast = n;
1122
1123 if (sb->sb_lastrecord != NULL) {
1124 sb->sb_lastrecord->m_nextpkt = m;
1125 } else {
1126 sb->sb_mb = m;
1127 }
1128 sb->sb_lastrecord = m;
1129 sb->sb_mbtail = nlast;
1130
1131 SBLASTMBUFCHK(sb, __func__);
1132 SBLASTRECORDCHK(sb, "sbappendadddr 2");
1133
1134 postevent(0, sb, EV_RWBYTES);
1135 return (1);
1136 }
1137
1138 /*
1139 * Returns: 0 Error: No space/out of mbufs/etc.
1140 * 1 Success
1141 *
1142 * Imputed: (*error_out) errno for error
1143 * ENOBUFS
1144 * sflt_data_in:??? [whatever a filter author chooses]
1145 */
1146 int
1147 sbappendaddr(struct sockbuf *sb, struct sockaddr *asa, struct mbuf *m0,
1148 struct mbuf *control, int *error_out)
1149 {
1150 int result = 0;
1151 boolean_t sb_unix = (sb->sb_flags & SB_UNIX);
1152
1153 if (error_out)
1154 *error_out = 0;
1155
1156 if (m0 && (m0->m_flags & M_PKTHDR) == 0)
1157 panic("sbappendaddrorfree");
1158
1159 if (sb->sb_flags & SB_DROP) {
1160 if (m0 != NULL)
1161 m_freem(m0);
1162 if (control != NULL && !sb_unix)
1163 m_freem(control);
1164 if (error_out != NULL)
1165 *error_out = EINVAL;
1166 return (0);
1167 }
1168
1169 /* Call socket data in filters */
1170 if (sb->sb_flags & SB_RECV && !(m0 && m0->m_flags & M_SKIPCFIL)) {
1171 int error;
1172 error = sflt_data_in(sb->sb_so, asa, &m0, &control, 0);
1173 SBLASTRECORDCHK(sb, __func__);
1174
1175 #if CONTENT_FILTER
1176 if (error == 0)
1177 error = cfil_sock_data_in(sb->sb_so, asa, m0, control,
1178 0);
1179 #endif /* CONTENT_FILTER */
1180
1181 if (error) {
1182 if (error != EJUSTRETURN) {
1183 if (m0)
1184 m_freem(m0);
1185 if (control != NULL && !sb_unix)
1186 m_freem(control);
1187 if (error_out)
1188 *error_out = error;
1189 }
1190 return (0);
1191 }
1192 } else if (m0) {
1193 m0->m_flags &= ~M_SKIPCFIL;
1194 }
1195
1196 result = sbappendaddr_internal(sb, asa, m0, control);
1197 if (result == 0) {
1198 if (m0)
1199 m_freem(m0);
1200 if (control != NULL && !sb_unix)
1201 m_freem(control);
1202 if (error_out)
1203 *error_out = ENOBUFS;
1204 }
1205
1206 return (result);
1207 }
1208
1209 static int
1210 sbappendcontrol_internal(struct sockbuf *sb, struct mbuf *m0,
1211 struct mbuf *control)
1212 {
1213 struct mbuf *m, *mlast, *n;
1214 int space = 0;
1215
1216 if (control == 0)
1217 panic("sbappendcontrol");
1218
1219 for (m = control; ; m = m->m_next) {
1220 space += m->m_len;
1221 if (m->m_next == 0)
1222 break;
1223 }
1224 n = m; /* save pointer to last control buffer */
1225 for (m = m0; m; m = m->m_next)
1226 space += m->m_len;
1227 if (space > sbspace(sb) && !(sb->sb_flags & SB_UNIX))
1228 return (0);
1229 n->m_next = m0; /* concatenate data to control */
1230 SBLASTRECORDCHK(sb, "sbappendcontrol 1");
1231
1232 for (m = control; m->m_next != NULL; m = m->m_next)
1233 sballoc(sb, m);
1234 sballoc(sb, m);
1235 mlast = m;
1236
1237 if (sb->sb_lastrecord != NULL) {
1238 sb->sb_lastrecord->m_nextpkt = control;
1239 } else {
1240 sb->sb_mb = control;
1241 }
1242 sb->sb_lastrecord = control;
1243 sb->sb_mbtail = mlast;
1244
1245 SBLASTMBUFCHK(sb, __func__);
1246 SBLASTRECORDCHK(sb, "sbappendcontrol 2");
1247
1248 postevent(0, sb, EV_RWBYTES);
1249 return (1);
1250 }
1251
1252 int
1253 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control,
1254 int *error_out)
1255 {
1256 int result = 0;
1257 boolean_t sb_unix = (sb->sb_flags & SB_UNIX);
1258
1259 if (error_out)
1260 *error_out = 0;
1261
1262 if (sb->sb_flags & SB_DROP) {
1263 if (m0 != NULL)
1264 m_freem(m0);
1265 if (control != NULL && !sb_unix)
1266 m_freem(control);
1267 if (error_out != NULL)
1268 *error_out = EINVAL;
1269 return (0);
1270 }
1271
1272 if (sb->sb_flags & SB_RECV && !(m0 && m0->m_flags & M_SKIPCFIL)) {
1273 int error;
1274
1275 error = sflt_data_in(sb->sb_so, NULL, &m0, &control, 0);
1276 SBLASTRECORDCHK(sb, __func__);
1277
1278 #if CONTENT_FILTER
1279 if (error == 0)
1280 error = cfil_sock_data_in(sb->sb_so, NULL, m0, control,
1281 0);
1282 #endif /* CONTENT_FILTER */
1283
1284 if (error) {
1285 if (error != EJUSTRETURN) {
1286 if (m0)
1287 m_freem(m0);
1288 if (control != NULL && !sb_unix)
1289 m_freem(control);
1290 if (error_out)
1291 *error_out = error;
1292 }
1293 return (0);
1294 }
1295 } else if (m0) {
1296 m0->m_flags &= ~M_SKIPCFIL;
1297 }
1298
1299 result = sbappendcontrol_internal(sb, m0, control);
1300 if (result == 0) {
1301 if (m0)
1302 m_freem(m0);
1303 if (control != NULL && !sb_unix)
1304 m_freem(control);
1305 if (error_out)
1306 *error_out = ENOBUFS;
1307 }
1308
1309 return (result);
1310 }
1311
1312 /*
1313 * Append a contiguous TCP data blob with TCP sequence number as control data
1314 * as a new msg to the receive socket buffer.
1315 */
1316 int
1317 sbappendmsgstream_rcv(struct sockbuf *sb, struct mbuf *m, uint32_t seqnum,
1318 int unordered)
1319 {
1320 struct mbuf *m_eor = NULL;
1321 u_int32_t data_len = 0;
1322 int ret = 0;
1323 struct socket *so = sb->sb_so;
1324
1325 VERIFY((m->m_flags & M_PKTHDR) && m_pktlen(m) > 0);
1326 VERIFY(so->so_msg_state != NULL);
1327 VERIFY(sb->sb_flags & SB_RECV);
1328
1329 /* Keep the TCP sequence number in the mbuf pkthdr */
1330 m->m_pkthdr.msg_seq = seqnum;
1331
1332 /* find last mbuf and set M_EOR */
1333 for (m_eor = m; ; m_eor = m_eor->m_next) {
1334 /*
1335 * If the msg is unordered, we need to account for
1336 * these bytes in receive socket buffer size. Otherwise,
1337 * the receive window advertised will shrink because
1338 * of the additional unordered bytes added to the
1339 * receive buffer.
