2 * Copyright (c) 2003-2019 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
32 * Mach Operating System
33 * Copyright (c) 1991,1990,1989, 1988 Carnegie Mellon University
34 * All Rights Reserved.
36 * Permission to use, copy, modify and distribute this software and its
37 * documentation is hereby granted, provided that both the copyright
38 * notice and this permission notice appear in all copies of the
39 * software, derivative works or modified versions, and any portions
40 * thereof, and that both notices appear in supporting documentation.
42 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
43 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
44 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
46 * Carnegie Mellon requests users of this software to return to
48 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
49 * School of Computer Science
50 * Carnegie Mellon University
51 * Pittsburgh PA 15213-3890
53 * any improvements or extensions that they make and grant Carnegie Mellon
54 * the rights to redistribute these changes.
58 #include <mach/i386/vm_param.h>
62 #include <mach/vm_param.h>
63 #include <mach/vm_prot.h>
64 #include <mach/machine.h>
65 #include <mach/time_value.h>
67 #include <kern/assert.h>
68 #include <kern/debug.h>
69 #include <kern/misc_protos.h>
70 #include <kern/startup.h>
71 #include <kern/clock.h>
73 #include <kern/cpu_data.h>
74 #include <kern/processor.h>
75 #include <sys/kdebug.h>
76 #include <console/serial_protos.h>
77 #include <vm/vm_page.h>
79 #include <vm/vm_kern.h>
80 #include <machine/pal_routines.h>
82 #include <i386/pmap.h>
83 #include <i386/misc_protos.h>
84 #include <i386/cpu_threads.h>
85 #include <i386/cpuid.h>
86 #include <i386/lapic.h>
88 #include <i386/mp_desc.h>
90 #include <i386/mtrr.h>
92 #include <i386/machine_routines.h>
94 #include <i386/machine_check.h>
96 #include <i386/ucode.h>
97 #include <i386/postcode.h>
98 #include <i386/Diagnostics.h>
99 #include <i386/pmCPU.h>
100 #include <i386/tsc.h>
101 #include <i386/locks.h> /* LcksOpts */
102 #include <i386/acpi.h>
104 #include <machine/pal_routines.h>
106 extern void xcpm_bootstrap(void);
107 #if DEVELOPMENT || DEBUG
108 #include <i386/trap.h>
112 #include <kern/monotonic.h>
113 #endif /* MONOTONIC */
115 #include <san/kasan.h>
117 #if DEBUG || DEVELOPMENT
118 #define DBG(x, ...) kprintf(x, ##__VA_ARGS__)
119 #define dyldLogFunc(x, ...) kprintf(x, ##__VA_ARGS__)
124 #include <libkern/kernel_mach_header.h>
125 #include <mach/dyld_kernel_fixups.h>
132 static boot_args
*kernelBootArgs
;
134 extern int disableConsoleOutput
;
135 extern const char version
[];
136 extern const char version_variant
[];
137 extern int nx_enabled
;
140 * Set initial values so that ml_phys_* routines can use the booter's ID mapping
141 * to touch physical space before the kernel's physical aperture exists.
143 uint64_t physmap_base
= 0;
144 uint64_t physmap_max
= 4 * GB
;
148 pdpt_entry_t
*IdlePDPT
;
149 pml4_entry_t
*IdlePML4
;
151 int kernPhysPML4Index
;
152 int kernPhysPML4EntryCount
;
155 * These are 4K mapping page table pages from KPTphys[] that we wound
156 * up not using. They get ml_static_mfree()'d once the VM is initialized.
158 ppnum_t released_PT_ppn
= 0;
159 uint32_t released_PT_cnt
= 0;
161 #if DEVELOPMENT || DEBUG
162 int panic_on_cacheline_mismatch
= -1;
163 char panic_on_trap_procname
[64];
164 uint32_t panic_on_trap_mask
;
166 bool last_branch_support_enabled
;
167 int insn_copyin_count
;
168 #if DEVELOPMENT || DEBUG
169 #define DEFAULT_INSN_COPYIN_COUNT x86_INSTRUCTION_STATE_MAX_INSN_BYTES
171 #define DEFAULT_INSN_COPYIN_COUNT 192
175 void idt64_remap(void);
178 * Note: ALLOCPAGES() can only be used safely within Idle_PTs_init()
179 * due to the mutation of physfree.
182 ALLOCPAGES(int npages
)
184 uintptr_t tmp
= (uintptr_t)physfree
;
185 bzero(physfree
, npages
* PAGE_SIZE
);
186 physfree
+= npages
* PAGE_SIZE
;
187 tmp
+= VM_MIN_KERNEL_ADDRESS
& ~LOW_4GB_MASK
;
192 fillkpt(pt_entry_t
*base
, int prot
, uintptr_t src
, int index
, int count
)
195 for (i
= 0; i
< count
; i
++) {
196 base
[index
] = src
| prot
| INTEL_PTE_VALID
;
202 extern pmap_paddr_t first_avail
;
204 int break_kprintf
= 0;
207 x86_64_pre_sleep(void)
209 IdlePML4
[0] = IdlePML4
[KERNEL_PML4_INDEX
];
210 uint64_t oldcr3
= get_cr3_raw();
211 set_cr3_raw((uint32_t) (uintptr_t)ID_MAP_VTOP(IdlePML4
));
216 x86_64_post_sleep(uint64_t new_cr3
)
219 set_cr3_raw((uint32_t) new_cr3
);
225 // Set up the physical mapping - NPHYSMAP GB of memory mapped at a high address
226 // NPHYSMAP is determined by the maximum supported RAM size plus 4GB to account
227 // the PCI hole (which is less 4GB but not more).
