]> git.saurik.com Git - apple/xnu.git/blob - bsd/netinet/raw_ip.c
xnu-7195.60.75.tar.gz
[apple/xnu.git] / bsd / netinet / raw_ip.c
1 /*
2 * Copyright (c) 2000-2020 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*
29 * Copyright (c) 1982, 1986, 1988, 1993
30 * The Regents of the University of California. All rights reserved.
31 *
32 * Redistribution and use in source and binary forms, with or without
33 * modification, are permitted provided that the following conditions
34 * are met:
35 * 1. Redistributions of source code must retain the above copyright
36 * notice, this list of conditions and the following disclaimer.
37 * 2. Redistributions in binary form must reproduce the above copyright
38 * notice, this list of conditions and the following disclaimer in the
39 * documentation and/or other materials provided with the distribution.
40 * 3. All advertising materials mentioning features or use of this software
41 * must display the following acknowledgement:
42 * This product includes software developed by the University of
43 * California, Berkeley and its contributors.
44 * 4. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)raw_ip.c 8.7 (Berkeley) 5/15/95
61 */
62 /*
63 * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
64 * support for mandatory and extensible security protections. This notice
65 * is included in support of clause 2.2 (b) of the Apple Public License,
66 * Version 2.0.
67 */
68
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/kernel.h>
72 #include <sys/malloc.h>
73 #include <sys/mbuf.h>
74 #include <sys/mcache.h>
75 #include <sys/proc.h>
76 #include <sys/domain.h>
77 #include <sys/protosw.h>
78 #include <sys/socket.h>
79 #include <sys/socketvar.h>
80 #include <sys/sysctl.h>
81 #include <libkern/OSAtomic.h>
82 #include <kern/zalloc.h>
83
84 #include <pexpert/pexpert.h>
85
86 #include <net/if.h>
87 #include <net/net_api_stats.h>
88 #include <net/route.h>
89 #include <net/content_filter.h>
90
91 #define _IP_VHL
92 #include <netinet/in.h>
93 #include <netinet/in_systm.h>
94 #include <netinet/in_tclass.h>
95 #include <netinet/ip.h>
96 #include <netinet/in_pcb.h>
97 #include <netinet/in_var.h>
98 #include <netinet/ip_var.h>
99
100 #include <netinet6/in6_pcb.h>
101
102
103 #if IPSEC
104 #include <netinet6/ipsec.h>
105 #endif /*IPSEC*/
106
107 #if DUMMYNET
108 #include <netinet/ip_dummynet.h>
109 #endif /* DUMMYNET */
110
111 int rip_detach(struct socket *);
112 int rip_abort(struct socket *);
113 int rip_disconnect(struct socket *);
114 int rip_bind(struct socket *, struct sockaddr *, struct proc *);
115 int rip_connect(struct socket *, struct sockaddr *, struct proc *);
116 int rip_shutdown(struct socket *);
117
118 struct inpcbhead ripcb;
119 struct inpcbinfo ripcbinfo;
120
121 /* control hooks for dummynet */
122 #if DUMMYNET
123 ip_dn_ctl_t *ip_dn_ctl_ptr;
124 #endif /* DUMMYNET */
125
126 /*
127 * Nominal space allocated to a raw ip socket.
128 */
129 #define RIPSNDQ 8192
130 #define RIPRCVQ 8192
131
132 /*
133 * Raw interface to IP protocol.
134 */
135
136 /*
137 * Initialize raw connection block q.
138 */
139 void
140 rip_init(struct protosw *pp, struct domain *dp)
141 {
142 #pragma unused(dp)
143 static int rip_initialized = 0;
144 struct inpcbinfo *pcbinfo;
145
146 VERIFY((pp->pr_flags & (PR_INITIALIZED | PR_ATTACHED)) == PR_ATTACHED);
147
148 if (rip_initialized) {
149 return;
150 }
151 rip_initialized = 1;
152
153 LIST_INIT(&ripcb);
154 ripcbinfo.ipi_listhead = &ripcb;
155 /*
156 * XXX We don't use the hash list for raw IP, but it's easier
157 * to allocate a one entry hash list than it is to check all
158 * over the place for ipi_hashbase == NULL.
159 */
160 ripcbinfo.ipi_hashbase = hashinit(1, M_PCB, &ripcbinfo.ipi_hashmask);
161 ripcbinfo.ipi_porthashbase = hashinit(1, M_PCB, &ripcbinfo.ipi_porthashmask);
162
163 ripcbinfo.ipi_zone = zone_create("ripzone", sizeof(struct inpcb),
164 ZC_NONE);
165
166 pcbinfo = &ripcbinfo;
167 /*
168 * allocate lock group attribute and group for udp pcb mutexes
169 */
170 pcbinfo->ipi_lock_grp_attr = lck_grp_attr_alloc_init();
171 pcbinfo->ipi_lock_grp = lck_grp_alloc_init("ripcb", pcbinfo->ipi_lock_grp_attr);
172
173 /*
174 * allocate the lock attribute for udp pcb mutexes
175 */
176 pcbinfo->ipi_lock_attr = lck_attr_alloc_init();
177 if ((pcbinfo->ipi_lock = lck_rw_alloc_init(pcbinfo->ipi_lock_grp,
178 pcbinfo->ipi_lock_attr)) == NULL) {
179 panic("%s: unable to allocate PCB lock\n", __func__);
180 /* NOTREACHED */
181 }
182
183 in_pcbinfo_attach(&ripcbinfo);
184 }
185
186 static struct sockaddr_in ripsrc = {
187 .sin_len = sizeof(ripsrc),
188 .sin_family = AF_INET,
189 .sin_port = 0,
190 .sin_addr = { .s_addr = 0 },
191 .sin_zero = {0, 0, 0, 0, 0, 0, 0, 0, }
192 };
193
194 /*
195 * Setup generic address and protocol structures
196 * for raw_input routine, then pass them along with
197 * mbuf chain.
