]> git.saurik.com Git - apple/xnu.git/blob - osfmk/i386/trap.c
xnu-7195.60.75.tar.gz
[apple/xnu.git] / osfmk / i386 / trap.c
1 /*
2 * Copyright (c) 2000-2020 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*
29 * @OSF_COPYRIGHT@
30 */
31 /*
32 * Mach Operating System
33 * Copyright (c) 1991,1990,1989,1988 Carnegie Mellon University
34 * All Rights Reserved.
35 *
36 * Permission to use, copy, modify and distribute this software and its
37 * documentation is hereby granted, provided that both the copyright
38 * notice and this permission notice appear in all copies of the
39 * software, derivative works or modified versions, and any portions
40 * thereof, and that both notices appear in supporting documentation.
41 *
42 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
43 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
44 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
45 *
46 * Carnegie Mellon requests users of this software to return to
47 *
48 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
49 * School of Computer Science
50 * Carnegie Mellon University
51 * Pittsburgh PA 15213-3890
52 *
53 * any improvements or extensions that they make and grant Carnegie Mellon
54 * the rights to redistribute these changes.
55 */
56 /*
57 */
58
59 /*
60 * Hardware trap/fault handler.
61 */
62
63 #include <mach_kdp.h>
64 #include <mach_ldebug.h>
65
66 #include <types.h>
67 #include <i386/eflags.h>
68 #include <i386/trap.h>
69 #include <i386/pmap.h>
70 #include <i386/fpu.h>
71 #include <i386/panic_notify.h>
72 #include <i386/lapic.h>
73
74 #include <mach/exception.h>
75 #include <mach/kern_return.h>
76 #include <mach/vm_param.h>
77 #include <mach/i386/thread_status.h>
78
79 #include <vm/vm_kern.h>
80 #include <vm/vm_fault.h>
81
82 #include <kern/kern_types.h>
83 #include <kern/processor.h>
84 #include <kern/thread.h>
85 #include <kern/task.h>
86 #include <kern/sched.h>
87 #include <kern/sched_prim.h>
88 #include <kern/exception.h>
89 #include <kern/spl.h>
90 #include <kern/misc_protos.h>
91 #include <kern/debug.h>
92 #if CONFIG_TELEMETRY
93 #include <kern/telemetry.h>
94 #endif
95 #include <sys/kdebug.h>
96 #include <kperf/kperf.h>
97 #include <prng/random.h>
98 #include <prng/entropy.h>
99
100 #include <string.h>
101
102 #include <i386/postcode.h>
103 #include <i386/mp_desc.h>
104 #include <i386/proc_reg.h>
105 #include <i386/machine_routines.h>
106 #if CONFIG_MCA
107 #include <i386/machine_check.h>
108 #endif
109 #include <mach/i386/syscall_sw.h>
110
111 #include <libkern/OSDebug.h>
112 #include <i386/cpu_threads.h>
113 #include <machine/pal_routines.h>
114
115 extern void throttle_lowpri_io(int);
116 extern void kprint_state(x86_saved_state64_t *saved_state);
117 #if DEVELOPMENT || DEBUG
118 int insnstream_force_cacheline_mismatch = 0;
119 extern int panic_on_cacheline_mismatch;
120 extern char panic_on_trap_procname[];
121 extern uint32_t panic_on_trap_mask;
122 #endif
123
124 extern int insn_copyin_count;
125
126 /*
127 * Forward declarations
128 */
129 static void panic_trap(x86_saved_state64_t *saved_state, uint32_t pl, kern_return_t fault_result) __dead2;
130 static void set_recovery_ip(x86_saved_state64_t *saved_state, vm_offset_t ip);
131 #if DEVELOPMENT || DEBUG
132 static __attribute__((noinline)) void copy_instruction_stream(thread_t thread, uint64_t rip, int trap_code, bool inspect_cacheline);
133 #else
134 static __attribute__((noinline)) void copy_instruction_stream(thread_t thread, uint64_t rip, int trap_code);
135 #endif
136
137 #if CONFIG_DTRACE
138 /* See <rdar://problem/4613924> */
139 perfCallback tempDTraceTrapHook = NULL; /* Pointer to DTrace fbt trap hook routine */
140
141 extern boolean_t dtrace_tally_fault(user_addr_t);
142 extern boolean_t dtrace_handle_trap(int, x86_saved_state_t *);
143 #endif
144
145 #ifdef MACH_BSD
146 extern char * proc_name_address(void *p);
147 #endif /* MACH_BSD */
148
149 extern boolean_t pmap_smep_enabled;
150 extern boolean_t pmap_smap_enabled;
151
152 __attribute__((noreturn))
153 void
154 thread_syscall_return(
155 kern_return_t ret)
156 {
157 thread_t thr_act = current_thread();
158 boolean_t is_mach;
159 int code;
160
161 pal_register_cache_state(thr_act, DIRTY);
162
163 if (thread_is_64bit_addr(thr_act)) {
164 x86_saved_state64_t *regs;
165
166 regs = USER_REGS64(thr_act);
167
168 code = (int) (regs->rax & SYSCALL_NUMBER_MASK);
169 is_mach = (regs->rax & SYSCALL_CLASS_MASK)
170 == (SYSCALL_CLASS_MACH << SYSCALL_CLASS_SHIFT);
171 if (kdebug_enable && is_mach) {
172 /* Mach trap */
173 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
174 MACHDBG_CODE(DBG_MACH_EXCP_SC, code) | DBG_FUNC_END,
175 ret, 0, 0, 0, 0);
176 }
177 regs->rax = ret;
178 #if DEBUG
179 if (is_mach) {
180 DEBUG_KPRINT_SYSCALL_MACH(
181 "thread_syscall_return: 64-bit mach ret=%u\n",
182 ret);
183 } else {
184 DEBUG_KPRINT_SYSCALL_UNIX(
185 "thread_syscall_return: 64-bit unix ret=%u\n",
186 ret);
187 }
188 #endif
189 } else {
190 x86_saved_state32_t *regs;
191
192 regs = USER_REGS32(thr_act);
193
194 code = ((int) regs->eax);
195 is_mach = (code < 0);
196 if (kdebug_enable && is_mach) {
197 /* Mach trap */
198 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
199 MACHDBG_CODE(DBG_MACH_EXCP_SC, -code) | DBG_FUNC_END,
200 ret, 0, 0, 0, 0);
201 }
202 regs->eax = ret;
203 #if DEBUG
204 if (is_mach) {
205 DEBUG_KPRINT_SYSCALL_MACH(
206 "thread_syscall_return: 32-bit mach ret=%u\n",
207 ret);
208 } else {
209 DEBUG_KPRINT_SYSCALL_UNIX(
210 "thread_syscall_return: 32-bit unix ret=%u\n",
211 ret);
212 }
213 #endif
214 }
215
216 #if DEBUG || DEVELOPMENT
217 kern_allocation_name_t
218 prior __assert_only = thread_get_kernel_state(thr_act)->allocation_name;
219 assertf(prior == NULL, "thread_set_allocation_name(\"%s\") not cleared", kern_allocation_get_name(prior));
220 #endif /* DEBUG || DEVELOPMENT */
221
222 throttle_lowpri_io(1);
223
224 thread_exception_return();
225 /*NOTREACHED*/
226 }
227
228 /*
229 * Fault recovery in copyin/copyout routines.