230 physmap_init_L2(uint64_t *physStart
, pt_entry_t
**l2ptep
)
233 pt_entry_t
*physmapL2
= ALLOCPAGES(1);
235 if (physmapL2
== NULL
) {
236 DBG("physmap_init_L2 page alloc failed when initting L2 for physAddr 0x%llx.\n", *physStart
);
241 for (i
= 0; i
< NPDPG
; i
++) {
242 physmapL2
[i
] = *physStart
255 physmap_init_L3(int startIndex
, uint64_t highest_phys
, uint64_t *physStart
, pt_entry_t
**l3ptep
)
260 pt_entry_t
*physmapL3
= ALLOCPAGES(1); /* ALLOCPAGES bzeroes the memory */
262 if (physmapL3
== NULL
) {
263 DBG("physmap_init_L3 page alloc failed when initting L3 for physAddr 0x%llx.\n", *physStart
);
268 for (i
= startIndex
; i
< NPDPTPG
&& *physStart
< highest_phys
; i
++) {
269 if ((ret
= physmap_init_L2(physStart
, &l2pte
)) < 0) {
273 physmapL3
[i
] = ((uintptr_t)ID_MAP_VTOP(l2pte
))
285 physmap_init(uint8_t phys_random_L3
, uint64_t *new_physmap_base
, uint64_t *new_physmap_max
)
290 uint64_t physAddr
= 0;
291 uint64_t highest_physaddr
;
292 unsigned pdpte_count
;
294 #if DEVELOPMENT || DEBUG
295 if (kernelBootArgs
->PhysicalMemorySize
> K64_MAXMEM
) {
296 panic("Installed physical memory exceeds configured maximum.");
301 * Add 4GB to the loader-provided physical memory size to account for MMIO space
302 * XXX in a perfect world, we'd scan PCI buses and count the max memory requested in BARs by
303 * XXX all enumerated device, then add more for hot-pluggable devices.
305 highest_physaddr
= kernelBootArgs
->PhysicalMemorySize
+ 4 * GB
;
308 * Calculate the number of PML4 entries we'll need. The total number of entries is
309 * pdpte_count = (((highest_physaddr) >> PDPT_SHIFT) + entropy_value +
310 * ((highest_physaddr & PDPT_MASK) == 0 ? 0 : 1))
311 * pml4e_count = pdpte_count >> (PML4_SHIFT - PDPT_SHIFT)
313 assert(highest_physaddr
< (UINT64_MAX
- PDPTMASK
));
314 pdpte_count
= (unsigned) (((highest_physaddr
+ PDPTMASK
) >> PDPTSHIFT
) + phys_random_L3
);
315 kernPhysPML4EntryCount
= (pdpte_count
+ ((1U << (PML4SHIFT
- PDPTSHIFT
)) - 1)) >> (PML4SHIFT
- PDPTSHIFT
);
316 if (kernPhysPML4EntryCount
== 0) {
317 kernPhysPML4EntryCount
= 1;
319 if (kernPhysPML4EntryCount
> KERNEL_PHYSMAP_PML4_COUNT_MAX
) {
320 #if DEVELOPMENT || DEBUG
321 panic("physmap too large");
323 kprintf("[pmap] Limiting physmap to %d PML4s (was %d)\n", KERNEL_PHYSMAP_PML4_COUNT_MAX
,
324 kernPhysPML4EntryCount
);
325 kernPhysPML4EntryCount
= KERNEL_PHYSMAP_PML4_COUNT_MAX
;
329 kernPhysPML4Index
= KERNEL_KEXTS_INDEX
- kernPhysPML4EntryCount
; /* utb: KERNEL_PHYSMAP_PML4_INDEX */
332 * XXX: Make sure that the addresses returned for physmapL3 and physmapL2 plus their extents
333 * are in the system-available memory range
337 /* We assume NX support. Mark all levels of the PHYSMAP NX
338 * to avoid granting executability via a single bit flip.