198 */
199 void
200 rip_input(struct mbuf *m, int iphlen)
201 {
202 struct ip *ip = mtod(m, struct ip *);
203 struct inpcb *inp;
204 struct inpcb *last = 0;
205 struct mbuf *opts = 0;
206 int skipit = 0, ret = 0;
207 struct ifnet *ifp = m->m_pkthdr.rcvif;
208
209 /* Expect 32-bit aligned data pointer on strict-align platforms */
210 MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(m);
211
212 ripsrc.sin_addr = ip->ip_src;
213 lck_rw_lock_shared(ripcbinfo.ipi_lock);
214 LIST_FOREACH(inp, &ripcb, inp_list) {
215 if ((inp->inp_vflag & INP_IPV4) == 0) {
216 continue;
217 }
218 if (inp->inp_ip_p && (inp->inp_ip_p != ip->ip_p)) {
219 continue;
220 }
221 if (inp->inp_laddr.s_addr &&
222 inp->inp_laddr.s_addr != ip->ip_dst.s_addr) {
223 continue;
224 }
225 if (inp->inp_faddr.s_addr &&
226 inp->inp_faddr.s_addr != ip->ip_src.s_addr) {
227 continue;
228 }
229 if (inp_restricted_recv(inp, ifp)) {
230 continue;
231 }
232 if (last) {
233 struct mbuf *n = m_copy(m, 0, (int)M_COPYALL);
234
235 skipit = 0;
236
237 #if NECP
238 if (n && !necp_socket_is_allowed_to_send_recv_v4(last, 0, 0,
239 &ip->ip_dst, &ip->ip_src, ifp, 0, NULL, NULL, NULL, NULL)) {
240 m_freem(n);
241 /* do not inject data to pcb */
242 skipit = 1;
243 }
244 #endif /* NECP */
245 if (n && skipit == 0) {
246 int error = 0;
247 if ((last->inp_flags & INP_CONTROLOPTS) != 0 ||
248 #if CONTENT_FILTER
249 /* Content Filter needs to see local address */
250 (last->inp_socket->so_cfil_db != NULL) ||
251 #endif
252 (last->inp_socket->so_options & SO_TIMESTAMP) != 0 ||
253 (last->inp_socket->so_options & SO_TIMESTAMP_MONOTONIC) != 0 ||
254 (last->inp_socket->so_options & SO_TIMESTAMP_CONTINUOUS) != 0) {
255 ret = ip_savecontrol(last, &opts, ip, n);
256 if (ret != 0) {
257 m_freem(n);
258 m_freem(opts);
259 last = inp;
260 continue;
261 }
262 }
263 if (last->inp_flags & INP_STRIPHDR
264 #if CONTENT_FILTER
265 /*
266 * If socket is subject to Content Filter, delay stripping until reinject
267 */
268 && (last->inp_socket->so_cfil_db == NULL)
269 #endif
270 ) {
271 n->m_len -= iphlen;
272 n->m_pkthdr.len -= iphlen;
273 n->m_data += iphlen;
274 }
275 so_recv_data_stat(last->inp_socket, m, 0);
276 if (sbappendaddr(&last->inp_socket->so_rcv,
277 (struct sockaddr *)&ripsrc, n,
278 opts, &error) != 0) {
279 sorwakeup(last->inp_socket);
280 } else {
281 if (error) {
282 /* should notify about lost packet */
283 ipstat.ips_raw_sappend_fail++;
284 }
285 }
286 opts = 0;
287 }
288 }
289 last = inp;
290 }
291
292 skipit = 0;
293 #if NECP
294 if (last && !necp_socket_is_allowed_to_send_recv_v4(last, 0, 0,
295 &ip->ip_dst, &ip->ip_src, ifp, 0, NULL, NULL, NULL, NULL)) {
296 m_freem(m);
297 OSAddAtomic(1, &ipstat.ips_delivered);
298 /* do not inject data to pcb */
299 skipit = 1;
300 }
301 #endif /* NECP */
302 if (skipit == 0) {
303 if (last) {
304 if ((last->inp_flags & INP_CONTROLOPTS) != 0 ||
305 #if CONTENT_FILTER
306 /* Content Filter needs to see local address */
307 (last->inp_socket->so_cfil_db != NULL) ||
308 #endif
309 (last->inp_socket->so_options & SO_TIMESTAMP) != 0 ||
310 (last->inp_socket->so_options & SO_TIMESTAMP_MONOTONIC) != 0 ||
311 (last->inp_socket->so_options & SO_TIMESTAMP_CONTINUOUS) != 0) {
312 ret = ip_savecontrol(last, &opts, ip, m);
313 if (ret != 0) {
314 m_freem(m);
315 m_freem(opts);
316 goto unlock;
317 }
318 }
319 if (last->inp_flags & INP_STRIPHDR
320 #if CONTENT_FILTER
321 /*
322 * If socket is subject to Content Filter, delay stripping until reinject
323 */
324 && (last->inp_socket->so_cfil_db == NULL)
325 #endif
326 ) {
327 m->m_len -= iphlen;
328 m->m_pkthdr.len -= iphlen;
329 m->m_data += iphlen;
330 }
331 so_recv_data_stat(last->inp_socket, m, 0);
332 if (sbappendaddr(&last->inp_socket->so_rcv,
333 (struct sockaddr *)&ripsrc, m, opts, NULL) != 0) {
334 sorwakeup(last->inp_socket);
335 } else {
336 ipstat.ips_raw_sappend_fail++;
337 }
338 } else {
339 m_freem(m);
340 OSAddAtomic(1, &ipstat.ips_noproto);
341 OSAddAtomic(-1, &ipstat.ips_delivered);
342 }
343 }
344 unlock:
345 /*
346 * Keep the list locked because socket filter may force the socket lock
347 * to be released when calling sbappendaddr() -- see rdar://7627704
348 */
349 lck_rw_done(ripcbinfo.ipi_lock);
350 }
351
352 /*
353 * Generate IP header and pass packet to ip_output.
354 * Tack on options user may have setup with control call.
355 */
356 int
357 rip_output(
358 struct mbuf *m,
359 struct socket *so,
360 u_int32_t dst,
361 struct mbuf *control)
362 {
363 struct ip *ip;
364 struct inpcb *inp = sotoinpcb(so);
365 int flags = (so->so_options & SO_DONTROUTE) | IP_ALLOWBROADCAST;
366 int inp_flags = inp ? inp->inp_flags : 0;
367 struct ip_out_args ipoa;
368 struct ip_moptions *imo;
369 int tos = IPTOS_UNSPEC;
370 int error = 0;
371 #if CONTENT_FILTER
372 struct m_tag *cfil_tag = NULL;
373 bool cfil_faddr_use = false;
374 uint32_t cfil_so_state_change_cnt = 0;
375 uint32_t cfil_so_options = 0;
376 int cfil_inp_flags = 0;
377 struct sockaddr *cfil_faddr = NULL;
378 struct sockaddr_in *cfil_sin;
379 #endif
380
381 #if CONTENT_FILTER
382 /*
383 * If socket is subject to Content Filter and no addr is passed in,
384 * retrieve CFIL saved state from mbuf and use it if necessary.