1340 */
1341 if (unordered) {
1342 m_eor->m_flags |= M_UNORDERED_DATA;
1343 data_len += m_eor->m_len;
1344 so->so_msg_state->msg_uno_bytes += m_eor->m_len;
1345 } else {
1346 m_eor->m_flags &= ~M_UNORDERED_DATA;
1347 }
1348 if (m_eor->m_next == NULL)
1349 break;
1350 }
1351
1352 /* set EOR flag at end of byte blob */
1353 m_eor->m_flags |= M_EOR;
1354
1355 /* expand the receive socket buffer to allow unordered data */
1356 if (unordered && !sbreserve(sb, sb->sb_hiwat + data_len)) {
1357 /*
1358 * Could not allocate memory for unordered data, it
1359 * means this packet will have to be delivered in order
1360 */
1361 printf("%s: could not reserve space for unordered data\n",
1362 __func__);
1363 }
1364
1365 if (!unordered && (sb->sb_mbtail != NULL) &&
1366 !(sb->sb_mbtail->m_flags & M_UNORDERED_DATA)) {
1367 sb->sb_mbtail->m_flags &= ~M_EOR;
1368 sbcompress(sb, m, sb->sb_mbtail);
1369 ret = 1;
1370 } else {
1371 ret = sbappendrecord(sb, m);
1372 }
1373 VERIFY(sb->sb_mbtail->m_flags & M_EOR);
1374 return (ret);
1375 }
1376
1377 /*
1378 * TCP streams have message based out of order delivery support, or have
1379 * Multipath TCP support, or are regular TCP sockets
1380 */
1381 int
1382 sbappendstream_rcvdemux(struct socket *so, struct mbuf *m, uint32_t seqnum,
1383 int unordered)
1384 {
1385 int ret = 0;
1386
1387 if ((m != NULL) && (m_pktlen(m) <= 0)) {
1388 m_freem(m);
1389 return (ret);
1390 }
1391
1392 if (so->so_flags & SOF_ENABLE_MSGS) {
1393 ret = sbappendmsgstream_rcv(&so->so_rcv, m, seqnum, unordered);
1394 }
1395 #if MPTCP
1396 else if (so->so_flags & SOF_MPTCP_TRUE) {
1397 ret = sbappendmptcpstream_rcv(&so->so_rcv, m);
1398 }
1399 #endif /* MPTCP */
1400 else {
1401 ret = sbappendstream(&so->so_rcv, m);
1402 }
1403 return (ret);
1404 }
1405
1406 #if MPTCP
1407 int
1408 sbappendmptcpstream_rcv(struct sockbuf *sb, struct mbuf *m)
1409 {
1410 struct socket *so = sb->sb_so;
1411
1412 VERIFY(m == NULL || (m->m_flags & M_PKTHDR));
1413 /* SB_NOCOMPRESS must be set prevent loss of M_PKTHDR data */
1414 VERIFY((sb->sb_flags & (SB_RECV|SB_NOCOMPRESS)) ==
1415 (SB_RECV|SB_NOCOMPRESS));
1416
1417 if (m == NULL || m_pktlen(m) == 0 || (sb->sb_flags & SB_DROP) ||
1418 (so->so_state & SS_CANTRCVMORE)) {
1419 if (m != NULL)
1420 m_freem(m);
1421 return (0);
1422 }
1423 /* the socket is not closed, so SOF_MP_SUBFLOW must be set */
1424 VERIFY(so->so_flags & SOF_MP_SUBFLOW);
1425
1426 if (m->m_nextpkt != NULL || (sb->sb_mb != sb->sb_lastrecord)) {
1427 panic("%s: nexpkt %p || mb %p != lastrecord %p\n", __func__,
1428 m->m_nextpkt, sb->sb_mb, sb->sb_lastrecord);
1429 /* NOTREACHED */
1430 }
1431
1432 SBLASTMBUFCHK(sb, __func__);
1433
1434 if (mptcp_adj_rmap(so, m) != 0)
1435 return (0);
1436
1437 /* No filter support (SB_RECV) on mptcp subflow sockets */
1438
1439 sbcompress(sb, m, sb->sb_mbtail);
1440 sb->sb_lastrecord = sb->sb_mb;
1441 SBLASTRECORDCHK(sb, __func__);
1442 return (1);
1443 }
1444 #endif /* MPTCP */
1445
1446 /*
1447 * Append message to send socket buffer based on priority.
1448 */
1449 int
1450 sbappendmsg_snd(struct sockbuf *sb, struct mbuf *m)
1451 {
1452 struct socket *so = sb->sb_so;
1453 struct msg_priq *priq;
1454 int set_eor = 0;
1455
1456 VERIFY(so->so_msg_state != NULL);
1457
1458 if (m->m_nextpkt != NULL || (sb->sb_mb != sb->sb_lastrecord))
1459 panic("sbappendstream: nexpkt %p || mb %p != lastrecord %p\n",
1460 m->m_nextpkt, sb->sb_mb, sb->sb_lastrecord);
1461
1462 SBLASTMBUFCHK(sb, __func__);
1463
1464 if (m == NULL || (sb->sb_flags & SB_DROP) || so->so_msg_state == NULL) {
1465 if (m != NULL)
1466 m_freem(m);
1467 return (0);
1468 }
1469
1470 priq = &so->so_msg_state->msg_priq[m->m_pkthdr.msg_pri];
1471
1472 /* note if we need to propogate M_EOR to the last mbuf */
1473 if (m->m_flags & M_EOR) {
1474 set_eor = 1;
1475
1476 /* Reset M_EOR from the first mbuf */
1477 m->m_flags &= ~(M_EOR);
1478 }
1479
1480 if (priq->msgq_head == NULL) {
1481 VERIFY(priq->msgq_tail == NULL && priq->msgq_lastmsg == NULL);
1482 priq->msgq_head = priq->msgq_lastmsg = m;
1483 } else {
1484 VERIFY(priq->msgq_tail->m_next == NULL);
1485
1486 /* Check if the last message has M_EOR flag set */
1487 if (priq->msgq_tail->m_flags & M_EOR) {
1488 /* Insert as a new message */
1489 priq->msgq_lastmsg->m_nextpkt = m;
1490
1491 /* move the lastmsg pointer */
1492 priq->msgq_lastmsg = m;
1493 } else {
1494 /* Append to the existing message */
1495 priq->msgq_tail->m_next = m;
1496 }
1497 }
1498
1499 /* Update accounting and the queue tail pointer */
1500
1501 while (m->m_next != NULL) {
1502 sballoc(sb, m);
1503 priq->msgq_bytes += m->m_len;
1504 m = m->m_next;
1505 }
1506 sballoc(sb, m);
1507 priq->msgq_bytes += m->m_len;
1508
1509 if (set_eor) {
1510 m->m_flags |= M_EOR;
1511
1512 /*
1513 * Since the user space can not write a new msg
1514 * without completing the previous one, we can
1515 * reset this flag to start sending again.
1516 */
1517 priq->msgq_flags &= ~(MSGQ_MSG_NOTDONE);
1518 }
1519
1520 priq->msgq_tail = m;
1521
1522 SBLASTRECORDCHK(sb, "sbappendstream 2");
1523 postevent(0, sb, EV_RWBYTES);
1524 return (1);
1525 }
1526
1527 /*
1528 * Pull data from priority queues to the serial snd queue
1529 * right before sending.
1530 */
1531 void
1532 sbpull_unordered_data(struct socket *so, int32_t off, int32_t len)
1533 {
1534 int32_t topull, i;
1535 struct msg_priq *priq = NULL;
1536
1537 VERIFY(so->so_msg_state != NULL);
1538
1539 topull = (off + len) - so->so_msg_state->msg_serial_bytes;
1540
1541 i = MSG_PRI_MAX;
1542 while (i >= MSG_PRI_MIN && topull > 0) {
1543 struct mbuf *m = NULL, *mqhead = NULL, *mend = NULL;
1544 priq = &so->so_msg_state->msg_priq[i];
1545 if ((priq->msgq_flags & MSGQ_MSG_NOTDONE) &&
1546 priq->msgq_head == NULL) {
1547 /*
1548 * We were in the middle of sending
1549 * a message and we have not seen the
1550 * end of it.
1551 */
1552 VERIFY(priq->msgq_lastmsg == NULL &&
1553 priq->msgq_tail == NULL);
1554 return;
1555 }
1556 if (priq->msgq_head != NULL) {
1557 int32_t bytes = 0, topull_tmp = topull;
1558 /*
1559 * We found a msg while scanning the priority
1560 * queue from high to low priority.
1561 */
1562 m = priq->msgq_head;
1563 mqhead = m;
1564 mend = m;
1565
1566 /*
1567 * Move bytes from the priority queue to the
1568 * serial queue. Compute the number of bytes
1569 * being added.
1570 */
1571 while (mqhead->m_next != NULL && topull_tmp > 0) {
1572 bytes += mqhead->m_len;
1573 topull_tmp -= mqhead->m_len;
1574 mend = mqhead;
1575 mqhead = mqhead->m_next;
1576 }
1577
1578 if (mqhead->m_next == NULL) {
1579 /*
1580 * If we have only one more mbuf left,
1581 * move the last mbuf of this message to
1582 * serial queue and set the head of the
1583 * queue to be the next message.
1584 */
1585 bytes += mqhead->m_len;
1586 mend = mqhead;
1587 mqhead = m->m_nextpkt;
1588 if (!(mend->m_flags & M_EOR)) {
1589 /*
1590 * We have not seen the end of
1591 * this message, so we can not
1592 * pull anymore.
1593 */
1594 priq->msgq_flags |= MSGQ_MSG_NOTDONE;
1595 } else {
1596 /* Reset M_EOR */
1597 mend->m_flags &= ~(M_EOR);
1598 }
1599 } else {
1600 /* propogate the next msg pointer */
1601 mqhead->m_nextpkt = m->m_nextpkt;
1602 }
1603 priq->msgq_head = mqhead;
1604
1605 /*
1606 * if the lastmsg pointer points to
1607 * the mbuf that is being dequeued, update
1608 * it to point to the new head.
