]> git.saurik.com Git - apple/xnu.git/blob - osfmk/kern/thread.c
xnu-7195.60.75.tar.gz
[apple/xnu.git] / osfmk / kern / thread.c
1 /*
2 * Copyright (c) 2000-2020 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*
29 * @OSF_FREE_COPYRIGHT@
30 */
31 /*
32 * Mach Operating System
33 * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University
34 * All Rights Reserved.
35 *
36 * Permission to use, copy, modify and distribute this software and its
37 * documentation is hereby granted, provided that both the copyright
38 * notice and this permission notice appear in all copies of the
39 * software, derivative works or modified versions, and any portions
40 * thereof, and that both notices appear in supporting documentation.
41 *
42 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
43 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
44 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
45 *
46 * Carnegie Mellon requests users of this software to return to
47 *
48 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
49 * School of Computer Science
50 * Carnegie Mellon University
51 * Pittsburgh PA 15213-3890
52 *
53 * any improvements or extensions that they make and grant Carnegie Mellon
54 * the rights to redistribute these changes.
55 */
56 /*
57 */
58 /*
59 * File: kern/thread.c
60 * Author: Avadis Tevanian, Jr., Michael Wayne Young, David Golub
61 * Date: 1986
62 *
63 * Thread management primitives implementation.
64 */
65 /*
66 * Copyright (c) 1993 The University of Utah and
67 * the Computer Systems Laboratory (CSL). All rights reserved.
68 *
69 * Permission to use, copy, modify and distribute this software and its
70 * documentation is hereby granted, provided that both the copyright
71 * notice and this permission notice appear in all copies of the
72 * software, derivative works or modified versions, and any portions
73 * thereof, and that both notices appear in supporting documentation.
74 *
75 * THE UNIVERSITY OF UTAH AND CSL ALLOW FREE USE OF THIS SOFTWARE IN ITS "AS
76 * IS" CONDITION. THE UNIVERSITY OF UTAH AND CSL DISCLAIM ANY LIABILITY OF
77 * ANY KIND FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
78 *
79 * CSL requests users of this software to return to csl-dist@cs.utah.edu any
80 * improvements that they make and grant CSL redistribution rights.
81 *
82 */
83
84 #include <mach/mach_types.h>
85 #include <mach/boolean.h>
86 #include <mach/policy.h>
87 #include <mach/thread_info.h>
88 #include <mach/thread_special_ports.h>
89 #include <mach/thread_status.h>
90 #include <mach/time_value.h>
91 #include <mach/vm_param.h>
92
93 #include <machine/thread.h>
94 #include <machine/pal_routines.h>
95 #include <machine/limits.h>
96
97 #include <kern/kern_types.h>
98 #include <kern/kalloc.h>
99 #include <kern/cpu_data.h>
100 #include <kern/counters.h>
101 #include <kern/extmod_statistics.h>
102 #include <kern/ipc_mig.h>
103 #include <kern/ipc_tt.h>
104 #include <kern/mach_param.h>
105 #include <kern/machine.h>
106 #include <kern/misc_protos.h>
107 #include <kern/processor.h>
108 #include <kern/queue.h>
109 #include <kern/sched.h>
110 #include <kern/sched_prim.h>
111 #include <kern/sync_lock.h>
112 #include <kern/syscall_subr.h>
113 #include <kern/task.h>
114 #include <kern/thread.h>
115 #include <kern/thread_group.h>
116 #include <kern/coalition.h>
117 #include <kern/host.h>
118 #include <kern/zalloc.h>
119 #include <kern/assert.h>
120 #include <kern/exc_resource.h>
121 #include <kern/exc_guard.h>
122 #include <kern/telemetry.h>
123 #include <kern/policy_internal.h>
124 #include <kern/turnstile.h>
125 #include <kern/sched_clutch.h>
126
127 #include <corpses/task_corpse.h>
128 #if KPC
129 #include <kern/kpc.h>
130 #endif
131
132 #if MONOTONIC
133 #include <kern/monotonic.h>
134 #include <machine/monotonic.h>
135 #endif /* MONOTONIC */
136
137 #include <ipc/ipc_kmsg.h>
138 #include <ipc/ipc_port.h>
139 #include <bank/bank_types.h>
140
141 #include <vm/vm_kern.h>
142 #include <vm/vm_pageout.h>
143
144 #include <sys/kdebug.h>
145 #include <sys/bsdtask_info.h>
146 #include <mach/sdt.h>
147 #include <san/kasan.h>
148 #if CONFIG_KSANCOV
149 #include <san/ksancov.h>
150 #endif
151
152 #include <stdatomic.h>
153
154 #if defined(HAS_APPLE_PAC)
155 #include <ptrauth.h>
156 #include <arm64/proc_reg.h>
157 #endif /* defined(HAS_APPLE_PAC) */
158
159 /*
160 * Exported interfaces
161 */
162 #include <mach/task_server.h>
163 #include <mach/thread_act_server.h>
164 #include <mach/mach_host_server.h>
165 #include <mach/host_priv_server.h>
166 #include <mach/mach_voucher_server.h>
167 #include <kern/policy_internal.h>
168
169 #if CONFIG_MACF
170 #include <security/mac_mach_internal.h>
171 #endif
172
173 LCK_GRP_DECLARE(thread_lck_grp, "thread");
174
175 ZONE_DECLARE(thread_zone, "threads", sizeof(struct thread), ZC_ZFREE_CLEARMEM);
176
177 ZONE_DECLARE(thread_qos_override_zone, "thread qos override",
178 sizeof(struct thread_qos_override), ZC_NOENCRYPT);
179
180 static struct mpsc_daemon_queue thread_stack_queue;
181 static struct mpsc_daemon_queue thread_terminate_queue;
182 static struct mpsc_daemon_queue thread_deallocate_queue;
183 static struct mpsc_daemon_queue thread_exception_queue;
184
185 decl_simple_lock_data(static, crashed_threads_lock);
186 static queue_head_t crashed_threads_queue;
187
188 struct thread_exception_elt {
189 struct mpsc_queue_chain link;
190 exception_type_t exception_type;
191 task_t exception_task;
192 thread_t exception_thread;
193 };
194
195 static SECURITY_READ_ONLY_LATE(struct thread) thread_template = {
196 #if MACH_ASSERT
197 .thread_magic = THREAD_MAGIC,
198 #endif /* MACH_ASSERT */
199 .wait_result = THREAD_WAITING,
200 .options = THREAD_ABORTSAFE,
201 .state = TH_WAIT | TH_UNINT,
202 .th_sched_bucket = TH_BUCKET_RUN,
203 .base_pri = BASEPRI_DEFAULT,
204 .realtime.deadline = UINT64_MAX,
205 .last_made_runnable_time = THREAD_NOT_RUNNABLE,
206 .last_basepri_change_time = THREAD_NOT_RUNNABLE,
207 #if defined(CONFIG_SCHED_TIMESHARE_CORE)
208 .pri_shift = INT8_MAX,
209 #endif
210 /* timers are initialized in thread_bootstrap */
211 };
212
213 static struct thread init_thread;
214 static void thread_deallocate_enqueue(thread_t thread);
215 static void thread_deallocate_complete(thread_t thread);
216
217 #ifdef MACH_BSD
218 extern void proc_exit(void *);
219 extern mach_exception_data_type_t proc_encode_exit_exception_code(void *);
220 extern uint64_t get_dispatchqueue_offset_from_proc(void *);
221 extern uint64_t get_return_to_kernel_offset_from_proc(void *p);
222 extern int proc_selfpid(void);
223 extern void proc_name(int, char*, int);
224 extern char * proc_name_address(void *p);
225 #endif /* MACH_BSD */
226
227 extern int disable_exc_resource;
228 extern int audio_active;
229 extern int debug_task;
230 int thread_max = CONFIG_THREAD_MAX; /* Max number of threads */
231 int task_threadmax = CONFIG_THREAD_MAX;
232
233 static uint64_t thread_unique_id = 100;
234
235 struct _thread_ledger_indices thread_ledgers = { .cpu_time = -1 };
236 static ledger_template_t thread_ledger_template = NULL;
237 static void init_thread_ledgers(void);
238
239 #if CONFIG_JETSAM
240 void jetsam_on_ledger_cpulimit_exceeded(void);
241 #endif
242
243 extern int task_thread_soft_limit;
244 extern int exc_via_corpse_forking;
245
246 #if DEVELOPMENT || DEBUG
247 extern int exc_resource_threads_enabled;
248 #endif /* DEVELOPMENT || DEBUG */
249
250 /*
251 * Level (in terms of percentage of the limit) at which the CPU usage monitor triggers telemetry.
252 *
253 * (ie when any thread's CPU consumption exceeds 70% of the limit, start taking user
254 * stacktraces, aka micro-stackshots)
255 */
256 #define CPUMON_USTACKSHOTS_TRIGGER_DEFAULT_PCT 70
257
258 /* Percentage. Level at which we start gathering telemetry. */
259 static TUNABLE(uint8_t, cpumon_ustackshots_trigger_pct,
260 "cpumon_ustackshots_trigger_pct", CPUMON_USTACKSHOTS_TRIGGER_DEFAULT_PCT);
261 void __attribute__((noinline)) SENDING_NOTIFICATION__THIS_THREAD_IS_CONSUMING_TOO_MUCH_CPU(void);
262 #if DEVELOPMENT || DEBUG
263 void __attribute__((noinline)) SENDING_NOTIFICATION__TASK_HAS_TOO_MANY_THREADS(task_t, int);
264 #endif /* DEVELOPMENT || DEBUG */
265
266 /*
267 * The smallest interval over which we support limiting CPU consumption is 1ms
268 */
269 #define MINIMUM_CPULIMIT_INTERVAL_MS 1
270
271 os_refgrp_decl(static, thread_refgrp, "thread", NULL);
272
273 static inline void
274 init_thread_from_template(thread_t thread)
275 {
276 /*
277 * In general, struct thread isn't trivially-copyable, since it may
278 * contain pointers to thread-specific state. This may be enforced at
279 * compile time on architectures that store authed + diversified
280 * pointers in machine_thread.
281 *
282 * In this specific case, where we're initializing a new thread from a
283 * thread_template, we know all diversified pointers are NULL; these are
284 * safe to bitwise copy.
285 */
286 #pragma clang diagnostic push
287 #pragma clang diagnostic ignored "-Wnontrivial-memaccess"
288 memcpy(thread, &thread_template, sizeof(*thread));
289 #pragma clang diagnostic pop
290 }
291
292 thread_t
293 thread_bootstrap(void)
294 {
295 /*
296 * Fill in a template thread for fast initialization.
297 */
298 timer_init(&thread_template.user_timer);
299 timer_init(&thread_template.system_timer);
300 timer_init(&thread_template.ptime);
301 timer_init(&thread_template.runnable_timer);
302
303 init_thread_from_template(&init_thread);
304 /* fiddle with init thread to skip asserts in set_sched_pri */
305 init_thread.sched_pri = MAXPRI_KERNEL;
306 #if DEBUG || DEVELOPMENT
307 queue_init(&init_thread.t_temp_alloc_list);
308 #endif /* DEBUG || DEVELOPMENT */
309
310 return &init_thread;
311 }
312
313 void
314 thread_machine_init_template(void)
315 {
316 machine_thread_template_init(&thread_template);
317 }
318
319 void
320 thread_init(void)
321 {
322 stack_init();
323
324 thread_policy_init();
325
326 /*
327 * Initialize any machine-dependent
328 * per-thread structures necessary.
329 */
330 machine_thread_init();
331
332 init_thread_ledgers();
333 }
334
335 boolean_t
336 thread_is_active(thread_t thread)
337 {
338 return thread->active;
339 }
340
341 void
342 thread_corpse_continue(void)
343 {
344 thread_t thread = current_thread();
345
346 thread_terminate_internal(thread);
347
348 /*
349 * Handle the thread termination directly
350 * here instead of returning to userspace.
351 */
352 assert(thread->active == FALSE);
353 thread_ast_clear(thread, AST_APC);
354 thread_apc_ast(thread);
355
356 panic("thread_corpse_continue");
357 /*NOTREACHED*/
358 }
359
360 __dead2
361 static void
362 thread_terminate_continue(void)
363 {
364 panic("thread_terminate_continue");
365 /*NOTREACHED*/
366 }
367
368 /*
369 * thread_terminate_self:
370 */
371 void
372 thread_terminate_self(void)
373 {
374 thread_t thread = current_thread();
375 task_t task;
376 int threadcnt;
377
378 if (thread->t_temp_alloc_count) {
379 kheap_temp_leak_panic(thread);
380 }
381
382 pal_thread_terminate_self(thread);
383
384 DTRACE_PROC(lwp__exit);
385
386 thread_mtx_lock(thread);
387
388 ipc_thread_disable(thread);
389
390 thread_mtx_unlock(thread);
391
392 thread_sched_call(thread, NULL);
393
394 spl_t s = splsched();
395 thread_lock(thread);
396
397 thread_depress_abort_locked(thread);
398
399 thread_unlock(thread);
400 splx(s);
401
402 #if CONFIG_TASKWATCH
403 thead_remove_taskwatch(thread);
404 #endif /* CONFIG_TASKWATCH */
405
406 work_interval_thread_terminate(thread);
407
408 thread_mtx_lock(thread);
409
410 thread_policy_reset(thread);
411
412 thread_mtx_unlock(thread);
413
414 assert(thread->th_work_interval == NULL);
415
416 bank_swap_thread_bank_ledger(thread, NULL);
417
418 if (kdebug_enable && bsd_hasthreadname(thread->uthread)) {
419 char threadname[MAXTHREADNAMESIZE];
420 bsd_getthreadname(thread->uthread, threadname);
421 kernel_debug_string_simple(TRACE_STRING_THREADNAME_PREV, threadname);
422 }
423
424 task = thread->task;
425 uthread_cleanup(task, thread->uthread, task->bsd_info);
426
427 if (kdebug_enable && task->bsd_info && !task_is_exec_copy(task)) {
428 /* trace out pid before we sign off */
429 long dbg_arg1 = 0;
430 long dbg_arg2 = 0;
431
432 kdbg_trace_data(thread->task->bsd_info, &dbg_arg1, &dbg_arg2);
433 #if MONOTONIC
434 if (kdebug_debugid_enabled(DBG_MT_INSTRS_CYCLES_THR_EXIT)) {
435 uint64_t counts[MT_CORE_NFIXED];
436 uint64_t thread_user_time;
437 uint64_t thread_system_time;
438 thread_user_time = timer_grab(&thread->user_timer);
439 thread_system_time = timer_grab(&thread->system_timer);
440 mt_fixed_thread_counts(thread, counts);
441 KDBG_RELEASE(DBG_MT_INSTRS_CYCLES_THR_EXIT,
442 #ifdef MT_CORE_INSTRS
443 counts[MT_CORE_INSTRS],
444 #else /* defined(MT_CORE_INSTRS) */
445 0,
446 #endif/* !defined(MT_CORE_INSTRS) */
447 counts[MT_CORE_CYCLES],
448 thread_system_time, thread_user_time);
449 }
450 #endif/* MONOTONIC */
451 KDBG_RELEASE(TRACE_DATA_THREAD_TERMINATE_PID, dbg_arg1, dbg_arg2);
452 }
453
454 /*
455 * After this subtraction, this thread should never access
456 * task->bsd_info unless it got 0 back from the os_atomic_dec. It
457 * could be racing with other threads to be the last thread in the
458 * process, and the last thread in the process will tear down the proc
459 * structure and zero-out task->bsd_info.
