]> git.saurik.com Git - apple/xnu.git/blob - osfmk/default_pager/dp_memory_object.c
xnu-1228.tar.gz
[apple/xnu.git] / osfmk / default_pager / dp_memory_object.c
1 /*
2 * Copyright (c) 2000-2006 Apple Computer, Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*
29 * @OSF_COPYRIGHT@
30 */
31 /*
32 * Mach Operating System
33 * Copyright (c) 1991,1990,1989 Carnegie Mellon University
34 * All Rights Reserved.
35 *
36 * Permission to use, copy, modify and distribute this software and its
37 * documentation is hereby granted, provided that both the copyright
38 * notice and this permission notice appear in all copies of the
39 * software, derivative works or modified versions, and any portions
40 * thereof, and that both notices appear in supporting documentation.
41 *
42 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
43 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
44 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
45 *
46 * Carnegie Mellon requests users of this software to return to
47 *
48 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
49 * School of Computer Science
50 * Carnegie Mellon University
51 * Pittsburgh PA 15213-3890
52 *
53 * any improvements or extensions that they make and grant Carnegie Mellon
54 * the rights to redistribute these changes.
55 */
56
57 /*
58 * Default Pager.
59 * Memory Object Management.
60 */
61
62 #include "default_pager_internal.h"
63 #include <default_pager/default_pager_object_server.h>
64 #include <mach/memory_object_default_server.h>
65 #include <mach/memory_object_control.h>
66 #include <mach/memory_object_types.h>
67 #include <mach/memory_object_server.h>
68 #include <mach/upl.h>
69 #include <mach/vm_map.h>
70 #include <vm/memory_object.h>
71 #include <vm/vm_pageout.h>
72 #include <vm/vm_map.h>
73 #include <vm/vm_protos.h>
74
75 /* forward declaration */
76 vstruct_t vs_object_create(vm_size_t size);
77
78 /*
79 * List of all vstructs. A specific vstruct is
80 * found directly via its port, this list is
81 * only used for monitoring purposes by the
82 * default_pager_object* calls and by ps_delete
83 * when abstract memory objects must be scanned
84 * to remove any live storage on a segment which
85 * is to be removed.
86 */
87 struct vstruct_list_head vstruct_list;
88
89 __private_extern__ void
90 vstruct_list_insert(
91 vstruct_t vs)
92 {
93 VSL_LOCK();
94 queue_enter(&vstruct_list.vsl_queue, vs, vstruct_t, vs_links);
95 vstruct_list.vsl_count++;
96 VSL_UNLOCK();
97 }
98
99
100 __private_extern__ void
101 vstruct_list_delete(
102 vstruct_t vs)
103 {
104 queue_remove(&vstruct_list.vsl_queue, vs, vstruct_t, vs_links);
105 vstruct_list.vsl_count--;
106 }
107
108 /*
109 * We use the sequence numbers on requests to regulate
110 * our parallelism. In general, we allow multiple reads and writes
111 * to proceed in parallel, with the exception that reads must
112 * wait for previous writes to finish. (Because the kernel might
113 * generate a data-request for a page on the heels of a data-write
114 * for the same page, and we must avoid returning stale data.)
115 * terminate requests wait for proceeding reads and writes to finish.
116 */
117
118 static unsigned int default_pager_total = 0; /* debugging */
119 static unsigned int default_pager_wait_seqno = 0; /* debugging */
120 static unsigned int default_pager_wait_read = 0; /* debugging */
121 static unsigned int default_pager_wait_write = 0; /* debugging */
122
123 __private_extern__ void
124 vs_async_wait(
125 vstruct_t vs)
126 {
127
128 ASSERT(vs->vs_async_pending >= 0);
129 while (vs->vs_async_pending > 0) {
130 vs->vs_waiting_async = TRUE;
131 assert_wait(&vs->vs_async_pending, THREAD_UNINT);
132 VS_UNLOCK(vs);
133 thread_block(THREAD_CONTINUE_NULL);
134 VS_LOCK(vs);
135 }
136 ASSERT(vs->vs_async_pending == 0);
137 }
138
139
140 #if PARALLEL
141 /*
142 * Waits for correct sequence number. Leaves pager locked.
143 *
144 * JMM - Sequence numbers guarantee ordering of requests generated
145 * by a single thread if the receiver is multithreaded and
146 * the interfaces are asynchronous (i.e. sender can generate
147 * more than one request before the first is received in the
148 * pager). Normally, IPC would generate these number in that
149 * case. But we are trying to avoid using IPC for the in-kernel
150 * scenario. Since these are actually invoked synchronously
151 * anyway (in-kernel), we can just fake the sequence number
152 * generation here (thus avoiding the dependence on IPC).