1609 */
1610 if (priq->msgq_lastmsg == m)
1611 priq->msgq_lastmsg = priq->msgq_head;
1612
1613 m->m_nextpkt = NULL;
1614 mend->m_next = NULL;
1615
1616 if (priq->msgq_head == NULL) {
1617 /* Moved all messages, update tail */
1618 priq->msgq_tail = NULL;
1619 VERIFY(priq->msgq_lastmsg == NULL);
1620 }
1621
1622 /* Move it to serial sb_mb queue */
1623 if (so->so_snd.sb_mb == NULL) {
1624 so->so_snd.sb_mb = m;
1625 } else {
1626 so->so_snd.sb_mbtail->m_next = m;
1627 }
1628
1629 priq->msgq_bytes -= bytes;
1630 VERIFY(priq->msgq_bytes >= 0);
1631 sbwakeup(&so->so_snd);
1632
1633 so->so_msg_state->msg_serial_bytes += bytes;
1634 so->so_snd.sb_mbtail = mend;
1635 so->so_snd.sb_lastrecord = so->so_snd.sb_mb;
1636
1637 topull =
1638 (off + len) - so->so_msg_state->msg_serial_bytes;
1639
1640 if (priq->msgq_flags & MSGQ_MSG_NOTDONE)
1641 break;
1642 } else {
1643 --i;
1644 }
1645 }
1646 sblastrecordchk(&so->so_snd, "sbpull_unordered_data");
1647 sblastmbufchk(&so->so_snd, "sbpull_unordered_data");
1648 }
1649
1650 /*
1651 * Compress mbuf chain m into the socket
1652 * buffer sb following mbuf n. If n
1653 * is null, the buffer is presumed empty.
1654 */
1655 static inline void
1656 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
1657 {
1658 int eor = 0, compress = (!(sb->sb_flags & SB_NOCOMPRESS));
1659 struct mbuf *o;
1660
1661 if (m == NULL) {
1662 /* There is nothing to compress; just update the tail */
1663 for (; n->m_next != NULL; n = n->m_next)
1664 ;
1665 sb->sb_mbtail = n;
1666 goto done;
1667 }
1668
1669 while (m != NULL) {
1670 eor |= m->m_flags & M_EOR;
1671 if (compress && m->m_len == 0 && (eor == 0 ||
1672 (((o = m->m_next) || (o = n)) && o->m_type == m->m_type))) {
1673 if (sb->sb_lastrecord == m)
1674 sb->sb_lastrecord = m->m_next;
1675 m = m_free(m);
1676 continue;
1677 }
1678 if (compress && n != NULL && (n->m_flags & M_EOR) == 0 &&
1679 #ifndef __APPLE__
1680 M_WRITABLE(n) &&
1681 #endif
1682 m->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */
1683 m->m_len <= M_TRAILINGSPACE(n) &&
1684 n->m_type == m->m_type) {
1685 bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len,
1686 (unsigned)m->m_len);
1687 n->m_len += m->m_len;
1688 sb->sb_cc += m->m_len;
1689 if (m->m_type != MT_DATA && m->m_type != MT_HEADER &&
1690 m->m_type != MT_OOBDATA) {
1691 /* XXX: Probably don't need */
1692 sb->sb_ctl += m->m_len;
1693 }
1694 m = m_free(m);
1695 continue;
1696 }
1697 if (n != NULL)
1698 n->m_next = m;
1699 else
1700 sb->sb_mb = m;
1701 sb->sb_mbtail = m;
1702 sballoc(sb, m);
1703 n = m;
1704 m->m_flags &= ~M_EOR;
1705 m = m->m_next;
1706 n->m_next = NULL;
1707 }
1708 if (eor != 0) {
1709 if (n != NULL)
1710 n->m_flags |= eor;
1711 else
1712 printf("semi-panic: sbcompress\n");
1713 }
1714 done:
1715 SBLASTMBUFCHK(sb, __func__);
1716 postevent(0, sb, EV_RWBYTES);
1717 }
1718
1719 void
1720 sb_empty_assert(struct sockbuf *sb, const char *where)
1721 {
1722 if (!(sb->sb_cc == 0 && sb->sb_mb == NULL && sb->sb_mbcnt == 0 &&
1723 sb->sb_mbtail == NULL && sb->sb_lastrecord == NULL)) {
1724 panic("%s: sb %p so %p cc %d mbcnt %d mb %p mbtail %p "
1725 "lastrecord %p\n", where, sb, sb->sb_so, sb->sb_cc,
1726 sb->sb_mbcnt, sb->sb_mb, sb->sb_mbtail,
1727 sb->sb_lastrecord);
1728 /* NOTREACHED */
1729 }
1730 }
1731
1732 static void
1733 sbflush_priq(struct msg_priq *priq)
1734 {
1735 struct mbuf *m;
1736 m = priq->msgq_head;
1737 if (m != NULL)
1738 m_freem_list(m);
1739 priq->msgq_head = priq->msgq_tail = priq->msgq_lastmsg = NULL;
1740 priq->msgq_bytes = priq->msgq_flags = 0;
1741 }
1742
1743 /*
1744 * Free all mbufs in a sockbuf.
1745 * Check that all resources are reclaimed.
1746 */
1747 void
1748 sbflush(struct sockbuf *sb)
1749 {
1750 void *lr_saved = __builtin_return_address(0);
1751 struct socket *so = sb->sb_so;
1752 #ifdef notyet
1753 lck_mtx_t *mutex_held;
1754 #endif
1755 u_int32_t i;
1756
1757 /* so_usecount may be 0 if we get here from sofreelastref() */
1758 if (so == NULL) {
1759 panic("%s: null so, sb=%p sb_flags=0x%x lr=%p\n",
1760 __func__, sb, sb->sb_flags, lr_saved);
1761 /* NOTREACHED */
1762 } else if (so->so_usecount < 0) {
1763 panic("%s: sb=%p sb_flags=0x%x sb_so=%p usecount=%d lr=%p "
1764 "lrh= %s\n", __func__, sb, sb->sb_flags, so,
1765 so->so_usecount, lr_saved, solockhistory_nr(so));
1766 /* NOTREACHED */
1767 }
1768 #ifdef notyet
1769 /*
1770 * XXX: This code is currently commented out, because we may get here
1771 * as part of sofreelastref(), and at that time, pr_getlock() may no
1772 * longer be able to return us the lock; this will be fixed in future.
1773 */
1774 if (so->so_proto->pr_getlock != NULL)
1775 mutex_held = (*so->so_proto->pr_getlock)(so, 0);
1776 else
1777 mutex_held = so->so_proto->pr_domain->dom_mtx;
1778
1779 lck_mtx_assert(mutex_held, LCK_MTX_ASSERT_OWNED);
1780 #endif
1781
1782 /*
1783 * Obtain lock on the socket buffer (SB_LOCK). This is required
1784 * to prevent the socket buffer from being unexpectedly altered
1785 * while it is used by another thread in socket send/receive.
1786 *
1787 * sblock() must not fail here, hence the assertion.
1788 */
1789 (void) sblock(sb, SBL_WAIT | SBL_NOINTR | SBL_IGNDEFUNCT);
1790 VERIFY(sb->sb_flags & SB_LOCK);
1791
1792 while (sb->sb_mbcnt > 0) {
1793 /*
1794 * Don't call sbdrop(sb, 0) if the leading mbuf is non-empty:
1795 * we would loop forever. Panic instead.
1796 */
1797 if (!sb->sb_cc && (sb->sb_mb == NULL || sb->sb_mb->m_len))
1798 break;
1799 sbdrop(sb, (int)sb->sb_cc);
1800 }
1801
1802 if (!(sb->sb_flags & SB_RECV) && (so->so_flags & SOF_ENABLE_MSGS)) {
1803 VERIFY(so->so_msg_state != NULL);
1804 for (i = MSG_PRI_MIN; i <= MSG_PRI_MAX; ++i) {
1805 sbflush_priq(&so->so_msg_state->msg_priq[i]);
1806 }
1807 so->so_msg_state->msg_serial_bytes = 0;
1808 so->so_msg_state->msg_uno_bytes = 0;
1809 }
1810
1811 sb_empty_assert(sb, __func__);
1812 postevent(0, sb, EV_RWBYTES);
1813
1814 sbunlock(sb, TRUE); /* keep socket locked */
1815 }
1816
1817 /*
1818 * Drop data from (the front of) a sockbuf.
1819 * use m_freem_list to free the mbuf structures
1820 * under a single lock... this is done by pruning
1821 * the top of the tree from the body by keeping track
1822 * of where we get to in the tree and then zeroing the
1823 * two pertinent pointers m_nextpkt and m_next
1824 * the socket buffer is then updated to point at the new
1825 * top of the tree and the pruned area is released via
1826 * m_freem_list.
1827 */
1828 void
1829 sbdrop(struct sockbuf *sb, int len)
1830 {
1831 struct mbuf *m, *free_list, *ml;
1832 struct mbuf *next, *last;
1833
1834 next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
1835 #if MPTCP
1836 if ((m != NULL) && (len > 0) &&
1837 (!(sb->sb_flags & SB_RECV)) &&
1838 ((sb->sb_so->so_flags & SOF_MP_SUBFLOW) ||
1839 ((SOCK_CHECK_DOM(sb->sb_so, PF_MULTIPATH)) &&
1840 (SOCK_CHECK_PROTO(sb->sb_so, IPPROTO_TCP)))) &&
1841 (!(sb->sb_so->so_flags1 & SOF1_POST_FALLBACK_SYNC))) {
1842 mptcp_preproc_sbdrop(m, (unsigned int)len);
1843 }
1844 #endif /* MPTCP */
1845 KERNEL_DEBUG((DBG_FNC_SBDROP | DBG_FUNC_START), sb, len, 0, 0, 0);
1846
1847 free_list = last = m;
1848 ml = (struct mbuf *)0;
1849
1850 while (len > 0) {
1851 if (m == 0) {
1852 if (next == 0) {
1853 /*
1854 * temporarily replacing this panic with printf
1855 * because it occurs occasionally when closing
1856 * a socket when there is no harm in ignoring
1857 * it. This problem will be investigated
1858 * further.