230 */
231 struct recovery {
232 uintptr_t fault_addr;
233 uintptr_t recover_addr;
234 };
235
236 extern struct recovery recover_table[];
237 extern struct recovery recover_table_end[];
238
239 const char * trap_type[] = {TRAP_NAMES};
240 unsigned TRAP_TYPES = sizeof(trap_type) / sizeof(trap_type[0]);
241
242 extern void PE_incoming_interrupt(int interrupt);
243
244 #if defined(__x86_64__) && DEBUG
245 void
246 kprint_state(x86_saved_state64_t *saved_state)
247 {
248 kprintf("current_cpu_datap() 0x%lx\n", (uintptr_t)current_cpu_datap());
249 kprintf("Current GS base MSR 0x%llx\n", rdmsr64(MSR_IA32_GS_BASE));
250 kprintf("Kernel GS base MSR 0x%llx\n", rdmsr64(MSR_IA32_KERNEL_GS_BASE));
251 kprintf("state at 0x%lx:\n", (uintptr_t) saved_state);
252
253 kprintf(" rdi 0x%llx\n", saved_state->rdi);
254 kprintf(" rsi 0x%llx\n", saved_state->rsi);
255 kprintf(" rdx 0x%llx\n", saved_state->rdx);
256 kprintf(" r10 0x%llx\n", saved_state->r10);
257 kprintf(" r8 0x%llx\n", saved_state->r8);
258 kprintf(" r9 0x%llx\n", saved_state->r9);
259
260 kprintf(" cr2 0x%llx\n", saved_state->cr2);
261 kprintf("real cr2 0x%lx\n", get_cr2());
262 kprintf(" r15 0x%llx\n", saved_state->r15);
263 kprintf(" r14 0x%llx\n", saved_state->r14);
264 kprintf(" r13 0x%llx\n", saved_state->r13);
265 kprintf(" r12 0x%llx\n", saved_state->r12);
266 kprintf(" r11 0x%llx\n", saved_state->r11);
267 kprintf(" rbp 0x%llx\n", saved_state->rbp);
268 kprintf(" rbx 0x%llx\n", saved_state->rbx);
269 kprintf(" rcx 0x%llx\n", saved_state->rcx);
270 kprintf(" rax 0x%llx\n", saved_state->rax);
271
272 kprintf(" gs 0x%x\n", saved_state->gs);
273 kprintf(" fs 0x%x\n", saved_state->fs);
274
275 kprintf(" isf.trapno 0x%x\n", saved_state->isf.trapno);
276 kprintf(" isf._pad 0x%x\n", saved_state->isf._pad);
277 kprintf(" isf.trapfn 0x%llx\n", saved_state->isf.trapfn);
278 kprintf(" isf.err 0x%llx\n", saved_state->isf.err);
279 kprintf(" isf.rip 0x%llx\n", saved_state->isf.rip);
280 kprintf(" isf.cs 0x%llx\n", saved_state->isf.cs);
281 kprintf(" isf.rflags 0x%llx\n", saved_state->isf.rflags);
282 kprintf(" isf.rsp 0x%llx\n", saved_state->isf.rsp);
283 kprintf(" isf.ss 0x%llx\n", saved_state->isf.ss);
284 }
285 #endif
286
287
288 /*
289 * Non-zero indicates latency assert is enabled and capped at valued
290 * absolute time units.
291 */
292
293 uint64_t interrupt_latency_cap = 0;
294 boolean_t ilat_assert = FALSE;
295
296 void
297 interrupt_latency_tracker_setup(void)
298 {
299 uint32_t ilat_cap_us;
300 if (PE_parse_boot_argn("interrupt_latency_cap_us", &ilat_cap_us, sizeof(ilat_cap_us))) {
301 interrupt_latency_cap = ilat_cap_us * NSEC_PER_USEC;
302 nanoseconds_to_absolutetime(interrupt_latency_cap, &interrupt_latency_cap);
303 } else {
304 interrupt_latency_cap = LockTimeOut;
305 }
306 PE_parse_boot_argn("-interrupt_latency_assert_enable", &ilat_assert, sizeof(ilat_assert));
307 }
308
309 void
310 interrupt_reset_latency_stats(void)
311 {
312 uint32_t i;
313 for (i = 0; i < real_ncpus; i++) {
314 cpu_data_ptr[i]->cpu_max_observed_int_latency =
315 cpu_data_ptr[i]->cpu_max_observed_int_latency_vector = 0;
316 }
317 }
318
319 void
320 interrupt_populate_latency_stats(char *buf, unsigned bufsize)
321 {
322 uint32_t i, tcpu = ~0;
323 uint64_t cur_max = 0;
324
325 for (i = 0; i < real_ncpus; i++) {
326 if (cur_max < cpu_data_ptr[i]->cpu_max_observed_int_latency) {
327 cur_max = cpu_data_ptr[i]->cpu_max_observed_int_latency;
328 tcpu = i;
329 }
330 }
331
332 if (tcpu < real_ncpus) {
333 snprintf(buf, bufsize, "0x%x 0x%x 0x%llx", tcpu, cpu_data_ptr[tcpu]->cpu_max_observed_int_latency_vector, cpu_data_ptr[tcpu]->cpu_max_observed_int_latency);
334 }
335 }
336
337 uint32_t interrupt_timer_coalescing_enabled = 1;
338 uint64_t interrupt_coalesced_timers;
339
340 /*
341 * Handle interrupts:
342 * - local APIC interrupts (IPIs, timers, etc) are handled by the kernel,
343 * - device interrupts go to the platform expert.
344 */
345 void
346 interrupt(x86_saved_state_t *state)
347 {
348 uint64_t rip;
349 uint64_t rsp;
350 int interrupt_num;
351 boolean_t user_mode = FALSE;
352 int ipl;
353 int cnum = cpu_number();
354 cpu_data_t *cdp = cpu_data_ptr[cnum];
355 int itype = DBG_INTR_TYPE_UNKNOWN;
356 int handled;
357
358 x86_saved_state64_t *state64 = saved_state64(state);
359 rip = state64->isf.rip;
360 rsp = state64->isf.rsp;
361 interrupt_num = state64->isf.trapno;
362 if (state64->isf.cs & 0x03) {
363 user_mode = TRUE;
364 }
365
366 #if DEVELOPMENT || DEBUG
367 uint64_t frameptr = is_saved_state64(state) ? state64->rbp : saved_state32(state)->ebp;
368 uint32_t traptrace_index = traptrace_start(interrupt_num, rip, mach_absolute_time(), frameptr);
369 #endif
370
371 if (cpu_data_ptr[cnum]->lcpu.package->num_idle == topoParms.nLThreadsPerPackage) {
372 cpu_data_ptr[cnum]->cpu_hwIntpexits[interrupt_num]++;
373 }
374
375 if (interrupt_num == (LAPIC_DEFAULT_INTERRUPT_BASE + LAPIC_INTERPROCESSOR_INTERRUPT)) {
376 itype = DBG_INTR_TYPE_IPI;
377 } else if (interrupt_num == (LAPIC_DEFAULT_INTERRUPT_BASE + LAPIC_TIMER_INTERRUPT)) {
378 itype = DBG_INTR_TYPE_TIMER;
379 } else {
380 itype = DBG_INTR_TYPE_OTHER;
381 }
382
383 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
384 MACHDBG_CODE(DBG_MACH_EXCP_INTR, 0) | DBG_FUNC_START,
385 interrupt_num,
386 (user_mode ? rip : VM_KERNEL_UNSLIDE(rip)),
387 user_mode, itype, 0);
388
389 SCHED_STATS_INC(interrupt_count);
390
391 #if CONFIG_TELEMETRY
392 if (telemetry_needs_record) {
393 telemetry_mark_curthread(user_mode, FALSE);
394 }
395 #endif
396
397 ipl = get_preemption_level();
398
399 /*
400 * Handle local APIC interrupts
401 * else call platform expert for devices.
402 */
403 handled = lapic_interrupt(interrupt_num, state);
404
405 if (!handled) {
406 if (interrupt_num == (LAPIC_DEFAULT_INTERRUPT_BASE + LAPIC_CMCI_INTERRUPT)) {
407 /*
408 * CMCI can be signalled on any logical processor, and the kexts
409 * that implement handling CMCI use IOKit to register handlers for
410 * the CMCI vector, so if we see a CMCI, do not encode a CPU
411 * number in bits 8:31 (since the vector is the same regardless of
412 * the handling CPU).