340 #if DEVELOPMENT || DEBUG
342 do_cpuid(0x80000000, reg
);
343 if (reg
[eax
] >= 0x80000001) {
344 do_cpuid(0x80000001, reg
);
345 assert(reg
[edx
] & CPUID_EXTFEATURE_XD
);
347 #endif /* DEVELOPMENT || DEBUG */
349 L3_start_index
= phys_random_L3
;
351 for (pml4_index
= kernPhysPML4Index
;
352 pml4_index
< (kernPhysPML4Index
+ kernPhysPML4EntryCount
) && physAddr
< highest_physaddr
;
354 if (physmap_init_L3(L3_start_index
, highest_physaddr
, &physAddr
, &l3pte
) < 0) {
355 panic("Physmap page table initialization failed");
361 IdlePML4
[pml4_index
] = ((uintptr_t)ID_MAP_VTOP(l3pte
))
367 *new_physmap_base
= KVADDR(kernPhysPML4Index
, phys_random_L3
, 0, 0);
369 * physAddr contains the last-mapped physical address, so that's what we
370 * add to physmap_base to derive the ending VA for the physmap.
372 *new_physmap_max
= *new_physmap_base
+ physAddr
;
374 DBG("Physical address map base: 0x%qx\n", *new_physmap_base
);
375 for (i
= kernPhysPML4Index
; i
< (kernPhysPML4Index
+ kernPhysPML4EntryCount
); i
++) {
376 DBG("Physical map idlepml4[%d]: 0x%llx\n", i
, IdlePML4
[i
]);
380 void doublemap_init(uint8_t);
386 uint64_t new_physmap_base
, new_physmap_max
;
388 /* Allocate the "idle" kernel page tables: */
389 KPTphys
= ALLOCPAGES(NKPT
); /* level 1 */
390 IdlePTD
= ALLOCPAGES(NPGPTD
); /* level 2 */
391 IdlePDPT
= ALLOCPAGES(1); /* level 3 */
392 IdlePML4
= ALLOCPAGES(1); /* level 4 */
394 // Fill the lowest level with everything up to physfree
396 INTEL_PTE_WRITE
, 0, 0, (int)(((uintptr_t)physfree
) >> PAGE_SHIFT
));
400 INTEL_PTE_WRITE
, (uintptr_t)ID_MAP_VTOP(KPTphys
), 0, NKPT
);
404 INTEL_PTE_WRITE
, (uintptr_t)ID_MAP_VTOP(IdlePTD
), 0, NPGPTD
);
406 // IdlePML4 single entry for kernel space.
407 fillkpt(IdlePML4
+ KERNEL_PML4_INDEX
,
408 INTEL_PTE_WRITE
, (uintptr_t)ID_MAP_VTOP(IdlePDPT
), 0, 1);
410 postcode(VSTART_PHYSMAP_INIT
);
413 * early_random() cannot be called more than one time before the cpu's
414 * gsbase is initialized, so use the full 64-bit value to extract the
415 * two 8-bit entropy values needed for address randomization.
417 rand64
= early_random();
418 physmap_init(rand64
& 0xFF, &new_physmap_base
, &new_physmap_max
);
419 doublemap_init((rand64
>> 8) & 0xFF);
422 postcode(VSTART_SET_CR3
);
425 * Switch to the page tables. We set physmap_base and physmap_max just
426 * before switching to the new page tables to avoid someone calling
427 * kprintf() or otherwise using physical memory in between.
428 * This is needed because kprintf() writes to physical memory using
429 * ml_phys_read_data and PHYSMAP_PTOV, which requires physmap_base to be
432 physmap_base
= new_physmap_base
;
433 physmap_max
= new_physmap_max
;
434 set_cr3_raw((uintptr_t)ID_MAP_VTOP(IdlePML4
));
438 * Release any still unused, preallocated boot kernel page tables.
439 * start..end is the VA range currently unused.
442 Idle_PTs_release(vm_offset_t start
, vm_offset_t end
)
445 uint32_t index_start
;
446 uint32_t index_limit
;
452 * Align start to the next large page boundary
454 start
= ((start
+ I386_LPGMASK
) & ~I386_LPGMASK
);
457 * convert start into an index in KPTphys[]
459 index_start
= (uint32_t)((start
- KERNEL_BASE
) >> PAGE_SHIFT
);
462 * Find the ending index in KPTphys[]
464 index_limit
= (uint32_t)((end
- KERNEL_BASE
) >> PAGE_SHIFT
);
466 if (index_limit
> NKPT
* PTE_PER_PAGE
) {
467 index_limit
= NKPT
* PTE_PER_PAGE
;
471 * Make sure all the 4K page tables are empty.
472 * If not, panic a development/debug kernel.
473 * On a production kernel, since this would stop us from booting,
474 * just abort the operation.
476 for (i
= index_start
; i
< index_limit
; ++i
) {
477 assert(KPTphys
[i
] == 0);
478 if (KPTphys
[i
] != 0) {
484 * Now figure out the indices into the 2nd level page tables, IdlePTD[].
486 index_start
>>= PTPGSHIFT
;
487 index_limit
>>= PTPGSHIFT
;
488 if (index_limit
> NPGPTD
* PTE_PER_PAGE
) {
489 index_limit
= NPGPTD
* PTE_PER_PAGE
;
492 if (index_limit
<= index_start
) {
498 * Now check the pages referenced from Level 2 tables.
499 * They should be contiguous, assert fail if not on development/debug.
500 * In production, just fail the removal to allow the system to boot.