1859 */
1860 /* panic("sbdrop"); */
1861 printf("sbdrop - count not zero\n");
1862 len = 0;
1863 /*
1864 * zero the counts. if we have no mbufs,
1865 * we have no data (PR-2986815)
1866 */
1867 sb->sb_cc = 0;
1868 sb->sb_mbcnt = 0;
1869 if (!(sb->sb_flags & SB_RECV) &&
1870 (sb->sb_so->so_flags & SOF_ENABLE_MSGS)) {
1871 sb->sb_so->so_msg_state->
1872 msg_serial_bytes = 0;
1873 }
1874 break;
1875 }
1876 m = last = next;
1877 next = m->m_nextpkt;
1878 continue;
1879 }
1880 if (m->m_len > len) {
1881 m->m_len -= len;
1882 m->m_data += len;
1883 sb->sb_cc -= len;
1884 if (m->m_type != MT_DATA && m->m_type != MT_HEADER &&
1885 m->m_type != MT_OOBDATA)
1886 sb->sb_ctl -= len;
1887 break;
1888 }
1889 len -= m->m_len;
1890 sbfree(sb, m);
1891
1892 ml = m;
1893 m = m->m_next;
1894 }
1895 while (m && m->m_len == 0) {
1896 sbfree(sb, m);
1897
1898 ml = m;
1899 m = m->m_next;
1900 }
1901 if (ml) {
1902 ml->m_next = (struct mbuf *)0;
1903 last->m_nextpkt = (struct mbuf *)0;
1904 m_freem_list(free_list);
1905 }
1906 if (m) {
1907 sb->sb_mb = m;
1908 m->m_nextpkt = next;
1909 } else {
1910 sb->sb_mb = next;
1911 }
1912
1913 /*
1914 * First part is an inline SB_EMPTY_FIXUP(). Second part
1915 * makes sure sb_lastrecord is up-to-date if we dropped
1916 * part of the last record.
1917 */
1918 m = sb->sb_mb;
1919 if (m == NULL) {
1920 sb->sb_mbtail = NULL;
1921 sb->sb_lastrecord = NULL;
1922 } else if (m->m_nextpkt == NULL) {
1923 sb->sb_lastrecord = m;
1924 }
1925
1926 #if CONTENT_FILTER
1927 cfil_sock_buf_update(sb);
1928 #endif /* CONTENT_FILTER */
1929
1930 postevent(0, sb, EV_RWBYTES);
1931
1932 KERNEL_DEBUG((DBG_FNC_SBDROP | DBG_FUNC_END), sb, 0, 0, 0, 0);
1933 }
1934
1935 /*
1936 * Drop a record off the front of a sockbuf
1937 * and move the next record to the front.
1938 */
1939 void
1940 sbdroprecord(struct sockbuf *sb)
1941 {
1942 struct mbuf *m, *mn;
1943
1944 m = sb->sb_mb;
1945 if (m) {
1946 sb->sb_mb = m->m_nextpkt;
1947 do {
1948 sbfree(sb, m);
1949 MFREE(m, mn);
1950 m = mn;
1951 } while (m);
1952 }
1953 SB_EMPTY_FIXUP(sb);
1954 postevent(0, sb, EV_RWBYTES);
1955 }
1956
1957 /*
1958 * Create a "control" mbuf containing the specified data
1959 * with the specified type for presentation on a socket buffer.
1960 */
1961 struct mbuf *
1962 sbcreatecontrol(caddr_t p, int size, int type, int level)
1963 {
1964 struct cmsghdr *cp;
1965 struct mbuf *m;
1966
1967 if (CMSG_SPACE((u_int)size) > MLEN)
1968 return ((struct mbuf *)NULL);
1969 if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL)
1970 return ((struct mbuf *)NULL);
1971 cp = mtod(m, struct cmsghdr *);
1972 VERIFY(IS_P2ALIGNED(cp, sizeof (u_int32_t)));
1973 /* XXX check size? */
1974 (void) memcpy(CMSG_DATA(cp), p, size);
1975 m->m_len = CMSG_SPACE(size);
1976 cp->cmsg_len = CMSG_LEN(size);
1977 cp->cmsg_level = level;
1978 cp->cmsg_type = type;
1979 return (m);
1980 }
1981
1982 struct mbuf **
1983 sbcreatecontrol_mbuf(caddr_t p, int size, int type, int level, struct mbuf **mp)
1984 {
1985 struct mbuf *m;
1986 struct cmsghdr *cp;
1987
1988 if (*mp == NULL) {
1989 *mp = sbcreatecontrol(p, size, type, level);
1990 return (mp);
1991 }
1992
1993 if (CMSG_SPACE((u_int)size) + (*mp)->m_len > MLEN) {
1994 mp = &(*mp)->m_next;
1995 *mp = sbcreatecontrol(p, size, type, level);
1996 return (mp);
1997 }
1998
1999 m = *mp;
2000
2001 cp = (struct cmsghdr *)(void *)(mtod(m, char *) + m->m_len);
2002 /* CMSG_SPACE ensures 32-bit alignment */
2003 VERIFY(IS_P2ALIGNED(cp, sizeof (u_int32_t)));
2004 m->m_len += CMSG_SPACE(size);
2005
2006 /* XXX check size? */
2007 (void) memcpy(CMSG_DATA(cp), p, size);
2008 cp->cmsg_len = CMSG_LEN(size);
2009 cp->cmsg_level = level;
2010 cp->cmsg_type = type;
2011
2012 return (mp);
2013 }
2014
2015
2016 /*
2017 * Some routines that return EOPNOTSUPP for entry points that are not
2018 * supported by a protocol. Fill in as needed.
2019 */
2020 int
2021 pru_abort_notsupp(struct socket *so)
2022 {
2023 #pragma unused(so)
2024 return (EOPNOTSUPP);
2025 }
2026
2027 int
2028 pru_accept_notsupp(struct socket *so, struct sockaddr **nam)
2029 {
2030 #pragma unused(so, nam)
2031 return (EOPNOTSUPP);
2032 }
2033
2034 int
2035 pru_attach_notsupp(struct socket *so, int proto, struct proc *p)
2036 {
2037 #pragma unused(so, proto, p)
2038 return (EOPNOTSUPP);
2039 }
2040
2041 int
2042 pru_bind_notsupp(struct socket *so, struct sockaddr *nam, struct proc *p)
2043 {
2044 #pragma unused(so, nam, p)
2045 return (EOPNOTSUPP);
2046 }
2047
2048 int
2049 pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct proc *p)
2050 {
2051 #pragma unused(so, nam, p)
2052 return (EOPNOTSUPP);
2053 }
2054
2055 int
2056 pru_connect2_notsupp(struct socket *so1, struct socket *so2)
2057 {
2058 #pragma unused(so1, so2)
2059 return (EOPNOTSUPP);
2060 }
2061
2062 int
2063 pru_connectx_notsupp(struct socket *so, struct sockaddr_list **src_sl,
2064 struct sockaddr_list **dst_sl, struct proc *p, uint32_t ifscope,
2065 sae_associd_t aid, sae_connid_t *pcid, uint32_t flags, void *arg,
2066 uint32_t arglen, struct uio *uio, user_ssize_t *bytes_written)
2067 {
2068 #pragma unused(so, src_sl, dst_sl, p, ifscope, aid, pcid, flags, arg, arglen, uio, bytes_written)
2069 return (EOPNOTSUPP);
2070 }
2071
2072 int
2073 pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data,
2074 struct ifnet *ifp, struct proc *p)
2075 {
2076 #pragma unused(so, cmd, data, ifp, p)
2077 return (EOPNOTSUPP);
2078 }
2079
2080 int
2081 pru_detach_notsupp(struct socket *so)
2082 {
2083 #pragma unused(so)
2084 return (EOPNOTSUPP);
2085 }
2086
2087 int
2088 pru_disconnect_notsupp(struct socket *so)
2089 {
2090 #pragma unused(so)
2091 return (EOPNOTSUPP);
2092 }
2093
2094 int
2095 pru_disconnectx_notsupp(struct socket *so, sae_associd_t aid, sae_connid_t cid)
2096 {
2097 #pragma unused(so, aid, cid)
2098 return (EOPNOTSUPP);
2099 }
2100
2101 int
2102 pru_listen_notsupp(struct socket *so, struct proc *p)
2103 {
2104 #pragma unused(so, p)
2105 return (EOPNOTSUPP);
2106 }
2107
2108 int
2109 pru_peeloff_notsupp(struct socket *so, sae_associd_t aid, struct socket **psop)
2110 {
2111 #pragma unused(so, aid, psop)
2112 return (EOPNOTSUPP);
2113 }
2114
2115 int
2116 pru_peeraddr_notsupp(struct socket *so, struct sockaddr **nam)
2117 {
2118 #pragma unused(so, nam)
2119 return (EOPNOTSUPP);
2120 }
2121
2122 int
2123 pru_rcvd_notsupp(struct socket *so, int flags)
2124 {
2125 #pragma unused(so, flags)
2126 return (EOPNOTSUPP);
2127 }
2128
2129 int
2130 pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags)
2131 {
2132 #pragma unused(so, m, flags)
2133 return (EOPNOTSUPP);
2134 }
2135
2136 int
2137 pru_send_notsupp(struct socket *so, int flags, struct mbuf *m,
2138 struct sockaddr *addr, struct mbuf *control, struct proc *p)
2139 {
2140 #pragma unused(so, flags, m, addr, control, p)
2141 return (EOPNOTSUPP);
2142 }
2143
2144 int
2145 pru_send_list_notsupp(struct socket *so, int flags, struct mbuf *m,
2146 struct sockaddr *addr, struct mbuf *control, struct proc *p)
2147 {
2148 #pragma unused(so, flags, m, addr, control, p)
2149 return (EOPNOTSUPP);
2150 }
2151
2152 /*
2153 * This isn't really a ``null'' operation, but it's the default one
2154 * and doesn't do anything destructive.