413 */
414 PE_incoming_interrupt(interrupt_num);
415 } else if (cnum <= lapic_max_interrupt_cpunum) {
416 PE_incoming_interrupt((cnum << 8) | interrupt_num);
417 }
418 }
419
420 if (__improbable(get_preemption_level() != ipl)) {
421 panic("Preemption level altered by interrupt vector 0x%x: initial 0x%x, final: 0x%x\n", interrupt_num, ipl, get_preemption_level());
422 }
423
424
425 if (__improbable(cdp->cpu_nested_istack)) {
426 cdp->cpu_nested_istack_events++;
427 } else {
428 uint64_t ctime = mach_absolute_time();
429 uint64_t int_latency = ctime - cdp->cpu_int_event_time;
430 uint64_t esdeadline, ehdeadline;
431 /* Attempt to process deferred timers in the context of
432 * this interrupt, unless interrupt time has already exceeded
433 * TCOAL_ILAT_THRESHOLD.
434 */
435 #define TCOAL_ILAT_THRESHOLD (30000ULL)
436
437 if ((int_latency < TCOAL_ILAT_THRESHOLD) &&
438 interrupt_timer_coalescing_enabled) {
439 esdeadline = cdp->rtclock_timer.queue.earliest_soft_deadline;
440 ehdeadline = cdp->rtclock_timer.deadline;
441 if ((ctime >= esdeadline) && (ctime < ehdeadline)) {
442 interrupt_coalesced_timers++;
443 TCOAL_DEBUG(0x88880000 | DBG_FUNC_START, ctime, esdeadline, ehdeadline, interrupt_coalesced_timers, 0);
444 rtclock_intr(state);
445 TCOAL_DEBUG(0x88880000 | DBG_FUNC_END, ctime, esdeadline, interrupt_coalesced_timers, 0, 0);
446 } else {
447 TCOAL_DEBUG(0x77770000, ctime, cdp->rtclock_timer.queue.earliest_soft_deadline, cdp->rtclock_timer.deadline, interrupt_coalesced_timers, 0);
448 }
449 }
450
451 if (__improbable(ilat_assert && (int_latency > interrupt_latency_cap) && !machine_timeout_suspended())) {
452 panic("Interrupt vector 0x%x exceeded interrupt latency threshold, 0x%llx absolute time delta, prior signals: 0x%x, current signals: 0x%x", interrupt_num, int_latency, cdp->cpu_prior_signals, cdp->cpu_signals);
453 }
454
455 if (__improbable(int_latency > cdp->cpu_max_observed_int_latency)) {
456 cdp->cpu_max_observed_int_latency = int_latency;
457 cdp->cpu_max_observed_int_latency_vector = interrupt_num;
458 }
459 }
460
461 /*
462 * Having serviced the interrupt first, look at the interrupted stack depth.
463 */
464 if (!user_mode) {
465 uint64_t depth = cdp->cpu_kernel_stack
466 + sizeof(struct thread_kernel_state)
467 + sizeof(struct i386_exception_link *)
468 - rsp;
469 if (__improbable(depth > kernel_stack_depth_max)) {
470 kernel_stack_depth_max = (vm_offset_t)depth;
471 KERNEL_DEBUG_CONSTANT(
472 MACHDBG_CODE(DBG_MACH_SCHED, MACH_STACK_DEPTH),
473 (long) depth, (long) VM_KERNEL_UNSLIDE(rip), 0, 0, 0);
474 }
475 }
476
477 if (cnum == master_cpu) {
478 entropy_collect();
479 }
480
481 #if KPERF
482 kperf_interrupt();
483 #endif /* KPERF */
484
485 KDBG_RELEASE(MACHDBG_CODE(DBG_MACH_EXCP_INTR, 0) | DBG_FUNC_END,
486 interrupt_num);
487
488 assert(ml_get_interrupts_enabled() == FALSE);
489
490 #if DEVELOPMENT || DEBUG
491 if (traptrace_index != TRAPTRACE_INVALID_INDEX) {
492 traptrace_end(traptrace_index, mach_absolute_time());
493 }
494 #endif
495 }
496
497 static inline void
498 reset_dr7(void)
499 {
500 long dr7 = 0x400; /* magic dr7 reset value; 32 bit on i386, 64 bit on x86_64 */
501 __asm__ volatile ("mov %0,%%dr7" : : "r" (dr7));
502 }
503 #if MACH_KDP
504 unsigned kdp_has_active_watchpoints = 0;
505 #define NO_WATCHPOINTS (!kdp_has_active_watchpoints)
506 #else
507 #define NO_WATCHPOINTS 1
508 #endif
509 /*
510 * Trap from kernel mode. Only page-fault errors are recoverable,
511 * and then only in special circumstances. All other errors are
512 * fatal. Return value indicates if trap was handled.
513 */
514
515 void
516 kernel_trap(
517 x86_saved_state_t *state,
518 uintptr_t *lo_spp)
519 {
520 x86_saved_state64_t *saved_state;
521 int code;
522 user_addr_t vaddr;
523 int type;
524 vm_map_t map = 0; /* protected by T_PAGE_FAULT */
525 kern_return_t result = KERN_FAILURE;
526 kern_return_t fault_result = KERN_SUCCESS;
527 thread_t thread;
528 boolean_t intr;
529 vm_prot_t prot;
530 struct recovery *rp;
531 vm_offset_t kern_ip;
532 int is_user;
533 int trap_pl = get_preemption_level();
534
535 thread = current_thread();
536
537 if (__improbable(is_saved_state32(state))) {
538 panic("kernel_trap(%p) with 32-bit state", state);
539 }
540 saved_state = saved_state64(state);
541
542 /* Record cpu where state was captured */
543 saved_state->isf.cpu = cpu_number();
544
545 vaddr = (user_addr_t)saved_state->cr2;
546 type = saved_state->isf.trapno;
547 code = (int)(saved_state->isf.err & 0xffff);
548 intr = (saved_state->isf.rflags & EFL_IF) != 0; /* state of ints at trap */
549 kern_ip = (vm_offset_t)saved_state->isf.rip;
550
551 is_user = (vaddr < VM_MAX_USER_PAGE_ADDRESS);
552
553 #if DEVELOPMENT || DEBUG
554 uint32_t traptrace_index = traptrace_start(type, kern_ip, mach_absolute_time(), saved_state->rbp);
555 #endif
556
557 #if CONFIG_DTRACE
558 /*
559 * Is there a DTrace hook?
560 */
561 if (__improbable(tempDTraceTrapHook != NULL)) {
562 if (tempDTraceTrapHook(type, state, lo_spp, 0) == KERN_SUCCESS) {
563 /*
564 * If it succeeds, we are done...
565 */
566 goto common_return;
567 }
568 }
569
570 /* Handle traps originated from probe context. */
571 if (thread != THREAD_NULL && thread->t_dtrace_inprobe) {
572 if (dtrace_handle_trap(type, state)) {
573 goto common_return;
574 }
575 }
576
577 #endif /* CONFIG_DTRACE */
578
579 /*
580 * we come here with interrupts off as we don't want to recurse
581 * on preemption below. but we do want to re-enable interrupts
582 * as soon we possibly can to hold latency down
583 */
584 if (__improbable(T_PREEMPT == type)) {
585 ast_taken_kernel();
586
587 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
588 (MACHDBG_CODE(DBG_MACH_EXCP_KTRAP_x86, type)) | DBG_FUNC_NONE,
589 0, 0, 0, VM_KERNEL_UNSLIDE(kern_ip), 0);
590
591 goto common_return;
592 }
593
594 user_addr_t kd_vaddr = is_user ? vaddr : VM_KERNEL_UNSLIDE(vaddr);
595 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
596 (MACHDBG_CODE(DBG_MACH_EXCP_KTRAP_x86, type)) | DBG_FUNC_NONE,
597 (unsigned)(kd_vaddr >> 32), (unsigned)kd_vaddr, is_user,
598 VM_KERNEL_UNSLIDE(kern_ip), 0);
599
600
601 if (T_PAGE_FAULT == type) {
602 /*
603 * assume we're faulting in the kernel map
604 */
605 map = kernel_map;
606
607 if (__probable((thread != THREAD_NULL) && (thread->map != kernel_map) &&
608 (vaddr < VM_MAX_USER_PAGE_ADDRESS))) {
609 /* fault occurred in userspace */
610 map = thread->map;
611
612 /* Intercept a potential Supervisor Mode Execute
613 * Protection fault. These criteria identify
614 * both NX faults and SMEP faults, but both
615 * are fatal. We avoid checking PTEs (racy).