385 */
386 if (so->so_cfil_db && dst == INADDR_ANY) {
387 cfil_tag = cfil_dgram_get_socket_state(m, &cfil_so_state_change_cnt, &cfil_so_options, &cfil_faddr, &cfil_inp_flags);
388 if (cfil_tag) {
389 cfil_sin = SIN(cfil_faddr);
390 flags = (cfil_so_options & SO_DONTROUTE) | IP_ALLOWBROADCAST;
391 inp_flags = cfil_inp_flags;
392 if (inp && inp->inp_faddr.s_addr == INADDR_ANY) {
393 /*
394 * Socket is unconnected, simply use the saved faddr as 'addr' to go through
395 * the connect/disconnect logic.
396 */
397 dst = cfil_sin->sin_addr.s_addr;
398 } else if ((so->so_state_change_cnt != cfil_so_state_change_cnt) &&
399 (inp->inp_fport != cfil_sin->sin_port ||
400 inp->inp_faddr.s_addr != cfil_sin->sin_addr.s_addr)) {
401 /*
402 * Socket is connected but socket state and dest addr/port changed.
403 * We need to use the saved faddr and socket options.
404 */
405 cfil_faddr_use = true;
406 }
407 m_tag_free(cfil_tag);
408 }
409 }
410 #endif
411
412 if (so->so_state & SS_ISCONNECTED) {
413 if (dst != INADDR_ANY) {
414 if (m != NULL) {
415 m_freem(m);
416 }
417 if (control != NULL) {
418 m_freem(control);
419 }
420 return EISCONN;
421 }
422 dst = cfil_faddr_use ? cfil_sin->sin_addr.s_addr : inp->inp_faddr.s_addr;
423 } else {
424 if (dst == INADDR_ANY) {
425 if (m != NULL) {
426 m_freem(m);
427 }
428 if (control != NULL) {
429 m_freem(control);
430 }
431 return ENOTCONN;
432 }
433 }
434
435 bzero(&ipoa, sizeof(ipoa));
436 ipoa.ipoa_boundif = IFSCOPE_NONE;
437 ipoa.ipoa_flags = IPOAF_SELECT_SRCIF;
438
439 int sotc = SO_TC_UNSPEC;
440 int netsvctype = _NET_SERVICE_TYPE_UNSPEC;
441
442
443 if (control != NULL) {
444 tos = so_tos_from_control(control);
445 sotc = so_tc_from_control(control, &netsvctype);
446
447 m_freem(control);
448 control = NULL;
449 }
450 if (sotc == SO_TC_UNSPEC) {
451 sotc = so->so_traffic_class;
452 netsvctype = so->so_netsvctype;
453 }
454
455 if (inp == NULL
456 #if NECP
457 || (necp_socket_should_use_flow_divert(inp))
458 #endif /* NECP */
459 ) {
460 if (m != NULL) {
461 m_freem(m);
462 }
463 VERIFY(control == NULL);
464 return inp == NULL ? EINVAL : EPROTOTYPE;
465 }
466
467 flags |= IP_OUTARGS;
468 /* If socket was bound to an ifindex, tell ip_output about it */
469 if (inp->inp_flags & INP_BOUND_IF) {
470 ipoa.ipoa_boundif = inp->inp_boundifp->if_index;
471 ipoa.ipoa_flags |= IPOAF_BOUND_IF;
472 }
473 if (INP_NO_CELLULAR(inp)) {
474 ipoa.ipoa_flags |= IPOAF_NO_CELLULAR;
475 }
476 if (INP_NO_EXPENSIVE(inp)) {
477 ipoa.ipoa_flags |= IPOAF_NO_EXPENSIVE;
478 }
479 if (INP_NO_CONSTRAINED(inp)) {
480 ipoa.ipoa_flags |= IPOAF_NO_CONSTRAINED;
481 }
482 if (INP_AWDL_UNRESTRICTED(inp)) {
483 ipoa.ipoa_flags |= IPOAF_AWDL_UNRESTRICTED;
484 }
485 ipoa.ipoa_sotc = sotc;
486 ipoa.ipoa_netsvctype = netsvctype;
487
488 if (inp->inp_flowhash == 0) {
489 inp->inp_flowhash = inp_calc_flowhash(inp);
490 }
491
492 /*
493 * If the user handed us a complete IP packet, use it.
494 * Otherwise, allocate an mbuf for a header and fill it in.
495 */
496 if ((inp_flags & INP_HDRINCL) == 0) {
497 if (m->m_pkthdr.len + sizeof(struct ip) > IP_MAXPACKET) {
498 m_freem(m);
499 return EMSGSIZE;
500 }
501 M_PREPEND(m, sizeof(struct ip), M_WAIT, 1);
502 if (m == NULL) {
503 return ENOBUFS;
504 }
505 ip = mtod(m, struct ip *);
506 if (tos != IPTOS_UNSPEC) {
507 ip->ip_tos = (uint8_t)(tos & IPTOS_MASK);
508 } else {
509 ip->ip_tos = inp->inp_ip_tos;
510 }
511 if (inp->inp_flags2 & INP2_DONTFRAG) {
512 ip->ip_off = IP_DF;
513 } else {
514 ip->ip_off = 0;
515 }
516 ip->ip_p = inp->inp_ip_p;
517 ip->ip_len = (uint16_t)m->m_pkthdr.len;
518 ip->ip_src = inp->inp_laddr;
519 ip->ip_dst.s_addr = dst;
520 ip->ip_ttl = inp->inp_ip_ttl;
521 } else {
522 if (m->m_pkthdr.len > IP_MAXPACKET) {
523 m_freem(m);
524 return EMSGSIZE;
525 }
526 ip = mtod(m, struct ip *);
527 /* don't allow both user specified and setsockopt options,
528 * and don't allow packet length sizes that will crash */
529 if (((IP_VHL_HL(ip->ip_vhl) != (sizeof(*ip) >> 2))
530 && inp->inp_options)
531 || (ip->ip_len > m->m_pkthdr.len)
532 || (ip->ip_len < (IP_VHL_HL(ip->ip_vhl) << 2))) {
533 m_freem(m);
534 return EINVAL;
535 }
536 if (ip->ip_id == 0 && !(rfc6864 && IP_OFF_IS_ATOMIC(ntohs(ip->ip_off)))) {
537 ip->ip_id = ip_randomid();
538 }
539 /* XXX prevent ip_output from overwriting header fields */
540 flags |= IP_RAWOUTPUT;
541 OSAddAtomic(1, &ipstat.ips_rawout);
542 }
543
544 if (inp->inp_laddr.s_addr != INADDR_ANY) {
545 ipoa.ipoa_flags |= IPOAF_BOUND_SRCADDR;