2155 */
2156 int
2157 pru_sense_null(struct socket *so, void *ub, int isstat64)
2158 {
2159 if (isstat64 != 0) {
2160 struct stat64 *sb64;
2161
2162 sb64 = (struct stat64 *)ub;
2163 sb64->st_blksize = so->so_snd.sb_hiwat;
2164 } else {
2165 struct stat *sb;
2166
2167 sb = (struct stat *)ub;
2168 sb->st_blksize = so->so_snd.sb_hiwat;
2169 }
2170
2171 return (0);
2172 }
2173
2174
2175 int
2176 pru_sosend_notsupp(struct socket *so, struct sockaddr *addr, struct uio *uio,
2177 struct mbuf *top, struct mbuf *control, int flags)
2178 {
2179 #pragma unused(so, addr, uio, top, control, flags)
2180 return (EOPNOTSUPP);
2181 }
2182
2183 int
2184 pru_sosend_list_notsupp(struct socket *so, struct uio **uio,
2185 u_int uiocnt, int flags)
2186 {
2187 #pragma unused(so, uio, uiocnt, flags)
2188 return (EOPNOTSUPP);
2189 }
2190
2191 int
2192 pru_soreceive_notsupp(struct socket *so, struct sockaddr **paddr,
2193 struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
2194 {
2195 #pragma unused(so, paddr, uio, mp0, controlp, flagsp)
2196 return (EOPNOTSUPP);
2197 }
2198
2199 int
2200 pru_soreceive_list_notsupp(struct socket *so,
2201 struct recv_msg_elem *recv_msg_array, u_int uiocnt, int *flagsp)
2202 {
2203 #pragma unused(so, recv_msg_array, uiocnt, flagsp)
2204 return (EOPNOTSUPP);
2205 }
2206
2207 int
2208 pru_shutdown_notsupp(struct socket *so)
2209 {
2210 #pragma unused(so)
2211 return (EOPNOTSUPP);
2212 }
2213
2214 int
2215 pru_sockaddr_notsupp(struct socket *so, struct sockaddr **nam)
2216 {
2217 #pragma unused(so, nam)
2218 return (EOPNOTSUPP);
2219 }
2220
2221 int
2222 pru_sopoll_notsupp(struct socket *so, int events, kauth_cred_t cred, void *wql)
2223 {
2224 #pragma unused(so, events, cred, wql)
2225 return (EOPNOTSUPP);
2226 }
2227
2228 int
2229 pru_socheckopt_null(struct socket *so, struct sockopt *sopt)
2230 {
2231 #pragma unused(so, sopt)
2232 /*
2233 * Allow all options for set/get by default.
2234 */
2235 return (0);
2236 }
2237
2238 static int
2239 pru_preconnect_null(struct socket *so)
2240 {
2241 #pragma unused(so)
2242 return (0);
2243 }
2244
2245 void
2246 pru_sanitize(struct pr_usrreqs *pru)
2247 {
2248 #define DEFAULT(foo, bar) if ((foo) == NULL) (foo) = (bar)
2249 DEFAULT(pru->pru_abort, pru_abort_notsupp);
2250 DEFAULT(pru->pru_accept, pru_accept_notsupp);
2251 DEFAULT(pru->pru_attach, pru_attach_notsupp);
2252 DEFAULT(pru->pru_bind, pru_bind_notsupp);
2253 DEFAULT(pru->pru_connect, pru_connect_notsupp);
2254 DEFAULT(pru->pru_connect2, pru_connect2_notsupp);
2255 DEFAULT(pru->pru_connectx, pru_connectx_notsupp);
2256 DEFAULT(pru->pru_control, pru_control_notsupp);
2257 DEFAULT(pru->pru_detach, pru_detach_notsupp);
2258 DEFAULT(pru->pru_disconnect, pru_disconnect_notsupp);
2259 DEFAULT(pru->pru_disconnectx, pru_disconnectx_notsupp);
2260 DEFAULT(pru->pru_listen, pru_listen_notsupp);
2261 DEFAULT(pru->pru_peeloff, pru_peeloff_notsupp);
2262 DEFAULT(pru->pru_peeraddr, pru_peeraddr_notsupp);
2263 DEFAULT(pru->pru_rcvd, pru_rcvd_notsupp);
2264 DEFAULT(pru->pru_rcvoob, pru_rcvoob_notsupp);
2265 DEFAULT(pru->pru_send, pru_send_notsupp);
2266 DEFAULT(pru->pru_send_list, pru_send_list_notsupp);
2267 DEFAULT(pru->pru_sense, pru_sense_null);
2268 DEFAULT(pru->pru_shutdown, pru_shutdown_notsupp);
2269 DEFAULT(pru->pru_sockaddr, pru_sockaddr_notsupp);
2270 DEFAULT(pru->pru_sopoll, pru_sopoll_notsupp);
2271 DEFAULT(pru->pru_soreceive, pru_soreceive_notsupp);
2272 DEFAULT(pru->pru_soreceive_list, pru_soreceive_list_notsupp);
2273 DEFAULT(pru->pru_sosend, pru_sosend_notsupp);
2274 DEFAULT(pru->pru_sosend_list, pru_sosend_list_notsupp);
2275 DEFAULT(pru->pru_socheckopt, pru_socheckopt_null);
2276 DEFAULT(pru->pru_preconnect, pru_preconnect_null);
2277 #undef DEFAULT
2278 }
2279
2280 /*
2281 * The following are macros on BSD and functions on Darwin
2282 */
2283
2284 /*
2285 * Do we need to notify the other side when I/O is possible?
2286 */
2287
2288 int
2289 sb_notify(struct sockbuf *sb)
2290 {
2291 return (sb->sb_waiters > 0 ||
2292 (sb->sb_flags & (SB_SEL|SB_ASYNC|SB_UPCALL|SB_KNOTE)));
2293 }
2294
2295 /*
2296 * How much space is there in a socket buffer (so->so_snd or so->so_rcv)?
2297 * This is problematical if the fields are unsigned, as the space might
2298 * still be negative (cc > hiwat or mbcnt > mbmax). Should detect
2299 * overflow and return 0.
2300 */
2301 int
2302 sbspace(struct sockbuf *sb)
2303 {
2304 int pending = 0;
2305 int space = imin((int)(sb->sb_hiwat - sb->sb_cc),
2306 (int)(sb->sb_mbmax - sb->sb_mbcnt));
2307
2308 if (sb->sb_preconn_hiwat != 0)
2309 space = imin((int)(sb->sb_preconn_hiwat - sb->sb_cc), space);
2310
2311 if (space < 0)
2312 space = 0;
2313
2314 /* Compensate for data being processed by content filters */
2315 #if CONTENT_FILTER
2316 pending = cfil_sock_data_space(sb);
2317 #endif /* CONTENT_FILTER */
2318 if (pending > space)
2319 space = 0;
2320 else
2321 space -= pending;
2322
2323 return (space);
2324 }
2325
2326 /*
2327 * If this socket has priority queues, check if there is enough
2328 * space in the priority queue for this msg.