153 */
154 __private_extern__ void
155 vs_lock(
156 vstruct_t vs)
157 {
158 mach_port_seqno_t seqno;
159
160 default_pager_total++;
161 VS_LOCK(vs);
162
163 seqno = vs->vs_next_seqno++;
164
165 while (vs->vs_seqno != seqno) {
166 default_pager_wait_seqno++;
167 vs->vs_waiting_seqno = TRUE;
168 assert_wait(&vs->vs_seqno, THREAD_UNINT);
169 VS_UNLOCK(vs);
170 thread_block(THREAD_CONTINUE_NULL);
171 VS_LOCK(vs);
172 }
173 }
174
175 /*
176 * Increments sequence number and unlocks pager.
177 */
178 __private_extern__ void
179 vs_unlock(vstruct_t vs)
180 {
181 vs->vs_seqno++;
182 if (vs->vs_waiting_seqno) {
183 vs->vs_waiting_seqno = FALSE;
184 VS_UNLOCK(vs);
185 thread_wakeup(&vs->vs_seqno);
186 return;
187 }
188 VS_UNLOCK(vs);
189 }
190
191 /*
192 * Start a read - one more reader. Pager must be locked.
193 */
194 __private_extern__ void
195 vs_start_read(
196 vstruct_t vs)
197 {
198 vs->vs_readers++;
199 }
200
201 /*
202 * Wait for readers. Unlocks and relocks pager if wait needed.
203 */
204 __private_extern__ void
205 vs_wait_for_readers(
206 vstruct_t vs)
207 {
208 while (vs->vs_readers != 0) {
209 default_pager_wait_read++;
210 vs->vs_waiting_read = TRUE;
211 assert_wait(&vs->vs_readers, THREAD_UNINT);
212 VS_UNLOCK(vs);
213 thread_block(THREAD_CONTINUE_NULL);
214 VS_LOCK(vs);
215 }
216 }
217
218 /*
219 * Finish a read. Pager is unlocked and returns unlocked.
220 */
221 __private_extern__ void
222 vs_finish_read(
223 vstruct_t vs)
224 {
225 VS_LOCK(vs);
226 if (--vs->vs_readers == 0 && vs->vs_waiting_read) {
227 vs->vs_waiting_read = FALSE;
228 VS_UNLOCK(vs);
229 thread_wakeup(&vs->vs_readers);
230 return;
231 }
232 VS_UNLOCK(vs);
233 }
234
235 /*
236 * Start a write - one more writer. Pager must be locked.
237 */
238 __private_extern__ void
239 vs_start_write(
240 vstruct_t vs)
241 {
242 vs->vs_writers++;
243 }
244
245 /*
246 * Wait for writers. Unlocks and relocks pager if wait needed.
247 */
248 __private_extern__ void
249 vs_wait_for_writers(
250 vstruct_t vs)
251 {
252 while (vs->vs_writers != 0) {
253 default_pager_wait_write++;
254 vs->vs_waiting_write = TRUE;
255 assert_wait(&vs->vs_writers, THREAD_UNINT);
256 VS_UNLOCK(vs);
257 thread_block(THREAD_CONTINUE_NULL);
258 VS_LOCK(vs);
259 }
260 vs_async_wait(vs);
261 }
262
263 /* This is to be used for the transfer from segment code ONLY */
264 /* The transfer code holds off vs destruction by keeping the */
265 /* vs_async_wait count non-zero. It will not ocnflict with */
266 /* other writers on an async basis because it only writes on */
267 /* a cluster basis into fresh (as of sync time) cluster locations */
268
269 __private_extern__ void
270 vs_wait_for_sync_writers(
271 vstruct_t vs)
272 {
273 while (vs->vs_writers != 0) {
274 default_pager_wait_write++;
275 vs->vs_waiting_write = TRUE;
276 assert_wait(&vs->vs_writers, THREAD_UNINT);
277 VS_UNLOCK(vs);
278 thread_block(THREAD_CONTINUE_NULL);
279 VS_LOCK(vs);
280 }
281 }
282
283
284 /*
285 * Finish a write. Pager is unlocked and returns unlocked.