460 */
461 threadcnt = os_atomic_dec(&task->active_thread_count, relaxed);
462
463 /*
464 * If we are the last thread to terminate and the task is
465 * associated with a BSD process, perform BSD process exit.
466 */
467 if (threadcnt == 0 && task->bsd_info != NULL && !task_is_exec_copy(task)) {
468 mach_exception_data_type_t subcode = 0;
469 if (kdebug_enable) {
470 /* since we're the last thread in this process, trace out the command name too */
471 long args[4] = {};
472 kdbg_trace_string(thread->task->bsd_info, &args[0], &args[1], &args[2], &args[3]);
473 #if MONOTONIC
474 if (kdebug_debugid_enabled(DBG_MT_INSTRS_CYCLES_PROC_EXIT)) {
475 uint64_t counts[MT_CORE_NFIXED];
476 uint64_t task_user_time;
477 uint64_t task_system_time;
478 mt_fixed_task_counts(task, counts);
479 /* since the thread time is not yet added to the task */
480 task_user_time = task->total_user_time + timer_grab(&thread->user_timer);
481 task_system_time = task->total_system_time + timer_grab(&thread->system_timer);
482 KDBG_RELEASE((DBG_MT_INSTRS_CYCLES_PROC_EXIT),
483 #ifdef MT_CORE_INSTRS
484 counts[MT_CORE_INSTRS],
485 #else /* defined(MT_CORE_INSTRS) */
486 0,
487 #endif/* !defined(MT_CORE_INSTRS) */
488 counts[MT_CORE_CYCLES],
489 task_system_time, task_user_time);
490 }
491 #endif/* MONOTONIC */
492 KDBG_RELEASE(TRACE_STRING_PROC_EXIT, args[0], args[1], args[2], args[3]);
493 }
494
495 /* Get the exit reason before proc_exit */
496 subcode = proc_encode_exit_exception_code(task->bsd_info);
497 proc_exit(task->bsd_info);
498 /*
499 * if there is crash info in task
500 * then do the deliver action since this is
501 * last thread for this task.
502 */
503 if (task->corpse_info) {
504 task_deliver_crash_notification(task, current_thread(), EXC_RESOURCE, subcode);
505 }
506 }
507
508 if (threadcnt == 0) {
509 task_lock(task);
510 if (task_is_a_corpse_fork(task)) {
511 thread_wakeup((event_t)&task->active_thread_count);
512 }
513 task_unlock(task);
514 }
515
516 uthread_cred_free(thread->uthread);
517
518 s = splsched();
519 thread_lock(thread);
520
521 /*
522 * Ensure that the depress timer is no longer enqueued,
523 * so the timer (stored in the thread) can be safely deallocated
524 *
525 * TODO: build timer_call_cancel_wait
526 */
527
528 assert((thread->sched_flags & TH_SFLAG_DEPRESSED_MASK) == 0);
529
530 uint32_t delay_us = 1;
531
532 while (thread->depress_timer_active > 0) {
533 thread_unlock(thread);
534 splx(s);
535
536 delay(delay_us++);
537
538 if (delay_us > USEC_PER_SEC) {
539 panic("depress timer failed to inactivate!"
540 "thread: %p depress_timer_active: %d",
541 thread, thread->depress_timer_active);
542 }
543
544 s = splsched();
545 thread_lock(thread);
546 }
547
548 /*
549 * Cancel wait timer, and wait for
550 * concurrent expirations.
551 */
552 if (thread->wait_timer_is_set) {
553 thread->wait_timer_is_set = FALSE;
554
555 if (timer_call_cancel(&thread->wait_timer)) {
556 thread->wait_timer_active--;
557 }
558 }
559
560 delay_us = 1;
561
562 while (thread->wait_timer_active > 0) {
563 thread_unlock(thread);
564 splx(s);
565
566 delay(delay_us++);
567
568 if (delay_us > USEC_PER_SEC) {
569 panic("wait timer failed to inactivate!"
570 "thread: %p wait_timer_active: %d",
571 thread, thread->wait_timer_active);
572 }
573
574 s = splsched();
575 thread_lock(thread);
576 }
577
578 /*
579 * If there is a reserved stack, release it.
580 */
581 if (thread->reserved_stack != 0) {
582 stack_free_reserved(thread);
583 thread->reserved_stack = 0;
584 }
585
586 /*
587 * Mark thread as terminating, and block.
588 */
589 thread->state |= TH_TERMINATE;
590 thread_mark_wait_locked(thread, THREAD_UNINT);
591
592 assert((thread->sched_flags & TH_SFLAG_WAITQ_PROMOTED) == 0);
593 assert((thread->sched_flags & TH_SFLAG_RW_PROMOTED) == 0);
594 assert((thread->sched_flags & TH_SFLAG_EXEC_PROMOTED) == 0);
595 assert((thread->sched_flags & TH_SFLAG_PROMOTED) == 0);
596 assert((thread->sched_flags & TH_SFLAG_THREAD_GROUP_AUTO_JOIN) == 0);
597 assert(thread->th_work_interval_flags == TH_WORK_INTERVAL_FLAGS_NONE);
598 assert(thread->kern_promotion_schedpri == 0);
599 assert(thread->waiting_for_mutex == NULL);
600 assert(thread->rwlock_count == 0);
601 assert(thread->handoff_thread == THREAD_NULL);
602 assert(thread->th_work_interval == NULL);
603
604 thread_unlock(thread);
605 /* splsched */
606
607 thread_block((thread_continue_t)thread_terminate_continue);
608 /*NOTREACHED*/
609 }
610
611 static bool
612 thread_ref_release(thread_t thread)
613 {
614 if (thread == THREAD_NULL) {
615 return false;
616 }
617
618 assert_thread_magic(thread);
619
620 return os_ref_release(&thread->ref_count) == 0;
621 }
622
623 /* Drop a thread refcount safely without triggering a zfree */
624 void
625 thread_deallocate_safe(thread_t thread)
626 {
627 if (__improbable(thread_ref_release(thread))) {
628 /* enqueue the thread for thread deallocate deamon to call thread_deallocate_complete */
629 thread_deallocate_enqueue(thread);
630 }
631 }
632
633 void
634 thread_deallocate(thread_t thread)
635 {
636 if (__improbable(thread_ref_release(thread))) {
637 thread_deallocate_complete(thread);
638 }
639 }
640
641 void
642 thread_deallocate_complete(
643 thread_t thread)
644 {
645 task_t task;
646
647 assert_thread_magic(thread);
648
649 assert(os_ref_get_count(&thread->ref_count) == 0);
650
651 if (!(thread->state & TH_TERMINATE2)) {
652 panic("thread_deallocate: thread not properly terminated\n");
653 }
654
655 assert(thread->runq == PROCESSOR_NULL);
656
657 #if KPC
658 kpc_thread_destroy(thread);
659 #endif
660
661 ipc_thread_terminate(thread);
662
663 proc_thread_qos_deallocate(thread);
664
665 task = thread->task;
666
667 #ifdef MACH_BSD
668 {
669 void *ut = thread->uthread;
670
671 thread->uthread = NULL;
672 uthread_zone_free(ut);
673 }
674 #endif /* MACH_BSD */
675
676 if (thread->t_ledger) {
677 ledger_dereference(thread->t_ledger);
678 }
679 if (thread->t_threadledger) {
680 ledger_dereference(thread->t_threadledger);
681 }
682
683 assert(thread->turnstile != TURNSTILE_NULL);
684 if (thread->turnstile) {
685 turnstile_deallocate(thread->turnstile);
686 }
687
688 if (IPC_VOUCHER_NULL != thread->ith_voucher) {
689 ipc_voucher_release(thread->ith_voucher);
690 }
691
692 if (thread->thread_io_stats) {
693 kheap_free(KHEAP_DATA_BUFFERS, thread->thread_io_stats,
694 sizeof(struct io_stat_info));
695 }
696
697 if (thread->kernel_stack != 0) {
698 stack_free(thread);
699 }
700
701 lck_mtx_destroy(&thread->mutex, &thread_lck_grp);
702 machine_thread_destroy(thread);
703
704 task_deallocate(task);
705
706 #if MACH_ASSERT
707 assert_thread_magic(thread);
708 thread->thread_magic = 0;
709 #endif /* MACH_ASSERT */
710
711 zfree(thread_zone, thread);
712 }
713
714 /*
715 * thread_inspect_deallocate:
716 *
717 * Drop a thread inspection reference.
718 */
719 void
720 thread_inspect_deallocate(
721 thread_inspect_t thread_inspect)
722 {
723 return thread_deallocate((thread_t)thread_inspect);
724 }
725
726 /*
727 * thread_read_deallocate:
728 *
729 * Drop a reference on thread read port.
730 */
731 void
732 thread_read_deallocate(
733 thread_read_t thread_read)
734 {
735 return thread_deallocate((thread_t)thread_read);
736 }
737
738
739 /*
740 * thread_exception_queue_invoke:
741 *
742 * Deliver EXC_{RESOURCE,GUARD} exception
743 */
744 static void
745 thread_exception_queue_invoke(mpsc_queue_chain_t elm,
746 __assert_only mpsc_daemon_queue_t dq)
747 {
748 struct thread_exception_elt *elt;
749 task_t task;
750 thread_t thread;
751 exception_type_t etype;
752
753 assert(dq == &thread_exception_queue);
754 elt = mpsc_queue_element(elm, struct thread_exception_elt, link);
755
756 etype = elt->exception_type;
757 task = elt->exception_task;
758 thread = elt->exception_thread;
759 assert_thread_magic(thread);
760
761 kfree(elt, sizeof(*elt));
762
763 /* wait for all the threads in the task to terminate */
764 task_lock(task);
765 task_wait_till_threads_terminate_locked(task);
766 task_unlock(task);
767
768 /* Consumes the task ref returned by task_generate_corpse_internal */
769 task_deallocate(task);
770 /* Consumes the thread ref returned by task_generate_corpse_internal */
771 thread_deallocate(thread);
772
773 /* Deliver the notification, also clears the corpse. */
774 task_deliver_crash_notification(task, thread, etype, 0);
775 }
776
777 /*
778 * thread_exception_enqueue:
779 *
780 * Enqueue a corpse port to be delivered an EXC_{RESOURCE,GUARD}.
781 */
782 void
783 thread_exception_enqueue(
784 task_t task,
785 thread_t thread,
786 exception_type_t etype)
787 {
788 assert(EXC_RESOURCE == etype || EXC_GUARD == etype);
789 struct thread_exception_elt *elt = kalloc(sizeof(*elt));
790 elt->exception_type = etype;
791 elt->exception_task = task;
792 elt->exception_thread = thread;
793
794 mpsc_daemon_enqueue(&thread_exception_queue, &elt->link,
795 MPSC_QUEUE_DISABLE_PREEMPTION);
796 }
797
798 /*
799 * thread_copy_resource_info
800 *
801 * Copy the resource info counters from source
802 * thread to destination thread.
803 */
804 void
805 thread_copy_resource_info(
806 thread_t dst_thread,
807 thread_t src_thread)
808 {
809 dst_thread->c_switch = src_thread->c_switch;
810 dst_thread->p_switch = src_thread->p_switch;
811 dst_thread->ps_switch = src_thread->ps_switch;
812 dst_thread->precise_user_kernel_time = src_thread->precise_user_kernel_time;
813 dst_thread->user_timer = src_thread->user_timer;
814 dst_thread->user_timer_save = src_thread->user_timer_save;
815 dst_thread->system_timer = src_thread->system_timer;
816 dst_thread->system_timer_save = src_thread->system_timer_save;
817 dst_thread->runnable_timer = src_thread->runnable_timer;
818 dst_thread->vtimer_user_save = src_thread->vtimer_user_save;
819 dst_thread->vtimer_prof_save = src_thread->vtimer_prof_save;
820 dst_thread->vtimer_rlim_save = src_thread->vtimer_rlim_save;
821 dst_thread->vtimer_qos_save = src_thread->vtimer_qos_save;
822 dst_thread->syscalls_unix = src_thread->syscalls_unix;
823 dst_thread->syscalls_mach = src_thread->syscalls_mach;
824 ledger_rollup(dst_thread->t_threadledger, src_thread->t_threadledger);
825 *dst_thread->thread_io_stats = *src_thread->thread_io_stats;
826 }
827
828 static void
829 thread_terminate_queue_invoke(mpsc_queue_chain_t e,
830 __assert_only mpsc_daemon_queue_t dq)
831 {
832 thread_t thread = mpsc_queue_element(e, struct thread, mpsc_links);
833 task_t task = thread->task;
834
835 assert(dq == &thread_terminate_queue);
836
837 task_lock(task);
838
839 /*
840 * if marked for crash reporting, skip reaping.
841 * The corpse delivery thread will clear bit and enqueue
842 * for reaping when done
843 *
844 * Note: the inspection field is set under the task lock
845 *
846 * FIXME[mad]: why enqueue for termination before `inspection` is false ?
847 */
848 if (__improbable(thread->inspection)) {
849 simple_lock(&crashed_threads_lock, &thread_lck_grp);
850 task_unlock(task);
851
852 enqueue_tail(&crashed_threads_queue, &thread->runq_links);
853 simple_unlock(&crashed_threads_lock);
854 return;
855 }
856
857
858 task->total_user_time += timer_grab(&thread->user_timer);
859 task->total_ptime += timer_grab(&thread->ptime);
860 task->total_runnable_time += timer_grab(&thread->runnable_timer);
861 if (thread->precise_user_kernel_time) {
862 task->total_system_time += timer_grab(&thread->system_timer);
863 } else {
864 task->total_user_time += timer_grab(&thread->system_timer);
865 }
866
867 task->c_switch += thread->c_switch;
868 task->p_switch += thread->p_switch;
869 task->ps_switch += thread->ps_switch;
870
871 task->syscalls_unix += thread->syscalls_unix;
872 task->syscalls_mach += thread->syscalls_mach;
873
874 task->task_timer_wakeups_bin_1 += thread->thread_timer_wakeups_bin_1;
875 task->task_timer_wakeups_bin_2 += thread->thread_timer_wakeups_bin_2;
876 task->task_gpu_ns += ml_gpu_stat(thread);
877 task->task_energy += ml_energy_stat(thread);
878 task->decompressions += thread->decompressions;
879
880 #if MONOTONIC
881 mt_terminate_update(task, thread);
882 #endif /* MONOTONIC */
883
884 thread_update_qos_cpu_time(thread);
885
886 queue_remove(&task->threads, thread, thread_t, task_threads);
887 task->thread_count--;
888
889 /*
890 * If the task is being halted, and there is only one thread
891 * left in the task after this one, then wakeup that thread.