2329 */
2330 int
2331 msgq_sbspace(struct socket *so, struct mbuf *control)
2332 {
2333 int space = 0, error;
2334 u_int32_t msgpri;
2335 VERIFY(so->so_type == SOCK_STREAM &&
2336 SOCK_PROTO(so) == IPPROTO_TCP);
2337 if (control != NULL) {
2338 error = tcp_get_msg_priority(control, &msgpri);
2339 if (error)
2340 return (0);
2341 } else {
2342 msgpri = MSG_PRI_0;
2343 }
2344 space = (so->so_snd.sb_idealsize / MSG_PRI_COUNT) -
2345 so->so_msg_state->msg_priq[msgpri].msgq_bytes;
2346 if (space < 0)
2347 space = 0;
2348 return (space);
2349 }
2350
2351 /* do we have to send all at once on a socket? */
2352 int
2353 sosendallatonce(struct socket *so)
2354 {
2355 return (so->so_proto->pr_flags & PR_ATOMIC);
2356 }
2357
2358 /* can we read something from so? */
2359 int
2360 soreadable(struct socket *so)
2361 {
2362 return (so->so_rcv.sb_cc >= so->so_rcv.sb_lowat ||
2363 ((so->so_state & SS_CANTRCVMORE)
2364 #if CONTENT_FILTER
2365 && cfil_sock_data_pending(&so->so_rcv) == 0
2366 #endif /* CONTENT_FILTER */
2367 ) ||
2368 so->so_comp.tqh_first || so->so_error);
2369 }
2370
2371 /* can we write something to so? */
2372
2373 int
2374 sowriteable(struct socket *so)
2375 {
2376 if ((so->so_state & SS_CANTSENDMORE) ||
2377 so->so_error > 0)
2378 return (1);
2379 if (so_wait_for_if_feedback(so) || !socanwrite(so))
2380 return (0);
2381 if (so->so_flags1 & SOF1_PRECONNECT_DATA)
2382 return(1);
2383
2384 if (sbspace(&(so)->so_snd) >= (so)->so_snd.sb_lowat) {
2385 if (so->so_flags & SOF_NOTSENT_LOWAT) {
2386 if ((SOCK_DOM(so) == PF_INET6 ||
2387 SOCK_DOM(so) == PF_INET) &&
2388 so->so_type == SOCK_STREAM) {
2389 return (tcp_notsent_lowat_check(so));
2390 }
2391 #if MPTCP
2392 else if ((SOCK_DOM(so) == PF_MULTIPATH) &&
2393 (SOCK_PROTO(so) == IPPROTO_TCP)) {
2394 return (mptcp_notsent_lowat_check(so));
2395 }
2396 #endif
2397 else {
2398 return (1);
2399 }
2400 } else {
2401 return (1);
2402 }
2403 }
2404 return (0);
2405 }
2406
2407 /* adjust counters in sb reflecting allocation of m */
2408
2409 void
2410 sballoc(struct sockbuf *sb, struct mbuf *m)
2411 {
2412 u_int32_t cnt = 1;
2413 sb->sb_cc += m->m_len;
2414 if (m->m_type != MT_DATA && m->m_type != MT_HEADER &&
2415 m->m_type != MT_OOBDATA)
2416 sb->sb_ctl += m->m_len;
2417 sb->sb_mbcnt += MSIZE;
2418
2419 if (m->m_flags & M_EXT) {
2420 sb->sb_mbcnt += m->m_ext.ext_size;
2421 cnt += (m->m_ext.ext_size >> MSIZESHIFT);
2422 }
2423 OSAddAtomic(cnt, &total_sbmb_cnt);
2424 VERIFY(total_sbmb_cnt > 0);
2425 if (total_sbmb_cnt > total_sbmb_cnt_peak)
2426 total_sbmb_cnt_peak = total_sbmb_cnt;
2427
2428 /*
2429 * If data is being appended to the send socket buffer,
2430 * update the send byte count
2431 */
2432 if (!(sb->sb_flags & SB_RECV))
2433 OSAddAtomic(cnt, &total_snd_byte_count);
2434 }
2435
2436 /* adjust counters in sb reflecting freeing of m */
2437 void
2438 sbfree(struct sockbuf *sb, struct mbuf *m)
2439 {
2440 int cnt = -1;
2441
2442 sb->sb_cc -= m->m_len;
2443 if (m->m_type != MT_DATA && m->m_type != MT_HEADER &&
2444 m->m_type != MT_OOBDATA)
2445 sb->sb_ctl -= m->m_len;
2446 sb->sb_mbcnt -= MSIZE;
2447 if (m->m_flags & M_EXT) {
2448 sb->sb_mbcnt -= m->m_ext.ext_size;
2449 cnt -= (m->m_ext.ext_size >> MSIZESHIFT);
2450 }
2451 OSAddAtomic(cnt, &total_sbmb_cnt);
2452 VERIFY(total_sbmb_cnt >= 0);
2453
2454 /*
2455 * If data is being removed from the send socket buffer,
2456 * update the send byte count
2457 */
2458 if (!(sb->sb_flags & SB_RECV)) {
2459 OSAddAtomic(cnt, &total_snd_byte_count);
2460 }
2461 }
2462
2463 /*
2464 * Set lock on sockbuf sb; sleep if lock is already held.
2465 * Unless SB_NOINTR is set on sockbuf, sleep is interruptible.
2466 * Returns error without lock if sleep is interrupted.
2467 */
2468 int
2469 sblock(struct sockbuf *sb, uint32_t flags)
2470 {
2471 boolean_t nointr = ((sb->sb_flags & SB_NOINTR) || (flags & SBL_NOINTR));
2472 void *lr_saved = __builtin_return_address(0);
2473 struct socket *so = sb->sb_so;
2474 void * wchan;
2475 int error = 0;
2476 thread_t tp = current_thread();
2477
2478 VERIFY((flags & SBL_VALID) == flags);
2479
2480 /* so_usecount may be 0 if we get here from sofreelastref() */
2481 if (so == NULL) {
2482 panic("%s: null so, sb=%p sb_flags=0x%x lr=%p\n",
2483 __func__, sb, sb->sb_flags, lr_saved);
2484 /* NOTREACHED */
2485 } else if (so->so_usecount < 0) {
2486 panic("%s: sb=%p sb_flags=0x%x sb_so=%p usecount=%d lr=%p "
2487 "lrh= %s\n", __func__, sb, sb->sb_flags, so,
2488 so->so_usecount, lr_saved, solockhistory_nr(so));
2489 /* NOTREACHED */
2490 }
2491
2492 /*
2493 * The content filter thread must hold the sockbuf lock
2494 */
2495 if ((so->so_flags & SOF_CONTENT_FILTER) && sb->sb_cfil_thread == tp) {
2496 /*
2497 * Don't panic if we are defunct because SB_LOCK has
2498 * been cleared by sodefunct()
2499 */
2500 if (!(so->so_flags & SOF_DEFUNCT) && !(sb->sb_flags & SB_LOCK))
2501 panic("%s: SB_LOCK not held for %p\n",
2502 __func__, sb);
2503
2504 /* Keep the sockbuf locked */
2505 return (0);
2506 }
2507
2508 if ((sb->sb_flags & SB_LOCK) && !(flags & SBL_WAIT))
2509 return (EWOULDBLOCK);
2510 /*
2511 * We may get here from sorflush(), in which case "sb" may not
2512 * point to the real socket buffer. Use the actual socket buffer
2513 * address from the socket instead.
2514 */
2515 wchan = (sb->sb_flags & SB_RECV) ?
2516 &so->so_rcv.sb_flags : &so->so_snd.sb_flags;
2517
2518 /*
2519 * A content filter thread has exclusive access to the sockbuf
2520 * until it clears the
2521 */
2522 while ((sb->sb_flags & SB_LOCK) ||
2523 ((so->so_flags & SOF_CONTENT_FILTER) &&
2524 sb->sb_cfil_thread != NULL)) {
2525 lck_mtx_t *mutex_held;
2526
2527 /*
2528 * XXX: This code should be moved up above outside of this loop;
2529 * however, we may get here as part of sofreelastref(), and
2530 * at that time pr_getlock() may no longer be able to return
2531 * us the lock. This will be fixed in future.