616 * (The VM could just redrive a SMEP fault, hence
617 * the intercept).
618 */
619 if (__improbable((code == (T_PF_PROT | T_PF_EXECUTE)) &&
620 (pmap_smep_enabled) && (saved_state->isf.rip == vaddr))) {
621 goto debugger_entry;
622 }
623
624 /*
625 * Additionally check for SMAP faults...
626 * which are characterized by page-present and
627 * the AC bit unset (i.e. not from copyin/out path).
628 */
629 if (__improbable(code & T_PF_PROT &&
630 pmap_smap_enabled &&
631 (saved_state->isf.rflags & EFL_AC) == 0)) {
632 goto debugger_entry;
633 }
634
635 /*
636 * If we're not sharing cr3 with the user
637 * and we faulted in copyio,
638 * then switch cr3 here and dismiss the fault.
639 */
640 if (no_shared_cr3 &&
641 (thread->machine.specFlags & CopyIOActive) &&
642 map->pmap->pm_cr3 != get_cr3_base()) {
643 pmap_assert(current_cpu_datap()->cpu_pmap_pcid_enabled == FALSE);
644 set_cr3_raw(map->pmap->pm_cr3);
645 return;
646 }
647 if (__improbable(vaddr < PAGE_SIZE) &&
648 ((thread->machine.specFlags & CopyIOActive) == 0)) {
649 goto debugger_entry;
650 }
651 }
652 }
653
654 (void) ml_set_interrupts_enabled(intr);
655
656 switch (type) {
657 case T_NO_FPU:
658 fpnoextflt();
659 goto common_return;
660
661 case T_FPU_FAULT:
662 fpextovrflt();
663 goto common_return;
664
665 case T_FLOATING_POINT_ERROR:
666 fpexterrflt();
667 goto common_return;
668
669 case T_SSE_FLOAT_ERROR:
670 fpSSEexterrflt();
671 goto common_return;
672
673 case T_INVALID_OPCODE:
674 fpUDflt(kern_ip);
675 goto debugger_entry;
676
677 case T_DEBUG:
678 if ((saved_state->isf.rflags & EFL_TF) == 0 && NO_WATCHPOINTS) {
679 /* We've somehow encountered a debug
680 * register match that does not belong
681 * to the kernel debugger.
682 * This isn't supposed to happen.
683 */
684 reset_dr7();
685 goto common_return;
686 }
687 goto debugger_entry;
688 case T_INT3:
689 goto debugger_entry;
690 case T_PAGE_FAULT:
691
692 #if CONFIG_DTRACE
693 if (thread != THREAD_NULL && thread->t_dtrace_inprobe) { /* Executing under dtrace_probe? */
694 if (dtrace_tally_fault(vaddr)) { /* Should a fault under dtrace be ignored? */
695 /*
696 * DTrace has "anticipated" the possibility of this fault, and has
697 * established the suitable recovery state. Drop down now into the
698 * recovery handling code in "case T_GENERAL_PROTECTION:".
699 */
700 goto FALL_THROUGH;
701 }
702 }
703 #endif /* CONFIG_DTRACE */
704
705 prot = VM_PROT_READ;
706
707 if (code & T_PF_WRITE) {
708 prot |= VM_PROT_WRITE;
709 }
710 if (code & T_PF_EXECUTE) {
711 prot |= VM_PROT_EXECUTE;
712 }
713
714 fault_result = result = vm_fault(map,
715 vaddr,
716 prot,
717 FALSE, VM_KERN_MEMORY_NONE,
718 THREAD_UNINT, NULL, 0);
719
720 if (result == KERN_SUCCESS) {
721 goto common_return;
722 }
723 /*
724 * fall through
725 */
726 #if CONFIG_DTRACE
727 FALL_THROUGH:
728 #endif /* CONFIG_DTRACE */
729
730 case T_GENERAL_PROTECTION:
731 /*
732 * If there is a failure recovery address
733 * for this fault, go there.
734 */
735 for (rp = recover_table; rp < recover_table_end; rp++) {
736 if (kern_ip == rp->fault_addr) {
737 set_recovery_ip(saved_state, rp->recover_addr);
738 goto common_return;
739 }
740 }
741
742 /*
743 * Check thread recovery address also.
744 */
745 if (thread != THREAD_NULL && thread->recover) {
746 set_recovery_ip(saved_state, thread->recover);
747 thread->recover = 0;
748 goto common_return;
749 }
750 /*
751 * Unanticipated page-fault errors in kernel
752 * should not happen.
753 *
754 * fall through...
755 */
756 OS_FALLTHROUGH;
757 default:
758 /*
759 * Exception 15 is reserved but some chips may generate it
760 * spuriously. Seen at startup on AMD Athlon-64.
761 */
762 if (type == 15) {
763 kprintf("kernel_trap() ignoring spurious trap 15\n");
764 goto common_return;
765 }
766 debugger_entry:
767 /* Ensure that the i386_kernel_state at the base of the
768 * current thread's stack (if any) is synchronized with the
769 * context at the moment of the trap, to facilitate
770 * access through the debugger.
771 */
772 sync_iss_to_iks(state);
773 #if MACH_KDP
774 if (kdp_i386_trap(type, saved_state, result, (vm_offset_t)vaddr)) {
775 goto common_return;
776 }
777 #endif
778 }
779 pal_cli();
780 panic_trap(saved_state, trap_pl, fault_result);
781 /*
782 * NO RETURN
783 */
784
785 common_return:
786 #if DEVELOPMENT || DEBUG
787 if (traptrace_index != TRAPTRACE_INVALID_INDEX) {
788 traptrace_end(traptrace_index, mach_absolute_time());
789 }
790 #endif
791 return;
792 }
793
794 static void
795 set_recovery_ip(x86_saved_state64_t *saved_state, vm_offset_t ip)
796 {
797 saved_state->isf.rip = ip;
798 }
799
800 static void
801 panic_trap(x86_saved_state64_t *regs, uint32_t pl, kern_return_t fault_result)
802 {
803 const char *trapname = "Unknown";
804 pal_cr_t cr0, cr2, cr3, cr4;
805 boolean_t potential_smep_fault = FALSE, potential_kernel_NX_fault = FALSE;
806 boolean_t potential_smap_fault = FALSE;
807
808 pal_get_control_registers( &cr0, &cr2, &cr3, &cr4 );
809 assert(ml_get_interrupts_enabled() == FALSE);
810 current_cpu_datap()->cpu_fatal_trap_state = regs;
811 /*
812 * Issue an I/O port read if one has been requested - this is an
813 * event logic analyzers can use as a trigger point.