546 }
547
548 #if NECP
549 {
550 necp_kernel_policy_id policy_id;
551 necp_kernel_policy_id skip_policy_id;
552 u_int32_t route_rule_id;
553 u_int32_t pass_flags;
554
555 /*
556 * We need a route to perform NECP route rule checks
557 */
558 if ((net_qos_policy_restricted != 0 &&
559 ROUTE_UNUSABLE(&inp->inp_route))
560 #if CONTENT_FILTER
561 || cfil_faddr_use
562 #endif
563 ) {
564 struct sockaddr_in to;
565 struct sockaddr_in from;
566 struct in_addr laddr = ip->ip_src;
567
568 ROUTE_RELEASE(&inp->inp_route);
569
570 bzero(&from, sizeof(struct sockaddr_in));
571 from.sin_family = AF_INET;
572 from.sin_len = sizeof(struct sockaddr_in);
573 from.sin_addr = laddr;
574
575 bzero(&to, sizeof(struct sockaddr_in));
576 to.sin_family = AF_INET;
577 to.sin_len = sizeof(struct sockaddr_in);
578 to.sin_addr.s_addr = ip->ip_dst.s_addr;
579
580 if ((error = in_pcbladdr(inp, (struct sockaddr *)&to,
581 &laddr, ipoa.ipoa_boundif, NULL, 1)) != 0) {
582 printf("%s in_pcbladdr(%p) error %d\n",
583 __func__, inp, error);
584 m_freem(m);
585 return error;
586 }
587
588 inp_update_necp_policy(inp, (struct sockaddr *)&from,
589 (struct sockaddr *)&to, ipoa.ipoa_boundif);
590 inp->inp_policyresult.results.qos_marking_gencount = 0;
591 }
592
593 if (!necp_socket_is_allowed_to_send_recv_v4(inp, 0, 0,
594 &ip->ip_src, &ip->ip_dst, NULL, 0, &policy_id, &route_rule_id, &skip_policy_id, &pass_flags)) {
595 m_freem(m);
596 return EHOSTUNREACH;
597 }
598
599 necp_mark_packet_from_socket(m, inp, policy_id, route_rule_id, skip_policy_id, pass_flags);
600
601 if (net_qos_policy_restricted != 0) {
602 struct ifnet *rt_ifp = NULL;
603
604 if (inp->inp_route.ro_rt != NULL) {
605 rt_ifp = inp->inp_route.ro_rt->rt_ifp;
606 }
607
608 necp_socket_update_qos_marking(inp, inp->inp_route.ro_rt, route_rule_id);
609 }
610 }
611 #endif /* NECP */
612 if ((so->so_flags1 & SOF1_QOSMARKING_ALLOWED)) {
613 ipoa.ipoa_flags |= IPOAF_QOSMARKING_ALLOWED;
614 }
615
616 #if IPSEC
617 if (inp->inp_sp != NULL && ipsec_setsocket(m, so) != 0) {
618 m_freem(m);
619 return ENOBUFS;
620 }
621 #endif /*IPSEC*/
622
623 if (ROUTE_UNUSABLE(&inp->inp_route)) {
624 ROUTE_RELEASE(&inp->inp_route);
625 }
626
627 set_packet_service_class(m, so, sotc, 0);
628 m->m_pkthdr.pkt_flowsrc = FLOWSRC_INPCB;
629 m->m_pkthdr.pkt_flowid = inp->inp_flowhash;
630 m->m_pkthdr.pkt_flags |= (PKTF_FLOW_ID | PKTF_FLOW_LOCALSRC |
631 PKTF_FLOW_RAWSOCK);
632 m->m_pkthdr.pkt_proto = inp->inp_ip_p;
633 m->m_pkthdr.tx_rawip_pid = so->last_pid;
634 m->m_pkthdr.tx_rawip_e_pid = so->e_pid;
635 if (so->so_flags & SOF_DELEGATED) {
636 m->m_pkthdr.tx_rawip_e_pid = so->e_pid;
637 } else {
638 m->m_pkthdr.tx_rawip_e_pid = 0;
639 }
640
641 imo = inp->inp_moptions;
642 if (imo != NULL) {
643 IMO_ADDREF(imo);
644 }
645 /*
646 * The domain lock is held across ip_output, so it is okay
647 * to pass the PCB cached route pointer directly to IP and
648 * the modules beneath it.
649 */
650 // TODO: PASS DOWN ROUTE RULE ID
651 error = ip_output(m, inp->inp_options, &inp->inp_route, flags,
652 imo, &ipoa);
653
654 if (imo != NULL) {
655 IMO_REMREF(imo);
656 }
657
658 if (inp->inp_route.ro_rt != NULL) {
659 struct rtentry *rt = inp->inp_route.ro_rt;
660 struct ifnet *outif;
661
662 if ((rt->rt_flags & (RTF_MULTICAST | RTF_BROADCAST)) ||
663 inp->inp_socket == NULL ||
664 #if CONTENT_FILTER
665 /* Discard temporary route for cfil case */
666 cfil_faddr_use ||
667 #endif
668 !(inp->inp_socket->so_state & SS_ISCONNECTED)) {
669 rt = NULL; /* unusable */
670 }
671 /*
672 * Always discard the cached route for unconnected
673 * socket or if it is a multicast route.
674 */
675 if (rt == NULL) {
676 ROUTE_RELEASE(&inp->inp_route);
677 }
678
679 /*
680 * If this is a connected socket and the destination
681 * route is unicast, update outif with that of the
682 * route interface used by IP.
683 */
684 if (rt != NULL &&
685 (outif = rt->rt_ifp) != inp->inp_last_outifp) {
686 inp->inp_last_outifp = outif;
687 }
688 } else {
689 ROUTE_RELEASE(&inp->inp_route);
690 }
691
692 /*
693 * If output interface was cellular/expensive/constrained, and this socket is
694 * denied access to it, generate an event.
695 */
696 if (error != 0 && (ipoa.ipoa_retflags & IPOARF_IFDENIED) &&
697 (INP_NO_CELLULAR(inp) || INP_NO_EXPENSIVE(inp) || INP_NO_CONSTRAINED(inp))) {
698 soevent(so, (SO_FILT_HINT_LOCKED | SO_FILT_HINT_IFDENIED));
699 }
700
701 return error;
702 }
703
704
705 /*
706 * Raw IP socket option processing.