892 */
893 if (task->thread_count == 1 && task->halting) {
894 thread_wakeup((event_t)&task->halting);
895 }
896
897 task_unlock(task);
898
899 lck_mtx_lock(&tasks_threads_lock);
900 queue_remove(&threads, thread, thread_t, threads);
901 threads_count--;
902 lck_mtx_unlock(&tasks_threads_lock);
903
904 thread_deallocate(thread);
905 }
906
907 static void
908 thread_deallocate_queue_invoke(mpsc_queue_chain_t e,
909 __assert_only mpsc_daemon_queue_t dq)
910 {
911 thread_t thread = mpsc_queue_element(e, struct thread, mpsc_links);
912
913 assert(dq == &thread_deallocate_queue);
914
915 thread_deallocate_complete(thread);
916 }
917
918 /*
919 * thread_terminate_enqueue:
920 *
921 * Enqueue a terminating thread for final disposition.
922 *
923 * Called at splsched.
924 */
925 void
926 thread_terminate_enqueue(
927 thread_t thread)
928 {
929 KDBG_RELEASE(TRACE_DATA_THREAD_TERMINATE, thread->thread_id);
930
931 mpsc_daemon_enqueue(&thread_terminate_queue, &thread->mpsc_links,
932 MPSC_QUEUE_DISABLE_PREEMPTION);
933 }
934
935 /*
936 * thread_deallocate_enqueue:
937 *
938 * Enqueue a thread for final deallocation.
939 */
940 static void
941 thread_deallocate_enqueue(
942 thread_t thread)
943 {
944 mpsc_daemon_enqueue(&thread_deallocate_queue, &thread->mpsc_links,
945 MPSC_QUEUE_DISABLE_PREEMPTION);
946 }
947
948 /*
949 * thread_terminate_crashed_threads:
950 * walk the list of crashed threads and put back set of threads
951 * who are no longer being inspected.
952 */
953 void
954 thread_terminate_crashed_threads(void)
955 {
956 thread_t th_remove;
957
958 simple_lock(&crashed_threads_lock, &thread_lck_grp);
959 /*
960 * loop through the crashed threads queue
961 * to put any threads that are not being inspected anymore
962 */
963
964 qe_foreach_element_safe(th_remove, &crashed_threads_queue, runq_links) {
965 /* make sure current_thread is never in crashed queue */
966 assert(th_remove != current_thread());
967
968 if (th_remove->inspection == FALSE) {
969 remqueue(&th_remove->runq_links);
970 mpsc_daemon_enqueue(&thread_terminate_queue, &th_remove->mpsc_links,
971 MPSC_QUEUE_NONE);
972 }
973 }
974
975 simple_unlock(&crashed_threads_lock);
976 }
977
978 /*
979 * thread_stack_queue_invoke:
980 *
981 * Perform stack allocation as required due to
982 * invoke failures.
983 */
984 static void
985 thread_stack_queue_invoke(mpsc_queue_chain_t elm,
986 __assert_only mpsc_daemon_queue_t dq)
987 {
988 thread_t thread = mpsc_queue_element(elm, struct thread, mpsc_links);
989
990 assert(dq == &thread_stack_queue);
991
992 /* allocate stack with interrupts enabled so that we can call into VM */
993 stack_alloc(thread);
994
995 KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_STACK_WAIT) | DBG_FUNC_END, thread_tid(thread), 0, 0, 0, 0);
996
997 spl_t s = splsched();
998 thread_lock(thread);
999 thread_setrun(thread, SCHED_PREEMPT | SCHED_TAILQ);
1000 thread_unlock(thread);
1001 splx(s);
1002 }
1003
1004 /*
1005 * thread_stack_enqueue:
1006 *
1007 * Enqueue a thread for stack allocation.
1008 *
1009 * Called at splsched.
1010 */
1011 void
1012 thread_stack_enqueue(
1013 thread_t thread)
1014 {
1015 KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_STACK_WAIT) | DBG_FUNC_START, thread_tid(thread), 0, 0, 0, 0);
1016 assert_thread_magic(thread);
1017
1018 mpsc_daemon_enqueue(&thread_stack_queue, &thread->mpsc_links,
1019 MPSC_QUEUE_DISABLE_PREEMPTION);
1020 }
1021
1022 void
1023 thread_daemon_init(void)
1024 {
1025 kern_return_t result;
1026
1027 thread_deallocate_daemon_init();
1028
1029 thread_deallocate_daemon_register_queue(&thread_terminate_queue,
1030 thread_terminate_queue_invoke);
1031
1032 thread_deallocate_daemon_register_queue(&thread_deallocate_queue,
1033 thread_deallocate_queue_invoke);
1034
1035 simple_lock_init(&crashed_threads_lock, 0);
1036 queue_init(&crashed_threads_queue);
1037
1038 result = mpsc_daemon_queue_init_with_thread(&thread_stack_queue,
1039 thread_stack_queue_invoke, BASEPRI_PREEMPT_HIGH,
1040 "daemon.thread-stack");
1041 if (result != KERN_SUCCESS) {
1042 panic("thread_daemon_init: thread_stack_daemon");
1043 }
1044
1045 result = mpsc_daemon_queue_init_with_thread(&thread_exception_queue,
1046 thread_exception_queue_invoke, MINPRI_KERNEL,
1047 "daemon.thread-exception");
1048 if (result != KERN_SUCCESS) {
1049 panic("thread_daemon_init: thread_exception_daemon");
1050 }
1051 }
1052
1053 #define TH_OPTION_NONE 0x00
1054 #define TH_OPTION_NOCRED 0x01
1055 #define TH_OPTION_NOSUSP 0x02
1056 #define TH_OPTION_WORKQ 0x04
1057
1058 /*
1059 * Create a new thread.
1060 * Doesn't start the thread running.
1061 *
1062 * Task and tasks_threads_lock are returned locked on success.
1063 */
1064 static kern_return_t
1065 thread_create_internal(
1066 task_t parent_task,
1067 integer_t priority,
1068 thread_continue_t continuation,
1069 void *parameter,
1070 int options,
1071 thread_t *out_thread)
1072 {
1073 thread_t new_thread;
1074 static thread_t first_thread;
1075
1076 /*
1077 * Allocate a thread and initialize static fields
1078 */
1079 if (first_thread == THREAD_NULL) {
1080 new_thread = first_thread = current_thread();
1081 } else {
1082 new_thread = (thread_t)zalloc(thread_zone);
1083 }
1084 if (new_thread == THREAD_NULL) {
1085 return KERN_RESOURCE_SHORTAGE;
1086 }
1087
1088 if (new_thread != first_thread) {
1089 init_thread_from_template(new_thread);
1090 }
1091
1092 os_ref_init_count(&new_thread->ref_count, &thread_refgrp, 2);
1093 #if DEBUG || DEVELOPMENT
1094 queue_init(&new_thread->t_temp_alloc_list);
1095 #endif /* DEBUG || DEVELOPMENT */
1096
1097 #ifdef MACH_BSD
1098 new_thread->uthread = uthread_alloc(parent_task, new_thread, (options & TH_OPTION_NOCRED) != 0);
1099 if (new_thread->uthread == NULL) {
1100 #if MACH_ASSERT
1101 new_thread->thread_magic = 0;
1102 #endif /* MACH_ASSERT */
1103
1104 zfree(thread_zone, new_thread);
1105 return KERN_RESOURCE_SHORTAGE;
1106 }
1107 #endif /* MACH_BSD */
1108
1109 if (machine_thread_create(new_thread, parent_task) != KERN_SUCCESS) {
1110 #ifdef MACH_BSD
1111 void *ut = new_thread->uthread;
1112
1113 new_thread->uthread = NULL;
1114 /* cred free may not be necessary */
1115 uthread_cleanup(parent_task, ut, parent_task->bsd_info);
1116 uthread_cred_free(ut);
1117 uthread_zone_free(ut);
1118 #endif /* MACH_BSD */
1119
1120 #if MACH_ASSERT
1121 new_thread->thread_magic = 0;
1122 #endif /* MACH_ASSERT */
1123
1124 zfree(thread_zone, new_thread);
1125 return KERN_FAILURE;
1126 }
1127
1128 new_thread->task = parent_task;
1129
1130 thread_lock_init(new_thread);
1131 wake_lock_init(new_thread);
1132
1133 lck_mtx_init(&new_thread->mutex, &thread_lck_grp, LCK_ATTR_NULL);
1134
1135 ipc_thread_init(new_thread);
1136
1137 new_thread->continuation = continuation;
1138 new_thread->parameter = parameter;
1139 new_thread->inheritor_flags = TURNSTILE_UPDATE_FLAGS_NONE;
1140 priority_queue_init(&new_thread->sched_inheritor_queue);
1141 priority_queue_init(&new_thread->base_inheritor_queue);
1142 #if CONFIG_SCHED_CLUTCH
1143 priority_queue_entry_init(&new_thread->th_clutch_runq_link);
1144 priority_queue_entry_init(&new_thread->th_clutch_pri_link);
1145 #endif /* CONFIG_SCHED_CLUTCH */
1146
1147 #if CONFIG_SCHED_EDGE
1148 new_thread->th_bound_cluster_enqueued = false;
1149 #endif /* CONFIG_SCHED_EDGE */
1150
1151 /* Allocate I/O Statistics structure */
1152 new_thread->thread_io_stats = kheap_alloc(KHEAP_DATA_BUFFERS,
1153 sizeof(struct io_stat_info), Z_WAITOK | Z_ZERO);
1154 assert(new_thread->thread_io_stats != NULL);
1155
1156 #if KASAN
1157 kasan_init_thread(&new_thread->kasan_data);
1158 #endif
1159
1160 #if CONFIG_KSANCOV
1161 new_thread->ksancov_data = NULL;
1162 #endif
1163
1164 #if CONFIG_IOSCHED
1165 /* Clear out the I/O Scheduling info for AppleFSCompression */
1166 new_thread->decmp_upl = NULL;
1167 #endif /* CONFIG_IOSCHED */
1168
1169 new_thread->thread_region_page_shift = 0;
1170
1171 #if DEVELOPMENT || DEBUG
1172 task_lock(parent_task);
1173 uint16_t thread_limit = parent_task->task_thread_limit;
1174 if (exc_resource_threads_enabled &&
1175 thread_limit > 0 &&
1176 parent_task->thread_count >= thread_limit &&
1177 !parent_task->task_has_crossed_thread_limit &&
1178 !(parent_task->t_flags & TF_CORPSE)) {
1179 int thread_count = parent_task->thread_count;
1180 parent_task->task_has_crossed_thread_limit = TRUE;
1181 task_unlock(parent_task);
1182 SENDING_NOTIFICATION__TASK_HAS_TOO_MANY_THREADS(parent_task, thread_count);
1183 } else {
1184 task_unlock(parent_task);
1185 }
1186 #endif
1187
1188 lck_mtx_lock(&tasks_threads_lock);
1189 task_lock(parent_task);
1190
1191 /*
1192 * Fail thread creation if parent task is being torn down or has too many threads
1193 * If the caller asked for TH_OPTION_NOSUSP, also fail if the parent task is suspended
1194 */
1195 if (parent_task->active == 0 || parent_task->halting ||
1196 (parent_task->suspend_count > 0 && (options & TH_OPTION_NOSUSP) != 0) ||
1197 (parent_task->thread_count >= task_threadmax && parent_task != kernel_task)) {
1198 task_unlock(parent_task);
1199 lck_mtx_unlock(&tasks_threads_lock);
1200
1201 #ifdef MACH_BSD
1202 {
1203 void *ut = new_thread->uthread;
1204
1205 new_thread->uthread = NULL;
1206 uthread_cleanup(parent_task, ut, parent_task->bsd_info);
1207 /* cred free may not be necessary */
1208 uthread_cred_free(ut);
1209 uthread_zone_free(ut);
1210 }
1211 #endif /* MACH_BSD */
1212 ipc_thread_disable(new_thread);
1213 ipc_thread_terminate(new_thread);
1214 kheap_free(KHEAP_DATA_BUFFERS, new_thread->thread_io_stats,
1215 sizeof(struct io_stat_info));
1216 lck_mtx_destroy(&new_thread->mutex, &thread_lck_grp);
1217 machine_thread_destroy(new_thread);
1218 zfree(thread_zone, new_thread);
1219 return KERN_FAILURE;
1220 }
1221
1222 /* Protected by the tasks_threads_lock */
1223 new_thread->thread_id = ++thread_unique_id;
1224
1225 /* New threads inherit any default state on the task */
1226 machine_thread_inherit_taskwide(new_thread, parent_task);
1227
1228 task_reference_internal(parent_task);
1229
1230 if (new_thread->task->rusage_cpu_flags & TASK_RUSECPU_FLAGS_PERTHR_LIMIT) {
1231 /*
1232 * This task has a per-thread CPU limit; make sure this new thread
1233 * gets its limit set too, before it gets out of the kernel.
1234 */
1235 act_set_astledger(new_thread);
1236 }
1237
1238 /* Instantiate a thread ledger. Do not fail thread creation if ledger creation fails. */
1239 if ((new_thread->t_threadledger = ledger_instantiate(thread_ledger_template,
1240 LEDGER_CREATE_INACTIVE_ENTRIES)) != LEDGER_NULL) {
1241 ledger_entry_setactive(new_thread->t_threadledger, thread_ledgers.cpu_time);
1242 }
1243
1244 new_thread->t_bankledger = LEDGER_NULL;
1245 new_thread->t_deduct_bank_ledger_time = 0;
1246 new_thread->t_deduct_bank_ledger_energy = 0;
1247
1248 new_thread->t_ledger = new_thread->task->ledger;
1249 if (new_thread->t_ledger) {
1250 ledger_reference(new_thread->t_ledger);
1251 }
1252
1253 #if defined(CONFIG_SCHED_MULTIQ)
1254 /* Cache the task's sched_group */
1255 new_thread->sched_group = parent_task->sched_group;
1256 #endif /* defined(CONFIG_SCHED_MULTIQ) */
1257
1258 /* Cache the task's map */
1259 new_thread->map = parent_task->map;
1260
1261 timer_call_setup(&new_thread->wait_timer, thread_timer_expire, new_thread);
1262 timer_call_setup(&new_thread->depress_timer, thread_depress_expire, new_thread);
1263
1264 #if KPC
1265 kpc_thread_create(new_thread);
1266 #endif
1267
1268 /* Set the thread's scheduling parameters */
1269 new_thread->sched_mode = SCHED(initial_thread_sched_mode)(parent_task);
1270 new_thread->max_priority = parent_task->max_priority;
1271 new_thread->task_priority = parent_task->priority;
1272
1273 #if CONFIG_THREAD_GROUPS
1274 thread_group_init_thread(new_thread, parent_task);
1275 #endif /* CONFIG_THREAD_GROUPS */
1276
1277 int new_priority = (priority < 0) ? parent_task->priority: priority;
1278 new_priority = (priority < 0)? parent_task->priority: priority;
1279 if (new_priority > new_thread->max_priority) {
1280 new_priority = new_thread->max_priority;
1281 }
1282 #if !defined(XNU_TARGET_OS_OSX)
1283 if (new_priority < MAXPRI_THROTTLE) {
1284 new_priority = MAXPRI_THROTTLE;
1285 }
1286 #endif /* !defined(XNU_TARGET_OS_OSX) */
1287
1288 new_thread->importance = new_priority - new_thread->task_priority;
1289
1290 sched_set_thread_base_priority(new_thread, new_priority);
1291
1292 #if defined(CONFIG_SCHED_TIMESHARE_CORE)
1293 new_thread->sched_stamp = sched_tick;
1294 #if CONFIG_SCHED_CLUTCH
1295 new_thread->pri_shift = sched_clutch_thread_pri_shift(new_thread, new_thread->th_sched_bucket);
1296 #else /* CONFIG_SCHED_CLUTCH */
1297 new_thread->pri_shift = sched_pri_shifts[new_thread->th_sched_bucket];
1298 #endif /* CONFIG_SCHED_CLUTCH */
1299 #endif /* defined(CONFIG_SCHED_TIMESHARE_CORE) */
1300
1301 if (parent_task->max_priority <= MAXPRI_THROTTLE) {
1302 sched_thread_mode_demote(new_thread, TH_SFLAG_THROTTLED);
1303 }
1304
1305 thread_policy_create(new_thread);
1306
1307 /* Chain the thread onto the task's list */
1308 queue_enter(&parent_task->threads, new_thread, thread_t, task_threads);
1309 parent_task->thread_count++;
1310
1311 /* So terminating threads don't need to take the task lock to decrement */
1312 os_atomic_inc(&parent_task->active_thread_count, relaxed);
1313
1314 queue_enter(&threads, new_thread, thread_t, threads);
1315 threads_count++;
1316
1317 new_thread->active = TRUE;
1318 if (task_is_a_corpse_fork(parent_task)) {
1319 /* Set the inspection bit if the task is a corpse fork */
1320 new_thread->inspection = TRUE;
1321 } else {
1322 new_thread->inspection = FALSE;
1323 }
1324 new_thread->corpse_dup = FALSE;
1325 new_thread->turnstile = turnstile_alloc();
1326
1327
1328 *out_thread = new_thread;
1329
1330 if (kdebug_enable) {
1331 long args[4] = {};
1332
1333 kdbg_trace_data(parent_task->bsd_info, &args[1], &args[3]);
1334
1335 /*
1336 * Starting with 26604425, exec'ing creates a new task/thread.
