2 * Copyright (c) 2006-2007 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
30 * Memory allocator with per-CPU caching, derived from the kmem magazine
31 * concept and implementation as described in the following paper:
32 * http://www.usenix.org/events/usenix01/full_papers/bonwick/bonwick.pdf
33 * That implementation is Copyright 2006 Sun Microsystems, Inc. All rights
34 * reserved. Use is subject to license terms.
36 * There are several major differences between this and the original kmem
37 * magazine: this derivative implementation allows for multiple objects to
38 * be allocated and freed from/to the object cache in one call; in addition,
39 * it provides for better flexibility where the user is allowed to define
40 * its own slab allocator (instead of the default zone allocator). Finally,
41 * no object construction/destruction takes place at the moment, although
42 * this could be added in future to improve efficiency.
45 #include <sys/param.h>
46 #include <sys/types.h>
47 #include <sys/malloc.h>
49 #include <sys/queue.h>
50 #include <sys/kernel.h>
51 #include <sys/systm.h>
53 #include <kern/debug.h>
54 #include <kern/zalloc.h>
55 #include <kern/cpu_number.h>
56 #include <kern/locks.h>
58 #include <libkern/libkern.h>
59 #include <libkern/OSAtomic.h>
60 #include <libkern/OSDebug.h>
62 #include <mach/vm_param.h>
63 #include <machine/limits.h>
64 #include <machine/machine_routines.h>
68 #include <sys/mcache.h>
70 #define MCACHE_SIZE(n) \
71 ((size_t)(&((mcache_t *)0)->mc_cpu[n]))
73 /* Allocate extra in case we need to manually align the pointer */
74 #define MCACHE_ALLOC_SIZE \
75 (sizeof (void *) + MCACHE_SIZE(ncpu) + CPU_CACHE_SIZE)
77 #define MCACHE_CPU(c) \
78 (mcache_cpu_t *)((char *)(c) + MCACHE_SIZE(cpu_number()))
81 * MCACHE_LIST_LOCK() and MCACHE_LIST_UNLOCK() are macros used
82 * to serialize accesses to the global list of caches in the system.
83 * They also record the thread currently running in the critical
84 * section, so that we can avoid recursive requests to reap the
85 * caches when memory runs low.
87 #define MCACHE_LIST_LOCK() { \
88 lck_mtx_lock(mcache_llock); \
89 mcache_llock_owner = current_thread(); \
92 #define MCACHE_LIST_UNLOCK() { \
93 mcache_llock_owner = NULL; \
94 lck_mtx_unlock(mcache_llock); \
97 #define MCACHE_LOCK(l) lck_mtx_lock(l)
98 #define MCACHE_UNLOCK(l) lck_mtx_unlock(l)
99 #define MCACHE_LOCK_TRY(l) lck_mtx_try_lock(l)
101 /* This should be in a header file */
102 #define atomic_add_32(a, n) ((void) OSAddAtomic(n, (volatile SInt32 *)a))
105 static lck_mtx_t
*mcache_llock
;
106 static struct thread
*mcache_llock_owner
;
107 static lck_attr_t
*mcache_llock_attr
;
108 static lck_grp_t
*mcache_llock_grp
;
109 static lck_grp_attr_t
*mcache_llock_grp_attr
;
110 static struct zone
*mcache_zone
;
111 static unsigned int mcache_reap_interval
;
112 static UInt32 mcache_reaping
;
113 static int mcache_ready
;
114 static int mcache_updating
;
116 static int mcache_bkt_contention
= 3;
118 static unsigned int mcache_flags
= MCF_DEBUG
;
120 static unsigned int mcache_flags
= 0;
123 #define DUMP_MCA_BUF_SIZE 512
124 static char *mca_dump_buf
;
126 static mcache_bkttype_t mcache_bkttype
[] = {
127 { 1, 4096, 32768, NULL
},
128 { 3, 2048, 16384, NULL
},
129 { 7, 1024, 12288, NULL
},
130 { 15, 256, 8192, NULL
},
131 { 31, 64, 4096, NULL
},
132 { 47, 0, 2048, NULL
},
133 { 63, 0, 1024, NULL
},
134 { 95, 0, 512, NULL
},
135 { 143, 0, 256, NULL
},
139 static mcache_t
*mcache_create_common(const char *, size_t, size_t,
140 mcache_allocfn_t
, mcache_freefn_t
, mcache_auditfn_t
, mcache_notifyfn_t
,
141 void *, u_int32_t
, int, int);
142 static unsigned int mcache_slab_alloc(void *, mcache_obj_t
***,
144 static void mcache_slab_free(void *, mcache_obj_t
*, boolean_t
);
145 static void mcache_slab_audit(void *, mcache_obj_t
*, boolean_t
);
146 static void mcache_cpu_refill(mcache_cpu_t
*, mcache_bkt_t
*, int);
147 static mcache_bkt_t
*mcache_bkt_alloc(mcache_t
*, mcache_bktlist_t
*,
148 mcache_bkttype_t
**);
149 static void mcache_bkt_free(mcache_t
*, mcache_bktlist_t
*, mcache_bkt_t
*);
150 static void mcache_cache_bkt_enable(mcache_t
*);
151 static void mcache_bkt_purge(mcache_t
*);
152 static void mcache_bkt_destroy(mcache_t
*, mcache_bkttype_t
*,
153 mcache_bkt_t
*, int);
154 static void mcache_bkt_ws_update(mcache_t
*);
155 static void mcache_bkt_ws_reap(mcache_t
*);
156 static void mcache_dispatch(void (*)(void *), void *);
157 static void mcache_cache_reap(mcache_t
*);
158 static void mcache_cache_update(mcache_t
*);
159 static void mcache_cache_bkt_resize(void *);
160 static void mcache_cache_enable(void *);
161 static void mcache_update(void *);
162 static void mcache_update_timeout(void *);
163 static void mcache_applyall(void (*)(mcache_t
*));
164 static void mcache_reap_start(void *);
165 static void mcache_reap_done(void *);
166 static void mcache_reap_timeout(void *);
167 static void mcache_notify(mcache_t
*, u_int32_t
);
168 static void mcache_purge(void *);
170 static LIST_HEAD(, mcache
) mcache_head
;
171 mcache_t
*mcache_audit_cache
;
174 * Initialize the framework; this is currently called as part of BSD init.