504 for (i
= index_start
; i
< index_limit
; ++i
) {
505 assert(IdlePTD
[i
] != 0);
506 if (IdlePTD
[i
] == 0) {
510 pn
= (ppnum_t
)((PG_FRAME
& IdlePTD
[i
]) >> PTSHIFT
);
514 assert(pn
== pn_first
+ cnt
);
515 if (pn
!= pn_first
+ cnt
) {
523 * Good to go, clear the level 2 entries and invalidate the TLB
525 for (i
= index_start
; i
< index_limit
; ++i
) {
528 set_cr3_raw(get_cr3_raw());
531 * Remember these PFNs to be released later in pmap_lowmem_finalize()
533 released_PT_ppn
= pn_first
;
534 released_PT_cnt
= cnt
;
535 #if DEVELOPMENT || DEBUG
536 printf("Idle_PTs_release %d pages from PFN 0x%x\n", released_PT_cnt
, released_PT_ppn
);
540 extern void vstart_trap_handler
;
542 #define BOOT_TRAP_VECTOR(t) \
544 (uintptr_t) &vstart_trap_handler, \
547 ACC_P|ACC_PL_K|ACC_INTR_GATE, \
551 /* Recursive macro to iterate 0..31 */
552 #define L0(x, n) x(n)
553 #define L1(x, n) L0(x,n-1) L0(x,n)
554 #define L2(x, n) L1(x,n-2) L1(x,n)
555 #define L3(x, n) L2(x,n-4) L2(x,n)
556 #define L4(x, n) L3(x,n-8) L3(x,n)
557 #define L5(x, n) L4(x,n-16) L4(x,n)
558 #define FOR_0_TO_31(x) L5(x,31)
561 * Bootstrap IDT. Active only during early startup.
562 * Only the trap vectors are defined since interrupts are masked.
563 * All traps point to a common handler.
565 struct fake_descriptor64 master_boot_idt64
[IDTSZ
]
566 __attribute__((section("__HIB,__desc")))
567 __attribute__((aligned(PAGE_SIZE
))) = {
568 FOR_0_TO_31(BOOT_TRAP_VECTOR
)
572 vstart_idt_init(boolean_t master
)
574 x86_64_desc_register_t vstart_idt
= {
575 sizeof(master_boot_idt64
),
580 fix_desc64(master_boot_idt64
, 32);
582 lidt((void *)&vstart_idt
);
585 extern void *collection_base_pointers
[KCNumKinds
];
588 i386_slide_individual_kext(kernel_mach_header_t
*mh
, uintptr_t slide
)
590 int ret
= kernel_collection_slide(mh
, (const void **) (void *)collection_base_pointers
);
592 printf("Sliding pageable kc was stopped\n");
596 kernel_collection_adjust_fileset_entry_addrs(mh
, slide
);
601 i386_slide_kext_collection_mh_addrs(kernel_mach_header_t
*mh
, uintptr_t slide
, bool adjust_mach_headers
)
603 int ret
= kernel_collection_slide(mh
, (const void **) (void *)collection_base_pointers
);
604 if (ret
!= KERN_SUCCESS
) {
605 printf("Kernel Collection slide was stopped with value %d\n", ret
);
609 kernel_collection_adjust_mh_addrs(mh
, slide
, adjust_mach_headers
,
610 NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
);
616 i386_slide_and_rebase_image(uintptr_t kstart_addr
)
618 extern uintptr_t kc_highest_nonlinkedit_vmaddr
;
619 kernel_mach_header_t
*k_mh
, *kc_mh
= NULL
;
620 kernel_segment_command_t
*seg
;
623 k_mh
= &_mh_execute_header
;
625 * If we're not booting, an MH_FILESET, we don't need to slide
626 * anything because EFI has done that for us. When booting an
627 * MH_FILESET, EFI will slide the kernel proper, but not the kexts.
628 * Below, we infer the slide by comparing the slid address of the
629 * kernel's mach-o header and the unslid vmaddr of the first segment
630 * of the mach-o (which is assumed to always point to the mach-o
633 if (!kernel_mach_header_is_in_fileset(k_mh
)) {
634 DBG("[MH] kcgen-style KC\n");
639 * The kernel is part of a MH_FILESET kernel collection: determine slide
640 * based on first segment's mach-o vmaddr.
642 seg
= (kernel_segment_command_t
*)((uintptr_t)k_mh
+ sizeof(*k_mh
));
643 assert(seg
->cmd
== LC_SEGMENT_KERNEL
);
644 slide
= (uintptr_t)k_mh
- seg
->vmaddr
;
645 DBG("[MH] Sliding new-style KC: %llu\n", (unsigned long long)slide
);
648 * The kernel collection mach-o header should be the start address
649 * passed to us by EFI.