1337 *
1338 * NEWTHREAD in the current process has two possible meanings:
1339 *
1340 * 1) Create a new thread for this process.
1341 * 2) Create a new thread for the future process this will become in an
1342 * exec.
1343 *
1344 * To disambiguate these, arg3 will be set to TRUE for case #2.
1345 *
1346 * The value we need to find (TPF_EXEC_COPY) is stable in the case of a
1347 * task exec'ing. The read of t_procflags does not take the proc_lock.
1348 */
1349 args[2] = task_is_exec_copy(parent_task) ? 1 : 0;
1350
1351 KDBG_RELEASE(TRACE_DATA_NEWTHREAD, (uintptr_t)thread_tid(new_thread),
1352 args[1], args[2], args[3]);
1353
1354 kdbg_trace_string(parent_task->bsd_info, &args[0], &args[1],
1355 &args[2], &args[3]);
1356 KDBG_RELEASE(TRACE_STRING_NEWTHREAD, args[0], args[1], args[2],
1357 args[3]);
1358 }
1359
1360 DTRACE_PROC1(lwp__create, thread_t, *out_thread);
1361
1362 return KERN_SUCCESS;
1363 }
1364
1365 static kern_return_t
1366 thread_create_internal2(
1367 task_t task,
1368 thread_t *new_thread,
1369 boolean_t from_user,
1370 thread_continue_t continuation)
1371 {
1372 kern_return_t result;
1373 thread_t thread;
1374
1375 if (task == TASK_NULL || task == kernel_task) {
1376 return KERN_INVALID_ARGUMENT;
1377 }
1378
1379 #if CONFIG_MACF
1380 if (from_user && current_task() != task &&
1381 mac_proc_check_remote_thread_create(task, -1, NULL, 0) != 0) {
1382 return KERN_DENIED;
1383 }
1384 #endif
1385
1386 result = thread_create_internal(task, -1, continuation, NULL, TH_OPTION_NONE, &thread);
1387 if (result != KERN_SUCCESS) {
1388 return result;
1389 }
1390
1391 thread->user_stop_count = 1;
1392 thread_hold(thread);
1393 if (task->suspend_count > 0) {
1394 thread_hold(thread);
1395 }
1396
1397 if (from_user) {
1398 extmod_statistics_incr_thread_create(task);
1399 }
1400
1401 task_unlock(task);
1402 lck_mtx_unlock(&tasks_threads_lock);
1403
1404 *new_thread = thread;
1405
1406 return KERN_SUCCESS;
1407 }
1408
1409 /* No prototype, since task_server.h has the _from_user version if KERNEL_SERVER */
1410 kern_return_t
1411 thread_create(
1412 task_t task,
1413 thread_t *new_thread);
1414
1415 kern_return_t
1416 thread_create(
1417 task_t task,
1418 thread_t *new_thread)
1419 {
1420 return thread_create_internal2(task, new_thread, FALSE, (thread_continue_t)thread_bootstrap_return);
1421 }
1422
1423 kern_return_t
1424 thread_create_from_user(
1425 task_t task,
1426 thread_t *new_thread)
1427 {
1428 return thread_create_internal2(task, new_thread, TRUE, (thread_continue_t)thread_bootstrap_return);
1429 }
1430
1431 kern_return_t
1432 thread_create_with_continuation(
1433 task_t task,
1434 thread_t *new_thread,
1435 thread_continue_t continuation)
1436 {
1437 return thread_create_internal2(task, new_thread, FALSE, continuation);
1438 }
1439
1440 /*
1441 * Create a thread that is already started, but is waiting on an event
1442 */
1443 static kern_return_t
1444 thread_create_waiting_internal(
1445 task_t task,
1446 thread_continue_t continuation,
1447 event_t event,
1448 block_hint_t block_hint,
1449 int options,
1450 thread_t *new_thread)
1451 {
1452 kern_return_t result;
1453 thread_t thread;
1454
1455 if (task == TASK_NULL || task == kernel_task) {
1456 return KERN_INVALID_ARGUMENT;
1457 }
1458
1459 result = thread_create_internal(task, -1, continuation, NULL,
1460 options, &thread);
1461 if (result != KERN_SUCCESS) {
1462 return result;
1463 }
1464
1465 /* note no user_stop_count or thread_hold here */
1466
1467 if (task->suspend_count > 0) {
1468 thread_hold(thread);
1469 }
1470
1471 thread_mtx_lock(thread);
1472 thread_set_pending_block_hint(thread, block_hint);
1473 if (options & TH_OPTION_WORKQ) {
1474 thread->static_param = true;
1475 event = workq_thread_init_and_wq_lock(task, thread);
1476 }
1477 thread_start_in_assert_wait(thread, event, THREAD_INTERRUPTIBLE);
1478 thread_mtx_unlock(thread);
1479
1480 task_unlock(task);
1481 lck_mtx_unlock(&tasks_threads_lock);
1482
1483 *new_thread = thread;
1484
1485 return KERN_SUCCESS;
1486 }
1487
1488 kern_return_t
1489 thread_create_waiting(
1490 task_t task,
1491 thread_continue_t continuation,
1492 event_t event,
1493 thread_t *new_thread)
1494 {
1495 return thread_create_waiting_internal(task, continuation, event,
1496 kThreadWaitNone, TH_OPTION_NONE, new_thread);
1497 }
1498
1499
1500 static kern_return_t
1501 thread_create_running_internal2(
1502 task_t task,
1503 int flavor,
1504 thread_state_t new_state,
1505 mach_msg_type_number_t new_state_count,
1506 thread_t *new_thread,
1507 boolean_t from_user)
1508 {
1509 kern_return_t result;
1510 thread_t thread;
1511
1512 if (task == TASK_NULL || task == kernel_task) {
1513 return KERN_INVALID_ARGUMENT;
1514 }
1515
1516 #if CONFIG_MACF
1517 if (from_user && current_task() != task &&
1518 mac_proc_check_remote_thread_create(task, flavor, new_state, new_state_count) != 0) {
1519 return KERN_DENIED;
1520 }
1521 #endif
1522
1523 result = thread_create_internal(task, -1,
1524 (thread_continue_t)thread_bootstrap_return, NULL,
1525 TH_OPTION_NONE, &thread);
1526 if (result != KERN_SUCCESS) {
1527 return result;
1528 }
1529
1530 if (task->suspend_count > 0) {
1531 thread_hold(thread);
1532 }
1533
1534 if (from_user) {
1535 result = machine_thread_state_convert_from_user(thread, flavor,
1536 new_state, new_state_count);
1537 }
1538 if (result == KERN_SUCCESS) {
1539 result = machine_thread_set_state(thread, flavor, new_state,
1540 new_state_count);
1541 }
1542 if (result != KERN_SUCCESS) {
1543 task_unlock(task);
1544 lck_mtx_unlock(&tasks_threads_lock);
1545
1546 thread_terminate(thread);
1547 thread_deallocate(thread);
1548 return result;
1549 }
1550
1551 thread_mtx_lock(thread);
1552 thread_start(thread);
1553 thread_mtx_unlock(thread);
1554
1555 if (from_user) {
1556 extmod_statistics_incr_thread_create(task);
1557 }
1558
1559 task_unlock(task);
1560 lck_mtx_unlock(&tasks_threads_lock);
1561
1562 *new_thread = thread;
1563
1564 return result;
1565 }
1566
1567 /* Prototype, see justification above */
1568 kern_return_t
1569 thread_create_running(
1570 task_t task,
1571 int flavor,
1572 thread_state_t new_state,
1573 mach_msg_type_number_t new_state_count,
1574 thread_t *new_thread);
1575
1576 kern_return_t
1577 thread_create_running(
1578 task_t task,
1579 int flavor,
1580 thread_state_t new_state,
1581 mach_msg_type_number_t new_state_count,
1582 thread_t *new_thread)
1583 {
1584 return thread_create_running_internal2(
1585 task, flavor, new_state, new_state_count,
1586 new_thread, FALSE);
1587 }
1588
1589 kern_return_t
1590 thread_create_running_from_user(
1591 task_t task,
1592 int flavor,
1593 thread_state_t new_state,
1594 mach_msg_type_number_t new_state_count,
1595 thread_t *new_thread)
1596 {
1597 return thread_create_running_internal2(
1598 task, flavor, new_state, new_state_count,
1599 new_thread, TRUE);
1600 }
1601
1602 kern_return_t
1603 thread_create_workq_waiting(
1604 task_t task,
1605 thread_continue_t continuation,
1606 thread_t *new_thread)
1607 {
1608 int options = TH_OPTION_NOCRED | TH_OPTION_NOSUSP | TH_OPTION_WORKQ;
1609 return thread_create_waiting_internal(task, continuation, NULL,
1610 kThreadWaitParkedWorkQueue, options, new_thread);
1611 }
1612
1613 /*
1614 * kernel_thread_create:
1615 *
1616 * Create a thread in the kernel task
1617 * to execute in kernel context.
1618 */
1619 kern_return_t
1620 kernel_thread_create(
1621 thread_continue_t continuation,
1622 void *parameter,
1623 integer_t priority,
1624 thread_t *new_thread)
1625 {
1626 kern_return_t result;
1627 thread_t thread;
1628 task_t task = kernel_task;
1629
1630 result = thread_create_internal(task, priority, continuation, parameter,
1631 TH_OPTION_NOCRED | TH_OPTION_NONE, &thread);
1632 if (result != KERN_SUCCESS) {
1633 return result;
1634 }
1635
1636 task_unlock(task);
1637 lck_mtx_unlock(&tasks_threads_lock);
1638
1639 stack_alloc(thread);
1640 assert(thread->kernel_stack != 0);
1641 #if !defined(XNU_TARGET_OS_OSX)
1642 if (priority > BASEPRI_KERNEL)
1643 #endif
1644 thread->reserved_stack = thread->kernel_stack;
1645
1646 if (debug_task & 1) {
1647 kprintf("kernel_thread_create: thread = %p continuation = %p\n", thread, continuation);
1648 }
1649 *new_thread = thread;
1650
1651 return result;
1652 }
1653
1654 kern_return_t
1655 kernel_thread_start_priority(
1656 thread_continue_t continuation,
1657 void *parameter,
1658 integer_t priority,
1659 thread_t *new_thread)
1660 {
1661 kern_return_t result;
1662 thread_t thread;
1663
1664 result = kernel_thread_create(continuation, parameter, priority, &thread);
1665 if (result != KERN_SUCCESS) {
1666 return result;
1667 }
1668
1669 *new_thread = thread;
1670
1671 thread_mtx_lock(thread);
1672 thread_start(thread);
1673 thread_mtx_unlock(thread);
1674
1675 return result;
1676 }
1677
1678 kern_return_t
1679 kernel_thread_start(
1680 thread_continue_t continuation,
1681 void *parameter,
1682 thread_t *new_thread)
1683 {
1684 return kernel_thread_start_priority(continuation, parameter, -1, new_thread);
1685 }
1686
1687 /* Separated into helper function so it can be used by THREAD_BASIC_INFO and THREAD_EXTENDED_INFO */
1688 /* it is assumed that the thread is locked by the caller */
1689 static void
1690 retrieve_thread_basic_info(thread_t thread, thread_basic_info_t basic_info)
1691 {
1692 int state, flags;
1693
1694 /* fill in info */
1695
1696 thread_read_times(thread, &basic_info->user_time,
1697 &basic_info->system_time, NULL);
1698
1699 /*
1700 * Update lazy-evaluated scheduler info because someone wants it.
1701 */
1702 if (SCHED(can_update_priority)(thread)) {
1703 SCHED(update_priority)(thread);
1704 }
1705
1706 basic_info->sleep_time = 0;
1707
1708 /*
1709 * To calculate cpu_usage, first correct for timer rate,
1710 * then for 5/8 ageing. The correction factor [3/5] is
1711 * (1/(5/8) - 1).
1712 */
1713 basic_info->cpu_usage = 0;
1714 #if defined(CONFIG_SCHED_TIMESHARE_CORE)
1715 if (sched_tick_interval) {
1716 basic_info->cpu_usage = (integer_t)(((uint64_t)thread->cpu_usage
1717 * TH_USAGE_SCALE) / sched_tick_interval);
1718 basic_info->cpu_usage = (basic_info->cpu_usage * 3) / 5;
1719 }
1720 #endif
1721
1722 if (basic_info->cpu_usage > TH_USAGE_SCALE) {
1723 basic_info->cpu_usage = TH_USAGE_SCALE;
1724 }
1725
1726 basic_info->policy = ((thread->sched_mode == TH_MODE_TIMESHARE)?