176 __private_extern__
void
179 mcache_bkttype_t
*btp
;
183 ncpu
= ml_get_max_cpus();
185 mcache_llock_grp_attr
= lck_grp_attr_alloc_init();
186 mcache_llock_grp
= lck_grp_alloc_init("mcache.list",
187 mcache_llock_grp_attr
);
188 mcache_llock_attr
= lck_attr_alloc_init();
189 mcache_llock
= lck_mtx_alloc_init(mcache_llock_grp
, mcache_llock_attr
);
191 mcache_zone
= zinit(MCACHE_ALLOC_SIZE
, 256 * MCACHE_ALLOC_SIZE
,
192 PAGE_SIZE
, "mcache");
193 if (mcache_zone
== NULL
)
194 panic("mcache_init: failed to allocate mcache zone\n");
196 LIST_INIT(&mcache_head
);
198 for (i
= 0; i
< sizeof (mcache_bkttype
) / sizeof (*btp
); i
++) {
199 btp
= &mcache_bkttype
[i
];
200 (void) snprintf(name
, sizeof (name
), "bkt_%d",
202 btp
->bt_cache
= mcache_create(name
,
203 (btp
->bt_bktsize
+ 1) * sizeof (void *), 0, 0, MCR_SLEEP
);
206 PE_parse_boot_arg("mcache_flags", &mcache_flags
);
207 mcache_flags
&= MCF_FLAGS_MASK
;
209 mcache_audit_cache
= mcache_create("audit", sizeof (mcache_audit_t
),
212 mcache_reap_interval
= 15 * hz
;
213 mcache_applyall(mcache_cache_bkt_enable
);
218 * Return the global mcache flags.
220 __private_extern__
unsigned int
221 mcache_getflags(void)
223 return (mcache_flags
);
227 * Create a cache using the zone allocator as the backend slab allocator.
228 * The caller may specify any alignment for the object; if it specifies 0
229 * the default alignment (MCACHE_ALIGN) will be used.
231 __private_extern__ mcache_t
*
232 mcache_create(const char *name
, size_t bufsize
, size_t align
,
233 u_int32_t flags
, int wait
)
235 return (mcache_create_common(name
, bufsize
, align
, mcache_slab_alloc
,
236 mcache_slab_free
, mcache_slab_audit
, NULL
, NULL
, flags
, 1, wait
));
240 * Create a cache using a custom backend slab allocator. Since the caller
241 * is responsible for allocation, no alignment guarantee will be provided
244 __private_extern__ mcache_t
*
245 mcache_create_ext(const char *name
, size_t bufsize
,
246 mcache_allocfn_t allocfn
, mcache_freefn_t freefn
, mcache_auditfn_t auditfn
,
247 mcache_notifyfn_t notifyfn
, void *arg
, u_int32_t flags
, int wait
)
249 return (mcache_create_common(name
, bufsize
, 0, allocfn
,
250 freefn
, auditfn
, notifyfn
, arg
, flags
, 0, wait
));
254 * Common cache creation routine.
257 mcache_create_common(const char *name
, size_t bufsize
, size_t align
,
258 mcache_allocfn_t allocfn
, mcache_freefn_t freefn
, mcache_auditfn_t auditfn
,
259 mcache_notifyfn_t notifyfn
, void *arg
, u_int32_t flags
, int need_zone
,
262 mcache_bkttype_t
*btp
;
269 /* If auditing is on and print buffer is NULL, allocate it now */
270 if ((flags
& MCF_AUDIT
) && mca_dump_buf
== NULL
) {
271 int malloc_wait
= (wait
& MCR_NOSLEEP
) ? M_NOWAIT
: M_WAITOK
;
272 MALLOC(mca_dump_buf
, char *, DUMP_MCA_BUF_SIZE
, M_TEMP
,
273 malloc_wait
| M_ZERO
);
274 if (mca_dump_buf
== NULL
)
278 if (!(wait
& MCR_NOSLEEP
))
279 buf
= zalloc(mcache_zone
);
281 buf
= zalloc_noblock(mcache_zone
);
286 bzero(buf
, MCACHE_ALLOC_SIZE
);
289 * In case we didn't get a cache-aligned memory, round it up
290 * accordingly. This is needed in order to get the rest of
291 * structure members aligned properly. It also means that
292 * the memory span gets shifted due to the round up, but it
293 * is okay since we've allocated extra space for this.
296 P2ROUNDUP((intptr_t)buf
+ sizeof (void *), CPU_CACHE_SIZE
);
297 pbuf
= (void **)((intptr_t)cp
- sizeof (void *));
301 * Guaranteed alignment is valid only when we use the internal
302 * slab allocator (currently set to use the zone allocator).
307 align
= MCACHE_ALIGN
;
309 if ((align
& (align
- 1)) != 0)
310 panic("mcache_create: bad alignment %lu", align
);
312 cp
->mc_align
= align
;
313 cp
->mc_slab_alloc
= allocfn
;
314 cp
->mc_slab_free
= freefn
;
315 cp
->mc_slab_audit
= auditfn
;
316 cp
->mc_slab_notify
= notifyfn
;
317 cp
->mc_private
= need_zone
? cp
: arg
;
318 cp
->mc_bufsize
= bufsize
;
319 cp
->mc_flags
= (flags
& MCF_FLAGS_MASK
) | mcache_flags
;
321 (void) snprintf(cp
->mc_name
, sizeof (cp
->mc_name
), "mcache.%s", name
);
323 (void) snprintf(lck_name
, sizeof (lck_name
), "%s.cpu", cp
->mc_name
);
324 cp
->mc_cpu_lock_grp_attr
= lck_grp_attr_alloc_init();
325 cp
->mc_cpu_lock_grp
= lck_grp_alloc_init(lck_name
,
326 cp
->mc_cpu_lock_grp_attr
);
327 cp
->mc_cpu_lock_attr
= lck_attr_alloc_init();
330 * Allocation chunk size is the object's size plus any extra size
331 * needed to satisfy the object's alignment. It is enforced to be
332 * at least the size of an LP64 pointer to simplify auditing and to
333 * handle multiple-element allocation requests, where the elements
334 * returned are linked together in a list.
336 chunksize
= MAX(bufsize
, sizeof (u_int64_t
));
338 /* Enforce 64-bit minimum alignment for zone-based buffers */
339 align
= MAX(align
, sizeof (u_int64_t
));
340 chunksize
+= sizeof (void *) + align
;
341 chunksize
= P2ROUNDUP(chunksize
, align
);
342 if ((cp
->mc_slab_zone
= zinit(chunksize
, 64 * 1024 * ncpu
,
343 PAGE_SIZE
, cp
->mc_name
)) == NULL
)
345 zone_change(cp
->mc_slab_zone
, Z_EXPAND
, TRUE
);
347 cp
->mc_chunksize
= chunksize
;
350 * Initialize the bucket layer.