707 */
708 int
709 rip_ctloutput(struct socket *so, struct sockopt *sopt)
710 {
711 struct inpcb *inp = sotoinpcb(so);
712 int error, optval;
713
714 /* Allow <SOL_SOCKET,SO_FLUSH> at this level */
715 if (sopt->sopt_level != IPPROTO_IP &&
716 !(sopt->sopt_level == SOL_SOCKET && sopt->sopt_name == SO_FLUSH)) {
717 return EINVAL;
718 }
719
720 error = 0;
721
722 switch (sopt->sopt_dir) {
723 case SOPT_GET:
724 switch (sopt->sopt_name) {
725 case IP_HDRINCL:
726 optval = inp->inp_flags & INP_HDRINCL;
727 error = sooptcopyout(sopt, &optval, sizeof optval);
728 break;
729
730 case IP_STRIPHDR:
731 optval = inp->inp_flags & INP_STRIPHDR;
732 error = sooptcopyout(sopt, &optval, sizeof optval);
733 break;
734
735
736 #if DUMMYNET
737 case IP_DUMMYNET_GET:
738 if (!DUMMYNET_LOADED) {
739 ip_dn_init();
740 }
741 if (DUMMYNET_LOADED) {
742 error = ip_dn_ctl_ptr(sopt);
743 } else {
744 error = ENOPROTOOPT;
745 }
746 break;
747 #endif /* DUMMYNET */
748
749 default:
750 error = ip_ctloutput(so, sopt);
751 break;
752 }
753 break;
754
755 case SOPT_SET:
756 switch (sopt->sopt_name) {
757 case IP_HDRINCL:
758 error = sooptcopyin(sopt, &optval, sizeof optval,
759 sizeof optval);
760 if (error) {
761 break;
762 }
763 if (optval) {
764 inp->inp_flags |= INP_HDRINCL;
765 } else {
766 inp->inp_flags &= ~INP_HDRINCL;
767 }
768 break;
769
770 case IP_STRIPHDR:
771 error = sooptcopyin(sopt, &optval, sizeof optval,
772 sizeof optval);
773 if (error) {
774 break;
775 }
776 if (optval) {
777 inp->inp_flags |= INP_STRIPHDR;
778 } else {
779 inp->inp_flags &= ~INP_STRIPHDR;
780 }
781 break;
782
783
784 #if DUMMYNET
785 case IP_DUMMYNET_CONFIGURE:
786 case IP_DUMMYNET_DEL:
787 case IP_DUMMYNET_FLUSH:
788 if (!DUMMYNET_LOADED) {
789 ip_dn_init();
790 }
791 if (DUMMYNET_LOADED) {
792 error = ip_dn_ctl_ptr(sopt);
793 } else {
794 error = ENOPROTOOPT;
795 }
796 break;
797 #endif /* DUMMYNET */
798
799 case SO_FLUSH:
800 if ((error = sooptcopyin(sopt, &optval, sizeof(optval),
801 sizeof(optval))) != 0) {
802 break;
803 }
804
805 error = inp_flush(inp, optval);
806 break;
807
808 default:
809 error = ip_ctloutput(so, sopt);
810 break;
811 }
812 break;
813 }
814
815 return error;
816 }
817
818 /*
819 * This function exists solely to receive the PRC_IFDOWN messages which
820 * are sent by if_down(). It looks for an ifaddr whose ifa_addr is sa,
821 * and calls in_ifadown() to remove all routes corresponding to that address.
822 * It also receives the PRC_IFUP messages from if_up() and reinstalls the
823 * interface routes.
824 */
825 void
826 rip_ctlinput(
827 int cmd,
828 struct sockaddr *sa,
829 __unused void *vip,
830 __unused struct ifnet *ifp)
831 {
832 struct in_ifaddr *ia = NULL;
833 struct ifnet *iaifp = NULL;
834 int err = 0;
835 int flags, done = 0;
836
837 switch (cmd) {
838 case PRC_IFDOWN:
839 lck_rw_lock_shared(in_ifaddr_rwlock);
840 for (ia = in_ifaddrhead.tqh_first; ia;
841 ia = ia->ia_link.tqe_next) {
842 IFA_LOCK(&ia->ia_ifa);
843 if (ia->ia_ifa.ifa_addr == sa &&
844 (ia->ia_flags & IFA_ROUTE)) {
845 done = 1;
846 IFA_ADDREF_LOCKED(&ia->ia_ifa);
847 IFA_UNLOCK(&ia->ia_ifa);
848 lck_rw_done(in_ifaddr_rwlock);
849 lck_mtx_lock(rnh_lock);
850 /*
851 * in_ifscrub kills the interface route.
852 */
853 in_ifscrub(ia->ia_ifp, ia, 1);
854 /*
855 * in_ifadown gets rid of all the rest of
856 * the routes. This is not quite the right
857 * thing to do, but at least if we are running
858 * a routing process they will come back.