651 kc_mh
= (kernel_mach_header_t
*)(kstart_addr
);
652 assert(kc_mh
->filetype
== MH_FILESET
);
654 PE_set_kc_header(KCKindPrimary
, kc_mh
, slide
);
657 * rebase/slide all the kexts in the collection
658 * (EFI should have already rebased the kernel)
660 kernel_collection_slide(kc_mh
, (const void **) (void *)collection_base_pointers
);
664 * Now adjust the vmaddr fields of all mach-o headers
665 * and symbols in this MH_FILESET
667 kernel_collection_adjust_mh_addrs(kc_mh
, slide
, false,
668 NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, &kc_highest_nonlinkedit_vmaddr
);
672 * vstart() is called in the natural mode (64bit for K64, 32 for K32)
673 * on a set of bootstrap pagetables which use large, 2MB pages to map
674 * all of physical memory in both. See idle_pt.c for details.
676 * In K64 this identity mapping is mirrored the top and bottom 512GB
679 * The bootstrap processor called with argument boot_args_start pointing to
680 * the boot-args block. The kernel's (4K page) page tables are allocated and
681 * initialized before switching to these.
683 * Non-bootstrap processors are called with argument boot_args_start NULL.
684 * These processors switch immediately to the existing kernel page tables.
686 __attribute__((noreturn
))
688 vstart(vm_offset_t boot_args_start
)
690 boolean_t is_boot_cpu
= !(boot_args_start
== 0);
698 postcode(VSTART_ENTRY
);
701 * Set-up temporary trap handlers during page-table set-up.
705 vstart_idt_init(TRUE
);
706 postcode(VSTART_IDT_INIT
);
709 * Ensure that any %gs-relative access results in an immediate fault
710 * until gsbase is properly initialized below
712 wrmsr64(MSR_IA32_GS_BASE
, EARLY_GSBASE_MAGIC
);
715 * Get startup parameters.
717 kernelBootArgs
= (boot_args
*)boot_args_start
;
718 lphysfree
= kernelBootArgs
->kaddr
+ kernelBootArgs
->ksize
;
719 physfree
= (void *)(uintptr_t)((lphysfree
+ PAGE_SIZE
- 1) & ~(PAGE_SIZE
- 1));
723 DBG("revision 0x%x\n", kernelBootArgs
->Revision
);
724 DBG("version 0x%x\n", kernelBootArgs
->Version
);
725 DBG("command line %s\n", kernelBootArgs
->CommandLine
);
726 DBG("memory map 0x%x\n", kernelBootArgs
->MemoryMap
);
727 DBG("memory map sz 0x%x\n", kernelBootArgs
->MemoryMapSize
);
728 DBG("kaddr 0x%x\n", kernelBootArgs
->kaddr
);
729 DBG("ksize 0x%x\n", kernelBootArgs
->ksize
);
730 DBG("physfree %p\n", physfree
);
731 DBG("bootargs: %p, &ksize: %p &kaddr: %p\n",
733 &kernelBootArgs
->ksize
,
734 &kernelBootArgs
->kaddr
);
735 DBG("SMBIOS mem sz 0x%llx\n", kernelBootArgs
->PhysicalMemorySize
);
736 DBG("KC_hdrs_vaddr %p\n", (void *)kernelBootArgs
->KC_hdrs_vaddr
);
738 if (kernelBootArgs
->Version
>= 2 && kernelBootArgs
->Revision
>= 1 &&
739 kernelBootArgs
->KC_hdrs_vaddr
!= 0) {
741 * slide the header addresses in all mach-o segments and sections, and
742 * perform any new-style chained-fixup sliding for kexts, as necessary.
743 * Note that efiboot has already loaded the kernel and all LC_SEGMENT_64s
744 * that correspond to the kexts present in the primary KC, into slid addresses.
746 i386_slide_and_rebase_image((uintptr_t)ml_static_ptovirt(kernelBootArgs
->KC_hdrs_vaddr
));
750 * Setup boot args given the physical start address.
751 * Note: PE_init_platform needs to be called before Idle_PTs_init
752 * because access to the DeviceTree is required to read the
753 * random seed before generating a random physical map slide.
755 kernelBootArgs
= (boot_args
*)
756 ml_static_ptovirt(boot_args_start
);
757 DBG("i386_init(0x%lx) kernelBootArgs=%p\n",
758 (unsigned long)boot_args_start
, kernelBootArgs
);
761 kasan_reserve_memory(kernelBootArgs
);
764 PE_init_platform(FALSE
, kernelBootArgs
);
765 postcode(PE_INIT_PLATFORM_D
);
768 postcode(VSTART_IDLE_PTS_INIT
);
771 /* Init kasan and map whatever was stolen from physfree */
773 kasan_notify_stolen((uintptr_t)ml_static_ptovirt((vm_offset_t
)physfree
));
778 #endif /* MONOTONIC */
780 first_avail
= (vm_offset_t
)ID_MAP_VTOP(physfree
);
782 cpu_data_alloc(TRUE
);
784 cpu_desc_init(cpu_datap(0));
785 postcode(VSTART_CPU_DESC_INIT
);
786 cpu_desc_load(cpu_datap(0));
788 postcode(VSTART_CPU_MODE_INIT
);
789 cpu_syscall_init(cpu_datap(0)); /* cpu_syscall_init() will be
791 * via i386_init_slave()
794 /* Slave CPUs should use the basic IDT until i386_init_slave() */
795 vstart_idt_init(FALSE
);
797 /* Switch to kernel's page tables (from the Boot PTs) */
798 set_cr3_raw((uintptr_t)ID_MAP_VTOP(IdlePML4
));
800 /* Find our logical cpu number */
801 cpu
= lapic_to_cpu
[lapic_safe_apicid()];
803 gsbase
= rdmsr64(MSR_IA32_GS_BASE
);
805 cpu_desc_load(cpu_datap(cpu
));
807 DBG("CPU: %d, GSBASE initial value: 0x%llx\n", cpu
, (unsigned long long)gsbase
);
811 * Before we can discover our local APIC ID, we need to potentially
812 * initialize X2APIC, if it's enabled and firmware started us with
813 * the APIC in legacy mode.