286 */
287 __private_extern__ void
288 vs_finish_write(
289 vstruct_t vs)
290 {
291 VS_LOCK(vs);
292 if (--vs->vs_writers == 0 && vs->vs_waiting_write) {
293 vs->vs_waiting_write = FALSE;
294 VS_UNLOCK(vs);
295 thread_wakeup(&vs->vs_writers);
296 return;
297 }
298 VS_UNLOCK(vs);
299 }
300 #endif /* PARALLEL */
301
302 vstruct_t
303 vs_object_create(
304 vm_size_t size)
305 {
306 vstruct_t vs;
307
308 /*
309 * Allocate a vstruct. If there are any problems, then report them
310 * to the console.
311 */
312 vs = ps_vstruct_create(size);
313 if (vs == VSTRUCT_NULL) {
314 dprintf(("vs_object_create: unable to allocate %s\n",
315 "-- either run swapon command or reboot"));
316 return VSTRUCT_NULL;
317 }
318
319 return vs;
320 }
321
322 #if 0
323 void default_pager_add(vstruct_t, boolean_t); /* forward */
324
325 void
326 default_pager_add(
327 vstruct_t vs,
328 boolean_t internal)
329 {
330 memory_object_t mem_obj = vs->vs_mem_obj;
331 mach_port_t pset;
332 mach_port_mscount_t sync;
333 mach_port_t previous;
334 kern_return_t kr;
335 static char here[] = "default_pager_add";
336
337 /*
338 * The port currently has a make-send count of zero,
339 * because either we just created the port or we just
340 * received the port in a memory_object_create request.
341 */
342
343 if (internal) {
344 /* possibly generate an immediate no-senders notification */
345 sync = 0;
346 pset = default_pager_internal_set;
347 } else {
348 /* delay notification till send right is created */
349 sync = 1;
350 pset = default_pager_external_set;
351 }
352
353 ipc_port_make_sonce(mem_obj);
354 ip_lock(mem_obj); /* unlocked in nsrequest below */
355 ipc_port_nsrequest(mem_obj, sync, mem_obj, &previous);
356 }
357
358 #endif
359
360 const struct memory_object_pager_ops default_pager_ops = {
361 dp_memory_object_reference,
362 dp_memory_object_deallocate,
363 dp_memory_object_init,
364 dp_memory_object_terminate,
365 dp_memory_object_data_request,
366 dp_memory_object_data_return,
367 dp_memory_object_data_initialize,
368 dp_memory_object_data_unlock,
369 dp_memory_object_synchronize,
370 dp_memory_object_unmap,
371 "default pager"
372 };
373
374 kern_return_t
375 dp_memory_object_init(
376 memory_object_t mem_obj,
377 memory_object_control_t control,
378 __unused vm_size_t pager_page_size)
379 {
380 vstruct_t vs;
381
382 assert(pager_page_size == vm_page_size);
383
384 memory_object_control_reference(control);
385
386 vs_lookup(mem_obj, vs);
387 vs_lock(vs);
388
389 if (vs->vs_control != MEMORY_OBJECT_CONTROL_NULL)
390 Panic("bad request");
391
392 vs->vs_control = control;
393 vs_unlock(vs);
394
395 return KERN_SUCCESS;
396 }
397
398 kern_return_t
399 dp_memory_object_synchronize(
400 memory_object_t mem_obj,
401 memory_object_offset_t offset,
402 vm_size_t length,
403 __unused vm_sync_t flags)
404 {
405 vstruct_t vs;
406
407 vs_lookup(mem_obj, vs);
408 vs_lock(vs);
409 vs_unlock(vs);
410
411 memory_object_synchronize_completed(vs->vs_control, offset, length);
412
413 return KERN_SUCCESS;
414 }
415
416 kern_return_t
417 dp_memory_object_unmap(
418 __unused memory_object_t mem_obj)
419 {
420 panic("dp_memory_object_unmap");
421
422 return KERN_FAILURE;
423 }
424
425 kern_return_t
426 dp_memory_object_terminate(
427 memory_object_t mem_obj)
428 {
429 memory_object_control_t control;
430 vstruct_t vs;
431
432 /*
433 * control port is a receive right, not a send right.
434 */
435
436 vs_lookup(mem_obj, vs);
437 vs_lock(vs);
438
439 /*
440 * Wait for read and write requests to terminate.
441 */
442
443 vs_wait_for_readers(vs);
444 vs_wait_for_writers(vs);
445
446 /*
447 * After memory_object_terminate both memory_object_init
448 * and a no-senders notification are possible, so we need
449 * to clean up our reference to the memory_object_control
450 * to prepare for a new init.