859 */
860 in_ifadown(&ia->ia_ifa, 1);
861 lck_mtx_unlock(rnh_lock);
862 IFA_REMREF(&ia->ia_ifa);
863 break;
864 }
865 IFA_UNLOCK(&ia->ia_ifa);
866 }
867 if (!done) {
868 lck_rw_done(in_ifaddr_rwlock);
869 }
870 break;
871
872 case PRC_IFUP:
873 lck_rw_lock_shared(in_ifaddr_rwlock);
874 for (ia = in_ifaddrhead.tqh_first; ia;
875 ia = ia->ia_link.tqe_next) {
876 IFA_LOCK(&ia->ia_ifa);
877 if (ia->ia_ifa.ifa_addr == sa) {
878 /* keep it locked */
879 break;
880 }
881 IFA_UNLOCK(&ia->ia_ifa);
882 }
883 if (ia == NULL || (ia->ia_flags & IFA_ROUTE) ||
884 (ia->ia_ifa.ifa_debug & IFD_NOTREADY)) {
885 if (ia != NULL) {
886 IFA_UNLOCK(&ia->ia_ifa);
887 }
888 lck_rw_done(in_ifaddr_rwlock);
889 return;
890 }
891 IFA_ADDREF_LOCKED(&ia->ia_ifa);
892 IFA_UNLOCK(&ia->ia_ifa);
893 lck_rw_done(in_ifaddr_rwlock);
894
895 flags = RTF_UP;
896 iaifp = ia->ia_ifa.ifa_ifp;
897
898 if ((iaifp->if_flags & IFF_LOOPBACK)
899 || (iaifp->if_flags & IFF_POINTOPOINT)) {
900 flags |= RTF_HOST;
901 }
902
903 err = rtinit(&ia->ia_ifa, RTM_ADD, flags);
904 if (err == 0) {
905 IFA_LOCK_SPIN(&ia->ia_ifa);
906 ia->ia_flags |= IFA_ROUTE;
907 IFA_UNLOCK(&ia->ia_ifa);
908 }
909 IFA_REMREF(&ia->ia_ifa);
910 break;
911 }
912 }
913
914 u_int32_t rip_sendspace = RIPSNDQ;
915 u_int32_t rip_recvspace = RIPRCVQ;
916
917 SYSCTL_INT(_net_inet_raw, OID_AUTO, maxdgram, CTLFLAG_RW | CTLFLAG_LOCKED,
918 &rip_sendspace, 0, "Maximum outgoing raw IP datagram size");
919 SYSCTL_INT(_net_inet_raw, OID_AUTO, recvspace, CTLFLAG_RW | CTLFLAG_LOCKED,
920 &rip_recvspace, 0, "Maximum incoming raw IP datagram size");
921 SYSCTL_UINT(_net_inet_raw, OID_AUTO, pcbcount, CTLFLAG_RD | CTLFLAG_LOCKED,
922 &ripcbinfo.ipi_count, 0, "Number of active PCBs");
923
924 static int
925 rip_attach(struct socket *so, int proto, struct proc *p)
926 {
927 struct inpcb *inp;
928 int error;
929
930 inp = sotoinpcb(so);
931 if (inp) {
932 panic("rip_attach");
933 }
934 if ((so->so_state & SS_PRIV) == 0) {
935 return EPERM;
936 }
937
938 error = soreserve(so, rip_sendspace, rip_recvspace);
939 if (error) {
940 return error;
941 }
942 error = in_pcballoc(so, &ripcbinfo, p);
943 if (error) {
944 return error;
945 }
946 inp = (struct inpcb *)so->so_pcb;
947 inp->inp_vflag |= INP_IPV4;
948 VERIFY(proto <= UINT8_MAX);
949 inp->inp_ip_p = (u_char)proto;
950 inp->inp_ip_ttl = (u_char)ip_defttl;
951 return 0;
952 }
953
954 __private_extern__ int
955 rip_detach(struct socket *so)
956 {
957 struct inpcb *inp;
958
959 inp = sotoinpcb(so);
960 if (inp == 0) {
961 panic("rip_detach");
962 }
963 in_pcbdetach(inp);
964 return 0;
965 }
966
967 __private_extern__ int
968 rip_abort(struct socket *so)
969 {
970 soisdisconnected(so);
971 return rip_detach(so);
972 }
973
974 __private_extern__ int
975 rip_disconnect(struct socket *so)
976 {
977 if ((so->so_state & SS_ISCONNECTED) == 0) {
978 return ENOTCONN;
979 }
980 return rip_abort(so);
981 }
982
983 __private_extern__ int
984 rip_bind(struct socket *so, struct sockaddr *nam, struct proc *p)
985 {
986 #pragma unused(p)
987 struct inpcb *inp = sotoinpcb(so);
988 struct sockaddr_in sin;
989 struct ifaddr *ifa = NULL;
990 struct ifnet *outif = NULL;
991
992 if (inp == NULL
993 #if NECP
994 || (necp_socket_should_use_flow_divert(inp))
995 #endif /* NECP */
996 ) {
997 return inp == NULL ? EINVAL : EPROTOTYPE;
998 }
999
1000 if (nam->sa_len != sizeof(struct sockaddr_in)) {
1001 return EINVAL;
1002 }
1003
1004 /* Sanitized local copy for interface address searches */
1005 bzero(&sin, sizeof(sin));
1006 sin.sin_family = AF_INET;
1007 sin.sin_len = sizeof(struct sockaddr_in);
1008 sin.sin_addr.s_addr = SIN(nam)->sin_addr.s_addr;
1009
1010 if (TAILQ_EMPTY(&ifnet_head) ||
1011 (sin.sin_family != AF_INET && sin.sin_family != AF_IMPLINK) ||
1012 (sin.sin_addr.s_addr && (ifa = ifa_ifwithaddr(SA(&sin))) == 0)) {
1013 return EADDRNOTAVAIL;
1014 } else if (ifa) {
1015 /*
1016 * Opportunistically determine the outbound
1017 * interface that may be used; this may not
1018 * hold true if we end up using a route
1019 * going over a different interface, e.g.
1020 * when sending to a local address. This
1021 * will get updated again after sending.