1727 POLICY_TIMESHARE: POLICY_RR);
1728
1729 flags = 0;
1730 if (thread->options & TH_OPT_IDLE_THREAD) {
1731 flags |= TH_FLAGS_IDLE;
1732 }
1733
1734 if (thread->options & TH_OPT_GLOBAL_FORCED_IDLE) {
1735 flags |= TH_FLAGS_GLOBAL_FORCED_IDLE;
1736 }
1737
1738 if (!thread->kernel_stack) {
1739 flags |= TH_FLAGS_SWAPPED;
1740 }
1741
1742 state = 0;
1743 if (thread->state & TH_TERMINATE) {
1744 state = TH_STATE_HALTED;
1745 } else if (thread->state & TH_RUN) {
1746 state = TH_STATE_RUNNING;
1747 } else if (thread->state & TH_UNINT) {
1748 state = TH_STATE_UNINTERRUPTIBLE;
1749 } else if (thread->state & TH_SUSP) {
1750 state = TH_STATE_STOPPED;
1751 } else if (thread->state & TH_WAIT) {
1752 state = TH_STATE_WAITING;
1753 }
1754
1755 basic_info->run_state = state;
1756 basic_info->flags = flags;
1757
1758 basic_info->suspend_count = thread->user_stop_count;
1759
1760 return;
1761 }
1762
1763 kern_return_t
1764 thread_info_internal(
1765 thread_t thread,
1766 thread_flavor_t flavor,
1767 thread_info_t thread_info_out, /* ptr to OUT array */
1768 mach_msg_type_number_t *thread_info_count) /*IN/OUT*/
1769 {
1770 spl_t s;
1771
1772 if (thread == THREAD_NULL) {
1773 return KERN_INVALID_ARGUMENT;
1774 }
1775
1776 if (flavor == THREAD_BASIC_INFO) {
1777 if (*thread_info_count < THREAD_BASIC_INFO_COUNT) {
1778 return KERN_INVALID_ARGUMENT;
1779 }
1780
1781 s = splsched();
1782 thread_lock(thread);
1783
1784 retrieve_thread_basic_info(thread, (thread_basic_info_t) thread_info_out);
1785
1786 thread_unlock(thread);
1787 splx(s);
1788
1789 *thread_info_count = THREAD_BASIC_INFO_COUNT;
1790
1791 return KERN_SUCCESS;
1792 } else if (flavor == THREAD_IDENTIFIER_INFO) {
1793 thread_identifier_info_t identifier_info;
1794
1795 if (*thread_info_count < THREAD_IDENTIFIER_INFO_COUNT) {
1796 return KERN_INVALID_ARGUMENT;
1797 }
1798
1799 identifier_info = __IGNORE_WCASTALIGN((thread_identifier_info_t)thread_info_out);
1800
1801 s = splsched();
1802 thread_lock(thread);
1803
1804 identifier_info->thread_id = thread->thread_id;
1805 identifier_info->thread_handle = thread->machine.cthread_self;
1806 identifier_info->dispatch_qaddr = thread_dispatchqaddr(thread);
1807
1808 thread_unlock(thread);
1809 splx(s);
1810 return KERN_SUCCESS;
1811 } else if (flavor == THREAD_SCHED_TIMESHARE_INFO) {
1812 policy_timeshare_info_t ts_info;
1813
1814 if (*thread_info_count < POLICY_TIMESHARE_INFO_COUNT) {
1815 return KERN_INVALID_ARGUMENT;
1816 }
1817
1818 ts_info = (policy_timeshare_info_t)thread_info_out;
1819
1820 s = splsched();
1821 thread_lock(thread);
1822
1823 if (thread->sched_mode != TH_MODE_TIMESHARE) {
1824 thread_unlock(thread);
1825 splx(s);
1826 return KERN_INVALID_POLICY;
1827 }
1828
1829 ts_info->depressed = (thread->sched_flags & TH_SFLAG_DEPRESSED_MASK) != 0;
1830 if (ts_info->depressed) {
1831 ts_info->base_priority = DEPRESSPRI;
1832 ts_info->depress_priority = thread->base_pri;
1833 } else {
1834 ts_info->base_priority = thread->base_pri;
1835 ts_info->depress_priority = -1;
1836 }
1837
1838 ts_info->cur_priority = thread->sched_pri;
1839 ts_info->max_priority = thread->max_priority;
1840
1841 thread_unlock(thread);
1842 splx(s);
1843
1844 *thread_info_count = POLICY_TIMESHARE_INFO_COUNT;
1845
1846 return KERN_SUCCESS;
1847 } else if (flavor == THREAD_SCHED_FIFO_INFO) {
1848 if (*thread_info_count < POLICY_FIFO_INFO_COUNT) {
1849 return KERN_INVALID_ARGUMENT;
1850 }
1851
1852 return KERN_INVALID_POLICY;
1853 } else if (flavor == THREAD_SCHED_RR_INFO) {
1854 policy_rr_info_t rr_info;
1855 uint32_t quantum_time;
1856 uint64_t quantum_ns;
1857
1858 if (*thread_info_count < POLICY_RR_INFO_COUNT) {
1859 return KERN_INVALID_ARGUMENT;
1860 }
1861
1862 rr_info = (policy_rr_info_t) thread_info_out;
1863
1864 s = splsched();
1865 thread_lock(thread);
1866
1867 if (thread->sched_mode == TH_MODE_TIMESHARE) {
1868 thread_unlock(thread);
1869 splx(s);
1870
1871 return KERN_INVALID_POLICY;
1872 }
1873
1874 rr_info->depressed = (thread->sched_flags & TH_SFLAG_DEPRESSED_MASK) != 0;
1875 if (rr_info->depressed) {
1876 rr_info->base_priority = DEPRESSPRI;
1877 rr_info->depress_priority = thread->base_pri;
1878 } else {
1879 rr_info->base_priority = thread->base_pri;
1880 rr_info->depress_priority = -1;
1881 }
1882
1883 quantum_time = SCHED(initial_quantum_size)(THREAD_NULL);
1884 absolutetime_to_nanoseconds(quantum_time, &quantum_ns);
1885
1886 rr_info->max_priority = thread->max_priority;
1887 rr_info->quantum = (uint32_t)(quantum_ns / 1000 / 1000);
1888
1889 thread_unlock(thread);
1890 splx(s);
1891
1892 *thread_info_count = POLICY_RR_INFO_COUNT;
1893
1894 return KERN_SUCCESS;
1895 } else if (flavor == THREAD_EXTENDED_INFO) {
1896 thread_basic_info_data_t basic_info;
1897 thread_extended_info_t extended_info = __IGNORE_WCASTALIGN((thread_extended_info_t)thread_info_out);
1898
1899 if (*thread_info_count < THREAD_EXTENDED_INFO_COUNT) {
1900 return KERN_INVALID_ARGUMENT;
1901 }
1902
1903 s = splsched();
1904 thread_lock(thread);
1905
1906 /* NOTE: This mimics fill_taskthreadinfo(), which is the function used by proc_pidinfo() for
1907 * the PROC_PIDTHREADINFO flavor (which can't be used on corpses)
1908 */
1909 retrieve_thread_basic_info(thread, &basic_info);
1910 extended_info->pth_user_time = (((uint64_t)basic_info.user_time.seconds * NSEC_PER_SEC) + ((uint64_t)basic_info.user_time.microseconds * NSEC_PER_USEC));
1911 extended_info->pth_system_time = (((uint64_t)basic_info.system_time.seconds * NSEC_PER_SEC) + ((uint64_t)basic_info.system_time.microseconds * NSEC_PER_USEC));
1912
1913 extended_info->pth_cpu_usage = basic_info.cpu_usage;
1914 extended_info->pth_policy = basic_info.policy;
1915 extended_info->pth_run_state = basic_info.run_state;
1916 extended_info->pth_flags = basic_info.flags;
1917 extended_info->pth_sleep_time = basic_info.sleep_time;
1918 extended_info->pth_curpri = thread->sched_pri;
1919 extended_info->pth_priority = thread->base_pri;
1920 extended_info->pth_maxpriority = thread->max_priority;
1921
1922 bsd_getthreadname(thread->uthread, extended_info->pth_name);
1923
1924 thread_unlock(thread);
1925 splx(s);
1926
1927 *thread_info_count = THREAD_EXTENDED_INFO_COUNT;
1928
1929 return KERN_SUCCESS;
1930 } else if (flavor == THREAD_DEBUG_INFO_INTERNAL) {
1931 #if DEVELOPMENT || DEBUG
1932 thread_debug_info_internal_t dbg_info;
1933 if (*thread_info_count < THREAD_DEBUG_INFO_INTERNAL_COUNT) {
1934 return KERN_NOT_SUPPORTED;
1935 }
1936
1937 if (thread_info_out == NULL) {
1938 return KERN_INVALID_ARGUMENT;
1939 }
1940
1941 dbg_info = __IGNORE_WCASTALIGN((thread_debug_info_internal_t)thread_info_out);
1942 dbg_info->page_creation_count = thread->t_page_creation_count;
1943
1944 *thread_info_count = THREAD_DEBUG_INFO_INTERNAL_COUNT;
1945 return KERN_SUCCESS;
1946 #endif /* DEVELOPMENT || DEBUG */
1947 return KERN_NOT_SUPPORTED;
1948 }
1949
1950 return KERN_INVALID_ARGUMENT;
1951 }
1952
1953 void
1954 thread_read_times(
1955 thread_t thread,
1956 time_value_t *user_time,
1957 time_value_t *system_time,
1958 time_value_t *runnable_time)
1959 {
1960 clock_sec_t secs;
1961 clock_usec_t usecs;
1962 uint64_t tval_user, tval_system;
1963
1964 tval_user = timer_grab(&thread->user_timer);
1965 tval_system = timer_grab(&thread->system_timer);
1966
1967 if (thread->precise_user_kernel_time) {
1968 absolutetime_to_microtime(tval_user, &secs, &usecs);
1969 user_time->seconds = (typeof(user_time->seconds))secs;
1970 user_time->microseconds = usecs;
1971
1972 absolutetime_to_microtime(tval_system, &secs, &usecs);
1973 system_time->seconds = (typeof(system_time->seconds))secs;
1974 system_time->microseconds = usecs;
1975 } else {
1976 /* system_timer may represent either sys or user */
1977 tval_user += tval_system;
1978 absolutetime_to_microtime(tval_user, &secs, &usecs);
1979 user_time->seconds = (typeof(user_time->seconds))secs;
1980 user_time->microseconds = usecs;
1981
1982 system_time->seconds = 0;
1983 system_time->microseconds = 0;
1984 }
1985
1986 if (runnable_time) {
1987 uint64_t tval_runnable = timer_grab(&thread->runnable_timer);
1988 absolutetime_to_microtime(tval_runnable, &secs, &usecs);
1989 runnable_time->seconds = (typeof(runnable_time->seconds))secs;
1990 runnable_time->microseconds = usecs;
1991 }
1992 }
1993
1994 uint64_t
1995 thread_get_runtime_self(void)
1996 {
1997 boolean_t interrupt_state;
1998 uint64_t runtime;
1999 thread_t thread = NULL;
2000 processor_t processor = NULL;
2001
2002 thread = current_thread();
2003
2004 /* Not interrupt safe, as the scheduler may otherwise update timer values underneath us */
2005 interrupt_state = ml_set_interrupts_enabled(FALSE);
2006 processor = current_processor();
2007 timer_update(processor->thread_timer, mach_absolute_time());
2008 runtime = (timer_grab(&thread->user_timer) + timer_grab(&thread->system_timer));
2009 ml_set_interrupts_enabled(interrupt_state);
2010
2011 return runtime;
2012 }
2013
2014 kern_return_t
2015 thread_assign(
2016 __unused thread_t thread,
2017 __unused processor_set_t new_pset)
2018 {
2019 return KERN_FAILURE;
2020 }
2021
2022 /*
2023 * thread_assign_default:
2024 *
2025 * Special version of thread_assign for assigning threads to default
2026 * processor set.
2027 */
2028 kern_return_t
2029 thread_assign_default(
2030 thread_t thread)
2031 {
2032 return thread_assign(thread, &pset0);
2033 }
2034
2035 /*
2036 * thread_get_assignment
2037 *
2038 * Return current assignment for this thread.
2039 */
2040 kern_return_t
2041 thread_get_assignment(
2042 thread_t thread,
2043 processor_set_t *pset)
2044 {
2045 if (thread == NULL) {
2046 return KERN_INVALID_ARGUMENT;
2047 }
2048
2049 *pset = &pset0;
2050
2051 return KERN_SUCCESS;
2052 }
2053
2054 /*
2055 * thread_wire_internal:
2056 *
2057 * Specify that the target thread must always be able
2058 * to run and to allocate memory.
2059 */
2060 kern_return_t
2061 thread_wire_internal(
2062 host_priv_t host_priv,
2063 thread_t thread,
2064 boolean_t wired,
2065 boolean_t *prev_state)
2066 {
2067 if (host_priv == NULL || thread != current_thread()) {
2068 return KERN_INVALID_ARGUMENT;
2069 }
2070
2071 assert(host_priv == &realhost);
2072
2073 if (prev_state) {
2074 *prev_state = (thread->options & TH_OPT_VMPRIV) != 0;
2075 }
2076
2077 if (wired) {
2078 if (!(thread->options & TH_OPT_VMPRIV)) {
2079 vm_page_free_reserve(1); /* XXX */
2080 }
2081 thread->options |= TH_OPT_VMPRIV;
2082 } else {
2083 if (thread->options & TH_OPT_VMPRIV) {
2084 vm_page_free_reserve(-1); /* XXX */
2085 }
2086 thread->options &= ~TH_OPT_VMPRIV;
2087 }
2088
2089 return KERN_SUCCESS;
2090 }
2091
2092
2093 /*
2094 * thread_wire:
2095 *
2096 * User-api wrapper for thread_wire_internal()
2097 */
2098 kern_return_t
2099 thread_wire(
2100 host_priv_t host_priv,
2101 thread_t thread,
2102 boolean_t wired)
2103 {
2104 return thread_wire_internal(host_priv, thread, wired, NULL);
2105 }
2106
2107
2108 boolean_t
2109 is_vm_privileged(void)
2110 {
2111 return current_thread()->options & TH_OPT_VMPRIV ? TRUE : FALSE;
2112 }
2113
2114 boolean_t
2115 set_vm_privilege(boolean_t privileged)
2116 {
2117 boolean_t was_vmpriv;
2118
2119 if (current_thread()->options & TH_OPT_VMPRIV) {
2120 was_vmpriv = TRUE;
2121 } else {
2122 was_vmpriv = FALSE;
2123 }
2124
2125 if (privileged != FALSE) {
2126 current_thread()->options |= TH_OPT_VMPRIV;
2127 } else {
2128 current_thread()->options &= ~TH_OPT_VMPRIV;
2129 }
2130
2131 return was_vmpriv;
2132 }
2133
2134 void
2135 set_thread_rwlock_boost(void)
2136 {
2137 current_thread()->rwlock_count++;
2138 }
2139
2140 void
2141 clear_thread_rwlock_boost(void)
2142 {
2143 thread_t thread = current_thread();
2144
2145 if ((thread->rwlock_count-- == 1) && (thread->sched_flags & TH_SFLAG_RW_PROMOTED)) {
2146 lck_rw_clear_promotion(thread, 0);
2147 }
2148 }
2149
2150 /*
2151 * XXX assuming current thread only, for now...
2152 */
2153 void
2154 thread_guard_violation(thread_t thread,
2155 mach_exception_data_type_t code, mach_exception_data_type_t subcode, boolean_t fatal)
2156 {
2157 assert(thread == current_thread());
2158
2159 /* Don't set up the AST for kernel threads; this check is needed to ensure
2160 * that the guard_exc_* fields in the thread structure are set only by the
2161 * current thread and therefore, don't require a lock.