814 */
815 panic_notify();
816
817 kprintf("CPU %d panic trap number 0x%x, rip 0x%016llx\n",
818 cpu_number(), regs->isf.trapno, regs->isf.rip);
819 kprintf("cr0 0x%016llx cr2 0x%016llx cr3 0x%016llx cr4 0x%016llx\n",
820 cr0, cr2, cr3, cr4);
821
822 if (regs->isf.trapno < TRAP_TYPES) {
823 trapname = trap_type[regs->isf.trapno];
824 }
825
826 if ((regs->isf.trapno == T_PAGE_FAULT) && (regs->isf.err == (T_PF_PROT | T_PF_EXECUTE)) && (regs->isf.rip == regs->cr2)) {
827 if (pmap_smep_enabled && (regs->isf.rip < VM_MAX_USER_PAGE_ADDRESS)) {
828 potential_smep_fault = TRUE;
829 } else if (regs->isf.rip >= VM_MIN_KERNEL_AND_KEXT_ADDRESS) {
830 potential_kernel_NX_fault = TRUE;
831 }
832 } else if (pmap_smap_enabled &&
833 regs->isf.trapno == T_PAGE_FAULT &&
834 regs->isf.err & T_PF_PROT &&
835 regs->cr2 < VM_MAX_USER_PAGE_ADDRESS &&
836 regs->isf.rip >= VM_MIN_KERNEL_AND_KEXT_ADDRESS) {
837 potential_smap_fault = TRUE;
838 }
839
840 #undef panic
841 panic("Kernel trap at 0x%016llx, type %d=%s, registers:\n"
842 "CR0: 0x%016llx, CR2: 0x%016llx, CR3: 0x%016llx, CR4: 0x%016llx\n"
843 "RAX: 0x%016llx, RBX: 0x%016llx, RCX: 0x%016llx, RDX: 0x%016llx\n"
844 "RSP: 0x%016llx, RBP: 0x%016llx, RSI: 0x%016llx, RDI: 0x%016llx\n"
845 "R8: 0x%016llx, R9: 0x%016llx, R10: 0x%016llx, R11: 0x%016llx\n"
846 "R12: 0x%016llx, R13: 0x%016llx, R14: 0x%016llx, R15: 0x%016llx\n"
847 "RFL: 0x%016llx, RIP: 0x%016llx, CS: 0x%016llx, SS: 0x%016llx\n"
848 "Fault CR2: 0x%016llx, Error code: 0x%016llx, Fault CPU: 0x%x%s%s%s%s, PL: %d, VF: %d\n",
849 regs->isf.rip, regs->isf.trapno, trapname,
850 cr0, cr2, cr3, cr4,
851 regs->rax, regs->rbx, regs->rcx, regs->rdx,
852 regs->isf.rsp, regs->rbp, regs->rsi, regs->rdi,
853 regs->r8, regs->r9, regs->r10, regs->r11,
854 regs->r12, regs->r13, regs->r14, regs->r15,
855 regs->isf.rflags, regs->isf.rip, regs->isf.cs & 0xFFFF,
856 regs->isf.ss & 0xFFFF, regs->cr2, regs->isf.err, regs->isf.cpu,
857 virtualized ? " VMM" : "",
858 potential_kernel_NX_fault ? " Kernel NX fault" : "",
859 potential_smep_fault ? " SMEP/User NX fault" : "",
860 potential_smap_fault ? " SMAP fault" : "",
861 pl,
862 fault_result);
863 }
864
865 #if CONFIG_DTRACE
866 extern kern_return_t dtrace_user_probe(x86_saved_state_t *);
867 #endif
868
869 #if DEBUG
870 uint32_t fsigs[2];
871 uint32_t fsigns, fsigcs;
872 #endif
873
874 /*
875 * Trap from user mode.
876 */
877 void
878 user_trap(
879 x86_saved_state_t *saved_state)
880 {
881 int exc;
882 int err;
883 mach_exception_code_t code;
884 mach_exception_subcode_t subcode;
885 int type;
886 user_addr_t vaddr;
887 vm_prot_t prot;
888 thread_t thread = current_thread();
889 kern_return_t kret;
890 user_addr_t rip;
891 unsigned long dr6 = 0; /* 32 bit for i386, 64 bit for x86_64 */
892 int current_cpu = cpu_number();
893 #if DEVELOPMENT || DEBUG
894 bool inspect_cacheline = false;
895 uint32_t traptrace_index;
896 #endif
897 assert((is_saved_state32(saved_state) && !thread_is_64bit_addr(thread)) ||
898 (is_saved_state64(saved_state) && thread_is_64bit_addr(thread)));
899
900 if (is_saved_state64(saved_state)) {
901 x86_saved_state64_t *regs;
902
903 regs = saved_state64(saved_state);
904
905 /* Record cpu where state was captured */
906 regs->isf.cpu = current_cpu;
907
908 type = regs->isf.trapno;
909 err = (int)regs->isf.err & 0xffff;
910 vaddr = (user_addr_t)regs->cr2;
911 rip = (user_addr_t)regs->isf.rip;
912 #if DEVELOPMENT || DEBUG
913 traptrace_index = traptrace_start(type, rip, mach_absolute_time(), regs->rbp);
914 #endif
915 } else {
916 x86_saved_state32_t *regs;
917
918 regs = saved_state32(saved_state);
919
920 /* Record cpu where state was captured */
921 regs->cpu = current_cpu;
922
923 type = regs->trapno;
924 err = regs->err & 0xffff;
925 vaddr = (user_addr_t)regs->cr2;
926 rip = (user_addr_t)regs->eip;
927 #if DEVELOPMENT || DEBUG
928 traptrace_index = traptrace_start(type, rip, mach_absolute_time(), regs->ebp);
929 #endif
930 }
931
932 #if DEVELOPMENT || DEBUG
933 /*
934 * Copy the cacheline of code into the thread's instruction stream save area
935 * before enabling interrupts (the assumption is that we have not otherwise faulted or
936 * trapped since the original cache line stores). If the saved code is not valid,
937 * we'll catch it below when we process the copyin() for unhandled faults.
938 */
939 if (type == T_PAGE_FAULT || type == T_INVALID_OPCODE || type == T_GENERAL_PROTECTION) {
940 #define CACHELINE_SIZE 64
941 THREAD_TO_PCB(thread)->insn_cacheline[CACHELINE_SIZE] = (uint8_t)(rip & (CACHELINE_SIZE - 1));
942 bcopy(&cpu_shadowp(current_cpu)->cpu_rtimes[0],
943 &THREAD_TO_PCB(thread)->insn_cacheline[0],
944 sizeof(THREAD_TO_PCB(thread)->insn_cacheline) - 1);
945 inspect_cacheline = true;
946 }
947 #endif
948
949 if (type == T_DEBUG) {
950 if (thread->machine.ids) {
951 unsigned long clear = 0;
952 /* Stash and clear this processor's DR6 value, in the event
953 * this was a debug register match
954 */
955 __asm__ volatile ("mov %%db6, %0" : "=r" (dr6));
956 __asm__ volatile ("mov %0, %%db6" : : "r" (clear));
957 }
958 /* [Re]Enable LBRs *BEFORE* enabling interrupts to ensure we hit the right CPU */
959 i386_lbr_enable();
960 }
961
962 pal_sti();
963
964 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
965 (MACHDBG_CODE(DBG_MACH_EXCP_UTRAP_x86, type)) | DBG_FUNC_NONE,
966 (unsigned)(vaddr >> 32), (unsigned)vaddr,
967 (unsigned)(rip >> 32), (unsigned)rip, 0);
968
969 code = 0;
970 subcode = 0;
971 exc = 0;
972
973 #if CONFIG_DTRACE
974 /*
975 * DTrace does not consume all user traps, only INT_3's for now.
976 * Avoid needlessly calling tempDTraceTrapHook here, and let the
977 * INT_3 case handle them.
978 */
979 #endif
980
981 DEBUG_KPRINT_SYSCALL_MASK(1,
982 "user_trap: type=0x%x(%s) err=0x%x cr2=%p rip=%p\n",
983 type, trap_type[type], err, (void *)(long) vaddr, (void *)(long) rip);
984
985 switch (type) {
986 case T_DIVIDE_ERROR:
987 exc = EXC_ARITHMETIC;
988 code = EXC_I386_DIV;
989 break;
990
991 case T_DEBUG:
992 {
993 pcb_t pcb;
994 /*
995 * Update the PCB with this processor's DR6 value
996 * in the event this was a debug register match.
997 */
998 pcb = THREAD_TO_PCB(thread);
999 if (pcb->ids) {
1000 /*
1001 * We can get and set the status register
1002 * in 32-bit mode even on a 64-bit thread
1003 * because the high order bits are not
1004 * used on x86_64
1005 */
1006 if (thread_is_64bit_addr(thread)) {
1007 x86_debug_state64_t *ids = pcb->ids;
1008 ids->dr6 = dr6;
1009 } else { /* 32 bit thread */
1010 x86_debug_state32_t *ids = pcb->ids;
1011 ids->dr6 = (uint32_t) dr6;
1012 }
1013 }
1014 exc = EXC_BREAKPOINT;
1015 code = EXC_I386_SGL;
1016 break;
1017 }
1018 case T_INT3:
1019 #if CONFIG_DTRACE
1020 if (dtrace_user_probe(saved_state) == KERN_SUCCESS) {
1021 return; /* If it succeeds, we are done... */
1022 }
1023 #endif
1024 exc = EXC_BREAKPOINT;
1025 code = EXC_I386_BPT;
1026 break;
1027
1028 case T_OVERFLOW:
1029 exc = EXC_ARITHMETIC;
1030 code = EXC_I386_INTO;
1031 break;
1032
1033 case T_OUT_OF_BOUNDS:
1034 exc = EXC_SOFTWARE;
1035 code = EXC_I386_BOUND;
1036 break;
1037
1038 case T_INVALID_OPCODE:
1039 if (fpUDflt(rip) == 1) {
1040 exc = EXC_BAD_INSTRUCTION;
1041 code = EXC_I386_INVOP;
1042 }
1043 break;
1044
1045 case T_NO_FPU:
1046 fpnoextflt();
1047 break;
1048
1049 case T_FPU_FAULT:
1050 fpextovrflt();
1051 /*
1052 * Raise exception.