1022 */
1023 IFA_LOCK(ifa);
1024 outif = ifa->ifa_ifp;
1025 IFA_UNLOCK(ifa);
1026 IFA_REMREF(ifa);
1027 }
1028 inp->inp_laddr = sin.sin_addr;
1029 inp->inp_last_outifp = outif;
1030
1031 return 0;
1032 }
1033
1034 __private_extern__ int
1035 rip_connect(struct socket *so, struct sockaddr *nam, __unused struct proc *p)
1036 {
1037 struct inpcb *inp = sotoinpcb(so);
1038 struct sockaddr_in *addr = (struct sockaddr_in *)(void *)nam;
1039
1040 if (inp == NULL
1041 #if NECP
1042 || (necp_socket_should_use_flow_divert(inp))
1043 #endif /* NECP */
1044 ) {
1045 return inp == NULL ? EINVAL : EPROTOTYPE;
1046 }
1047 if (nam->sa_len != sizeof(*addr)) {
1048 return EINVAL;
1049 }
1050 if (TAILQ_EMPTY(&ifnet_head)) {
1051 return EADDRNOTAVAIL;
1052 }
1053 if ((addr->sin_family != AF_INET) &&
1054 (addr->sin_family != AF_IMPLINK)) {
1055 return EAFNOSUPPORT;
1056 }
1057
1058 if (!(so->so_flags1 & SOF1_CONNECT_COUNTED)) {
1059 so->so_flags1 |= SOF1_CONNECT_COUNTED;
1060 INC_ATOMIC_INT64_LIM(net_api_stats.nas_socket_inet_dgram_connected);
1061 }
1062
1063 inp->inp_faddr = addr->sin_addr;
1064 soisconnected(so);
1065
1066 return 0;
1067 }
1068
1069 __private_extern__ int
1070 rip_shutdown(struct socket *so)
1071 {
1072 socantsendmore(so);
1073 return 0;
1074 }
1075
1076 __private_extern__ int
1077 rip_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
1078 struct mbuf *control, struct proc *p)
1079 {
1080 #pragma unused(flags, p)
1081 struct inpcb *inp = sotoinpcb(so);
1082 u_int32_t dst = INADDR_ANY;
1083 int error = 0;
1084
1085 if (inp == NULL
1086 #if NECP
1087 || (necp_socket_should_use_flow_divert(inp) && (error = EPROTOTYPE))
1088 #endif /* NECP */
1089 ) {
1090 if (inp == NULL) {
1091 error = EINVAL;
1092 } else {
1093 error = EPROTOTYPE;
1094 }
1095 goto bad;
1096 }
1097
1098 if (nam != NULL) {
1099 dst = ((struct sockaddr_in *)(void *)nam)->sin_addr.s_addr;
1100 }
1101 return rip_output(m, so, dst, control);
1102
1103 bad:
1104 VERIFY(error != 0);
1105
1106 if (m != NULL) {
1107 m_freem(m);
1108 }
1109 if (control != NULL) {
1110 m_freem(control);
1111 }
1112
1113 return error;
1114 }
1115
1116 /* note: rip_unlock is called from different protos instead of the generic socket_unlock,
1117 * it will handle the socket dealloc on last reference
1118 * */
1119 int
1120 rip_unlock(struct socket *so, int refcount, void *debug)
1121 {
1122 void *lr_saved;
1123 struct inpcb *inp = sotoinpcb(so);
1124
1125 if (debug == NULL) {
1126 lr_saved = __builtin_return_address(0);
1127 } else {
1128 lr_saved = debug;
1129 }
1130
1131 if (refcount) {
1132 if (so->so_usecount <= 0) {
1133 panic("rip_unlock: bad refoucnt so=%p val=%x lrh= %s\n",
1134 so, so->so_usecount, solockhistory_nr(so));
1135 /* NOTREACHED */
1136 }
1137 so->so_usecount--;
1138 if (so->so_usecount == 0 && (inp->inp_wantcnt == WNT_STOPUSING)) {
1139 /* cleanup after last reference */
1140 lck_mtx_unlock(so->so_proto->pr_domain->dom_mtx);
1141 lck_rw_lock_exclusive(ripcbinfo.ipi_lock);
1142 if (inp->inp_state != INPCB_STATE_DEAD) {
1143 if (SOCK_CHECK_DOM(so, PF_INET6)) {
1144 in6_pcbdetach(inp);
1145 } else {
1146 in_pcbdetach(inp);
1147 }
1148 }
1149 in_pcbdispose(inp);
1150 lck_rw_done(ripcbinfo.ipi_lock);
1151 return 0;
1152 }
1153 }
1154 so->unlock_lr[so->next_unlock_lr] = lr_saved;
1155 so->next_unlock_lr = (so->next_unlock_lr + 1) % SO_LCKDBG_MAX;
1156 lck_mtx_unlock(so->so_proto->pr_domain->dom_mtx);
1157 return 0;
1158 }
1159
1160 static int
1161 rip_pcblist SYSCTL_HANDLER_ARGS
1162 {
1163 #pragma unused(oidp, arg1, arg2)
1164 int error, i, n;
1165 struct inpcb *inp, **inp_list;
1166 inp_gen_t gencnt;
1167 struct xinpgen xig;
1168
1169 /*
1170 * The process of preparing the TCB list is too time-consuming and
1171 * resource-intensive to repeat twice on every request.
1172 */
1173 lck_rw_lock_exclusive(ripcbinfo.ipi_lock);
1174 if (req->oldptr == USER_ADDR_NULL) {
1175 n = ripcbinfo.ipi_count;
1176 req->oldidx = 2 * (sizeof xig)
1177 + (n + n / 8) * sizeof(struct xinpcb);
1178 lck_rw_done(ripcbinfo.ipi_lock);
1179 return 0;
1180 }
1181
1182 if (req->newptr != USER_ADDR_NULL) {
1183 lck_rw_done(ripcbinfo.ipi_lock);
1184 return EPERM;
1185 }
1186
1187 /*
1188 * OK, now we're committed to doing something.
1189 */
1190 gencnt = ripcbinfo.ipi_gencnt;
1191 n = ripcbinfo.ipi_count;
1192
1193 bzero(&xig, sizeof(xig));
1194 xig.xig_len = sizeof xig;
1195 xig.xig_count = n;
1196 xig.xig_gen = gencnt;
1197 xig.xig_sogen = so_gencnt;
1198 error = SYSCTL_OUT(req, &xig, sizeof xig);
1199 if (error) {
1200 lck_rw_done(ripcbinfo.ipi_lock);
1201 return error;
1202 }
1203 /*
1204 * We are done if there is no pcb
1205 */
1206 if (n == 0) {
1207 lck_rw_done(ripcbinfo.ipi_lock);
1208 return 0;
1209 }
1210
1211 inp_list = _MALLOC(n * sizeof *inp_list, M_TEMP, M_WAITOK);
1212 if (inp_list == 0) {
1213 lck_rw_done(ripcbinfo.ipi_lock);
1214 return ENOMEM;
1215 }
1216
1217 for (inp = ripcbinfo.ipi_listhead->lh_first, i = 0; inp && i < n;
1218 inp = inp->inp_list.le_next) {
1219 if (inp->inp_gencnt <= gencnt && inp->inp_state != INPCB_STATE_DEAD) {
1220 inp_list[i++] = inp;
1221 }
1222 }
1223 n = i;
1224
1225 error = 0;
1226 for (i = 0; i < n; i++) {
1227 inp = inp_list[i];
1228 if (inp->inp_gencnt <= gencnt && inp->inp_state != INPCB_STATE_DEAD) {
1229 struct xinpcb xi;
1230
1231 bzero(&xi, sizeof(xi));
1232 xi.xi_len = sizeof xi;
1233 /* XXX should avoid extra copy */
1234 inpcb_to_compat(inp, &xi.xi_inp);
1235 if (inp->inp_socket) {
1236 sotoxsocket(inp->inp_socket, &xi.xi_socket);
1237 }
1238 error = SYSCTL_OUT(req, &xi, sizeof xi);
1239 }
1240 }
1241 if (!error) {
1242 /*
1243 * Give the user an updated idea of our state.