2162 */
2163 if (thread->task == kernel_task) {
2164 return;
2165 }
2166
2167 assert(EXC_GUARD_DECODE_GUARD_TYPE(code));
2168
2169 /*
2170 * Use the saved state area of the thread structure
2171 * to store all info required to handle the AST when
2172 * returning to userspace. It's possible that there is
2173 * already a pending guard exception. If it's non-fatal,
2174 * it can only be over-written by a fatal exception code.
2175 */
2176 if (thread->guard_exc_info.code && (thread->guard_exc_fatal || !fatal)) {
2177 return;
2178 }
2179
2180 thread->guard_exc_info.code = code;
2181 thread->guard_exc_info.subcode = subcode;
2182 thread->guard_exc_fatal = fatal ? 1 : 0;
2183
2184 spl_t s = splsched();
2185 thread_ast_set(thread, AST_GUARD);
2186 ast_propagate(thread);
2187 splx(s);
2188 }
2189
2190 /*
2191 * guard_ast:
2192 *
2193 * Handle AST_GUARD for a thread. This routine looks at the
2194 * state saved in the thread structure to determine the cause
2195 * of this exception. Based on this value, it invokes the
2196 * appropriate routine which determines other exception related
2197 * info and raises the exception.
2198 */
2199 void
2200 guard_ast(thread_t t)
2201 {
2202 const mach_exception_data_type_t
2203 code = t->guard_exc_info.code,
2204 subcode = t->guard_exc_info.subcode;
2205
2206 t->guard_exc_info.code = 0;
2207 t->guard_exc_info.subcode = 0;
2208 t->guard_exc_fatal = 0;
2209
2210 switch (EXC_GUARD_DECODE_GUARD_TYPE(code)) {
2211 case GUARD_TYPE_NONE:
2212 /* lingering AST_GUARD on the processor? */
2213 break;
2214 case GUARD_TYPE_MACH_PORT:
2215 mach_port_guard_ast(t, code, subcode);
2216 break;
2217 case GUARD_TYPE_FD:
2218 fd_guard_ast(t, code, subcode);
2219 break;
2220 #if CONFIG_VNGUARD
2221 case GUARD_TYPE_VN:
2222 vn_guard_ast(t, code, subcode);
2223 break;
2224 #endif
2225 case GUARD_TYPE_VIRT_MEMORY:
2226 virt_memory_guard_ast(t, code, subcode);
2227 break;
2228 default:
2229 panic("guard_exc_info %llx %llx", code, subcode);
2230 }
2231 }
2232
2233 static void
2234 thread_cputime_callback(int warning, __unused const void *arg0, __unused const void *arg1)
2235 {
2236 if (warning == LEDGER_WARNING_ROSE_ABOVE) {
2237 #if CONFIG_TELEMETRY
2238 /*
2239 * This thread is in danger of violating the CPU usage monitor. Enable telemetry
2240 * on the entire task so there are micro-stackshots available if and when
2241 * EXC_RESOURCE is triggered. We could have chosen to enable micro-stackshots
2242 * for this thread only; but now that this task is suspect, knowing what all of
2243 * its threads are up to will be useful.
2244 */
2245 telemetry_task_ctl(current_task(), TF_CPUMON_WARNING, 1);
2246 #endif
2247 return;
2248 }
2249
2250 #if CONFIG_TELEMETRY
2251 /*
2252 * If the balance has dipped below the warning level (LEDGER_WARNING_DIPPED_BELOW) or
2253 * exceeded the limit, turn telemetry off for the task.
2254 */
2255 telemetry_task_ctl(current_task(), TF_CPUMON_WARNING, 0);
2256 #endif
2257
2258 if (warning == 0) {
2259 SENDING_NOTIFICATION__THIS_THREAD_IS_CONSUMING_TOO_MUCH_CPU();
2260 }
2261 }
2262
2263 void __attribute__((noinline))
2264 SENDING_NOTIFICATION__THIS_THREAD_IS_CONSUMING_TOO_MUCH_CPU(void)
2265 {
2266 int pid = 0;
2267 task_t task = current_task();
2268 thread_t thread = current_thread();
2269 uint64_t tid = thread->thread_id;
2270 const char *procname = "unknown";
2271 time_value_t thread_total_time = {0, 0};
2272 time_value_t thread_system_time;
2273 time_value_t thread_user_time;
2274 int action;
2275 uint8_t percentage;
2276 uint32_t usage_percent = 0;
2277 uint32_t interval_sec;
2278 uint64_t interval_ns;
2279 uint64_t balance_ns;
2280 boolean_t fatal = FALSE;
2281 boolean_t send_exc_resource = TRUE; /* in addition to RESOURCE_NOTIFY */
2282 kern_return_t kr;
2283
2284 #ifdef EXC_RESOURCE_MONITORS
2285 mach_exception_data_type_t code[EXCEPTION_CODE_MAX];
2286 #endif /* EXC_RESOURCE_MONITORS */
2287 struct ledger_entry_info lei;
2288
2289 assert(thread->t_threadledger != LEDGER_NULL);
2290
2291 /*
2292 * Extract the fatal bit and suspend the monitor (which clears the bit).
2293 */
2294 task_lock(task);
2295 if (task->rusage_cpu_flags & TASK_RUSECPU_FLAGS_FATAL_CPUMON) {
2296 fatal = TRUE;
2297 send_exc_resource = TRUE;
2298 }
2299 /* Only one thread can be here at a time. Whichever makes it through
2300 * first will successfully suspend the monitor and proceed to send the
2301 * notification. Other threads will get an error trying to suspend the
2302 * monitor and give up on sending the notification. In the first release,
2303 * the monitor won't be resumed for a number of seconds, but we may
2304 * eventually need to handle low-latency resume.
2305 */
2306 kr = task_suspend_cpumon(task);
2307 task_unlock(task);
2308 if (kr == KERN_INVALID_ARGUMENT) {
2309 return;
2310 }
2311
2312 #ifdef MACH_BSD
2313 pid = proc_selfpid();
2314 if (task->bsd_info != NULL) {
2315 procname = proc_name_address(task->bsd_info);
2316 }
2317 #endif
2318
2319 thread_get_cpulimit(&action, &percentage, &interval_ns);
2320
2321 interval_sec = (uint32_t)(interval_ns / NSEC_PER_SEC);
2322
2323 thread_read_times(thread, &thread_user_time, &thread_system_time, NULL);
2324 time_value_add(&thread_total_time, &thread_user_time);
2325 time_value_add(&thread_total_time, &thread_system_time);
2326 ledger_get_entry_info(thread->t_threadledger, thread_ledgers.cpu_time, &lei);
2327
2328 /* credit/debit/balance/limit are in absolute time units;
2329 * the refill info is in nanoseconds. */
2330 absolutetime_to_nanoseconds(lei.lei_balance, &balance_ns);
2331 if (lei.lei_last_refill > 0) {
2332 usage_percent = (uint32_t)((balance_ns * 100ULL) / lei.lei_last_refill);
2333 }
2334
2335 /* TODO: show task total runtime (via TASK_ABSOLUTETIME_INFO)? */
2336 printf("process %s[%d] thread %llu caught burning CPU! It used more than %d%% CPU over %u seconds\n",
2337 procname, pid, tid, percentage, interval_sec);
2338 printf(" (actual recent usage: %d%% over ~%llu seconds)\n",
2339 usage_percent, (lei.lei_last_refill + NSEC_PER_SEC / 2) / NSEC_PER_SEC);
2340 printf(" Thread lifetime cpu usage %d.%06ds, (%d.%06d user, %d.%06d sys)\n",
2341 thread_total_time.seconds, thread_total_time.microseconds,
2342 thread_user_time.seconds, thread_user_time.microseconds,
2343 thread_system_time.seconds, thread_system_time.microseconds);
2344 printf(" Ledger balance: %lld; mabs credit: %lld; mabs debit: %lld\n",
2345 lei.lei_balance, lei.lei_credit, lei.lei_debit);
2346 printf(" mabs limit: %llu; mabs period: %llu ns; last refill: %llu ns%s.\n",
2347 lei.lei_limit, lei.lei_refill_period, lei.lei_last_refill,
2348 (fatal ? " [fatal violation]" : ""));
2349
2350 /*
2351 * For now, send RESOURCE_NOTIFY in parallel with EXC_RESOURCE. Once
2352 * we have logging parity, we will stop sending EXC_RESOURCE (24508922).
2353 */
2354
2355 /* RESOURCE_NOTIFY MIG specifies nanoseconds of CPU time */
2356 lei.lei_balance = balance_ns;
2357 absolutetime_to_nanoseconds(lei.lei_limit, &lei.lei_limit);
2358 trace_resource_violation(RMON_CPUUSAGE_VIOLATED, &lei);
2359 kr = send_resource_violation(send_cpu_usage_violation, task, &lei,
2360 fatal ? kRNFatalLimitFlag : 0);
2361 if (kr) {
2362 printf("send_resource_violation(CPU usage, ...): error %#x\n", kr);
2363 }
2364
2365 #ifdef EXC_RESOURCE_MONITORS
2366 if (send_exc_resource) {
2367 if (disable_exc_resource) {
2368 printf("process %s[%d] thread %llu caught burning CPU! "
2369 "EXC_RESOURCE%s supressed by a boot-arg\n",
2370 procname, pid, tid, fatal ? " (and termination)" : "");
2371 return;
2372 }
2373
2374 if (audio_active) {
2375 printf("process %s[%d] thread %llu caught burning CPU! "
2376 "EXC_RESOURCE & termination supressed due to audio playback\n",
2377 procname, pid, tid);
2378 return;
2379 }
2380 }
2381
2382
2383 if (send_exc_resource) {
2384 code[0] = code[1] = 0;
2385 EXC_RESOURCE_ENCODE_TYPE(code[0], RESOURCE_TYPE_CPU);
2386 if (fatal) {
2387 EXC_RESOURCE_ENCODE_FLAVOR(code[0], FLAVOR_CPU_MONITOR_FATAL);
2388 } else {
2389 EXC_RESOURCE_ENCODE_FLAVOR(code[0], FLAVOR_CPU_MONITOR);
2390 }
2391 EXC_RESOURCE_CPUMONITOR_ENCODE_INTERVAL(code[0], interval_sec);
2392 EXC_RESOURCE_CPUMONITOR_ENCODE_PERCENTAGE(code[0], percentage);
2393 EXC_RESOURCE_CPUMONITOR_ENCODE_PERCENTAGE(code[1], usage_percent);
2394 exception_triage(EXC_RESOURCE, code, EXCEPTION_CODE_MAX);
2395 }
2396 #endif /* EXC_RESOURCE_MONITORS */
2397
2398 if (fatal) {
2399 #if CONFIG_JETSAM
2400 jetsam_on_ledger_cpulimit_exceeded();
2401 #else
2402 task_terminate_internal(task);
2403 #endif
2404 }
2405 }
2406
2407 #if DEVELOPMENT || DEBUG
2408 void __attribute__((noinline))
2409 SENDING_NOTIFICATION__TASK_HAS_TOO_MANY_THREADS(task_t task, int thread_count)
2410 {
2411 mach_exception_data_type_t code[EXCEPTION_CODE_MAX] = {0};
2412 int pid = task_pid(task);
2413 char procname[MAXCOMLEN + 1] = "unknown";
2414
2415 if (pid == 1) {
2416 /*
2417 * Cannot suspend launchd
2418 */
2419 return;
2420 }
2421
2422 proc_name(pid, procname, sizeof(procname));
2423
2424 if (disable_exc_resource) {
2425 printf("process %s[%d] crossed thread count high watermark (%d), EXC_RESOURCE "
2426 "supressed by a boot-arg. \n", procname, pid, thread_count);
2427 return;
2428 }
2429
2430 if (audio_active) {
2431 printf("process %s[%d] crossed thread count high watermark (%d), EXC_RESOURCE "
2432 "supressed due to audio playback.\n", procname, pid, thread_count);
2433 return;
2434 }
2435
2436 if (exc_via_corpse_forking == 0) {
2437 printf("process %s[%d] crossed thread count high watermark (%d), EXC_RESOURCE "
2438 "supressed due to corpse forking being disabled.\n", procname, pid,
2439 thread_count);
2440 return;
2441 }
2442
2443 printf("process %s[%d] crossed thread count high watermark (%d), sending "
2444 "EXC_RESOURCE\n", procname, pid, thread_count);
2445
2446 EXC_RESOURCE_ENCODE_TYPE(code[0], RESOURCE_TYPE_THREADS);
2447 EXC_RESOURCE_ENCODE_FLAVOR(code[0], FLAVOR_THREADS_HIGH_WATERMARK);
2448 EXC_RESOURCE_THREADS_ENCODE_THREADS(code[0], thread_count);
2449
2450 task_enqueue_exception_with_corpse(task, EXC_RESOURCE, code, EXCEPTION_CODE_MAX, NULL);
2451 }
2452 #endif /* DEVELOPMENT || DEBUG */
2453
2454 void
2455 thread_update_io_stats(thread_t thread, int size, int io_flags)
2456 {
2457 int io_tier;
2458
2459 if (thread->thread_io_stats == NULL || thread->task->task_io_stats == NULL) {
2460 return;
2461 }
2462
2463 if (io_flags & DKIO_READ) {
2464 UPDATE_IO_STATS(thread->thread_io_stats->disk_reads, size);
2465 UPDATE_IO_STATS_ATOMIC(thread->task->task_io_stats->disk_reads, size);
2466 }
2467
2468 if (io_flags & DKIO_META) {
2469 UPDATE_IO_STATS(thread->thread_io_stats->metadata, size);
2470 UPDATE_IO_STATS_ATOMIC(thread->task->task_io_stats->metadata, size);
2471 }
2472
2473 if (io_flags & DKIO_PAGING) {
2474 UPDATE_IO_STATS(thread->thread_io_stats->paging, size);
2475 UPDATE_IO_STATS_ATOMIC(thread->task->task_io_stats->paging, size);
2476 }
2477
2478 io_tier = ((io_flags & DKIO_TIER_MASK) >> DKIO_TIER_SHIFT);
2479 assert(io_tier < IO_NUM_PRIORITIES);
2480
2481 UPDATE_IO_STATS(thread->thread_io_stats->io_priority[io_tier], size);
2482 UPDATE_IO_STATS_ATOMIC(thread->task->task_io_stats->io_priority[io_tier], size);
2483
2484 /* Update Total I/O Counts */
2485 UPDATE_IO_STATS(thread->thread_io_stats->total_io, size);
2486 UPDATE_IO_STATS_ATOMIC(thread->task->task_io_stats->total_io, size);
2487
2488 if (!(io_flags & DKIO_READ)) {
2489 DTRACE_IO3(physical_writes, struct task *, thread->task, uint32_t, size, int, io_flags);
2490 ledger_credit(thread->task->ledger, task_ledgers.physical_writes, size);
2491 }
2492 }
2493
2494 static void
2495 init_thread_ledgers(void)
2496 {
2497 ledger_template_t t;
2498 int idx;
2499
2500 assert(thread_ledger_template == NULL);
2501
2502 if ((t = ledger_template_create("Per-thread ledger")) == NULL) {
2503 panic("couldn't create thread ledger template");
2504 }
2505
2506 if ((idx = ledger_entry_add(t, "cpu_time", "sched", "ns")) < 0) {
2507 panic("couldn't create cpu_time entry for thread ledger template");
2508 }
2509
2510 if (ledger_set_callback(t, idx, thread_cputime_callback, NULL, NULL) < 0) {
2511 panic("couldn't set thread ledger callback for cpu_time entry");
2512 }
2513
2514 thread_ledgers.cpu_time = idx;
2515
2516 ledger_template_complete(t);
2517 thread_ledger_template = t;
2518 }
2519
2520 /*
2521 * Returns currently applied CPU usage limit, or 0/0 if none is applied.