819 postcode(VSTART_EXIT
);
820 x86_init_wrapper(is_boot_cpu
? (uintptr_t) i386_init
821 : (uintptr_t) i386_init_slave
,
822 cpu_datap(cpu
)->cpu_int_stack_top
);
831 * Cpu initialization. Running virtual, but without MACH VM
838 uint64_t maxmemtouse
;
839 unsigned int cpus
= 0;
841 boolean_t IA32e
= TRUE
;
843 postcode(I386_INIT_ENTRY
);
847 rtclock_early_init(); /* mach_absolute_time() now functional */
849 kernel_debug_string_early("i386_init");
853 /* Initialize machine-check handling */
859 kernel_debug_string_early("kernel_startup_bootstrap");
860 kernel_startup_bootstrap();
863 * Initialize the timer callout world
869 postcode(CPU_INIT_D
);
871 /* setup debugging output if one has been chosen */
872 kernel_startup_initialize_upto(STARTUP_SUB_KPRINTF
);
873 kprintf("kprintf initialized\n");
875 if (!PE_parse_boot_argn("diag", &dgWork
.dgFlags
, sizeof(dgWork
.dgFlags
))) {
879 if (PE_parse_boot_argn("insn_capcnt", &insn_copyin_count
, sizeof(insn_copyin_count
))) {
881 * Enforce max and min values (allowing 0 to disable copying completely)
882 * for the instruction copyin count
884 if (insn_copyin_count
> x86_INSTRUCTION_STATE_MAX_INSN_BYTES
||
885 (insn_copyin_count
!= 0 && insn_copyin_count
< 64)) {
886 insn_copyin_count
= DEFAULT_INSN_COPYIN_COUNT
;
889 insn_copyin_count
= DEFAULT_INSN_COPYIN_COUNT
;
892 #if DEVELOPMENT || DEBUG
893 if (!PE_parse_boot_argn("panic_clmismatch", &panic_on_cacheline_mismatch
,
894 sizeof(panic_on_cacheline_mismatch
))) {
895 panic_on_cacheline_mismatch
= 0;
898 if (!PE_parse_boot_argn("panic_on_trap_procname", &panic_on_trap_procname
[0],
899 sizeof(panic_on_trap_procname
))) {
900 panic_on_trap_procname
[0] = 0;
903 if (!PE_parse_boot_argn("panic_on_trap_mask", &panic_on_trap_mask
,
904 sizeof(panic_on_trap_mask
))) {
905 if (panic_on_trap_procname
[0] != 0) {
906 panic_on_trap_mask
= DEFAULT_PANIC_ON_TRAP_MASK
;
908 panic_on_trap_mask
= 0;
912 /* But allow that to be overridden via boot-arg: */
913 if (!PE_parse_boot_argn("lbr_support", &last_branch_support_enabled
,
914 sizeof(last_branch_support_enabled
))) {
915 /* Disable LBR support by default due to its high context switch overhead */
916 last_branch_support_enabled
= false;
920 if (PE_parse_boot_argn("serial", &serialmode
, sizeof(serialmode
))) {
921 /* We want a serial keyboard and/or console */
922 kprintf("Serial mode specified: %08X\n", serialmode
);
923 int force_sync
= serialmode
& SERIALMODE_SYNCDRAIN
;
924 if (force_sync
|| PE_parse_boot_argn("drain_uart_sync", &force_sync
, sizeof(force_sync
))) {
926 serialmode
|= SERIALMODE_SYNCDRAIN
;
928 "WARNING: Forcing uart driver to output synchronously."