451 */
452
453 control = vs->vs_control;
454 vs->vs_control = MEMORY_OBJECT_CONTROL_NULL;
455
456 /* a bit of special case ugliness here. Wakeup any waiting reads */
457 /* these data requests had to be removed from the seqno traffic */
458 /* based on a performance bottleneck with large memory objects */
459 /* the problem will right itself with the new component based */
460 /* synchronous interface. The new async will be able to return */
461 /* failure during its sync phase. In the mean time ... */
462
463 thread_wakeup(&vs->vs_writers);
464 thread_wakeup(&vs->vs_async_pending);
465
466 vs_unlock(vs);
467
468 /*
469 * Now we deallocate our reference on the control.
470 */
471 memory_object_control_deallocate(control);
472 return KERN_SUCCESS;
473 }
474
475 void
476 dp_memory_object_reference(
477 memory_object_t mem_obj)
478 {
479 vstruct_t vs;
480
481 vs_lookup_safe(mem_obj, vs);
482 if (vs == VSTRUCT_NULL)
483 return;
484
485 VS_LOCK(vs);
486 assert(vs->vs_references > 0);
487 vs->vs_references++;
488 VS_UNLOCK(vs);
489 }
490
491 void
492 dp_memory_object_deallocate(
493 memory_object_t mem_obj)
494 {
495 vstruct_t vs;
496 mach_port_seqno_t seqno;
497
498 /*
499 * Because we don't give out multiple first references
500 * for a memory object, there can't be a race
501 * between getting a deallocate call and creating
502 * a new reference for the object.
503 */
504
505 vs_lookup_safe(mem_obj, vs);
506 if (vs == VSTRUCT_NULL)
507 return;
508
509 VS_LOCK(vs);
510 if (--vs->vs_references > 0) {
511 VS_UNLOCK(vs);
512 return;
513 }
514
515 seqno = vs->vs_next_seqno++;
516 while (vs->vs_seqno != seqno) {
517 default_pager_wait_seqno++;
518 vs->vs_waiting_seqno = TRUE;
519 assert_wait(&vs->vs_seqno, THREAD_UNINT);
520 VS_UNLOCK(vs);
521 thread_block(THREAD_CONTINUE_NULL);
522 VS_LOCK(vs);
523 }
524
525 vs_async_wait(vs); /* wait for pending async IO */
526
527 /* do not delete the vs structure until the referencing pointers */
528 /* in the vstruct list have been expunged */
529
530 /* get VSL_LOCK out of order by using TRY mechanism */
531 while(!VSL_LOCK_TRY()) {
532 VS_UNLOCK(vs);
533 VSL_LOCK();
534 VSL_UNLOCK();
535 VS_LOCK(vs);
536 vs_async_wait(vs); /* wait for pending async IO */
537 }
538
539
540 /*
541 * We shouldn't get a deallocation call
542 * when the kernel has the object cached.
543 */
544 if (vs->vs_control != MEMORY_OBJECT_CONTROL_NULL)
545 Panic("bad request");
546
547 /*
548 * Unlock the pager (though there should be no one
549 * waiting for it).
550 */
551 VS_UNLOCK(vs);
552
553 /* Lock out paging segment removal for the duration of this */
554 /* call. We are vulnerable to losing a paging segment we rely */
555 /* on as soon as we remove ourselves from the VSL and unlock */
556
557 /* Keep our thread from blocking on attempt to trigger backing */
558 /* store release */
559 backing_store_release_trigger_disable += 1;
560
561 /*
562 * Remove the memory object port association, and then
563 * the destroy the port itself. We must remove the object
564 * from the port list before deallocating the pager,
565 * because of default_pager_objects.