1053 */
1054 exc = EXC_BAD_ACCESS;
1055 code = VM_PROT_READ | VM_PROT_EXECUTE;
1056 subcode = 0;
1057 break;
1058
1059 case T_INVALID_TSS: /* invalid TSS == iret with NT flag set */
1060 exc = EXC_BAD_INSTRUCTION;
1061 code = EXC_I386_INVTSSFLT;
1062 subcode = err;
1063 break;
1064
1065 case T_SEGMENT_NOT_PRESENT:
1066 exc = EXC_BAD_INSTRUCTION;
1067 code = EXC_I386_SEGNPFLT;
1068 subcode = err;
1069 break;
1070
1071 case T_STACK_FAULT:
1072 exc = EXC_BAD_INSTRUCTION;
1073 code = EXC_I386_STKFLT;
1074 subcode = err;
1075 break;
1076
1077 case T_GENERAL_PROTECTION:
1078 /*
1079 * There's a wide range of circumstances which generate this
1080 * class of exception. From user-space, many involve bad
1081 * addresses (such as a non-canonical 64-bit address).
1082 * So we map this to EXC_BAD_ACCESS (and thereby SIGSEGV).
1083 * The trouble is cr2 doesn't contain the faulting address;
1084 * we'd need to decode the faulting instruction to really
1085 * determine this. We'll leave that to debuggers.
1086 * However, attempted execution of privileged instructions
1087 * (e.g. cli) also generate GP faults and so we map these to
1088 * to EXC_BAD_ACCESS (and thence SIGSEGV) also - rather than
1089 * EXC_BAD_INSTRUCTION which is more accurate. We just can't
1090 * win!
1091 */
1092 exc = EXC_BAD_ACCESS;
1093 code = EXC_I386_GPFLT;
1094 subcode = err;
1095 break;
1096
1097 case T_PAGE_FAULT:
1098 {
1099 prot = VM_PROT_READ;
1100
1101 if (err & T_PF_WRITE) {
1102 prot |= VM_PROT_WRITE;
1103 }
1104 if (__improbable(err & T_PF_EXECUTE)) {
1105 prot |= VM_PROT_EXECUTE;
1106 }
1107 #if DEVELOPMENT || DEBUG
1108 uint32_t fsig = 0;
1109 fsig = thread_fpsimd_hash(thread);
1110 #if DEBUG
1111 fsigs[0] = fsig;
1112 #endif
1113 #endif
1114 kret = vm_fault(thread->map,
1115 vaddr,
1116 prot, FALSE, VM_KERN_MEMORY_NONE,
1117 THREAD_ABORTSAFE, NULL, 0);
1118 #if DEVELOPMENT || DEBUG
1119 if (fsig) {
1120 uint32_t fsig2 = thread_fpsimd_hash(thread);
1121 #if DEBUG
1122 fsigcs++;
1123 fsigs[1] = fsig2;
1124 #endif
1125 if (fsig != fsig2) {
1126 panic("FP/SIMD state hash mismatch across fault thread: %p 0x%x->0x%x", thread, fsig, fsig2);
1127 }
1128 } else {
1129 #if DEBUG
1130 fsigns++;
1131 #endif
1132 }
1133 #endif
1134 if (__probable((kret == KERN_SUCCESS) || (kret == KERN_ABORTED))) {
1135 break;
1136 } else if (__improbable(kret == KERN_FAILURE)) {
1137 /*
1138 * For a user trap, vm_fault() should never return KERN_FAILURE.
1139 * If it does, we're leaking preemption disables somewhere in the kernel.
1140 */
1141 panic("vm_fault() KERN_FAILURE from user fault on thread %p", thread);
1142 }
1143
1144 /* PAL debug hook (empty on x86) */
1145 pal_dbg_page_fault(thread, vaddr, kret);
1146 exc = EXC_BAD_ACCESS;
1147 code = kret;
1148 subcode = vaddr;
1149 }
1150 break;
1151
1152 case T_SSE_FLOAT_ERROR:
1153 fpSSEexterrflt();
1154 exc = EXC_ARITHMETIC;
1155 code = EXC_I386_SSEEXTERR;
1156 subcode = ((struct x86_fx_thread_state *)thread->machine.ifps)->fx_MXCSR;
1157 break;
1158
1159
1160 case T_FLOATING_POINT_ERROR:
1161 fpexterrflt();
1162 exc = EXC_ARITHMETIC;
1163 code = EXC_I386_EXTERR;
1164 subcode = ((struct x86_fx_thread_state *)thread->machine.ifps)->fx_status;
1165 break;
1166
1167 case T_DTRACE_RET:
1168 #if CONFIG_DTRACE
1169 if (dtrace_user_probe(saved_state) == KERN_SUCCESS) {
1170 return; /* If it succeeds, we are done... */
1171 }
1172 #endif
1173 /*
1174 * If we get an INT 0x7f when we do not expect to,
1175 * treat it as an illegal instruction
1176 */
1177 exc = EXC_BAD_INSTRUCTION;
1178 code = EXC_I386_INVOP;
1179 break;
1180
1181 default:
1182 panic("Unexpected user trap, type %d", type);
1183 }
1184
1185 if (exc != 0) {
1186 uint16_t cs;
1187 boolean_t intrs;
1188
1189 if (is_saved_state64(saved_state)) {
1190 cs = saved_state64(saved_state)->isf.cs;
1191 } else {
1192 cs = saved_state32(saved_state)->cs;
1193 }
1194
1195 if (last_branch_support_enabled) {
1196 intrs = ml_set_interrupts_enabled(FALSE);
1197 /*
1198 * This is a bit racy (it's possible for this thread to migrate to another CPU, then
1199 * migrate back, but that seems rather rare in practice), but good enough to ensure
1200 * the LBRs are saved before proceeding with exception/signal dispatch.
1201 */
1202 if (current_cpu == cpu_number()) {
1203 i386_lbr_synch(thread);
1204 }
1205 ml_set_interrupts_enabled(intrs);
1206 }
1207
1208 /*
1209 * Do not try to copyin from the instruction stream if the page fault was due
1210 * to an access to rip and was unhandled.
1211 * Do not deal with cases when %cs != USER[64]_CS
1212 * And of course there's no need to copy the instruction stream if the boot-arg
1213 * was set to 0.
1214 */
1215 if (insn_copyin_count > 0 &&
1216 (cs == USER64_CS || cs == USER_CS) && (type != T_PAGE_FAULT || vaddr != rip)) {
1217 #if DEVELOPMENT || DEBUG
1218 copy_instruction_stream(thread, rip, type, inspect_cacheline);
1219 #else
1220 copy_instruction_stream(thread, rip, type);
1221 #endif
1222 }
1223
1224 #if DEVELOPMENT || DEBUG
1225 if (traptrace_index != TRAPTRACE_INVALID_INDEX) {
1226 traptrace_end(traptrace_index, mach_absolute_time());
1227 }
1228 #endif
1229 /*
1230 * Note: Codepaths that directly return from user_trap() have pending
1231 * ASTs processed in locore
1232 */
1233 i386_exception(exc, code, subcode);
1234 /* NOTREACHED */
1235 } else {
1236 #if DEVELOPMENT || DEBUG
1237 if (traptrace_index != TRAPTRACE_INVALID_INDEX) {
1238 traptrace_end(traptrace_index, mach_absolute_time());
1239 }
1240 #endif
1241 }
1242 }
1243
1244 /*
1245 * Copyin up to x86_INSTRUCTION_STATE_MAX_INSN_BYTES bytes from the page that includes `rip`,
1246 * ensuring that we stay on the same page, clipping the start or end, as needed.