352 (void) snprintf(lck_name
, sizeof (lck_name
), "%s.bkt", cp
->mc_name
);
353 cp
->mc_bkt_lock_grp_attr
= lck_grp_attr_alloc_init();
354 cp
->mc_bkt_lock_grp
= lck_grp_alloc_init(lck_name
,
355 cp
->mc_bkt_lock_grp_attr
);
356 cp
->mc_bkt_lock_attr
= lck_attr_alloc_init();
357 lck_mtx_init(&cp
->mc_bkt_lock
, cp
->mc_bkt_lock_grp
,
358 cp
->mc_bkt_lock_attr
);
360 (void) snprintf(lck_name
, sizeof (lck_name
), "%s.sync", cp
->mc_name
);
361 cp
->mc_sync_lock_grp_attr
= lck_grp_attr_alloc_init();
362 cp
->mc_sync_lock_grp
= lck_grp_alloc_init(lck_name
,
363 cp
->mc_sync_lock_grp_attr
);
364 cp
->mc_sync_lock_attr
= lck_attr_alloc_init();
365 lck_mtx_init(&cp
->mc_sync_lock
, cp
->mc_sync_lock_grp
,
366 cp
->mc_sync_lock_attr
);
368 for (btp
= mcache_bkttype
; chunksize
<= btp
->bt_minbuf
; btp
++)
371 cp
->cache_bkttype
= btp
;
374 * Initialize the CPU layer. Each per-CPU structure is aligned
375 * on the CPU cache line boundary to prevent false sharing.
377 for (c
= 0; c
< ncpu
; c
++) {
378 mcache_cpu_t
*ccp
= &cp
->mc_cpu
[c
];
380 VERIFY(IS_P2ALIGNED(ccp
, CPU_CACHE_SIZE
));
381 lck_mtx_init(&ccp
->cc_lock
, cp
->mc_cpu_lock_grp
,
382 cp
->mc_cpu_lock_attr
);
388 mcache_cache_bkt_enable(cp
);
390 /* TODO: dynamically create sysctl for stats */
393 LIST_INSERT_HEAD(&mcache_head
, cp
, mc_list
);
394 MCACHE_LIST_UNLOCK();
397 * If cache buckets are enabled and this is the first cache
398 * created, start the periodic cache update.
400 if (!(mcache_flags
& MCF_NOCPUCACHE
) && !mcache_updating
) {
402 mcache_update_timeout(NULL
);
404 if (cp
->mc_flags
& MCF_DEBUG
) {
405 printf("mcache_create: %s (%s) arg %p bufsize %lu align %lu "
406 "chunksize %lu bktsize %d\n", name
, need_zone
? "i" : "e",
407 arg
, bufsize
, cp
->mc_align
, chunksize
, btp
->bt_bktsize
);
413 zfree(mcache_zone
, buf
);
418 * Allocate one or more objects from a cache.
420 __private_extern__
unsigned int
421 mcache_alloc_ext(mcache_t
*cp
, mcache_obj_t
**list
, unsigned int num
, int wait
)
424 mcache_obj_t
**top
= &(*list
);
426 unsigned int need
= num
;
427 boolean_t nwretry
= FALSE
;
429 /* MCR_NOSLEEP and MCR_FAILOK are mutually exclusive */
430 VERIFY((wait
& (MCR_NOSLEEP
|MCR_FAILOK
)) != (MCR_NOSLEEP
|MCR_FAILOK
));
432 ASSERT(list
!= NULL
);
439 /* We may not always be running in the same CPU in case of retries */
440 ccp
= MCACHE_CPU(cp
);
442 MCACHE_LOCK(&ccp
->cc_lock
);
445 * If we have an object in the current CPU's filled bucket,
446 * chain the object to any previous objects and return if
447 * we've satisfied the number of requested objects.
449 if (ccp
->cc_objs
> 0) {
454 * Objects in the bucket are already linked together
455 * with the most recently freed object at the head of
456 * the list; grab as many objects as we can.
458 objs
= MIN((unsigned int)ccp
->cc_objs
, need
);
459 *list
= ccp
->cc_filled
->bkt_obj
[ccp
->cc_objs
- 1];
460 ccp
->cc_objs
-= objs
;
461 ccp
->cc_alloc
+= objs
;
463 tail
= ccp
->cc_filled
->bkt_obj
[ccp
->cc_objs
];
464 list
= &tail
->obj_next
;
467 /* If we got them all, return to caller */
468 if ((need
-= objs
) == 0) {
469 MCACHE_UNLOCK(&ccp
->cc_lock
);
470 if (cp
->mc_flags
& MCF_DEBUG
)
478 * The CPU's filled bucket is empty. If the previous filled
479 * bucket was full, exchange and try again.
481 if (ccp
->cc_pobjs
> 0) {
482 mcache_cpu_refill(ccp
, ccp
->cc_pfilled
, ccp
->cc_pobjs
);
487 * If the bucket layer is disabled, allocate from slab. This
488 * can happen either because MCF_NOCPUCACHE is set, or because
489 * the bucket layer is currently being resized.
491 if (ccp
->cc_bktsize
== 0)
495 * Both of the CPU's buckets are empty; try to get a full
496 * bucket from the bucket layer. Upon success, refill this
497 * CPU and place any empty bucket into the empty list.
499 bkt
= mcache_bkt_alloc(cp
, &cp
->mc_full
, NULL
);
501 if (ccp
->cc_pfilled
!= NULL
)
502 mcache_bkt_free(cp
, &cp
->mc_empty
,
504 mcache_cpu_refill(ccp
, bkt
, ccp
->cc_bktsize
);
509 * The bucket layer has no full buckets; allocate the
510 * object(s) directly from the slab layer.
514 MCACHE_UNLOCK(&ccp
->cc_lock
);
516 need
-= (*cp
->mc_slab_alloc
)(cp
->mc_private
, &list
, need
, wait
);
519 * If this is a blocking allocation, or if it is non-blocking and
520 * the cache's full bucket is non-empty, then retry the allocation.
523 if (!(wait
& MCR_NONBLOCKING
)) {
524 atomic_add_32(&cp
->mc_wretry_cnt
, 1);
526 } else if ((wait
& (MCR_NOSLEEP
| MCR_TRYHARD
)) &&
527 !mcache_bkt_isempty(cp
)) {
530 atomic_add_32(&cp
->mc_nwretry_cnt
, 1);
532 } else if (nwretry
) {
533 atomic_add_32(&cp
->mc_nwfail_cnt
, 1);
537 if (!(cp
->mc_flags
& MCF_DEBUG
))
541 if (cp
->mc_flags
& MCF_VERIFY
) {
542 mcache_obj_t
**o
= top
;
547 * Verify that the chain of objects have the same count as
548 * what we are about to report to the caller. Any mismatch
549 * here means that the object list is insanely broken and
550 * therefore we must panic.
556 if (n
!= (num
- need
)) {
557 panic("mcache_alloc_ext: %s cp %p corrupted list "
558 "(got %d actual %d)\n", cp
->mc_name
,
559 (void *)cp
, num
- need
, n
);
563 /* Invoke the slab layer audit callback if auditing is enabled */
564 if ((cp
->mc_flags
& MCF_AUDIT
) && cp
->mc_slab_audit
!= NULL
)
565 (*cp
->mc_slab_audit
)(cp
->mc_private
, *top
, TRUE
);
571 * Allocate a single object from a cache.