566 */
567 vstruct_list_delete(vs);
568 VSL_UNLOCK();
569
570 ps_vstruct_dealloc(vs);
571
572 VSL_LOCK();
573 backing_store_release_trigger_disable -= 1;
574 if(backing_store_release_trigger_disable == 0) {
575 thread_wakeup((event_t)&backing_store_release_trigger_disable);
576 }
577 VSL_UNLOCK();
578 }
579
580 kern_return_t
581 dp_memory_object_data_request(
582 memory_object_t mem_obj,
583 memory_object_offset_t offset,
584 vm_size_t length,
585 __unused vm_prot_t protection_required,
586 memory_object_fault_info_t fault_info)
587 {
588 vstruct_t vs;
589
590 GSTAT(global_stats.gs_pagein_calls++);
591
592
593 /* CDY at this moment vs_lookup panics when presented with the wrong */
594 /* port. As we are expanding this pager to support user interfaces */
595 /* this should be changed to return kern_failure */
596 vs_lookup(mem_obj, vs);
597 vs_lock(vs);
598
599 /* We are going to relax the strict sequencing here for performance */
600 /* reasons. We can do this because we know that the read and */
601 /* write threads are different and we rely on synchronization */
602 /* of read and write requests at the cache memory_object level */
603 /* break out wait_for_writers, all of this goes away when */
604 /* we get real control of seqno with the new component interface */
605
606 if (vs->vs_writers != 0) {
607 /* you can't hold on to the seqno and go */
608 /* to sleep like that */
609 vs_unlock(vs); /* bump internal count of seqno */
610 VS_LOCK(vs);
611 while (vs->vs_writers != 0) {
612 default_pager_wait_write++;
613 vs->vs_waiting_write = TRUE;
614 assert_wait(&vs->vs_writers, THREAD_UNINT);
615 VS_UNLOCK(vs);
616 thread_block(THREAD_CONTINUE_NULL);
617 VS_LOCK(vs);
618 vs_async_wait(vs);
619 }
620 if(vs->vs_control == MEMORY_OBJECT_CONTROL_NULL) {
621 VS_UNLOCK(vs);
622 return KERN_FAILURE;
623 }
624 vs_start_read(vs);
625 VS_UNLOCK(vs);
626 } else {
627 vs_start_read(vs);
628 vs_unlock(vs);
629 }
630
631 /*
632 * Request must be on a page boundary and a multiple of pages.
633 */
634 if ((offset & vm_page_mask) != 0 || (length & vm_page_mask) != 0)
635 Panic("bad alignment");
636
637 pvs_cluster_read(vs, (vm_offset_t)offset, length, fault_info);
638
639 vs_finish_read(vs);
640
641 return KERN_SUCCESS;
642 }
643
644 /*
645 * memory_object_data_initialize: check whether we already have each page, and
646 * write it if we do not. The implementation is far from optimized, and
647 * also assumes that the default_pager is single-threaded.
648 */
649 /* It is questionable whether or not a pager should decide what is relevant */
650 /* and what is not in data sent from the kernel. Data initialize has been */
651 /* changed to copy back all data sent to it in preparation for its eventual */
652 /* merge with data return. It is the kernel that should decide what pages */
653 /* to write back. As of the writing of this note, this is indeed the case */
654 /* the kernel writes back one page at a time through this interface */
655
656 kern_return_t
657 dp_memory_object_data_initialize(
658 memory_object_t mem_obj,
659 memory_object_offset_t offset,
660 vm_size_t size)
661 {
662 vstruct_t vs;
663
664 DP_DEBUG(DEBUG_MO_EXTERNAL,
665 ("mem_obj=0x%x,offset=0x%x,cnt=0x%x\n",
666 (int)mem_obj, (int)offset, (int)size));
667 GSTAT(global_stats.gs_pages_init += atop_32(size));
668
669 vs_lookup(mem_obj, vs);
670 vs_lock(vs);
671 vs_start_write(vs);
672 vs_unlock(vs);
673
674 /*
675 * Write the data via clustered writes. vs_cluster_write will
676 * loop if the address range specified crosses cluster
677 * boundaries.
678 */
679 vs_cluster_write(vs, 0, (vm_offset_t)offset, size, FALSE, 0);
680
681 vs_finish_write(vs);
682
683 return KERN_SUCCESS;
684 }
685
686 kern_return_t
687 dp_memory_object_data_unlock(
688 __unused memory_object_t mem_obj,
689 __unused memory_object_offset_t offset,
690 __unused vm_size_t size,
691 __unused vm_prot_t desired_access)
692 {
693 Panic("dp_memory_object_data_unlock: illegal");
694 return KERN_FAILURE;
695 }
696
697
698 /*ARGSUSED8*/
699 kern_return_t
700 dp_memory_object_data_return(
701 memory_object_t mem_obj,
