2 * Copyright (c) 2000-2020 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
29 * Copyright (c) 1980, 1986, 1991, 1993
30 * The Regents of the University of California. All rights reserved.
32 * Redistribution and use in source and binary forms, with or without
33 * modification, are permitted provided that the following conditions
35 * 1. Redistributions of source code must retain the above copyright
36 * notice, this list of conditions and the following disclaimer.
37 * 2. Redistributions in binary form must reproduce the above copyright
38 * notice, this list of conditions and the following disclaimer in the
39 * documentation and/or other materials provided with the distribution.
40 * 3. All advertising materials mentioning features or use of this software
41 * must display the following acknowledgement:
42 * This product includes software developed by the University of
43 * California, Berkeley and its contributors.
44 * 4. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 * @(#)route.c 8.2 (Berkeley) 11/15/93
61 * $FreeBSD: src/sys/net/route.c,v 1.59.2.3 2001/07/29 19:18:02 ume Exp $
64 #include <sys/param.h>
65 #include <sys/sysctl.h>
66 #include <sys/systm.h>
67 #include <sys/malloc.h>
69 #include <sys/socket.h>
70 #include <sys/domain.h>
73 #include <sys/vnode.h>
74 #include <sys/syslog.h>
75 #include <sys/queue.h>
76 #include <sys/mcache.h>
78 #include <sys/protosw.h>
80 #include <sys/kernel.h>
81 #include <kern/locks.h>
82 #include <kern/zalloc.h>
86 #include <net/route.h>
87 #include <net/ntstat.h>
88 #include <net/nwk_wq.h>
93 #include <netinet/in.h>
94 #include <netinet/in_var.h>
95 #include <netinet/ip_var.h>
96 #include <netinet/ip.h>
97 #include <netinet/ip6.h>
98 #include <netinet/in_arp.h>
100 #include <netinet6/ip6_var.h>
101 #include <netinet6/in6_var.h>
102 #include <netinet6/nd6.h>
104 #include <net/if_dl.h>
106 #include <libkern/OSAtomic.h>
107 #include <libkern/OSDebug.h>
109 #include <pexpert/pexpert.h>
112 #include <sys/kauth.h>
116 * Synchronization notes:
118 * Routing entries fall under two locking domains: the global routing table
119 * lock (rnh_lock) and the per-entry lock (rt_lock); the latter is a mutex that
120 * resides (statically defined) in the rtentry structure.
122 * The locking domains for routing are defined as follows:
124 * The global routing lock is used to serialize all accesses to the radix
125 * trees defined by rt_tables[], as well as the tree of masks. This includes
126 * lookups, insertions and removals of nodes to/from the respective tree.
127 * It is also used to protect certain fields in the route entry that aren't
128 * often modified and/or require global serialization (more details below.)
130 * The per-route entry lock is used to serialize accesses to several routing
131 * entry fields (more details below.) Acquiring and releasing this lock is
132 * done via RT_LOCK() and RT_UNLOCK() routines.
134 * In cases where both rnh_lock and rt_lock must be held, the former must be
135 * acquired first in order to maintain lock ordering. It is not a requirement
136 * that rnh_lock be acquired first before rt_lock, but in case both must be
137 * acquired in succession, the correct lock ordering must be followed.
139 * The fields of the rtentry structure are protected in the following way:
143 * - Routing table lock (rnh_lock).
145 * rt_parent, rt_mask, rt_llinfo_free, rt_tree_genid
147 * - Set once during creation and never changes; no locks to read.
149 * rt_flags, rt_genmask, rt_llinfo, rt_rmx, rt_refcnt, rt_gwroute
151 * - Routing entry lock (rt_lock) for read/write access.
153 * - Some values of rt_flags are either set once at creation time,
154 * or aren't currently used, and thus checking against them can
155 * be done without rt_lock: RTF_GATEWAY, RTF_HOST, RTF_DYNAMIC,
156 * RTF_DONE, RTF_XRESOLVE, RTF_STATIC, RTF_BLACKHOLE, RTF_ANNOUNCE,
157 * RTF_USETRAILERS, RTF_WASCLONED, RTF_PINNED, RTF_LOCAL,
158 * RTF_BROADCAST, RTF_MULTICAST, RTF_IFSCOPE, RTF_IFREF.
160 * rt_key, rt_gateway, rt_ifp, rt_ifa
162 * - Always written/modified with both rnh_lock and rt_lock held.