2522 */
2523 int
2524 thread_get_cpulimit(int *action, uint8_t *percentage, uint64_t *interval_ns)
2525 {
2526 int64_t abstime = 0;
2527 uint64_t limittime = 0;
2528 thread_t thread = current_thread();
2529
2530 *percentage = 0;
2531 *interval_ns = 0;
2532 *action = 0;
2533
2534 if (thread->t_threadledger == LEDGER_NULL) {
2535 /*
2536 * This thread has no per-thread ledger, so it can't possibly
2537 * have a CPU limit applied.
2538 */
2539 return KERN_SUCCESS;
2540 }
2541
2542 ledger_get_period(thread->t_threadledger, thread_ledgers.cpu_time, interval_ns);
2543 ledger_get_limit(thread->t_threadledger, thread_ledgers.cpu_time, &abstime);
2544
2545 if ((abstime == LEDGER_LIMIT_INFINITY) || (*interval_ns == 0)) {
2546 /*
2547 * This thread's CPU time ledger has no period or limit; so it
2548 * doesn't have a CPU limit applied.
2549 */
2550 return KERN_SUCCESS;
2551 }
2552
2553 /*
2554 * This calculation is the converse to the one in thread_set_cpulimit().
2555 */
2556 absolutetime_to_nanoseconds(abstime, &limittime);
2557 *percentage = (uint8_t)((limittime * 100ULL) / *interval_ns);
2558 assert(*percentage <= 100);
2559
2560 if (thread->options & TH_OPT_PROC_CPULIMIT) {
2561 assert((thread->options & TH_OPT_PRVT_CPULIMIT) == 0);
2562
2563 *action = THREAD_CPULIMIT_BLOCK;
2564 } else if (thread->options & TH_OPT_PRVT_CPULIMIT) {
2565 assert((thread->options & TH_OPT_PROC_CPULIMIT) == 0);
2566
2567 *action = THREAD_CPULIMIT_EXCEPTION;
2568 } else {
2569 *action = THREAD_CPULIMIT_DISABLE;
2570 }
2571
2572 return KERN_SUCCESS;
2573 }
2574
2575 /*
2576 * Set CPU usage limit on a thread.
2577 *
2578 * Calling with percentage of 0 will unset the limit for this thread.
2579 */
2580 int
2581 thread_set_cpulimit(int action, uint8_t percentage, uint64_t interval_ns)
2582 {
2583 thread_t thread = current_thread();
2584 ledger_t l;
2585 uint64_t limittime = 0;
2586 uint64_t abstime = 0;
2587
2588 assert(percentage <= 100);
2589
2590 if (action == THREAD_CPULIMIT_DISABLE) {
2591 /*
2592 * Remove CPU limit, if any exists.
2593 */
2594 if (thread->t_threadledger != LEDGER_NULL) {
2595 l = thread->t_threadledger;
2596 ledger_set_limit(l, thread_ledgers.cpu_time, LEDGER_LIMIT_INFINITY, 0);
2597 ledger_set_action(l, thread_ledgers.cpu_time, LEDGER_ACTION_IGNORE);
2598 thread->options &= ~(TH_OPT_PROC_CPULIMIT | TH_OPT_PRVT_CPULIMIT);
2599 }
2600
2601 return 0;
2602 }
2603
2604 if (interval_ns < MINIMUM_CPULIMIT_INTERVAL_MS * NSEC_PER_MSEC) {
2605 return KERN_INVALID_ARGUMENT;
2606 }
2607
2608 l = thread->t_threadledger;
2609 if (l == LEDGER_NULL) {
2610 /*
2611 * This thread doesn't yet have a per-thread ledger; so create one with the CPU time entry active.
2612 */
2613 if ((l = ledger_instantiate(thread_ledger_template, LEDGER_CREATE_INACTIVE_ENTRIES)) == LEDGER_NULL) {
2614 return KERN_RESOURCE_SHORTAGE;
2615 }
2616
2617 /*
2618 * We are the first to create this thread's ledger, so only activate our entry.
2619 */
2620 ledger_entry_setactive(l, thread_ledgers.cpu_time);
2621 thread->t_threadledger = l;
2622 }
2623
2624 /*
2625 * The limit is specified as a percentage of CPU over an interval in nanoseconds.
2626 * Calculate the amount of CPU time that the thread needs to consume in order to hit the limit.
2627 */
2628 limittime = (interval_ns * percentage) / 100;
2629 nanoseconds_to_absolutetime(limittime, &abstime);
2630 ledger_set_limit(l, thread_ledgers.cpu_time, abstime, cpumon_ustackshots_trigger_pct);
2631 /*
2632 * Refill the thread's allotted CPU time every interval_ns nanoseconds.
2633 */
2634 ledger_set_period(l, thread_ledgers.cpu_time, interval_ns);
2635
2636 if (action == THREAD_CPULIMIT_EXCEPTION) {
2637 /*
2638 * We don't support programming the CPU usage monitor on a task if any of its
2639 * threads have a per-thread blocking CPU limit configured.
2640 */
2641 if (thread->options & TH_OPT_PRVT_CPULIMIT) {
2642 panic("CPU usage monitor activated, but blocking thread limit exists");
2643 }
2644
2645 /*
2646 * Make a note that this thread's CPU limit is being used for the task-wide CPU
2647 * usage monitor. We don't have to arm the callback which will trigger the
2648 * exception, because that was done for us in ledger_instantiate (because the
2649 * ledger template used has a default callback).
2650 */
2651 thread->options |= TH_OPT_PROC_CPULIMIT;
2652 } else {
2653 /*
2654 * We deliberately override any CPU limit imposed by a task-wide limit (eg
2655 * CPU usage monitor).
2656 */
2657 thread->options &= ~TH_OPT_PROC_CPULIMIT;
2658
2659 thread->options |= TH_OPT_PRVT_CPULIMIT;
2660 /* The per-thread ledger template by default has a callback for CPU time */
2661 ledger_disable_callback(l, thread_ledgers.cpu_time);
2662 ledger_set_action(l, thread_ledgers.cpu_time, LEDGER_ACTION_BLOCK);
2663 }
2664
2665 return 0;
2666 }
2667
2668 void
2669 thread_sched_call(
2670 thread_t thread,
2671 sched_call_t call)
2672 {
2673 assert((thread->state & TH_WAIT_REPORT) == 0);
2674 thread->sched_call = call;
2675 }
2676
2677 uint64_t
2678 thread_tid(
2679 thread_t thread)
2680 {
2681 return thread != THREAD_NULL? thread->thread_id: 0;
2682 }
2683
2684 uint16_t
2685 thread_set_tag(thread_t th, uint16_t tag)
2686 {
2687 return thread_set_tag_internal(th, tag);
2688 }
2689
2690 uint16_t
2691 thread_get_tag(thread_t th)
2692 {
2693 return thread_get_tag_internal(th);
2694 }
2695
2696 uint64_t
2697 thread_last_run_time(thread_t th)
2698 {
2699 return th->last_run_time;
2700 }
2701
2702 uint64_t
2703 thread_dispatchqaddr(
2704 thread_t thread)
2705 {
2706 uint64_t dispatchqueue_addr;
2707 uint64_t thread_handle;
2708
2709 if (thread == THREAD_NULL) {
2710 return 0;
2711 }
2712
2713 thread_handle = thread->machine.cthread_self;
2714 if (thread_handle == 0) {
2715 return 0;
2716 }
2717
2718 if (thread->inspection == TRUE) {
2719 dispatchqueue_addr = thread_handle + get_task_dispatchqueue_offset(thread->task);
2720 } else if (thread->task->bsd_info) {
2721 dispatchqueue_addr = thread_handle + get_dispatchqueue_offset_from_proc(thread->task->bsd_info);
2722 } else {
2723 dispatchqueue_addr = 0;
2724 }
2725
2726 return dispatchqueue_addr;
2727 }
2728
2729 uint64_t
2730 thread_rettokern_addr(
2731 thread_t thread)
2732 {
2733 uint64_t rettokern_addr;
2734 uint64_t rettokern_offset;
2735 uint64_t thread_handle;
2736
2737 if (thread == THREAD_NULL) {
2738 return 0;
2739 }
2740
2741 thread_handle = thread->machine.cthread_self;
2742 if (thread_handle == 0) {
2743 return 0;
2744 }
2745
2746 if (thread->task->bsd_info) {
2747 rettokern_offset = get_return_to_kernel_offset_from_proc(thread->task->bsd_info);
2748
2749 /* Return 0 if return to kernel offset is not initialized. */
2750 if (rettokern_offset == 0) {
2751 rettokern_addr = 0;
2752 } else {
2753 rettokern_addr = thread_handle + rettokern_offset;
2754 }
2755 } else {
2756 rettokern_addr = 0;
2757 }
2758
2759 return rettokern_addr;
2760 }
2761
2762 /*
2763 * Export routines to other components for things that are done as macros
2764 * within the osfmk component.
2765 */
2766
2767 #undef thread_mtx_lock
2768 void thread_mtx_lock(thread_t thread);
2769 void
2770 thread_mtx_lock(thread_t thread)
2771 {
2772 lck_mtx_lock(&thread->mutex);
2773 }
2774
2775 #undef thread_mtx_unlock
2776 void thread_mtx_unlock(thread_t thread);
2777 void
2778 thread_mtx_unlock(thread_t thread)
2779 {
2780 lck_mtx_unlock(&thread->mutex);
2781 }
2782
2783 #undef thread_reference
2784 void thread_reference(thread_t thread);
2785 void
2786 thread_reference(
2787 thread_t thread)
2788 {
2789 if (thread != THREAD_NULL) {
2790 thread_reference_internal(thread);
2791 }
2792 }
2793
2794 #undef thread_should_halt
2795
2796 boolean_t
2797 thread_should_halt(
2798 thread_t th)
2799 {
2800 return thread_should_halt_fast(th);
2801 }
2802
2803 /*
2804 * thread_set_voucher_name - reset the voucher port name bound to this thread
2805 *
2806 * Conditions: nothing locked
2807 */
2808
2809 kern_return_t
2810 thread_set_voucher_name(mach_port_name_t voucher_name)
2811 {
2812 thread_t thread = current_thread();
2813 ipc_voucher_t new_voucher = IPC_VOUCHER_NULL;
2814 ipc_voucher_t voucher;
2815 ledger_t bankledger = NULL;
2816 struct thread_group *banktg = NULL;
2817 uint32_t persona_id = 0;
2818
2819 if (MACH_PORT_DEAD == voucher_name) {
2820 return KERN_INVALID_RIGHT;
2821 }
2822
2823 /*
2824 * agressively convert to voucher reference
2825 */
2826 if (MACH_PORT_VALID(voucher_name)) {
2827 new_voucher = convert_port_name_to_voucher(voucher_name);
2828 if (IPC_VOUCHER_NULL == new_voucher) {
2829 return KERN_INVALID_ARGUMENT;
2830 }
2831 }
2832 bank_get_bank_ledger_thread_group_and_persona(new_voucher, &bankledger, &banktg, &persona_id);
2833
2834 thread_mtx_lock(thread);
2835 voucher = thread->ith_voucher;
2836 thread->ith_voucher_name = voucher_name;
2837 thread->ith_voucher = new_voucher;
2838 thread_mtx_unlock(thread);
2839
2840 bank_swap_thread_bank_ledger(thread, bankledger);
2841 #if CONFIG_THREAD_GROUPS
2842 thread_group_set_bank(thread, banktg);
2843 #endif /* CONFIG_THREAD_GROUPS */
2844
2845 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
2846 MACHDBG_CODE(DBG_MACH_IPC, MACH_THREAD_SET_VOUCHER) | DBG_FUNC_NONE,
2847 (uintptr_t)thread_tid(thread),
2848 (uintptr_t)voucher_name,
2849 VM_KERNEL_ADDRPERM((uintptr_t)new_voucher),
2850 persona_id, 0);
2851
2852 if (IPC_VOUCHER_NULL != voucher) {
2853 ipc_voucher_release(voucher);
2854 }
2855
2856 return KERN_SUCCESS;
2857 }
2858
2859 /*
2860 * thread_get_mach_voucher - return a voucher reference for the specified thread voucher
2861 *
2862 * Conditions: nothing locked
2863 *
2864 * NOTE: At the moment, there is no distinction between the current and effective
2865 * vouchers because we only set them at the thread level currently.
2866 */
2867 kern_return_t
2868 thread_get_mach_voucher(
2869 thread_act_t thread,
2870 mach_voucher_selector_t __unused which,
2871 ipc_voucher_t *voucherp)
2872 {
2873 ipc_voucher_t voucher;
2874
2875 if (THREAD_NULL == thread) {
2876 return KERN_INVALID_ARGUMENT;
2877 }
2878
2879 thread_mtx_lock(thread);
2880 voucher = thread->ith_voucher;
2881
2882 if (IPC_VOUCHER_NULL != voucher) {
2883 ipc_voucher_reference(voucher);
2884 thread_mtx_unlock(thread);
2885 *voucherp = voucher;
2886 return KERN_SUCCESS;
2887 }
2888
2889 thread_mtx_unlock(thread);
2890
2891 *voucherp = IPC_VOUCHER_NULL;
2892 return KERN_SUCCESS;
2893 }
2894
2895 /*
2896 * thread_set_mach_voucher - set a voucher reference for the specified thread voucher
2897 *
2898 * Conditions: callers holds a reference on the voucher.
2899 * nothing locked.
2900 *
2901 * We grab another reference to the voucher and bind it to the thread.
2902 * The old voucher reference associated with the thread is
2903 * discarded.
2904 */
2905 kern_return_t
2906 thread_set_mach_voucher(
2907 thread_t thread,
2908 ipc_voucher_t voucher)
2909 {
2910 ipc_voucher_t old_voucher;
2911 ledger_t bankledger = NULL;
2912 struct thread_group *banktg = NULL;
2913 uint32_t persona_id = 0;
2914
2915 if (THREAD_NULL == thread) {
2916 return KERN_INVALID_ARGUMENT;
2917 }
2918
2919 if (thread != current_thread() && thread->started) {
2920 return KERN_INVALID_ARGUMENT;
2921 }
2922
2923 ipc_voucher_reference(voucher);
2924 bank_get_bank_ledger_thread_group_and_persona(voucher, &bankledger, &banktg, &persona_id);
2925
2926 thread_mtx_lock(thread);
2927 old_voucher = thread->ith_voucher;
2928 thread->ith_voucher = voucher;
2929 thread->ith_voucher_name = MACH_PORT_NULL;
2930 thread_mtx_unlock(thread);
2931
2932 bank_swap_thread_bank_ledger(thread, bankledger);
2933 #if CONFIG_THREAD_GROUPS
2934 thread_group_set_bank(thread, banktg);
2935 #endif /* CONFIG_THREAD_GROUPS */
2936
2937 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
2938 MACHDBG_CODE(DBG_MACH_IPC, MACH_THREAD_SET_VOUCHER) | DBG_FUNC_NONE,
2939 (uintptr_t)thread_tid(thread),
2940 (uintptr_t)MACH_PORT_NULL,
2941 VM_KERNEL_ADDRPERM((uintptr_t)voucher),
2942 persona_id, 0);
2943
2944 ipc_voucher_release(old_voucher);
2945
2946 return KERN_SUCCESS;
2947 }
2948
2949 /*
2950 * thread_swap_mach_voucher - swap a voucher reference for the specified thread voucher
2951 *
2952 * Conditions: callers holds a reference on the new and presumed old voucher(s).