929 "printf()s/IOLogs will impact kernel performance.\n"
930 "You are advised to avoid using 'drain_uart_sync' boot-arg.\n");
934 if (serialmode
& SERIALMODE_OUTPUT
) {
935 (void)switch_to_serial_console();
936 disableConsoleOutput
= FALSE
; /* Allow printfs to happen */
939 /* setup console output */
940 kernel_debug_string_early("PE_init_printf");
941 PE_init_printf(FALSE
);
943 kprintf("version_variant = %s\n", version_variant
);
944 kprintf("version = %s\n", version
);
946 if (!PE_parse_boot_argn("maxmem", &maxmem
, sizeof(maxmem
))) {
949 maxmemtouse
= ((uint64_t)maxmem
) * MB
;
952 max_cpus_from_firmware
= acpi_count_enabled_logical_processors();
954 if (PE_parse_boot_argn("cpus", &cpus
, sizeof(cpus
))) {
955 if ((0 < cpus
) && (cpus
< max_ncpus
)) {
961 * debug support for > 4G systems
963 PE_parse_boot_argn("himemory_mode", &vm_himemory_mode
, sizeof(vm_himemory_mode
));
964 if (!vm_himemory_mode
) {
965 kprintf("himemory_mode disabled\n");
968 if (!PE_parse_boot_argn("immediate_NMI", &fidn
, sizeof(fidn
))) {
969 force_immediate_debugger_NMI
= FALSE
;
971 force_immediate_debugger_NMI
= fidn
;
975 nanoseconds_to_absolutetime(URGENCY_NOTIFICATION_ASSERT_NS
, &urgency_notification_assert_abstime_threshold
);
977 PE_parse_boot_argn("urgency_notification_abstime",
978 &urgency_notification_assert_abstime_threshold
,
979 sizeof(urgency_notification_assert_abstime_threshold
));
981 if (!(cpuid_extfeatures() & CPUID_EXTFEATURE_XD
)) {
986 * VM initialization, after this we're using page tables...
987 * Thn maximum number of cpus must be set beforehand.
989 kernel_debug_string_early("i386_vm_init");
990 i386_vm_init(maxmemtouse
, IA32e
, kernelBootArgs
);
992 /* create the console for verbose or pretty mode */
993 /* Note: doing this prior to tsc_init() allows for graceful panic! */
994 PE_init_platform(TRUE
, kernelBootArgs
);
997 kernel_debug_string_early("power_management_init");
998 power_management_init();
1002 mt_cpu_up(cpu_datap(0));
1003 #endif /* MONOTONIC */
1005 processor_bootstrap();
1006 thread_t thread
= thread_bootstrap();
1007 machine_set_current_thread(thread
);
1010 kernel_debug_string_early("machine_startup");
1016 do_init_slave(boolean_t fast_restart
)
1018 void *init_param
= FULL_SLAVE_INIT
;
1020 postcode(I386_INIT_SLAVE
);
1022 if (!fast_restart
) {
1023 /* Ensure that caching and write-through are enabled */
1024 set_cr0(get_cr0() & ~(CR0_NW
| CR0_CD
));
1026 DBG("i386_init_slave() CPU%d: phys (%d) active.\n",
1027 get_cpu_number(), get_cpu_phys_number());
1029 assert(!ml_get_interrupts_enabled());
1031 cpu_syscall_init(current_cpu_datap());
1040 * Note that the true argument here does not necessarily mean we're
1041 * here from a resume (this code path is also executed on boot).
1042 * The implementation of lapic_configure checks to see if the
1043 * state variable has been initialized, as it would be before
1044 * sleep. If it has not been, it's construed as an indicator of
1047 lapic_configure(true);
1049 LAPIC_CPU_MAP_DUMP();
1056 /* update CPU microcode and apply CPU workarounds */
1057 ucode_update_wake_and_apply_cpu_was();
1059 /* Enable LBRs on non-boot CPUs */
1060 i386_lbr_init(cpuid_info(), false);
1062 init_param
= FAST_SLAVE_INIT
;
1066 /* resume VT operation */
1071 if (!fast_restart
) {
1076 cpu_thread_init(); /* not strictly necessary */
1078 cpu_init(); /* Sets cpu_running which starter cpu waits for */
1082 mt_cpu_up(current_cpu_datap());
1083 #endif /* MONOTONIC */
1085 slave_main(init_param
);
1087 panic("do_init_slave() returned from slave_main()");
1091 * i386_init_slave() is called from pstart.
1092 * We're in the cpu's interrupt stack with interrupts disabled.
1093 * At this point we are in legacy mode. We need to switch on IA32e
1094 * if the mode is set to 64-bits.
1097 i386_init_slave(void)
1099 do_init_slave(FALSE
);
1103 * i386_init_slave_fast() is called from pmCPUHalt.