164 * - May be read freely with rnh_lock held, else must hold rt_lock
165 * for read access; holding both locks for read is also okay.
167 * - In the event rnh_lock is not acquired, or is not possible to be
168 * acquired across the operation, setting RTF_CONDEMNED on a route
169 * entry will prevent its rt_key, rt_gateway, rt_ifp and rt_ifa
170 * from being modified. This is typically done on a route that
171 * has been chosen for a removal (from the tree) prior to dropping
172 * the rt_lock, so that those values will remain the same until
173 * the route is freed.
175 * When rnh_lock is held rt_setgate(), rt_setif(), and rtsetifa() are
176 * single-threaded, thus exclusive. This flag will also prevent the
177 * route from being looked up via rt_lookup().
181 * - Assumes that 32-bit writes are atomic; no locks.
185 * - Currently unused; no locks.
187 * Operations on a route entry can be described as follows:
189 * CREATE an entry with reference count set to 0 as part of RTM_ADD/RESOLVE.
191 * INSERTION of an entry into the radix tree holds the rnh_lock, checks
192 * for duplicates and then adds the entry. rtrequest returns the entry
193 * after bumping up the reference count to 1 (for the caller).
195 * LOOKUP of an entry holds the rnh_lock and bumps up the reference count
196 * before returning; it is valid to also bump up the reference count using
197 * RT_ADDREF after the lookup has returned an entry.
199 * REMOVAL of an entry from the radix tree holds the rnh_lock, removes the
200 * entry but does not decrement the reference count. Removal happens when
201 * the route is explicitly deleted (RTM_DELETE) or when it is in the cached
202 * state and it expires. The route is said to be "down" when it is no
203 * longer present in the tree. Freeing the entry will happen on the last
204 * reference release of such a "down" route.
206 * RT_ADDREF/RT_REMREF operates on the routing entry which increments/
207 * decrements the reference count, rt_refcnt, atomically on the rtentry.
208 * rt_refcnt is modified only using this routine. The general rule is to
209 * do RT_ADDREF in the function that is passing the entry as an argument,
210 * in order to prevent the entry from being freed by the callee.
213 #define equal(a1, a2) (bcmp((caddr_t)(a1), (caddr_t)(a2), (a1)->sa_len) == 0)
215 extern void kdp_set_gateway_mac(void *gatewaymac
);
217 __private_extern__
struct rtstat rtstat
= {
218 .rts_badredirect
= 0,
223 .rts_badrtgwroute
= 0
225 struct radix_node_head
*rt_tables
[AF_MAX
+ 1];
227 decl_lck_mtx_data(, rnh_lock_data
); /* global routing tables mutex */
228 lck_mtx_t
*rnh_lock
= &rnh_lock_data
;
229 static lck_attr_t
*rnh_lock_attr
;
230 static lck_grp_t
*rnh_lock_grp
;
231 static lck_grp_attr_t
*rnh_lock_grp_attr
;
233 /* Lock group and attribute for routing entry locks */
234 static lck_attr_t
*rte_mtx_attr
;
235 static lck_grp_t
*rte_mtx_grp
;
236 static lck_grp_attr_t
*rte_mtx_grp_attr
;
238 int rttrash
= 0; /* routes not in table but not freed */
240 boolean_t trigger_v6_defrtr_select
= FALSE
;
241 unsigned int rte_debug
= 0;
243 /* Possible flags for rte_debug */
244 #define RTD_DEBUG 0x1 /* enable or disable rtentry debug facility */
245 #define RTD_TRACE 0x2 /* trace alloc, free, refcnt and lock */
246 #define RTD_NO_FREE 0x4 /* don't free (good to catch corruptions) */
248 #define RTE_NAME "rtentry" /* name for zone and rt_lock */
250 static struct zone
*rte_zone
; /* special zone for rtentry */
251 #define RTE_ZONE_MAX 65536 /* maximum elements in zone */
252 #define RTE_ZONE_NAME RTE_NAME /* name of rtentry zone */
254 #define RTD_INUSE 0xFEEDFACE /* entry is in use */
255 #define RTD_FREED 0xDEADBEEF /* entry is freed */
257 #define MAX_SCOPE_ADDR_STR_LEN (MAX_IPv6_STR_LEN + 6)
260 __private_extern__
unsigned int ctrace_stack_size
= CTRACE_STACK_SIZE
;
261 __private_extern__
unsigned int ctrace_hist_size
= CTRACE_HIST_SIZE
;
264 * Debug variant of rtentry structure.