1244 * If the generation differs from what we told
1245 * her before, she knows that something happened
1246 * while we were processing this request, and it
1247 * might be necessary to retry.
1248 */
1249 bzero(&xig, sizeof(xig));
1250 xig.xig_len = sizeof xig;
1251 xig.xig_gen = ripcbinfo.ipi_gencnt;
1252 xig.xig_sogen = so_gencnt;
1253 xig.xig_count = ripcbinfo.ipi_count;
1254 error = SYSCTL_OUT(req, &xig, sizeof xig);
1255 }
1256 FREE(inp_list, M_TEMP);
1257 lck_rw_done(ripcbinfo.ipi_lock);
1258 return error;
1259 }
1260
1261 SYSCTL_PROC(_net_inet_raw, OID_AUTO /*XXX*/, pcblist,
1262 CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0,
1263 rip_pcblist, "S,xinpcb", "List of active raw IP sockets");
1264
1265 #if XNU_TARGET_OS_OSX
1266
1267 static int
1268 rip_pcblist64 SYSCTL_HANDLER_ARGS
1269 {
1270 #pragma unused(oidp, arg1, arg2)
1271 int error, i, n;
1272 struct inpcb *inp, **inp_list;
1273 inp_gen_t gencnt;
1274 struct xinpgen xig;
1275
1276 /*
1277 * The process of preparing the TCB list is too time-consuming and
1278 * resource-intensive to repeat twice on every request.
1279 */
1280 lck_rw_lock_exclusive(ripcbinfo.ipi_lock);
1281 if (req->oldptr == USER_ADDR_NULL) {
1282 n = ripcbinfo.ipi_count;
1283 req->oldidx = 2 * (sizeof xig)
1284 + (n + n / 8) * sizeof(struct xinpcb64);
1285 lck_rw_done(ripcbinfo.ipi_lock);
1286 return 0;
1287 }
1288
1289 if (req->newptr != USER_ADDR_NULL) {
1290 lck_rw_done(ripcbinfo.ipi_lock);
1291 return EPERM;
1292 }
1293
1294 /*
1295 * OK, now we're committed to doing something.
1296 */
1297 gencnt = ripcbinfo.ipi_gencnt;
1298 n = ripcbinfo.ipi_count;
1299
1300 bzero(&xig, sizeof(xig));
1301 xig.xig_len = sizeof xig;
1302 xig.xig_count = n;
1303 xig.xig_gen = gencnt;
1304 xig.xig_sogen = so_gencnt;
1305 error = SYSCTL_OUT(req, &xig, sizeof xig);
1306 if (error) {
1307 lck_rw_done(ripcbinfo.ipi_lock);
1308 return error;
1309 }
1310 /*
1311 * We are done if there is no pcb
1312 */
1313 if (n == 0) {
1314 lck_rw_done(ripcbinfo.ipi_lock);
1315 return 0;
1316 }
1317
1318 inp_list = _MALLOC(n * sizeof *inp_list, M_TEMP, M_WAITOK);
1319 if (inp_list == 0) {
1320 lck_rw_done(ripcbinfo.ipi_lock);
1321 return ENOMEM;
1322 }
1323
1324 for (inp = ripcbinfo.ipi_listhead->lh_first, i = 0; inp && i < n;
1325 inp = inp->inp_list.le_next) {
1326 if (inp->inp_gencnt <= gencnt && inp->inp_state != INPCB_STATE_DEAD) {
1327 inp_list[i++] = inp;
1328 }
1329 }
1330 n = i;
1331
1332 error = 0;
1333 for (i = 0; i < n; i++) {
1334 inp = inp_list[i];
1335 if (inp->inp_gencnt <= gencnt && inp->inp_state != INPCB_STATE_DEAD) {
1336 struct xinpcb64 xi;
1337
1338 bzero(&xi, sizeof(xi));
1339 xi.xi_len = sizeof xi;
1340 inpcb_to_xinpcb64(inp, &xi);
1341 if (inp->inp_socket) {
1342 sotoxsocket64(inp->inp_socket, &xi.xi_socket);
1343 }
1344 error = SYSCTL_OUT(req, &xi, sizeof xi);
1345 }
1346 }
1347 if (!error) {
1348 /*
1349 * Give the user an updated idea of our state.
1350 * If the generation differs from what we told
1351 * her before, she knows that something happened
1352 * while we were processing this request, and it
1353 * might be necessary to retry.
1354 */
1355 bzero(&xig, sizeof(xig));
1356 xig.xig_len = sizeof xig;
1357 xig.xig_gen = ripcbinfo.ipi_gencnt;
1358 xig.xig_sogen = so_gencnt;
1359 xig.xig_count = ripcbinfo.ipi_count;
1360 error = SYSCTL_OUT(req, &xig, sizeof xig);
1361 }
1362 FREE(inp_list, M_TEMP);
1363 lck_rw_done(ripcbinfo.ipi_lock);
1364 return error;
1365 }
1366
1367 SYSCTL_PROC(_net_inet_raw, OID_AUTO, pcblist64,
1368 CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0,
1369 rip_pcblist64, "S,xinpcb64", "List of active raw IP sockets");
1370
1371 #endif /* XNU_TARGET_OS_OSX */
1372
1373
1374 static int
1375 rip_pcblist_n SYSCTL_HANDLER_ARGS
1376 {
1377 #pragma unused(oidp, arg1, arg2)
1378 int error = 0;
1379
1380 error = get_pcblist_n(IPPROTO_IP, req, &ripcbinfo);
1381
1382 return error;
1383 }
1384
1385 SYSCTL_PROC(_net_inet_raw, OID_AUTO, pcblist_n,
1386 CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0,
1387 rip_pcblist_n, "S,xinpcb_n", "List of active raw IP sockets");
1388
1389 struct pr_usrreqs rip_usrreqs = {
1390 .pru_abort = rip_abort,
1391 .pru_attach = rip_attach,
1392 .pru_bind = rip_bind,
1393 .pru_connect = rip_connect,
1394 .pru_control = in_control,
1395 .pru_detach = rip_detach,
1396 .pru_disconnect = rip_disconnect,
1397 .pru_peeraddr = in_getpeeraddr,
1398 .pru_send = rip_send,
1399 .pru_shutdown = rip_shutdown,
1400 .pru_sockaddr = in_getsockaddr,
1401 .pru_sosend = sosend,
1402 .pru_soreceive = soreceive,
1403 };
1404 /* DSEP Review Done pl-20051213-v02 @3253 */