573 __private_extern__
void *
574 mcache_alloc(mcache_t
*cp
, int wait
)
578 (void) mcache_alloc_ext(cp
, &buf
, 1, wait
);
582 __private_extern__
void
583 mcache_waiter_inc(mcache_t
*cp
)
585 atomic_add_32(&cp
->mc_waiter_cnt
, 1);
588 __private_extern__
void
589 mcache_waiter_dec(mcache_t
*cp
)
591 atomic_add_32(&cp
->mc_waiter_cnt
, -1);
594 __private_extern__ boolean_t
595 mcache_bkt_isempty(mcache_t
*cp
)
598 * This isn't meant to accurately tell whether there are
599 * any full buckets in the cache; it is simply a way to
600 * obtain "hints" about the state of the cache.
602 return (cp
->mc_full
.bl_total
== 0);
606 * Notify the slab layer about an event.
609 mcache_notify(mcache_t
*cp
, u_int32_t event
)
611 if (cp
->mc_slab_notify
!= NULL
)
612 (*cp
->mc_slab_notify
)(cp
->mc_private
, event
);
616 * Purge the cache and disable its buckets.
619 mcache_purge(void *arg
)
623 mcache_bkt_purge(cp
);
625 * We cannot simply call mcache_cache_bkt_enable() from here as
626 * a bucket resize may be in flight and we would cause the CPU
627 * layers of the cache to point to different sizes. Therefore,
628 * we simply increment the enable count so that during the next
629 * periodic cache update the buckets can be reenabled.
631 lck_mtx_lock_spin(&cp
->mc_sync_lock
);
633 lck_mtx_unlock(&cp
->mc_sync_lock
);
637 __private_extern__ boolean_t
638 mcache_purge_cache(mcache_t
*cp
)
641 * Purging a cache that has no per-CPU caches or is already
642 * in the process of being purged is rather pointless.
644 if (cp
->mc_flags
& MCF_NOCPUCACHE
)
647 lck_mtx_lock_spin(&cp
->mc_sync_lock
);
648 if (cp
->mc_purge_cnt
> 0) {
649 lck_mtx_unlock(&cp
->mc_sync_lock
);
653 lck_mtx_unlock(&cp
->mc_sync_lock
);
655 mcache_dispatch(mcache_purge
, cp
);
661 * Free a single object to a cache.
663 __private_extern__
void
664 mcache_free(mcache_t
*cp
, void *buf
)
666 ((mcache_obj_t
*)buf
)->obj_next
= NULL
;
667 mcache_free_ext(cp
, (mcache_obj_t
*)buf
);
671 * Free one or more objects to a cache.
673 __private_extern__
void
674 mcache_free_ext(mcache_t
*cp
, mcache_obj_t
*list
)
676 mcache_cpu_t
*ccp
= MCACHE_CPU(cp
);
677 mcache_bkttype_t
*btp
;
681 /* Invoke the slab layer audit callback if auditing is enabled */
682 if ((cp
->mc_flags
& MCF_AUDIT
) && cp
->mc_slab_audit
!= NULL
)
683 (*cp
->mc_slab_audit
)(cp
->mc_private
, list
, FALSE
);
685 MCACHE_LOCK(&ccp
->cc_lock
);
688 * If there is space in the current CPU's filled bucket, put
689 * the object there and return once all objects are freed.
690 * Note the cast to unsigned integer takes care of the case
691 * where the bucket layer is disabled (when cc_objs is -1).
693 if ((unsigned int)ccp
->cc_objs
<
694 (unsigned int)ccp
->cc_bktsize
) {
696 * Reverse the list while we place the object into the
697 * bucket; this effectively causes the most recently
698 * freed object(s) to be reused during allocation.
700 nlist
= list
->obj_next
;
701 list
->obj_next
= (ccp
->cc_objs
== 0) ? NULL
:
702 ccp
->cc_filled
->bkt_obj
[ccp
->cc_objs
- 1];
703 ccp
->cc_filled
->bkt_obj
[ccp
->cc_objs
++] = list
;
706 if ((list
= nlist
) != NULL
)
709 /* We are done; return to caller */
710 MCACHE_UNLOCK(&ccp
->cc_lock
);
712 /* If there is a waiter below, notify it */
713 if (cp
->mc_waiter_cnt
> 0)
714 mcache_notify(cp
, MCN_RETRYALLOC
);
719 * The CPU's filled bucket is full. If the previous filled
720 * bucket was empty, exchange and try again.
722 if (ccp
->cc_pobjs
== 0) {
723 mcache_cpu_refill(ccp
, ccp
->cc_pfilled
, ccp
->cc_pobjs
);
728 * If the bucket layer is disabled, free to slab. This can
729 * happen either because MCF_NOCPUCACHE is set, or because
730 * the bucket layer is currently being resized.
732 if (ccp
->cc_bktsize
== 0)
736 * Both of the CPU's buckets are full; try to get an empty
737 * bucket from the bucket layer. Upon success, empty this
738 * CPU and place any full bucket into the full list.
740 bkt
= mcache_bkt_alloc(cp
, &cp
->mc_empty
, &btp
);
742 if (ccp
->cc_pfilled
!= NULL
)
743 mcache_bkt_free(cp
, &cp
->mc_full
,
745 mcache_cpu_refill(ccp
, bkt
, 0);
750 * We need an empty bucket to put our freed objects into
751 * but couldn't get an empty bucket from the bucket layer;
752 * attempt to allocate one. We do not want to block for
753 * allocation here, and if the bucket allocation fails
754 * we will simply fall through to the slab layer.
756 MCACHE_UNLOCK(&ccp
->cc_lock
);
757 bkt
= mcache_alloc(btp
->bt_cache
, MCR_NOSLEEP
);
758 MCACHE_LOCK(&ccp
->cc_lock
);
762 * We have an empty bucket, but since we drop the
763 * CPU lock above, the cache's bucket size may have
764 * changed. If so, free the bucket and try again.
766 if (ccp
->cc_bktsize
!= btp
->bt_bktsize
) {
767 MCACHE_UNLOCK(&ccp
->cc_lock
);
768 mcache_free(btp
->bt_cache
, bkt
);
769 MCACHE_LOCK(&ccp
->cc_lock
);
774 * We have an empty bucket of the right size;
775 * add it to the bucket layer and try again.
777 mcache_bkt_free(cp
, &cp
->mc_empty
, bkt
);
782 * The bucket layer has no empty buckets; free the
783 * object(s) directly to the slab layer.