702 memory_object_offset_t offset,
703 vm_size_t size,
704 __unused memory_object_offset_t *resid_offset,
705 __unused int *io_error,
706 __unused boolean_t dirty,
707 __unused boolean_t kernel_copy,
708 __unused int upl_flags)
709 {
710 vstruct_t vs;
711
712 DP_DEBUG(DEBUG_MO_EXTERNAL,
713 ("mem_obj=0x%x,offset=0x%x,size=0x%x\n",
714 (int)mem_obj, (int)offset, (int)size));
715 GSTAT(global_stats.gs_pageout_calls++);
716
717 /* This routine is called by the pageout thread. The pageout thread */
718 /* cannot be blocked by read activities unless the read activities */
719 /* Therefore the grant of vs lock must be done on a try versus a */
720 /* blocking basis. The code below relies on the fact that the */
721 /* interface is synchronous. Should this interface be again async */
722 /* for some type of pager in the future the pages will have to be */
723 /* returned through a separate, asynchronous path. */
724
725 vs_lookup(mem_obj, vs);
726
727 default_pager_total++;
728 if(!VS_TRY_LOCK(vs)) {
729 /* the call below will not be done by caller when we have */
730 /* a synchronous interface */
731 /* return KERN_LOCK_OWNED; */
732 upl_t upl;
733 unsigned int page_list_count = 0;
734 memory_object_super_upl_request(vs->vs_control,
735 (memory_object_offset_t)offset,
736 size, size,
737 &upl, NULL, &page_list_count,
738 UPL_NOBLOCK | UPL_CLEAN_IN_PLACE
739 | UPL_NO_SYNC | UPL_COPYOUT_FROM);
740 upl_abort(upl,0);
741 upl_deallocate(upl);
742 return KERN_SUCCESS;
743 }
744
745 if ((vs->vs_seqno != vs->vs_next_seqno++)
746 || (vs->vs_readers)
747 || (vs->vs_xfer_pending)) {
748 upl_t upl;
749 unsigned int page_list_count = 0;
750
751 vs->vs_next_seqno--;
752 VS_UNLOCK(vs);
753
754 /* the call below will not be done by caller when we have */
755 /* a synchronous interface */
756 /* return KERN_LOCK_OWNED; */
757 memory_object_super_upl_request(vs->vs_control,
758 (memory_object_offset_t)offset,
759 size, size,
760 &upl, NULL, &page_list_count,
761 UPL_NOBLOCK | UPL_CLEAN_IN_PLACE
762 | UPL_NO_SYNC | UPL_COPYOUT_FROM);
763 upl_abort(upl,0);
764 upl_deallocate(upl);
765 return KERN_SUCCESS;
766 }
767
768 if ((size % vm_page_size) != 0)
769 Panic("bad alignment");
770
771 vs_start_write(vs);
772
773
774 vs->vs_async_pending += 1; /* protect from backing store contraction */
775 vs_unlock(vs);
776
777 /*
778 * Write the data via clustered writes. vs_cluster_write will
779 * loop if the address range specified crosses cluster
780 * boundaries.
781 */
782 vs_cluster_write(vs, 0, (vm_offset_t)offset, size, FALSE, 0);
783
784 vs_finish_write(vs);
785
786 /* temporary, need a finer lock based on cluster */
787
788 VS_LOCK(vs);
789 vs->vs_async_pending -= 1; /* release vs_async_wait */
790 if (vs->vs_async_pending == 0 && vs->vs_waiting_async) {
791 vs->vs_waiting_async = FALSE;
792 VS_UNLOCK(vs);
793 thread_wakeup(&vs->vs_async_pending);
794 } else {
795 VS_UNLOCK(vs);
796 }
797
798
799 return KERN_SUCCESS;
800 }
801
802 /*
803 * Routine: default_pager_memory_object_create
804 * Purpose:
805 * Handle requests for memory objects from the
806 * kernel.
807 * Notes:
808 * Because we only give out the default memory
809 * manager port to the kernel, we don't have to
810 * be so paranoid about the contents.
811 */
812 kern_return_t
813 default_pager_memory_object_create(
814 __unused memory_object_default_t dmm,
815 vm_size_t new_size,
816 memory_object_t *new_mem_obj)
817 {
818 vstruct_t vs;
819
820 assert(dmm == default_pager_object);
821
822 vs = vs_object_create(new_size);
823 if (vs == VSTRUCT_NULL)
824 return KERN_RESOURCE_SHORTAGE;
825
826 vs->vs_next_seqno = 0;
827
828 /*
829 * Set up associations between this memory object
830 * and this default_pager structure
831 */
832
833 vs->vs_pager_ops = &default_pager_ops;
834 vs->vs_mem_obj_ikot = IKOT_MEMORY_OBJECT;
835
836 /*
837 * After this, other threads might receive requests
838 * for this memory object or find it in the port list.
839 */
840
841 vstruct_list_insert(vs);
842 *new_mem_obj = vs_to_mem_obj(vs);
843 return KERN_SUCCESS;
844 }
845
846 /*
847 * Create an external object.