2953 * nothing locked.
2954 *
2955 * This function is no longer supported.
2956 */
2957 kern_return_t
2958 thread_swap_mach_voucher(
2959 __unused thread_t thread,
2960 __unused ipc_voucher_t new_voucher,
2961 ipc_voucher_t *in_out_old_voucher)
2962 {
2963 /*
2964 * Currently this function is only called from a MIG generated
2965 * routine which doesn't release the reference on the voucher
2966 * addressed by in_out_old_voucher. To avoid leaking this reference,
2967 * a call to release it has been added here.
2968 */
2969 ipc_voucher_release(*in_out_old_voucher);
2970 return KERN_NOT_SUPPORTED;
2971 }
2972
2973 /*
2974 * thread_get_current_voucher_origin_pid - get the pid of the originator of the current voucher.
2975 */
2976 kern_return_t
2977 thread_get_current_voucher_origin_pid(
2978 int32_t *pid)
2979 {
2980 uint32_t buf_size;
2981 kern_return_t kr;
2982 thread_t thread = current_thread();
2983
2984 buf_size = sizeof(*pid);
2985 kr = mach_voucher_attr_command(thread->ith_voucher,
2986 MACH_VOUCHER_ATTR_KEY_BANK,
2987 BANK_ORIGINATOR_PID,
2988 NULL,
2989 0,
2990 (mach_voucher_attr_content_t)pid,
2991 &buf_size);
2992
2993 return kr;
2994 }
2995
2996 #if CONFIG_THREAD_GROUPS
2997 /*
2998 * Returns the current thread's voucher-carried thread group
2999 *
3000 * Reference is borrowed from this being the current voucher, so it does NOT
3001 * return a reference to the group.
3002 */
3003 struct thread_group *
3004 thread_get_current_voucher_thread_group(thread_t thread)
3005 {
3006 assert(thread == current_thread());
3007
3008 if (thread->ith_voucher == NULL) {
3009 return NULL;
3010 }
3011
3012 ledger_t bankledger = NULL;
3013 struct thread_group *banktg = NULL;
3014
3015 bank_get_bank_ledger_thread_group_and_persona(thread->ith_voucher, &bankledger, &banktg, NULL);
3016
3017 return banktg;
3018 }
3019
3020 #endif /* CONFIG_THREAD_GROUPS */
3021
3022 boolean_t
3023 thread_has_thread_name(thread_t th)
3024 {
3025 if ((th) && (th->uthread)) {
3026 return bsd_hasthreadname(th->uthread);
3027 }
3028
3029 /*
3030 * This is an odd case; clients may set the thread name based on the lack of
3031 * a name, but in this context there is no uthread to attach the name to.
3032 */
3033 return FALSE;
3034 }
3035
3036 void
3037 thread_set_thread_name(thread_t th, const char* name)
3038 {
3039 if ((th) && (th->uthread) && name) {
3040 bsd_setthreadname(th->uthread, name);
3041 }
3042 }
3043
3044 void
3045 thread_get_thread_name(thread_t th, char* name)
3046 {
3047 if (!name) {
3048 return;
3049 }
3050 if ((th) && (th->uthread)) {
3051 bsd_getthreadname(th->uthread, name);
3052 } else {
3053 name[0] = '\0';
3054 }
3055 }
3056
3057 void
3058 thread_set_honor_qlimit(thread_t thread)
3059 {
3060 thread->options |= TH_OPT_HONOR_QLIMIT;
3061 }
3062
3063 void
3064 thread_clear_honor_qlimit(thread_t thread)
3065 {
3066 thread->options &= (~TH_OPT_HONOR_QLIMIT);
3067 }
3068
3069 /*
3070 * thread_enable_send_importance - set/clear the SEND_IMPORTANCE thread option bit.
3071 */
3072 void
3073 thread_enable_send_importance(thread_t thread, boolean_t enable)
3074 {
3075 if (enable == TRUE) {
3076 thread->options |= TH_OPT_SEND_IMPORTANCE;
3077 } else {
3078 thread->options &= ~TH_OPT_SEND_IMPORTANCE;
3079 }
3080 }
3081
3082 /*
3083 * thread_set_allocation_name - .
3084 */
3085
3086 kern_allocation_name_t
3087 thread_set_allocation_name(kern_allocation_name_t new_name)
3088 {
3089 kern_allocation_name_t ret;
3090 thread_kernel_state_t kstate = thread_get_kernel_state(current_thread());
3091 ret = kstate->allocation_name;
3092 // fifo
3093 if (!new_name || !kstate->allocation_name) {
3094 kstate->allocation_name = new_name;
3095 }
3096 return ret;
3097 }
3098
3099 void *
3100 thread_iokit_tls_get(uint32_t index)
3101 {
3102 assert(index < THREAD_SAVE_IOKIT_TLS_COUNT);
3103 return current_thread()->saved.iokit.tls[index];
3104 }
3105
3106 void
3107 thread_iokit_tls_set(uint32_t index, void * data)
3108 {
3109 assert(index < THREAD_SAVE_IOKIT_TLS_COUNT);
3110 current_thread()->saved.iokit.tls[index] = data;
3111 }
3112
3113 uint64_t
3114 thread_get_last_wait_duration(thread_t thread)
3115 {
3116 return thread->last_made_runnable_time - thread->last_run_time;
3117 }
3118
3119 integer_t
3120 thread_kern_get_pri(thread_t thr)
3121 {
3122 return thr->base_pri;
3123 }
3124
3125 void
3126 thread_kern_set_pri(thread_t thr, integer_t pri)
3127 {
3128 sched_set_kernel_thread_priority(thr, pri);
3129 }
3130
3131 integer_t
3132 thread_kern_get_kernel_maxpri(void)
3133 {
3134 return MAXPRI_KERNEL;
3135 }
3136 /*
3137 * thread_port_with_flavor_notify
3138 *
3139 * Called whenever the Mach port system detects no-senders on
3140 * the thread inspect or read port. These ports are allocated lazily and
3141 * should be deallocated here when there are no senders remaining.
3142 */
3143 void
3144 thread_port_with_flavor_notify(mach_msg_header_t *msg)
3145 {
3146 mach_no_senders_notification_t *notification = (void *)msg;
3147 ipc_port_t port = notification->not_header.msgh_remote_port;
3148 thread_t thread;
3149 mach_thread_flavor_t flavor;
3150 ipc_kobject_type_t kotype;
3151
3152 ip_lock(port);
3153 if (port->ip_srights > 0) {
3154 ip_unlock(port);
3155 return;
3156 }
3157 thread = (thread_t)port->ip_kobject;
3158 kotype = ip_kotype(port);
3159 if (thread != THREAD_NULL) {
3160 assert((IKOT_THREAD_READ == kotype) || (IKOT_THREAD_INSPECT == kotype));
3161 thread_reference_internal(thread);
3162 }
3163 ip_unlock(port);
3164
3165 if (thread == THREAD_NULL) {
3166 /* The thread is exiting or disabled; it will eventually deallocate the port */
3167 return;
3168 }
3169
3170 thread_mtx_lock(thread);
3171 ip_lock(port);
3172 require_ip_active(port);
3173 /*
3174 * Check for a stale no-senders notification. A call to any function
3175 * that vends out send rights to this port could resurrect it between
3176 * this notification being generated and actually being handled here.
3177 */
3178 if (port->ip_srights > 0) {
3179 ip_unlock(port);
3180 thread_mtx_unlock(thread);
3181 thread_deallocate(thread);
3182 return;
3183 }
3184 if (kotype == IKOT_THREAD_READ) {
3185 flavor = THREAD_FLAVOR_READ;
3186 } else {
3187 flavor = THREAD_FLAVOR_INSPECT;
3188 }
3189 assert(thread->ith_self[flavor] == port);
3190 thread->ith_self[flavor] = IP_NULL;
3191 port->ip_kobject = IKOT_NONE;
3192 ip_unlock(port);
3193 thread_mtx_unlock(thread);
3194 thread_deallocate(thread);
3195
3196 ipc_port_dealloc_kernel(port);
3197 }
3198
3199 /*
3200 * The 'thread_region_page_shift' is used by footprint
3201 * to specify the page size that it will use to
3202 * accomplish its accounting work on the task being
3203 * inspected. Since footprint uses a thread for each
3204 * task that it works on, we need to keep the page_shift
3205 * on a per-thread basis.
3206 */
3207
3208 int
3209 thread_self_region_page_shift(void)
3210 {
3211 /*
3212 * Return the page shift that this thread
3213 * would like to use for its accounting work.
3214 */
3215 return current_thread()->thread_region_page_shift;
3216 }
3217
3218 void
3219 thread_self_region_page_shift_set(
3220 int pgshift)
3221 {
3222 /*
3223 * Set the page shift that this thread
3224 * would like to use for its accounting work
3225 * when dealing with a task.
3226 */
3227 current_thread()->thread_region_page_shift = pgshift;
3228 }
3229
3230 #if CONFIG_DTRACE
3231 uint32_t
3232 dtrace_get_thread_predcache(thread_t thread)
3233 {
3234 if (thread != THREAD_NULL) {
3235 return thread->t_dtrace_predcache;
3236 } else {
3237 return 0;
3238 }
3239 }
3240
3241 int64_t
3242 dtrace_get_thread_vtime(thread_t thread)
3243 {
3244 if (thread != THREAD_NULL) {
3245 return thread->t_dtrace_vtime;
3246 } else {
3247 return 0;
3248 }
3249 }
3250
3251 int
3252 dtrace_get_thread_last_cpu_id(thread_t thread)
3253 {
3254 if ((thread != THREAD_NULL) && (thread->last_processor != PROCESSOR_NULL)) {
3255 return thread->last_processor->cpu_id;
3256 } else {
3257 return -1;
3258 }
3259 }
3260
3261 int64_t
3262 dtrace_get_thread_tracing(thread_t thread)
3263 {
3264 if (thread != THREAD_NULL) {
3265 return thread->t_dtrace_tracing;
3266 } else {
3267 return 0;
3268 }
3269 }
3270
3271 uint16_t
3272 dtrace_get_thread_inprobe(thread_t thread)
3273 {
3274 if (thread != THREAD_NULL) {
3275 return thread->t_dtrace_inprobe;
3276 } else {
3277 return 0;
3278 }
3279 }
3280
3281 vm_offset_t
3282 dtrace_get_kernel_stack(thread_t thread)
3283 {
3284 if (thread != THREAD_NULL) {
3285 return thread->kernel_stack;
3286 } else {
3287 return 0;
3288 }
3289 }
3290
3291 #if KASAN
3292 struct kasan_thread_data *
3293 kasan_get_thread_data(thread_t thread)
3294 {
3295 return &thread->kasan_data;
3296 }
3297 #endif
3298
3299 #if CONFIG_KSANCOV
3300 void **
3301 __sanitizer_get_thread_data(thread_t thread)
3302 {
3303 return &thread->ksancov_data;
3304 }
3305 #endif
3306
3307 int64_t
3308 dtrace_calc_thread_recent_vtime(thread_t thread)
3309 {
3310 if (thread != THREAD_NULL) {
3311 processor_t processor = current_processor();
3312 uint64_t abstime = mach_absolute_time();
3313 timer_t timer;
3314
3315 timer = processor->thread_timer;
3316
3317 return timer_grab(&(thread->system_timer)) + timer_grab(&(thread->user_timer)) +
3318 (abstime - timer->tstamp); /* XXX need interrupts off to prevent missed time? */
3319 } else {
3320 return 0;
3321 }
3322 }
3323
3324 void
3325 dtrace_set_thread_predcache(thread_t thread, uint32_t predcache)
3326 {
3327 if (thread != THREAD_NULL) {
3328 thread->t_dtrace_predcache = predcache;
3329 }
3330 }
3331
3332 void
3333 dtrace_set_thread_vtime(thread_t thread, int64_t vtime)
3334 {
3335 if (thread != THREAD_NULL) {
3336 thread->t_dtrace_vtime = vtime;
3337 }
3338 }
3339
3340 void
3341 dtrace_set_thread_tracing(thread_t thread, int64_t accum)
3342 {
3343 if (thread != THREAD_NULL) {
3344 thread->t_dtrace_tracing = accum;
3345 }
3346 }
3347
3348 void
3349 dtrace_set_thread_inprobe(thread_t thread, uint16_t inprobe)
3350 {
3351 if (thread != THREAD_NULL) {
3352 thread->t_dtrace_inprobe = inprobe;
3353 }
3354 }
3355
3356 vm_offset_t
3357 dtrace_set_thread_recover(thread_t thread, vm_offset_t recover)
3358 {
3359 vm_offset_t prev = 0;
3360
3361 if (thread != THREAD_NULL) {
3362 prev = thread->recover;
3363 thread->recover = recover;
3364 }
3365 return prev;
3366 }
3367
3368 vm_offset_t
3369 dtrace_sign_and_set_thread_recover(thread_t thread, vm_offset_t recover)
3370 {
3371 #if defined(HAS_APPLE_PAC)
3372 return dtrace_set_thread_recover(thread,
3373 (vm_address_t)ptrauth_sign_unauthenticated((void *)recover,
3374 ptrauth_key_function_pointer,
3375 ptrauth_blend_discriminator(&thread->recover, PAC_DISCRIMINATOR_RECOVER)));
3376 #else /* defined(HAS_APPLE_PAC) */
3377 return dtrace_set_thread_recover(thread, recover);
3378 #endif /* defined(HAS_APPLE_PAC) */
3379 }
3380
3381 void
3382 dtrace_thread_bootstrap(void)
3383 {
3384 task_t task = current_task();
3385
3386 if (task->thread_count == 1) {
3387 thread_t thread = current_thread();
3388 if (thread->t_dtrace_flags & TH_DTRACE_EXECSUCCESS) {
3389 thread->t_dtrace_flags &= ~TH_DTRACE_EXECSUCCESS;
3390 DTRACE_PROC(exec__success);
3391 KDBG(BSDDBG_CODE(DBG_BSD_PROC, BSD_PROC_EXEC),
3392 task_pid(task));
3393 }
3394 DTRACE_PROC(start);
3395 }
3396 DTRACE_PROC(lwp__start);
3397 }
3398
3399 void
3400 dtrace_thread_didexec(thread_t thread)
3401 {
3402 thread->t_dtrace_flags |= TH_DTRACE_EXECSUCCESS;
3403 }
3404 #endif /* CONFIG_DTRACE */