1104 * We're running on the idle thread and need to fix up
1105 * some accounting and get it so that the scheduler sees this
1109 i386_init_slave_fast(void)
1111 do_init_slave(TRUE
);
1115 /* TODO: Evaluate global PTEs for the double-mapped translations */
1117 uint64_t dblmap_base
, dblmap_max
;
1118 kernel_segment_command_t
*hdescseg
;
1120 pt_entry_t
*dblmapL3
;
1121 unsigned int dblallocs
;
1122 uint64_t dblmap_dist
;
1123 extern uint64_t idt64_hndl_table0
[];
1127 doublemap_init(uint8_t randL3
)
1129 dblmapL3
= ALLOCPAGES(1); // for 512 1GiB entries
1133 pt_entry_t entries
[PTE_PER_PAGE
];
1134 } * dblmapL2
= ALLOCPAGES(1); // for 512 2MiB entries
1137 dblmapL3
[randL3
] = ((uintptr_t)ID_MAP_VTOP(&dblmapL2
[0]))
1141 hdescseg
= getsegbynamefromheader(&_mh_execute_header
, "__HIB");
1143 vm_offset_t hdescb
= hdescseg
->vmaddr
;
1144 unsigned long hdescsz
= hdescseg
->vmsize
;
1145 unsigned long hdescszr
= round_page_64(hdescsz
);
1146 vm_offset_t hdescc
= hdescb
, hdesce
= hdescb
+ hdescszr
;
1148 kernel_section_t
*thdescsect
= getsectbynamefromheader(&_mh_execute_header
, "__HIB", "__text");
1149 vm_offset_t thdescb
= thdescsect
->addr
;
1150 unsigned long thdescsz
= thdescsect
->size
;
1151 unsigned long thdescszr
= round_page_64(thdescsz
);
1152 vm_offset_t thdesce
= thdescb
+ thdescszr
;
1154 assert((hdescb
& 0xFFF) == 0);
1155 /* Mirror HIB translations into the double-mapped pagetable subtree*/
1156 for (int i
= 0; hdescc
< hdesce
; i
++) {
1158 pt_entry_t entries
[PTE_PER_PAGE
];
1159 } * dblmapL1
= ALLOCPAGES(1);
1161 dblmapL2
[0].entries
[i
] = ((uintptr_t)ID_MAP_VTOP(&dblmapL1
[0])) | INTEL_PTE_VALID
| INTEL_PTE_WRITE
| INTEL_PTE_REF
;
1162 int hdescn
= (int) ((hdesce
- hdescc
) / PAGE_SIZE
);
1163 for (int j
= 0; j
< MIN(PTE_PER_PAGE
, hdescn
); j
++) {
1164 uint64_t template = INTEL_PTE_VALID
;
1165 if ((hdescc
>= thdescb
) && (hdescc
< thdesce
)) {
1168 template |= INTEL_PTE_WRITE
| INTEL_PTE_NX
; /* Writeable, NX */
1170 dblmapL1
[0].entries
[j
] = ((uintptr_t)ID_MAP_VTOP(hdescc
)) | template;
1171 hdescc
+= PAGE_SIZE
;
1175 IdlePML4
[KERNEL_DBLMAP_PML4_INDEX
] = ((uintptr_t)ID_MAP_VTOP(dblmapL3
)) | INTEL_PTE_VALID
| INTEL_PTE_WRITE
| INTEL_PTE_REF
;
1177 dblmap_base
= KVADDR(KERNEL_DBLMAP_PML4_INDEX
, randL3
, 0, 0);
1178 dblmap_max
= dblmap_base
+ hdescszr
;
1179 /* Calculate the double-map distance, which accounts for the current
1183 dblmap_dist
= dblmap_base
- hdescb
;
1184 idt64_hndl_table0
[1] = DBLMAP(idt64_hndl_table0
[1]); /* 64-bit exit trampoline */
1185 idt64_hndl_table0
[3] = DBLMAP(idt64_hndl_table0
[3]); /* 32-bit exit trampoline */
1186 idt64_hndl_table0
[6] = (uint64_t)(uintptr_t)&kernel_stack_mask
;
1188 extern cpu_data_t cpshadows
[], scdatas
[];
1189 uintptr_t cd1
= (uintptr_t) &cpshadows
[0];
1190 uintptr_t cd2
= (uintptr_t) &scdatas
[0];
1191 /* Record the displacement from the kernel's per-CPU data pointer, eventually
1192 * programmed into GSBASE, to the "shadows" in the doublemapped
1193 * region. These are not aliases, but separate physical allocations
1194 * containing data required in the doublemapped trampolines.
1196 idt64_hndl_table0
[2] = dblmap_dist
+ cd1
- cd2
;
1198 DBG("Double map base: 0x%qx\n", dblmap_base
);
1199 DBG("double map idlepml4[%d]: 0x%llx\n", KERNEL_DBLMAP_PML4_INDEX
, IdlePML4
[KERNEL_DBLMAP_PML4_INDEX
]);
1200 assert(LDTSZ
> LDTSZ_MIN
);
1203 vm_offset_t
dyn_dblmap(vm_offset_t
, vm_offset_t
);
1205 #include <i386/pmap_internal.h>
1207 /* Use of this routine is expected to be synchronized by callers
1208 * Creates non-executable aliases.
1211 dyn_dblmap(vm_offset_t cva
, vm_offset_t sz
)
1213 vm_offset_t ava
= dblmap_max
;
1215 assert((sz
& PAGE_MASK
) == 0);
1218 pmap_alias(ava
, cva
, cva
+ sz
, VM_PROT_READ
| VM_PROT_WRITE
, PMAP_EXPAND_OPTIONS_ALIASMAP
);
1222 /* Adjust offsets interior to the bootstrap interrupt descriptor table to redirect
1223 * control to the double-mapped interrupt vectors. The IDTR proper will be
1224 * programmed via cpu_desc_load()
1229 for (int i
= 0; i
< IDTSZ
; i
++) {
1230 master_idt64
[i
].offset64
= DBLMAP(master_idt64
[i
].offset64
);