848 */
849 kern_return_t
850 default_pager_object_create(
851 default_pager_t default_pager,
852 vm_size_t size,
853 memory_object_t *mem_objp)
854 {
855 vstruct_t vs;
856
857 if (default_pager != default_pager_object)
858 return KERN_INVALID_ARGUMENT;
859
860 vs = vs_object_create(size);
861 if (vs == VSTRUCT_NULL)
862 return KERN_RESOURCE_SHORTAGE;
863
864 /*
865 * Set up associations between the default pager
866 * and this vstruct structure
867 */
868 vs->vs_pager_ops = &default_pager_ops;
869 vstruct_list_insert(vs);
870 *mem_objp = vs_to_mem_obj(vs);
871 return KERN_SUCCESS;
872 }
873
874 kern_return_t
875 default_pager_objects(
876 default_pager_t default_pager,
877 default_pager_object_array_t *objectsp,
878 mach_msg_type_number_t *ocountp,
879 mach_port_array_t *portsp,
880 mach_msg_type_number_t *pcountp)
881 {
882 vm_offset_t oaddr = 0; /* memory for objects */
883 vm_size_t osize = 0; /* current size */
884 default_pager_object_t * objects;
885 unsigned int opotential = 0;
886
887 vm_map_copy_t pcopy = 0; /* copy handle for pagers */
888 vm_size_t psize = 0; /* current size */
889 memory_object_t * pagers;
890 unsigned int ppotential = 0;
891
892 unsigned int actual;
893 unsigned int num_objects;
894 kern_return_t kr;
895 vstruct_t entry;
896
897 if (default_pager != default_pager_object)
898 return KERN_INVALID_ARGUMENT;
899
900 /*
901 * We will send no more than this many
902 */
903 actual = vstruct_list.vsl_count;
904
905 /*
906 * Out out-of-line port arrays are simply kalloc'ed.
907 */
908 psize = round_page(actual * sizeof * pagers);
909 ppotential = psize / sizeof * pagers;
910 pagers = (memory_object_t *)kalloc(psize);
911 if (0 == pagers)
912 return KERN_RESOURCE_SHORTAGE;
913
914 /*
915 * returned out of line data must be allocated out
916 * the ipc_kernel_map, wired down, filled in, and
917 * then "copied in" as if it had been sent by a
918 * user process.
919 */
920 osize = round_page(actual * sizeof * objects);
921 opotential = osize / sizeof * objects;
922 kr = kmem_alloc(ipc_kernel_map, &oaddr, osize);
923 if (KERN_SUCCESS != kr) {
924 kfree(pagers, psize);
925 return KERN_RESOURCE_SHORTAGE;
926 }
927 objects = (default_pager_object_t *)oaddr;
928
929
930 /*
931 * Now scan the list.
932 */
933
934 VSL_LOCK();
935
936 num_objects = 0;
937 queue_iterate(&vstruct_list.vsl_queue, entry, vstruct_t, vs_links) {
938
939 memory_object_t pager;
940 vm_size_t size;
941
942 if ((num_objects >= opotential) ||
943 (num_objects >= ppotential)) {
944
945 /*
946 * This should be rare. In any case,
947 * we will only miss recent objects,
948 * because they are added at the end.
949 */
950 break;
951 }
952
953 /*
954 * Avoid interfering with normal operations
955 */
956 if (!VS_MAP_TRY_LOCK(entry))
957 goto not_this_one;
958 size = ps_vstruct_allocated_size(entry);
959 VS_MAP_UNLOCK(entry);
960
961 VS_LOCK(entry);
962
963 /*
964 * We need a reference for our caller. Adding this
965 * reference through the linked list could race with
966 * destruction of the object. If we find the object
967 * has no references, just give up on it.