1247 * Add the clipped amount back at the start or end, depending on where it fits.
1248 * Consult the variable populated by the boot-arg `insn_capcnt'
1249 */
1250 static __attribute__((noinline)) void
1251 copy_instruction_stream(thread_t thread, uint64_t rip, int __unused trap_code
1252 #if DEVELOPMENT || DEBUG
1253 , bool inspect_cacheline
1254 #endif
1255 )
1256 {
1257 #if x86_INSTRUCTION_STATE_MAX_INSN_BYTES > 4096
1258 #error x86_INSTRUCTION_STATE_MAX_INSN_BYTES cannot exceed a page in size.
1259 #endif
1260 pcb_t pcb = THREAD_TO_PCB(thread);
1261 vm_map_offset_t pagemask = ~vm_map_page_mask(current_map());
1262 vm_map_offset_t rip_page = rip & pagemask;
1263 vm_map_offset_t start_addr;
1264 vm_map_offset_t insn_offset;
1265 vm_map_offset_t end_addr = rip + (insn_copyin_count / 2);
1266 void *stack_buffer;
1267 int copyin_err = 0;
1268 #if defined(MACH_BSD) && (DEVELOPMENT || DEBUG)
1269 void *procname;
1270 #endif
1271
1272 #if DEVELOPMENT || DEBUG
1273 assert(insn_copyin_count <= x86_INSTRUCTION_STATE_MAX_INSN_BYTES);
1274 #else
1275 if (insn_copyin_count > x86_INSTRUCTION_STATE_MAX_INSN_BYTES ||
1276 insn_copyin_count < 64 /* CACHELINE_SIZE */) {
1277 return;
1278 }
1279 #endif
1280
1281 #pragma clang diagnostic push
1282 #pragma clang diagnostic ignored "-Walloca"
1283 stack_buffer = __builtin_alloca(insn_copyin_count);
1284 #pragma clang diagnostic pop
1285
1286 if (rip >= (insn_copyin_count / 2)) {
1287 start_addr = rip - (insn_copyin_count / 2);
1288 } else {
1289 start_addr = 0;
1290 }
1291
1292 if (start_addr < rip_page) {
1293 insn_offset = (insn_copyin_count / 2) - (rip_page - start_addr);
1294 end_addr += (rip_page - start_addr);
1295 start_addr = rip_page;
1296 } else if (end_addr >= (rip_page + (~pagemask + 1))) {
1297 start_addr -= (end_addr - (rip_page + (~pagemask + 1))); /* Adjust start address backward */
1298 /* Adjust instruction offset due to start address change */
1299 insn_offset = (insn_copyin_count / 2) + (end_addr - (rip_page + (~pagemask + 1)));
1300 end_addr = rip_page + (~pagemask + 1); /* clip to the start of the next page (non-inclusive */
1301 } else {
1302 insn_offset = insn_copyin_count / 2;
1303 }
1304
1305 disable_preemption(); /* Prevent copyin from faulting in the instruction stream */
1306 if (
1307 #if DEVELOPMENT || DEBUG
1308 (insnstream_force_cacheline_mismatch < 2) &&
1309 #endif
1310 ((end_addr > start_addr) && (copyin_err = copyin(start_addr, stack_buffer, end_addr - start_addr)) == 0)) {
1311 enable_preemption();
1312
1313 if (pcb->insn_state == 0) {
1314 pcb->insn_state = kalloc(sizeof(x86_instruction_state_t));
1315 }
1316
1317 if (pcb->insn_state != 0) {
1318 bcopy(stack_buffer, pcb->insn_state->insn_bytes, end_addr - start_addr);
1319 bzero(&pcb->insn_state->insn_bytes[end_addr - start_addr],
1320 insn_copyin_count - (end_addr - start_addr));
1321
1322 pcb->insn_state->insn_stream_valid_bytes = (int)(end_addr - start_addr);
1323 pcb->insn_state->insn_offset = (int)insn_offset;
1324
1325 #if DEVELOPMENT || DEBUG
1326 /* Now try to validate the cacheline we read at early-fault time matches the code
1327 * copied in. Before we do that, we have to make sure the buffer contains a valid
1328 * cacheline by looking for the 2 sentinel values written in the event the cacheline
1329 * could not be copied.
1330 */
1331 #define CACHELINE_DATA_NOT_PRESENT 0xdeadc0debeefcafeULL
1332 #define CACHELINE_MASK (CACHELINE_SIZE - 1)
1333
1334 if (inspect_cacheline &&
1335 (*(uint64_t *)(uintptr_t)&pcb->insn_cacheline[0] != CACHELINE_DATA_NOT_PRESENT &&
1336 *(uint64_t *)(uintptr_t)&pcb->insn_cacheline[8] != CACHELINE_DATA_NOT_PRESENT)) {
1337 /*
1338 * The position of the cacheline in the instruction buffer is at offset
1339 * insn_offset - (rip & CACHELINE_MASK)
1340 */
1341 if (__improbable((rip & CACHELINE_MASK) > insn_offset)) {
1342 printf("thread %p code cacheline @ %p clipped wrt copied-in code (offset %d)\n",
1343 thread, (void *)(rip & ~CACHELINE_MASK), (int)(rip & CACHELINE_MASK));
1344 } else if (bcmp(&pcb->insn_state->insn_bytes[insn_offset - (rip & CACHELINE_MASK)],
1345 &pcb->insn_cacheline[0], CACHELINE_SIZE) != 0
1346 || insnstream_force_cacheline_mismatch
1347 ) {
1348 #if x86_INSTRUCTION_STATE_CACHELINE_SIZE != CACHELINE_SIZE
1349 #error cacheline size mismatch
1350 #endif
1351 bcopy(&pcb->insn_cacheline[0], &pcb->insn_state->insn_cacheline[0],
1352 x86_INSTRUCTION_STATE_CACHELINE_SIZE);
1353 /* Mark the instruction stream as being out-of-synch */
1354 pcb->insn_state->out_of_synch = 1;
1355
1356 printf("thread %p code cacheline @ %p mismatches with copied-in code [trap 0x%x]\n",
1357 thread, (void *)(rip & ~CACHELINE_MASK), trap_code);
1358 for (int i = 0; i < 8; i++) {
1359 printf("\t[%d] cl=0x%08llx vs. ci=0x%08llx\n", i, *(uint64_t *)(uintptr_t)&pcb->insn_cacheline[i * 8],
1360 *(uint64_t *)(uintptr_t)&pcb->insn_state->insn_bytes[(i * 8) + insn_offset - (rip & CACHELINE_MASK)]);
1361 }
1362 if (panic_on_cacheline_mismatch) {
1363 panic("Cacheline mismatch while processing unhandled exception.");
1364 }
1365 } else {
1366 printf("thread %p code cacheline @ %p DOES match with copied-in code\n",
1367 thread, (void *)(rip & ~CACHELINE_MASK));
1368 pcb->insn_state->out_of_synch = 0;
1369 }
1370 } else if (inspect_cacheline) {
1371 printf("thread %p could not capture code cacheline at fault IP %p [offset %d]\n",
1372 (void *)thread, (void *)rip, (int)(insn_offset - (rip & CACHELINE_MASK)));
1373 pcb->insn_state->out_of_synch = 0;
1374 }
1375 #else
1376 pcb->insn_state->out_of_synch = 0;
1377 #endif /* DEVELOPMENT || DEBUG */
1378
1379 #if defined(MACH_BSD) && (DEVELOPMENT || DEBUG)
1380 if (panic_on_trap_procname[0] != 0) {
1381 char procnamebuf[65] = {0};
1382
1383 if (thread->task->bsd_info != NULL) {
1384 procname = proc_name_address(thread->task->bsd_info);
1385 strlcpy(procnamebuf, procname, sizeof(procnamebuf));
1386
1387 if (strcasecmp(panic_on_trap_procname, procnamebuf) == 0 &&
1388 ((1U << trap_code) & panic_on_trap_mask) != 0) {
1389 panic("Panic requested on trap type 0x%x for process `%s'", trap_code,
1390 panic_on_trap_procname);
1391 /*NORETURN*/
1392 }
1393 }
1394 }
1395 #endif /* MACH_BSD && (DEVELOPMENT || DEBUG) */
1396 }
1397 } else {
1398 enable_preemption();
1399
1400 pcb->insn_state_copyin_failure_errorcode = copyin_err;
1401 #if DEVELOPMENT || DEBUG
1402 if (inspect_cacheline && pcb->insn_state == 0) {
1403 pcb->insn_state = kalloc(sizeof(x86_instruction_state_t));
1404 }
1405 if (pcb->insn_state != 0) {
1406 pcb->insn_state->insn_stream_valid_bytes = 0;
1407 pcb->insn_state->insn_offset = 0;
1408
1409 if (inspect_cacheline &&
1410 (*(uint64_t *)(uintptr_t)&pcb->insn_cacheline[0] != CACHELINE_DATA_NOT_PRESENT &&
1411 *(uint64_t *)(uintptr_t)&pcb->insn_cacheline[8] != CACHELINE_DATA_NOT_PRESENT)) {
1412 /*
1413 * We can still copy the cacheline into the instruction state structure
1414 * if it contains valid data
1415 */
1416 pcb->insn_state->out_of_synch = 1;
1417 bcopy(&pcb->insn_cacheline[0], &pcb->insn_state->insn_cacheline[0],
1418 x86_INSTRUCTION_STATE_CACHELINE_SIZE);
1419 }
1420 }
1421 #endif /* DEVELOPMENT || DEBUG */
1422 }
1423 }
1424
1425 /*
1426 * Handle exceptions for i386.