2532 */
2533 if (so->so_proto->pr_getlock != NULL)
2534 mutex_held = (*so->so_proto->pr_getlock)(so, 0);
2535 else
2536 mutex_held = so->so_proto->pr_domain->dom_mtx;
2537
2538 lck_mtx_assert(mutex_held, LCK_MTX_ASSERT_OWNED);
2539
2540 sb->sb_wantlock++;
2541 VERIFY(sb->sb_wantlock != 0);
2542
2543 error = msleep(wchan, mutex_held,
2544 nointr ? PSOCK : PSOCK | PCATCH,
2545 nointr ? "sb_lock_nointr" : "sb_lock", NULL);
2546
2547 VERIFY(sb->sb_wantlock != 0);
2548 sb->sb_wantlock--;
2549
2550 if (error == 0 && (so->so_flags & SOF_DEFUNCT) &&
2551 !(flags & SBL_IGNDEFUNCT)) {
2552 error = EBADF;
2553 SODEFUNCTLOG(("%s[%d]: defunct so 0x%llx [%d,%d] "
2554 "(%d)\n", __func__, proc_selfpid(),
2555 (uint64_t)VM_KERNEL_ADDRPERM(so),
2556 SOCK_DOM(so), SOCK_TYPE(so), error));
2557 }
2558
2559 if (error != 0)
2560 return (error);
2561 }
2562 sb->sb_flags |= SB_LOCK;
2563 return (0);
2564 }
2565
2566 /*
2567 * Release lock on sockbuf sb
2568 */
2569 void
2570 sbunlock(struct sockbuf *sb, boolean_t keeplocked)
2571 {
2572 void *lr_saved = __builtin_return_address(0);
2573 struct socket *so = sb->sb_so;
2574 thread_t tp = current_thread();
2575
2576 /* so_usecount may be 0 if we get here from sofreelastref() */
2577 if (so == NULL) {
2578 panic("%s: null so, sb=%p sb_flags=0x%x lr=%p\n",
2579 __func__, sb, sb->sb_flags, lr_saved);
2580 /* NOTREACHED */
2581 } else if (so->so_usecount < 0) {
2582 panic("%s: sb=%p sb_flags=0x%x sb_so=%p usecount=%d lr=%p "
2583 "lrh= %s\n", __func__, sb, sb->sb_flags, so,
2584 so->so_usecount, lr_saved, solockhistory_nr(so));
2585 /* NOTREACHED */
2586 }
2587
2588 /*
2589 * The content filter thread must hold the sockbuf lock
2590 */
2591 if ((so->so_flags & SOF_CONTENT_FILTER) && sb->sb_cfil_thread == tp) {
2592 /*
2593 * Don't panic if we are defunct because SB_LOCK has
2594 * been cleared by sodefunct()
2595 */
2596 if (!(so->so_flags & SOF_DEFUNCT) &&
2597 !(sb->sb_flags & SB_LOCK) &&
2598 !(so->so_state & SS_DEFUNCT) &&
2599 !(so->so_flags1 & SOF1_DEFUNCTINPROG)) {
2600 panic("%s: SB_LOCK not held for %p\n",
2601 __func__, sb);
2602 }
2603 /* Keep the sockbuf locked and proceed */
2604 } else {
2605 VERIFY((sb->sb_flags & SB_LOCK) ||
2606 (so->so_state & SS_DEFUNCT) ||
2607 (so->so_flags1 & SOF1_DEFUNCTINPROG));
2608
2609 sb->sb_flags &= ~SB_LOCK;
2610
2611 if (sb->sb_wantlock > 0) {
2612 /*
2613 * We may get here from sorflush(), in which case "sb"
2614 * may not point to the real socket buffer. Use the
2615 * actual socket buffer address from the socket instead.
2616 */
2617 wakeup((sb->sb_flags & SB_RECV) ? &so->so_rcv.sb_flags :
2618 &so->so_snd.sb_flags);
2619 }
2620 }
2621
2622 if (!keeplocked) { /* unlock on exit */
2623 lck_mtx_t *mutex_held;
2624
2625 if (so->so_proto->pr_getlock != NULL)
2626 mutex_held = (*so->so_proto->pr_getlock)(so, 0);
2627 else
2628 mutex_held = so->so_proto->pr_domain->dom_mtx;
2629
2630 lck_mtx_assert(mutex_held, LCK_MTX_ASSERT_OWNED);
2631
2632 VERIFY(so->so_usecount != 0);
2633 so->so_usecount--;
2634 so->unlock_lr[so->next_unlock_lr] = lr_saved;
2635 so->next_unlock_lr = (so->next_unlock_lr + 1) % SO_LCKDBG_MAX;
2636 lck_mtx_unlock(mutex_held);
2637 }
2638 }
2639
2640 void
2641 sorwakeup(struct socket *so)
2642 {
2643 if (sb_notify(&so->so_rcv))
2644 sowakeup(so, &so->so_rcv);
2645 }
2646
2647 void
2648 sowwakeup(struct socket *so)
2649 {
2650 if (sb_notify(&so->so_snd))
2651 sowakeup(so, &so->so_snd);
2652 }
2653
2654 void
2655 soevent(struct socket *so, long hint)
2656 {
2657 if (so->so_flags & SOF_KNOTE)
2658 KNOTE(&so->so_klist, hint);
2659
2660 soevupcall(so, hint);
2661
2662 /*
2663 * Don't post an event if this a subflow socket or
2664 * the app has opted out of using cellular interface
2665 */
2666 if ((hint & SO_FILT_HINT_IFDENIED) &&
2667 !(so->so_flags & SOF_MP_SUBFLOW) &&
2668 !(so->so_restrictions & SO_RESTRICT_DENY_CELLULAR) &&
2669 !(so->so_restrictions & SO_RESTRICT_DENY_EXPENSIVE))
2670 soevent_ifdenied(so);
2671 }
2672
2673 void
2674 soevupcall(struct socket *so, u_int32_t hint)
2675 {
2676 if (so->so_event != NULL) {
2677 caddr_t so_eventarg = so->so_eventarg;
2678 int locked = hint & SO_FILT_HINT_LOCKED;
2679
2680 hint &= so->so_eventmask;
2681 if (hint != 0) {
2682 if (locked)
2683 socket_unlock(so, 0);
2684
2685 so->so_event(so, so_eventarg, hint);
2686
2687 if (locked)
2688 socket_lock(so, 0);
2689 }
2690 }
2691 }
2692
2693 static void
2694 soevent_ifdenied(struct socket *so)
2695 {
2696 struct kev_netpolicy_ifdenied ev_ifdenied;
2697
2698 bzero(&ev_ifdenied, sizeof (ev_ifdenied));
2699 /*
2700 * The event consumer is interested about the effective {upid,pid,uuid}
2701 * info which can be different than the those related to the process
2702 * that recently performed a system call on the socket, i.e. when the
2703 * socket is delegated.
2704 */
2705 if (so->so_flags & SOF_DELEGATED) {
2706 ev_ifdenied.ev_data.eupid = so->e_upid;
2707 ev_ifdenied.ev_data.epid = so->e_pid;
2708 uuid_copy(ev_ifdenied.ev_data.euuid, so->e_uuid);
2709 } else {
2710 ev_ifdenied.ev_data.eupid = so->last_upid;
2711 ev_ifdenied.ev_data.epid = so->last_pid;
2712 uuid_copy(ev_ifdenied.ev_data.euuid, so->last_uuid);
2713 }
2714
2715 if (++so->so_ifdenied_notifies > 1) {
2716 /*
2717 * Allow for at most one kernel event to be generated per
2718 * socket; so_ifdenied_notifies is reset upon changes in
2719 * the UUID policy. See comments in inp_update_policy.
2720 */
2721 if (net_io_policy_log) {
2722 uuid_string_t buf;
2723
2724 uuid_unparse(ev_ifdenied.ev_data.euuid, buf);
2725 log(LOG_DEBUG, "%s[%d]: so 0x%llx [%d,%d] epid %d "
2726 "euuid %s%s has %d redundant events supressed\n",
2727 __func__, so->last_pid,
2728 (uint64_t)VM_KERNEL_ADDRPERM(so), SOCK_DOM(so),
2729 SOCK_TYPE(so), ev_ifdenied.ev_data.epid, buf,
2730 ((so->so_flags & SOF_DELEGATED) ?
2731 " [delegated]" : ""), so->so_ifdenied_notifies);
2732 }
2733 } else {
2734 if (net_io_policy_log) {
2735 uuid_string_t buf;
2736
2737 uuid_unparse(ev_ifdenied.ev_data.euuid, buf);
2738 log(LOG_DEBUG, "%s[%d]: so 0x%llx [%d,%d] epid %d "
2739 "euuid %s%s event posted\n", __func__,
2740 so->last_pid, (uint64_t)VM_KERNEL_ADDRPERM(so),
2741 SOCK_DOM(so), SOCK_TYPE(so),
2742 ev_ifdenied.ev_data.epid, buf,
2743 ((so->so_flags & SOF_DELEGATED) ?
2744 " [delegated]" : ""));
2745 }
2746 netpolicy_post_msg(KEV_NETPOLICY_IFDENIED, &ev_ifdenied.ev_data,
2747 sizeof (ev_ifdenied));
2748 }
2749 }
2750
2751 /*
2752 * Make a copy of a sockaddr in a malloced buffer of type M_SONAME.
2753 */
2754 struct sockaddr *
2755 dup_sockaddr(struct sockaddr *sa, int canwait)
2756 {
2757 struct sockaddr *sa2;
2758
2759 MALLOC(sa2, struct sockaddr *, sa->sa_len, M_SONAME,
2760 canwait ? M_WAITOK : M_NOWAIT);
2761 if (sa2)
2762 bcopy(sa, sa2, sa->sa_len);
2763 return (sa2);
2764 }
2765
2766 /*
2767 * Create an external-format (``xsocket'') structure using the information
2768 * in the kernel-format socket structure pointed to by so. This is done
2769 * to reduce the spew of irrelevant information over this interface,
2770 * to isolate user code from changes in the kernel structure, and
2771 * potentially to provide information-hiding if we decide that
2772 * some of this information should be hidden from users.