968 */
969 VS_LOCK(entry);
970 if (entry->vs_references == 0) {
971 VS_UNLOCK(entry);
972 goto not_this_one;
973 }
974 pager = vs_to_mem_obj(entry);
975 dp_memory_object_reference(pager);
976 VS_UNLOCK(entry);
977
978 /* the arrays are wired, so no deadlock worries */
979
980 objects[num_objects].dpo_object = (vm_offset_t) entry;
981 objects[num_objects].dpo_size = size;
982 pagers [num_objects++] = pager;
983 continue;
984
985 not_this_one:
986 /*
987 * Do not return garbage
988 */
989 objects[num_objects].dpo_object = (vm_offset_t) 0;
990 objects[num_objects].dpo_size = 0;
991 pagers[num_objects++] = MEMORY_OBJECT_NULL;
992
993 }
994
995 VSL_UNLOCK();
996
997 /* clear out any excess allocation */
998 while (num_objects < opotential) {
999 objects[--opotential].dpo_object = (vm_offset_t) 0;
1000 objects[opotential].dpo_size = 0;
1001 }
1002 while (num_objects < ppotential) {
1003 pagers[--ppotential] = MEMORY_OBJECT_NULL;
1004 }
1005
1006 kr = vm_map_unwire(ipc_kernel_map, vm_map_trunc_page(oaddr),
1007 vm_map_round_page(oaddr + osize), FALSE);
1008 assert(KERN_SUCCESS == kr);
1009 kr = vm_map_copyin(ipc_kernel_map, (vm_map_address_t)oaddr,
1010 (vm_map_size_t)osize, TRUE, &pcopy);
1011 assert(KERN_SUCCESS == kr);
1012
1013 *objectsp = (default_pager_object_array_t)objects;
1014 *ocountp = num_objects;
1015 *portsp = (mach_port_array_t)pcopy;
1016 *pcountp = num_objects;
1017
1018 return KERN_SUCCESS;
1019 }
1020
1021 kern_return_t
1022 default_pager_object_pages(
1023 default_pager_t default_pager,
1024 mach_port_t memory_object,
1025 default_pager_page_array_t *pagesp,
1026 mach_msg_type_number_t *countp)
1027 {
1028 vm_offset_t addr = 0; /* memory for page offsets */
1029 vm_size_t size = 0; /* current memory size */
1030 vm_map_copy_t copy;
1031 default_pager_page_t * pages = 0;
1032 unsigned int potential;
1033 unsigned int actual;
1034 kern_return_t kr;
1035 memory_object_t object;
1036
1037 if (default_pager != default_pager_object)
1038 return KERN_INVALID_ARGUMENT;
1039
1040 object = (memory_object_t) memory_object;
1041
1042 potential = 0;
1043 for (;;) {
1044 vstruct_t entry;
1045
1046 VSL_LOCK();
1047 queue_iterate(&vstruct_list.vsl_queue, entry, vstruct_t,
1048 vs_links) {
1049 VS_LOCK(entry);
1050 if (vs_to_mem_obj(entry) == object) {
1051 VSL_UNLOCK();
1052 goto found_object;
1053 }
1054 VS_UNLOCK(entry);
1055 }
1056 VSL_UNLOCK();
1057
1058 /* did not find the object */
1059 if (0 != addr)
1060 kmem_free(ipc_kernel_map, addr, size);
1061
1062 return KERN_INVALID_ARGUMENT;
1063
1064 found_object:
1065
1066 if (!VS_MAP_TRY_LOCK(entry)) {
1067 /* oh well bad luck */
1068 int wresult;
1069
1070 VS_UNLOCK(entry);
1071
1072 assert_wait_timeout((event_t)assert_wait_timeout, THREAD_UNINT, 1, 1000*NSEC_PER_USEC);
1073 wresult = thread_block(THREAD_CONTINUE_NULL);
1074 assert(wresult == THREAD_TIMED_OUT);
1075 continue;
1076 }
1077
1078 actual = ps_vstruct_allocated_pages(entry, pages, potential);
1079 VS_MAP_UNLOCK(entry);
1080 VS_UNLOCK(entry);
1081
1082 if (actual <= potential)
1083 break;
1084
1085 /* allocate more memory */
1086 if (0 != addr)
1087 kmem_free(ipc_kernel_map, addr, size);
1088
1089 size = round_page(actual * sizeof * pages);
1090 kr = kmem_alloc(ipc_kernel_map, &addr, size);
1091 if (KERN_SUCCESS != kr)
1092 return KERN_RESOURCE_SHORTAGE;
1093
1094 pages = (default_pager_page_t *)addr;
1095 potential = size / sizeof * pages;
1096 }
1097
1098 /*
1099 * Clear unused memory.
1100 */
1101 while (actual < potential)
1102 pages[--potential].dpp_offset = 0;
1103
1104 kr = vm_map_unwire(ipc_kernel_map, vm_map_trunc_page(addr),
1105 vm_map_round_page(addr + size), FALSE);
1106 assert(KERN_SUCCESS == kr);
1107 kr = vm_map_copyin(ipc_kernel_map, (vm_map_address_t)addr,
1108 (vm_map_size_t)size, TRUE, &copy);
1109 assert(KERN_SUCCESS == kr);
1110
1111
1112 *pagesp = (default_pager_page_array_t)copy;
1113 *countp = actual;
1114 return KERN_SUCCESS;
1115 }