1427 *
1428 * If we are an AT bus machine, we must turn off the AST for a
1429 * delayed floating-point exception.
1430 *
1431 * If we are providing floating-point emulation, we may have
1432 * to retrieve the real register values from the floating point
1433 * emulator.
1434 */
1435 void
1436 i386_exception(
1437 int exc,
1438 mach_exception_code_t code,
1439 mach_exception_subcode_t subcode)
1440 {
1441 mach_exception_data_type_t codes[EXCEPTION_CODE_MAX];
1442
1443 DEBUG_KPRINT_SYSCALL_MACH("i386_exception: exc=%d code=0x%llx subcode=0x%llx\n",
1444 exc, code, subcode);
1445 codes[0] = code; /* new exception interface */
1446 codes[1] = subcode;
1447 exception_triage(exc, codes, 2);
1448 /*NOTREACHED*/
1449 }
1450
1451
1452 /* Synchronize a thread's x86_kernel_state (if any) with the given
1453 * x86_saved_state_t obtained from the trap/IPI handler; called in
1454 * kernel_trap() prior to entering the debugger, and when receiving
1455 * an "MP_KDP" IPI. Called with null saved_state if an incoming IPI
1456 * was detected from the kernel while spinning with interrupts masked.
1457 */
1458
1459 void
1460 sync_iss_to_iks(x86_saved_state_t *saved_state)
1461 {
1462 struct x86_kernel_state *iks = NULL;
1463 vm_offset_t kstack;
1464 boolean_t record_active_regs = FALSE;
1465
1466 /* The PAL may have a special way to sync registers */
1467 if (saved_state && saved_state->flavor == THREAD_STATE_NONE) {
1468 pal_get_kern_regs( saved_state );
1469 }
1470
1471 if (current_thread() != NULL &&
1472 (kstack = current_thread()->kernel_stack) != 0) {
1473 x86_saved_state64_t *regs = saved_state64(saved_state);
1474
1475 iks = STACK_IKS(kstack);
1476
1477 /* Did we take the trap/interrupt in kernel mode? */
1478 if (saved_state == NULL || /* NULL => polling in kernel */
1479 regs == USER_REGS64(current_thread())) {
1480 record_active_regs = TRUE;
1481 } else {
1482 iks->k_rbx = regs->rbx;
1483 iks->k_rsp = regs->isf.rsp;
1484 iks->k_rbp = regs->rbp;
1485 iks->k_r12 = regs->r12;
1486 iks->k_r13 = regs->r13;
1487 iks->k_r14 = regs->r14;
1488 iks->k_r15 = regs->r15;
1489 iks->k_rip = regs->isf.rip;
1490 }
1491 }
1492
1493 if (record_active_regs == TRUE) {
1494 /* Show the trap handler path */
1495 __asm__ volatile ("movq %%rbx, %0" : "=m" (iks->k_rbx));
1496 __asm__ volatile ("movq %%rsp, %0" : "=m" (iks->k_rsp));
1497 __asm__ volatile ("movq %%rbp, %0" : "=m" (iks->k_rbp));
1498 __asm__ volatile ("movq %%r12, %0" : "=m" (iks->k_r12));
1499 __asm__ volatile ("movq %%r13, %0" : "=m" (iks->k_r13));
1500 __asm__ volatile ("movq %%r14, %0" : "=m" (iks->k_r14));
1501 __asm__ volatile ("movq %%r15, %0" : "=m" (iks->k_r15));
1502 /* "Current" instruction pointer */
1503 __asm__ volatile ("leaq 1f(%%rip), %%rax; mov %%rax, %0\n1:"
1504 : "=m" (iks->k_rip)
1505 :
1506 : "rax");
1507 }
1508 }
1509
1510 /*
1511 * This is used by the NMI interrupt handler (from mp.c) to
1512 * uncondtionally sync the trap handler context to the IKS
1513 * irrespective of whether the NMI was fielded in kernel
1514 * or user space.
1515 */
1516 void
1517 sync_iss_to_iks_unconditionally(__unused x86_saved_state_t *saved_state)
1518 {
1519 struct x86_kernel_state *iks;
1520 vm_offset_t kstack;
1521
1522 if ((kstack = current_thread()->kernel_stack) != 0) {
1523 iks = STACK_IKS(kstack);
1524 /* Display the trap handler path */
1525 __asm__ volatile ("movq %%rbx, %0" : "=m" (iks->k_rbx));
1526 __asm__ volatile ("movq %%rsp, %0" : "=m" (iks->k_rsp));
1527 __asm__ volatile ("movq %%rbp, %0" : "=m" (iks->k_rbp));
1528 __asm__ volatile ("movq %%r12, %0" : "=m" (iks->k_r12));
1529 __asm__ volatile ("movq %%r13, %0" : "=m" (iks->k_r13));
1530 __asm__ volatile ("movq %%r14, %0" : "=m" (iks->k_r14));
1531 __asm__ volatile ("movq %%r15, %0" : "=m" (iks->k_r15));
1532 /* "Current" instruction pointer */
1533 __asm__ volatile ("leaq 1f(%%rip), %%rax; mov %%rax, %0\n1:" : "=m" (iks->k_rip)::"rax");
1534 }
1535 }
1536
1537 #if DEBUG
1538 #define TERI 1
1539 #endif
1540
1541 #if TERI
1542 extern void thread_exception_return_internal(void) __dead2;
1543
1544 void
1545 thread_exception_return(void)
1546 {
1547 thread_t thread = current_thread();
1548 ml_set_interrupts_enabled(FALSE);
1549 if (thread_is_64bit_addr(thread) != task_has_64Bit_addr(thread->task)) {
1550 panic("Task/thread bitness mismatch %p %p, task: %d, thread: %d", thread, thread->task, thread_is_64bit_addr(thread), task_has_64Bit_addr(thread->task));
1551 }
1552
1553 if (thread_is_64bit_addr(thread)) {
1554 if ((gdt_desc_p(USER64_CS)->access & ACC_PL_U) == 0) {
1555 panic("64-GDT mismatch %p, descriptor: %p", thread, gdt_desc_p(USER64_CS));
1556 }
1557 } else {
1558 if ((gdt_desc_p(USER_CS)->access & ACC_PL_U) == 0) {
1559 panic("32-GDT mismatch %p, descriptor: %p", thread, gdt_desc_p(USER_CS));
1560 }
1561 }
1562 assert(get_preemption_level() == 0);
1563 thread_exception_return_internal();
1564 }
1565 #endif