787 MCACHE_UNLOCK(&ccp
->cc_lock
);
789 /* If there is a waiter below, notify it */
790 if (cp
->mc_waiter_cnt
> 0)
791 mcache_notify(cp
, MCN_RETRYALLOC
);
793 /* Advise the slab layer to purge the object(s) */
794 (*cp
->mc_slab_free
)(cp
->mc_private
, list
,
795 (cp
->mc_flags
& MCF_DEBUG
) || cp
->mc_purge_cnt
);
799 * Cache destruction routine.
801 __private_extern__
void
802 mcache_destroy(mcache_t
*cp
)
807 LIST_REMOVE(cp
, mc_list
);
808 MCACHE_LIST_UNLOCK();
810 mcache_bkt_purge(cp
);
813 * This cache is dead; there should be no further transaction.
814 * If it's still invoked, make sure that it induces a fault.
816 cp
->mc_slab_alloc
= NULL
;
817 cp
->mc_slab_free
= NULL
;
818 cp
->mc_slab_audit
= NULL
;
820 lck_attr_free(cp
->mc_bkt_lock_attr
);
821 lck_grp_free(cp
->mc_bkt_lock_grp
);
822 lck_grp_attr_free(cp
->mc_bkt_lock_grp_attr
);
824 lck_attr_free(cp
->mc_cpu_lock_attr
);
825 lck_grp_free(cp
->mc_cpu_lock_grp
);
826 lck_grp_attr_free(cp
->mc_cpu_lock_grp_attr
);
828 lck_attr_free(cp
->mc_sync_lock_attr
);
829 lck_grp_free(cp
->mc_sync_lock_grp
);
830 lck_grp_attr_free(cp
->mc_sync_lock_grp_attr
);
833 * TODO: We need to destroy the zone here, but cannot do it
834 * because there is no such way to achieve that. Until then
835 * the memory allocated for the zone structure is leaked.
836 * Once it is achievable, uncomment these lines:
838 * if (cp->mc_slab_zone != NULL) {
839 * zdestroy(cp->mc_slab_zone);
840 * cp->mc_slab_zone = NULL;
844 /* Get the original address since we're about to free it */
845 pbuf
= (void **)((intptr_t)cp
- sizeof (void *));
847 zfree(mcache_zone
, *pbuf
);
851 * Internal slab allocator used as a backend for simple caches. The current
852 * implementation uses the zone allocator for simplicity reasons.
855 mcache_slab_alloc(void *arg
, mcache_obj_t
***plist
, unsigned int num
, int wait
)
858 unsigned int need
= num
;
860 size_t rsize
= P2ROUNDUP(cp
->mc_bufsize
, sizeof (u_int64_t
));
861 u_int32_t flags
= cp
->mc_flags
;
862 void *buf
, *base
, **pbuf
;
863 mcache_obj_t
**list
= *plist
;
868 * The address of the object returned to the caller is an
869 * offset from the 64-bit aligned base address only if the
870 * cache's alignment requirement is neither 1 nor 8 bytes.
872 if (cp
->mc_align
!= 1 && cp
->mc_align
!= sizeof (u_int64_t
))
873 offset
= cp
->mc_align
;
876 if (!(wait
& MCR_NOSLEEP
))
877 buf
= zalloc(cp
->mc_slab_zone
);
879 buf
= zalloc_noblock(cp
->mc_slab_zone
);
884 /* Get the 64-bit aligned base address for this object */
885 base
= (void *)P2ROUNDUP((intptr_t)buf
+ sizeof (u_int64_t
),
889 * Wind back a pointer size from the aligned base and
890 * save the original address so we can free it later.
892 pbuf
= (void **)((intptr_t)base
- sizeof (void *));
896 * If auditing is enabled, patternize the contents of
897 * the buffer starting from the 64-bit aligned base to
898 * the end of the buffer; the length is rounded up to
899 * the nearest 64-bit multiply; this is because we use
900 * 64-bit memory access to set/check the pattern.
902 if (flags
& MCF_AUDIT
) {
903 VERIFY(((intptr_t)base
+ rsize
) <=
904 ((intptr_t)buf
+ cp
->mc_chunksize
));
905 mcache_set_pattern(MCACHE_FREE_PATTERN
, base
, rsize
);
909 * Fix up the object's address to fulfill the cache's
910 * alignment requirement (if needed) and return this
913 VERIFY(((intptr_t)base
+ offset
+ cp
->mc_bufsize
) <=
914 ((intptr_t)buf
+ cp
->mc_chunksize
));
915 *list
= (mcache_obj_t
*)((intptr_t)base
+ offset
);
917 (*list
)->obj_next
= NULL
;
918 list
= *plist
= &(*list
)->obj_next
;
920 /* If we got them all, return to mcache */
929 * Internal slab deallocator used as a backend for simple caches.
932 mcache_slab_free(void *arg
, mcache_obj_t
*list
, __unused boolean_t purged
)
937 size_t rsize
= P2ROUNDUP(cp
->mc_bufsize
, sizeof (u_int64_t
));
938 u_int32_t flags
= cp
->mc_flags
;
943 * The address of the object is an offset from a 64-bit
944 * aligned base address only if the cache's alignment
945 * requirement is neither 1 nor 8 bytes.
947 if (cp
->mc_align
!= 1 && cp
->mc_align
!= sizeof (u_int64_t
))
948 offset
= cp
->mc_align
;
951 nlist
= list
->obj_next
;
952 list
->obj_next
= NULL
;
954 /* Get the 64-bit aligned base address of this object */
955 base
= (void *)((intptr_t)list
- offset
);
956 VERIFY(IS_P2ALIGNED(base
, sizeof (u_int64_t
)));
958 /* Get the original address since we're about to free it */
959 pbuf
= (void **)((intptr_t)base
- sizeof (void *));
961 if (flags
& MCF_AUDIT
) {
962 VERIFY(((intptr_t)base
+ rsize
) <=
963 ((intptr_t)*pbuf
+ cp
->mc_chunksize
));
964 mcache_audit_free_verify(NULL
, base
, offset
, rsize
);
967 /* Free it to zone */
968 VERIFY(((intptr_t)base
+ offset
+ cp
->mc_bufsize
) <=
969 ((intptr_t)*pbuf
+ cp
->mc_chunksize
));
970 zfree(cp
->mc_slab_zone
, *pbuf
);
972 /* No more objects to free; return to mcache */
973 if ((list
= nlist
) == NULL
)
979 * Internal slab auditor for simple caches.
982 mcache_slab_audit(void *arg
, mcache_obj_t
*list
, boolean_t alloc
)
986 size_t rsize
= P2ROUNDUP(cp
->mc_bufsize
, sizeof (u_int64_t
));
990 * The address of the object returned to the caller is an
991 * offset from the 64-bit aligned base address only if the
992 * cache's alignment requirement is neither 1 nor 8 bytes.