2773 */
2774 void
2775 sotoxsocket(struct socket *so, struct xsocket *xso)
2776 {
2777 xso->xso_len = sizeof (*xso);
2778 xso->xso_so = (_XSOCKET_PTR(struct socket *))VM_KERNEL_ADDRPERM(so);
2779 xso->so_type = so->so_type;
2780 xso->so_options = (short)(so->so_options & 0xffff);
2781 xso->so_linger = so->so_linger;
2782 xso->so_state = so->so_state;
2783 xso->so_pcb = (_XSOCKET_PTR(caddr_t))VM_KERNEL_ADDRPERM(so->so_pcb);
2784 if (so->so_proto) {
2785 xso->xso_protocol = SOCK_PROTO(so);
2786 xso->xso_family = SOCK_DOM(so);
2787 } else {
2788 xso->xso_protocol = xso->xso_family = 0;
2789 }
2790 xso->so_qlen = so->so_qlen;
2791 xso->so_incqlen = so->so_incqlen;
2792 xso->so_qlimit = so->so_qlimit;
2793 xso->so_timeo = so->so_timeo;
2794 xso->so_error = so->so_error;
2795 xso->so_pgid = so->so_pgid;
2796 xso->so_oobmark = so->so_oobmark;
2797 sbtoxsockbuf(&so->so_snd, &xso->so_snd);
2798 sbtoxsockbuf(&so->so_rcv, &xso->so_rcv);
2799 xso->so_uid = kauth_cred_getuid(so->so_cred);
2800 }
2801
2802
2803
2804 void
2805 sotoxsocket64(struct socket *so, struct xsocket64 *xso)
2806 {
2807 xso->xso_len = sizeof (*xso);
2808 xso->xso_so = (u_int64_t)VM_KERNEL_ADDRPERM(so);
2809 xso->so_type = so->so_type;
2810 xso->so_options = (short)(so->so_options & 0xffff);
2811 xso->so_linger = so->so_linger;
2812 xso->so_state = so->so_state;
2813 xso->so_pcb = (u_int64_t)VM_KERNEL_ADDRPERM(so->so_pcb);
2814 if (so->so_proto) {
2815 xso->xso_protocol = SOCK_PROTO(so);
2816 xso->xso_family = SOCK_DOM(so);
2817 } else {
2818 xso->xso_protocol = xso->xso_family = 0;
2819 }
2820 xso->so_qlen = so->so_qlen;
2821 xso->so_incqlen = so->so_incqlen;
2822 xso->so_qlimit = so->so_qlimit;
2823 xso->so_timeo = so->so_timeo;
2824 xso->so_error = so->so_error;
2825 xso->so_pgid = so->so_pgid;
2826 xso->so_oobmark = so->so_oobmark;
2827 sbtoxsockbuf(&so->so_snd, &xso->so_snd);
2828 sbtoxsockbuf(&so->so_rcv, &xso->so_rcv);
2829 xso->so_uid = kauth_cred_getuid(so->so_cred);
2830 }
2831
2832
2833 /*
2834 * This does the same for sockbufs. Note that the xsockbuf structure,
2835 * since it is always embedded in a socket, does not include a self
2836 * pointer nor a length. We make this entry point public in case
2837 * some other mechanism needs it.
2838 */
2839 void
2840 sbtoxsockbuf(struct sockbuf *sb, struct xsockbuf *xsb)
2841 {
2842 xsb->sb_cc = sb->sb_cc;
2843 xsb->sb_hiwat = sb->sb_hiwat;
2844 xsb->sb_mbcnt = sb->sb_mbcnt;
2845 xsb->sb_mbmax = sb->sb_mbmax;
2846 xsb->sb_lowat = sb->sb_lowat;
2847 xsb->sb_flags = sb->sb_flags;
2848 xsb->sb_timeo = (short)
2849 (sb->sb_timeo.tv_sec * hz) + sb->sb_timeo.tv_usec / tick;
2850 if (xsb->sb_timeo == 0 && sb->sb_timeo.tv_usec != 0)
2851 xsb->sb_timeo = 1;
2852 }
2853
2854 /*
2855 * Based on the policy set by an all knowing decison maker, throttle sockets
2856 * that either have been marked as belonging to "background" process.
2857 */
2858 inline int
2859 soisthrottled(struct socket *so)
2860 {
2861 /*
2862 * On non-embedded, we rely on implicit throttling by the
2863 * application, as we're missing the system wide "decision maker"
2864 */
2865 return (
2866 (so->so_traffic_mgt_flags & TRAFFIC_MGT_SO_BACKGROUND));
2867 }
2868
2869 inline int
2870 soisprivilegedtraffic(struct socket *so)
2871 {
2872 return ((so->so_flags & SOF_PRIVILEGED_TRAFFIC_CLASS) ? 1 : 0);
2873 }
2874
2875 inline int
2876 soissrcbackground(struct socket *so)
2877 {
2878 return ((so->so_traffic_mgt_flags & TRAFFIC_MGT_SO_BACKGROUND) ||
2879 IS_SO_TC_BACKGROUND(so->so_traffic_class));
2880 }
2881
2882 inline int
2883 soissrcrealtime(struct socket *so)
2884 {
2885 return (so->so_traffic_class >= SO_TC_AV &&
2886 so->so_traffic_class <= SO_TC_VO);
2887 }
2888
2889 inline int
2890 soissrcbesteffort(struct socket *so)
2891 {
2892 return (so->so_traffic_class == SO_TC_BE ||
2893 so->so_traffic_class == SO_TC_RD ||
2894 so->so_traffic_class == SO_TC_OAM);
2895 }
2896
2897 void
2898 sonullevent(struct socket *so, void *arg, uint32_t hint)
2899 {
2900 #pragma unused(so, arg, hint)
2901 }
2902
2903 /*
2904 * Here is the definition of some of the basic objects in the kern.ipc
2905 * branch of the MIB.
2906 */
2907 SYSCTL_NODE(_kern, KERN_IPC, ipc,
2908 CTLFLAG_RW|CTLFLAG_LOCKED|CTLFLAG_ANYBODY, 0, "IPC");
2909
2910 /* Check that the maximum socket buffer size is within a range */
2911
2912 static int
2913 sysctl_sb_max SYSCTL_HANDLER_ARGS
2914 {
2915 #pragma unused(oidp, arg1, arg2)
2916 u_int32_t new_value;
2917 int changed = 0;
2918 int error = sysctl_io_number(req, sb_max, sizeof (u_int32_t),
2919 &new_value, &changed);
2920 if (!error && changed) {
2921 if (new_value > LOW_SB_MAX && new_value <= high_sb_max) {
2922 sb_max = new_value;
2923 } else {
2924 error = ERANGE;
2925 }
2926 }
2927 return (error);
2928 }
2929
2930 static int
2931 sysctl_io_policy_throttled SYSCTL_HANDLER_ARGS
2932 {
2933 #pragma unused(arg1, arg2)
2934 int i, err;
2935
2936 i = net_io_policy_throttled;
2937
2938 err = sysctl_handle_int(oidp, &i, 0, req);
2939 if (err != 0 || req->newptr == USER_ADDR_NULL)
2940 return (err);
2941
2942 if (i != net_io_policy_throttled)
2943 SOTHROTTLELOG(("throttle: network IO policy throttling is "
2944 "now %s\n", i ? "ON" : "OFF"));
2945
2946 net_io_policy_throttled = i;
2947
2948 return (err);
2949 }
2950
2951 SYSCTL_PROC(_kern_ipc, KIPC_MAXSOCKBUF, maxsockbuf,
2952 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
2953 &sb_max, 0, &sysctl_sb_max, "IU", "Maximum socket buffer size");
2954
2955 SYSCTL_INT(_kern_ipc, KIPC_SOCKBUF_WASTE, sockbuf_waste_factor,
2956 CTLFLAG_RW | CTLFLAG_LOCKED, &sb_efficiency, 0, "");
2957
2958 SYSCTL_INT(_kern_ipc, KIPC_NMBCLUSTERS, nmbclusters,
2959 CTLFLAG_RD | CTLFLAG_LOCKED, &nmbclusters, 0, "");
2960
2961 SYSCTL_INT(_kern_ipc, OID_AUTO, njcl,
2962 CTLFLAG_RD | CTLFLAG_LOCKED, &njcl, 0, "");
2963
2964 SYSCTL_INT(_kern_ipc, OID_AUTO, njclbytes,
2965 CTLFLAG_RD | CTLFLAG_LOCKED, &njclbytes, 0, "");
2966
2967 SYSCTL_INT(_kern_ipc, KIPC_SOQLIMITCOMPAT, soqlimitcompat,
2968 CTLFLAG_RW | CTLFLAG_LOCKED, &soqlimitcompat, 1,
2969 "Enable socket queue limit compatibility");
2970
2971 SYSCTL_INT(_kern_ipc, OID_AUTO, soqlencomp, CTLFLAG_RW | CTLFLAG_LOCKED,
2972 &soqlencomp, 0, "Listen backlog represents only complete queue");
2973
2974 SYSCTL_NODE(_kern_ipc, OID_AUTO, io_policy, CTLFLAG_RW, 0, "network IO policy");
2975
2976 SYSCTL_PROC(_kern_ipc_io_policy, OID_AUTO, throttled,
2977 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, &net_io_policy_throttled, 0,
2978 sysctl_io_policy_throttled, "I", "");
2979
2980 SYSCTL_INT(_kern_ipc_io_policy, OID_AUTO, log, CTLFLAG_RW | CTLFLAG_LOCKED,
2981 &net_io_policy_log, 0, "");
2982
2983 #if CONFIG_PROC_UUID_POLICY
2984 SYSCTL_INT(_kern_ipc_io_policy, OID_AUTO, uuid, CTLFLAG_RW | CTLFLAG_LOCKED,
2985 &net_io_policy_uuid, 0, "");
2986 #endif /* CONFIG_PROC_UUID_POLICY */