994 if (cp
->mc_align
!= 1 && cp
->mc_align
!= sizeof (u_int64_t
))
995 offset
= cp
->mc_align
;
997 while (list
!= NULL
) {
998 mcache_obj_t
*next
= list
->obj_next
;
1000 /* Get the 64-bit aligned base address of this object */
1001 base
= (void *)((intptr_t)list
- offset
);
1002 VERIFY(IS_P2ALIGNED(base
, sizeof (u_int64_t
)));
1004 /* Get the original address */
1005 pbuf
= (void **)((intptr_t)base
- sizeof (void *));
1007 VERIFY(((intptr_t)base
+ rsize
) <=
1008 ((intptr_t)*pbuf
+ cp
->mc_chunksize
));
1011 mcache_set_pattern(MCACHE_FREE_PATTERN
, base
, rsize
);
1013 mcache_audit_free_verify_set(NULL
, base
, offset
, rsize
);
1015 list
= list
->obj_next
= next
;
1020 * Refill the CPU's filled bucket with bkt and save the previous one.
1023 mcache_cpu_refill(mcache_cpu_t
*ccp
, mcache_bkt_t
*bkt
, int objs
)
1025 ASSERT((ccp
->cc_filled
== NULL
&& ccp
->cc_objs
== -1) ||
1026 (ccp
->cc_filled
&& ccp
->cc_objs
+ objs
== ccp
->cc_bktsize
));
1027 ASSERT(ccp
->cc_bktsize
> 0);
1029 ccp
->cc_pfilled
= ccp
->cc_filled
;
1030 ccp
->cc_pobjs
= ccp
->cc_objs
;
1031 ccp
->cc_filled
= bkt
;
1032 ccp
->cc_objs
= objs
;
1036 * Allocate a bucket from the bucket layer.
1038 static mcache_bkt_t
*
1039 mcache_bkt_alloc(mcache_t
*cp
, mcache_bktlist_t
*blp
, mcache_bkttype_t
**btp
)
1043 if (!MCACHE_LOCK_TRY(&cp
->mc_bkt_lock
)) {
1045 * The bucket layer lock is held by another CPU; increase
1046 * the contention count so that we can later resize the
1047 * bucket size accordingly.
1049 MCACHE_LOCK(&cp
->mc_bkt_lock
);
1050 cp
->mc_bkt_contention
++;
1053 if ((bkt
= blp
->bl_list
) != NULL
) {
1054 blp
->bl_list
= bkt
->bkt_next
;
1055 if (--blp
->bl_total
< blp
->bl_min
)
1056 blp
->bl_min
= blp
->bl_total
;
1061 *btp
= cp
->cache_bkttype
;
1063 MCACHE_UNLOCK(&cp
->mc_bkt_lock
);
1069 * Free a bucket to the bucket layer.
1072 mcache_bkt_free(mcache_t
*cp
, mcache_bktlist_t
*blp
, mcache_bkt_t
*bkt
)
1074 MCACHE_LOCK(&cp
->mc_bkt_lock
);
1076 bkt
->bkt_next
= blp
->bl_list
;
1080 MCACHE_UNLOCK(&cp
->mc_bkt_lock
);
1084 * Enable the bucket layer of a cache.
1087 mcache_cache_bkt_enable(mcache_t
*cp
)
1092 if (cp
->mc_flags
& MCF_NOCPUCACHE
)
1095 for (cpu
= 0; cpu
< ncpu
; cpu
++) {
1096 ccp
= &cp
->mc_cpu
[cpu
];
1097 MCACHE_LOCK(&ccp
->cc_lock
);
1098 ccp
->cc_bktsize
= cp
->cache_bkttype
->bt_bktsize
;
1099 MCACHE_UNLOCK(&ccp
->cc_lock
);
1104 * Purge all buckets from a cache and disable its bucket layer.
1107 mcache_bkt_purge(mcache_t
*cp
)
1110 mcache_bkt_t
*bp
, *pbp
;
1111 mcache_bkttype_t
*btp
;
1112 int cpu
, objs
, pobjs
;
1114 for (cpu
= 0; cpu
< ncpu
; cpu
++) {
1115 ccp
= &cp
->mc_cpu
[cpu
];
1117 MCACHE_LOCK(&ccp
->cc_lock
);
1119 btp
= cp
->cache_bkttype
;
1120 bp
= ccp
->cc_filled
;
1121 pbp
= ccp
->cc_pfilled
;
1122 objs
= ccp
->cc_objs
;
1123 pobjs
= ccp
->cc_pobjs
;
1124 ccp
->cc_filled
= NULL
;
1125 ccp
->cc_pfilled
= NULL
;
1128 ccp
->cc_bktsize
= 0;
1130 MCACHE_UNLOCK(&ccp
->cc_lock
);
1133 mcache_bkt_destroy(cp
, btp
, bp
, objs
);
1135 mcache_bkt_destroy(cp
, btp
, pbp
, pobjs
);
1139 * Updating the working set back to back essentially sets
1140 * the working set size to zero, so everything is reapable.
1142 mcache_bkt_ws_update(cp
);
1143 mcache_bkt_ws_update(cp
);
1145 mcache_bkt_ws_reap(cp
);
1149 * Free one or more objects in the bucket to the slab layer,
1150 * and also free the bucket itself.
1153 mcache_bkt_destroy(mcache_t
*cp
, mcache_bkttype_t
*btp
, mcache_bkt_t
*bkt
,
1157 mcache_obj_t
*top
= bkt
->bkt_obj
[nobjs
- 1];
1159 if (cp
->mc_flags
& MCF_VERIFY
) {
1160 mcache_obj_t
*o
= top
;
1164 * Verify that the chain of objects in the bucket is
1165 * valid. Any mismatch here means a mistake when the
1166 * object(s) were freed to the CPU layer, so we panic.
1173 panic("mcache_bkt_destroy: %s cp %p corrupted "
1174 "list in bkt %p (nobjs %d actual %d)\n",
1175 cp
->mc_name
, (void *)cp
, (void *)bkt
,
1180 /* Advise the slab layer to purge the object(s) */
1181 (*cp
->mc_slab_free
)(cp
->mc_private
, top
,
1182 (cp
->mc_flags
& MCF_DEBUG
) || cp
->mc_purge_cnt
);
1184 mcache_free(btp
->bt_cache
, bkt
);
1188 * Update the bucket layer working set statistics.
1191 mcache_bkt_ws_update(mcache_t
*cp
)
1193 MCACHE_LOCK(&cp
->mc_bkt_lock
);
1195 cp
->mc_full
.bl_reaplimit
= cp
->mc_full
.bl_min
;
1196 cp
->mc_full
.bl_min
= cp
->mc_full
.bl_total
;
1197 cp
->mc_empty
.bl_reaplimit
= cp
->mc_empty
.bl_min
;
1198 cp
->mc_empty
.bl_min
= cp
->mc_empty
.bl_total
;
1200 MCACHE_UNLOCK(&cp
->mc_bkt_lock
);
1204 * Reap all buckets that are beyond the working set.
1207 mcache_bkt_ws_reap(mcache_t
*cp
)
1211 mcache_bkttype_t
*btp
;
1213 reap
= MIN(cp
->mc_full
.bl_reaplimit
, cp
->mc_full
.bl_min
);
1215 (bkt
= mcache_bkt_alloc(cp
, &cp
->mc_full
, &btp
)) != NULL
)
1216 mcache_bkt_destroy(cp
, btp
, bkt
, btp
->bt_bktsize
);
1218 reap
= MIN(cp
->mc_empty
.bl_reaplimit
, cp
->mc_empty
.bl_min
);
1220 (bkt
= mcache_bkt_alloc(cp
, &cp
->mc_empty
, &btp
)) != NULL
)
1221 mcache_bkt_destroy(cp
, btp
, bkt
, 0);
1225 mcache_reap_timeout(void *arg
)
1227 volatile UInt32
*flag
= arg
;
1229 ASSERT(flag
== &mcache_reaping
);
1235 mcache_reap_done(void *flag
)
1237 timeout(mcache_reap_timeout
, flag
, mcache_reap_interval
);
1241 mcache_reap_start(void *arg
)
1245 ASSERT(flag
== &mcache_reaping
);
1247 mcache_applyall(mcache_cache_reap
);
1248 mcache_dispatch(mcache_reap_done
, flag
);
1251 __private_extern__
void
1254 UInt32
*flag
= &mcache_reaping
;
1256 if (mcache_llock_owner
== current_thread() ||
1257 !OSCompareAndSwap(0, 1, flag
))
1260 mcache_dispatch(mcache_reap_start
, flag
);
1264 mcache_cache_reap(mcache_t
*cp
)
1266 mcache_bkt_ws_reap(cp
);
1270 * Performs period maintenance on a cache.
1273 mcache_cache_update(mcache_t
*cp
)
1275 int need_bkt_resize
= 0;
1276 int need_bkt_reenable
= 0;
1278 lck_mtx_assert(mcache_llock
, LCK_MTX_ASSERT_OWNED
);
1280 mcache_bkt_ws_update(cp
);
1283 * Cache resize and post-purge reenable are mutually exclusive.
1284 * If the cache was previously purged, there is no point of
1285 * increasing the bucket size as there was an indication of
1286 * memory pressure on the system.
1288 lck_mtx_lock_spin(&cp
->mc_sync_lock
);
1289 if (!(cp
->mc_flags
& MCF_NOCPUCACHE
) && cp
->mc_enable_cnt
)
1290 need_bkt_reenable
= 1;
1291 lck_mtx_unlock(&cp
->mc_sync_lock
);
1293 MCACHE_LOCK(&cp
->mc_bkt_lock
);
1295 * If the contention count is greater than the threshold, and if
1296 * we are not already at the maximum bucket size, increase it.
1297 * Otherwise, if this cache was previously purged by the user
1298 * then we simply reenable it.
1300 if ((unsigned int)cp
->mc_chunksize
< cp
->cache_bkttype
->bt_maxbuf
&&
1301 (int)(cp
->mc_bkt_contention
- cp
->mc_bkt_contention_prev
) >
1302 mcache_bkt_contention
&& !need_bkt_reenable
)
1303 need_bkt_resize
= 1;
1305 cp
->mc_bkt_contention_prev
= cp
->mc_bkt_contention
;
1306 MCACHE_UNLOCK(&cp
->mc_bkt_lock
);
1308 if (need_bkt_resize
)
1309 mcache_dispatch(mcache_cache_bkt_resize
, cp
);
1310 else if (need_bkt_reenable
)
1311 mcache_dispatch(mcache_cache_enable
, cp
);
1315 * Recompute a cache's bucket size. This is an expensive operation
1316 * and should not be done frequently; larger buckets provide for a
1317 * higher transfer rate with the bucket while smaller buckets reduce
1318 * the memory consumption.
1321 mcache_cache_bkt_resize(void *arg
)
1324 mcache_bkttype_t
*btp
= cp
->cache_bkttype
;
1326 if ((unsigned int)cp
->mc_chunksize
< btp
->bt_maxbuf
) {
1327 mcache_bkt_purge(cp
);
1330 * Upgrade to the next bucket type with larger bucket size;
1331 * temporarily set the previous contention snapshot to a
1332 * negative number to prevent unnecessary resize request.
1334 MCACHE_LOCK(&cp
->mc_bkt_lock
);
1335 cp
->cache_bkttype
= ++btp
;
1336 cp
->mc_bkt_contention_prev
= cp
->mc_bkt_contention
+ INT_MAX
;
1337 MCACHE_UNLOCK(&cp
->mc_bkt_lock
);
1339 mcache_cache_enable(cp
);
1344 * Reenable a previously disabled cache due to purge.
1347 mcache_cache_enable(void *arg
)
1351 lck_mtx_lock_spin(&cp
->mc_sync_lock
);
1352 cp
->mc_purge_cnt
= 0;
1353 cp
->mc_enable_cnt
= 0;
1354 lck_mtx_unlock(&cp
->mc_sync_lock
);
1356 mcache_cache_bkt_enable(cp
);
1360 mcache_update_timeout(__unused
void *arg
)
1362 timeout(mcache_update
, NULL
, mcache_reap_interval
);
1366 mcache_update(__unused
void *arg
)
1368 mcache_applyall(mcache_cache_update
);
1369 mcache_dispatch(mcache_update_timeout
, NULL
);
1373 mcache_applyall(void (*func
)(mcache_t
*))
1378 LIST_FOREACH(cp
, &mcache_head
, mc_list
) {
1381 MCACHE_LIST_UNLOCK();
1385 mcache_dispatch(void (*func
)(void *), void *arg
)
1387 ASSERT(func
!= NULL
);
1388 timeout(func
, arg
, hz
/1000);
1391 __private_extern__
void
1392 mcache_buffer_log(mcache_audit_t
*mca
, void *addr
, mcache_t
*cp
)
1394 mca
->mca_addr
= addr
;
1395 mca
->mca_cache
= cp
;
1396 mca
->mca_pthread
= mca
->mca_thread
;
1397 mca
->mca_thread
= current_thread();
1398 bcopy(mca
->mca_stack
, mca
->mca_pstack
, sizeof (mca
->mca_pstack
));
1399 mca
->mca_pdepth
= mca
->mca_depth
;
1400 bzero(mca
->mca_stack
, sizeof (mca
->mca_stack
));
1401 mca
->mca_depth
= OSBacktrace(mca
->mca_stack
, MCACHE_STACK_DEPTH
);
1404 __private_extern__
void
1405 mcache_set_pattern(u_int64_t pattern
, void *buf_arg
, size_t size
)
1407 u_int64_t
*buf_end
= (u_int64_t
*)((char *)buf_arg
+ size
);
1408 u_int64_t
*buf
= (u_int64_t
*)buf_arg
;
1410 VERIFY(IS_P2ALIGNED(buf_arg
, sizeof (u_int64_t
)));
1411 VERIFY(IS_P2ALIGNED(size
, sizeof (u_int64_t
)));
1413 while (buf
< buf_end
)
1417 __private_extern__
void *
1418 mcache_verify_pattern(u_int64_t pattern
, void *buf_arg
, size_t size
)
1420 u_int64_t
*buf_end
= (u_int64_t
*)((char *)buf_arg
+ size
);
1423 VERIFY(IS_P2ALIGNED(buf_arg
, sizeof (u_int64_t
)));
1424 VERIFY(IS_P2ALIGNED(size
, sizeof (u_int64_t
)));
1426 for (buf
= buf_arg
; buf
< buf_end
; buf
++) {
1427 if (*buf
!= pattern
)
1433 __private_extern__
void *
1434 mcache_verify_set_pattern(u_int64_t old
, u_int64_t
new, void *buf_arg
,
1437 u_int64_t
*buf_end
= (u_int64_t
*)((char *)buf_arg
+ size
);
1440 VERIFY(IS_P2ALIGNED(buf_arg
, sizeof (u_int64_t
)));
1441 VERIFY(IS_P2ALIGNED(size
, sizeof (u_int64_t
)));
1443 for (buf
= buf_arg
; buf
< buf_end
; buf
++) {
1445 mcache_set_pattern(old
, buf_arg
,
1446 (uintptr_t)buf
- (uintptr_t)buf_arg
);
1454 __private_extern__
void
1455 mcache_audit_free_verify(mcache_audit_t
*mca
, void *base
, size_t offset
,
1462 addr
= (void *)((uintptr_t)base
+ offset
);
1463 next
= ((mcache_obj_t
*)addr
)->obj_next
;
1465 /* For the "obj_next" pointer in the buffer */
1466 oaddr64
= (u_int64_t
*)P2ROUNDDOWN(addr
, sizeof (u_int64_t
));
1467 *oaddr64
= MCACHE_FREE_PATTERN
;
1469 if ((oaddr64
= mcache_verify_pattern(MCACHE_FREE_PATTERN
,
1470 (caddr_t
)base
, size
)) != NULL
) {
1471 mcache_audit_panic(mca
, addr
, (caddr_t
)oaddr64
- (caddr_t
)base
,
1472 (int64_t)MCACHE_FREE_PATTERN
, (int64_t)*oaddr64
);
1475 ((mcache_obj_t
*)addr
)->obj_next
= next
;
1478 __private_extern__
void
1479 mcache_audit_free_verify_set(mcache_audit_t
*mca
, void *base
, size_t offset
,
1486 addr
= (void *)((uintptr_t)base
+ offset
);
1487 next
= ((mcache_obj_t
*)addr
)->obj_next
;
1489 /* For the "obj_next" pointer in the buffer */
1490 oaddr64
= (u_int64_t
*)P2ROUNDDOWN(addr
, sizeof (u_int64_t
));
1491 *oaddr64
= MCACHE_FREE_PATTERN
;
1493 if ((oaddr64
= mcache_verify_set_pattern(MCACHE_FREE_PATTERN
,
1494 MCACHE_UNINITIALIZED_PATTERN
, (caddr_t
)base
, size
)) != NULL
) {
1495 mcache_audit_panic(mca
, addr
, (caddr_t
)oaddr64
- (caddr_t
)base
,
1496 (int64_t)MCACHE_FREE_PATTERN
, (int64_t)*oaddr64
);
1499 ((mcache_obj_t
*)addr
)->obj_next
= next
;
1504 __private_extern__
char *
1505 mcache_dump_mca(mcache_audit_t
*mca
)
1507 if (mca_dump_buf
== NULL
)
1510 snprintf(mca_dump_buf
, DUMP_MCA_BUF_SIZE
,
1511 "mca %p: addr %p, cache %p (%s)\n"
1512 "last transaction; thread %p, saved PC stack (%d deep):\n"
1513 "\t%p, %p, %p, %p, %p, %p, %p, %p\n"
1514 "\t%p, %p, %p, %p, %p, %p, %p, %p\n"
1515 "previous transaction; thread %p, saved PC stack (%d deep):\n"
1516 "\t%p, %p, %p, %p, %p, %p, %p, %p\n"
1517 "\t%p, %p, %p, %p, %p, %p, %p, %p\n",
1518 mca
, mca
->mca_addr
, mca
->mca_cache
,
1519 mca
->mca_cache
? mca
->mca_cache
->mc_name
: "?",
1520 mca
->mca_thread
, mca
->mca_depth
,
1521 mca
->mca_stack
[0], mca
->mca_stack
[1], mca
->mca_stack
[2],
1522 mca
->mca_stack
[3], mca
->mca_stack
[4], mca
->mca_stack
[5],
1523 mca
->mca_stack
[6], mca
->mca_stack
[7], mca
->mca_stack
[8],
1524 mca
->mca_stack
[9], mca
->mca_stack
[10], mca
->mca_stack
[11],
1525 mca
->mca_stack
[12], mca
->mca_stack
[13], mca
->mca_stack
[14],
1527 mca
->mca_pthread
, mca
->mca_pdepth
,
1528 mca
->mca_pstack
[0], mca
->mca_pstack
[1], mca
->mca_pstack
[2],
1529 mca
->mca_pstack
[3], mca
->mca_pstack
[4], mca
->mca_pstack
[5],
1530 mca
->mca_pstack
[6], mca
->mca_pstack
[7], mca
->mca_pstack
[8],
1531 mca
->mca_pstack
[9], mca
->mca_pstack
[10], mca
->mca_pstack
[11],
1532 mca
->mca_pstack
[12], mca
->mca_pstack
[13], mca
->mca_pstack
[14],
1533 mca
->mca_pstack
[15]);
1535 return (mca_dump_buf
);
1538 __private_extern__
void
1539 mcache_audit_panic(mcache_audit_t
*mca
, void *addr
, size_t offset
,
1540 int64_t expected
, int64_t got
)
1543 panic("mcache_audit: buffer %p modified after free at "
1544 "offset 0x%lx (0x%llx instead of 0x%llx)\n", addr
,
1545 offset
, got
, expected
);
1549 panic("mcache_audit: buffer %p modified after free at offset 0x%lx "
1550 "(0x%llx instead of 0x%llx)\n%s\n",
1551 addr
, offset
, got
, expected
, mcache_dump_mca(mca
));
1555 __private_extern__
int
1556 assfail(const char *a
, const char *f
, int l
)
1558 panic("assertion failed: %s, file: %s, line: %d", a
, f
, l
);