267 struct rtentry rtd_entry
; /* rtentry */
268 struct rtentry rtd_entry_saved
; /* saved rtentry */
269 uint32_t rtd_inuse
; /* in use pattern */
270 uint16_t rtd_refhold_cnt
; /* # of rtref */
271 uint16_t rtd_refrele_cnt
; /* # of rtunref */
272 uint32_t rtd_lock_cnt
; /* # of locks */
273 uint32_t rtd_unlock_cnt
; /* # of unlocks */
275 * Alloc and free callers.
280 * Circular lists of rtref and rtunref callers.
282 ctrace_t rtd_refhold
[CTRACE_HIST_SIZE
];
283 ctrace_t rtd_refrele
[CTRACE_HIST_SIZE
];
285 * Circular lists of locks and unlocks.
287 ctrace_t rtd_lock
[CTRACE_HIST_SIZE
];
288 ctrace_t rtd_unlock
[CTRACE_HIST_SIZE
];
292 TAILQ_ENTRY(rtentry_dbg
) rtd_trash_link
;
295 /* List of trash route entries protected by rnh_lock */
296 static TAILQ_HEAD(, rtentry_dbg
) rttrash_head
;
298 static void rte_lock_init(struct rtentry
*);
299 static void rte_lock_destroy(struct rtentry
*);
300 static inline struct rtentry
*rte_alloc_debug(void);
301 static inline void rte_free_debug(struct rtentry
*);
302 static inline void rte_lock_debug(struct rtentry_dbg
*);
303 static inline void rte_unlock_debug(struct rtentry_dbg
*);
304 static void rt_maskedcopy(const struct sockaddr
*,
305 struct sockaddr
*, const struct sockaddr
*);
306 static void rtable_init(void **);
307 static inline void rtref_audit(struct rtentry_dbg
*);
308 static inline void rtunref_audit(struct rtentry_dbg
*);
309 static struct rtentry
*rtalloc1_common_locked(struct sockaddr
*, int, uint32_t,
311 static int rtrequest_common_locked(int, struct sockaddr
*,
312 struct sockaddr
*, struct sockaddr
*, int, struct rtentry
**,
314 static struct rtentry
*rtalloc1_locked(struct sockaddr
*, int, uint32_t);
315 static void rtalloc_ign_common_locked(struct route
*, uint32_t, unsigned int);
316 static inline void sin6_set_ifscope(struct sockaddr
*, unsigned int);
317 static inline void sin6_set_embedded_ifscope(struct sockaddr
*, unsigned int);
318 static inline unsigned int sin6_get_embedded_ifscope(struct sockaddr
*);
319 static struct sockaddr
*ma_copy(int, struct sockaddr
*,
320 struct sockaddr_storage
*, unsigned int);
321 static struct sockaddr
*sa_trim(struct sockaddr
*, int);
322 static struct radix_node
*node_lookup(struct sockaddr
*, struct sockaddr
*,
324 static struct radix_node
*node_lookup_default(int);
325 static struct rtentry
*rt_lookup_common(boolean_t
, boolean_t
, struct sockaddr
*,
326 struct sockaddr
*, struct radix_node_head
*, unsigned int);
327 static int rn_match_ifscope(struct radix_node
*, void *);
328 static struct ifaddr
*ifa_ifwithroute_common_locked(int,
329 const struct sockaddr
*, const struct sockaddr
*, unsigned int);
330 static struct rtentry
*rte_alloc(void);
331 static void rte_free(struct rtentry
*);
332 static void rtfree_common(struct rtentry
*, boolean_t
);
333 static void rte_if_ref(struct ifnet
*, int);
334 static void rt_set_idleref(struct rtentry
*);
335 static void rt_clear_idleref(struct rtentry
*);
336 static void route_event_callback(void *);
337 static void rt_str4(struct rtentry
*, char *, uint32_t, char *, uint32_t);
338 static void rt_str6(struct rtentry
*, char *, uint32_t, char *, uint32_t);
339 static boolean_t
route_ignore_protocol_cloning_for_dst(struct rtentry
*, struct sockaddr
*);
341 uint32_t route_genid_inet
= 0;
342 uint32_t route_genid_inet6
= 0;
344 #define ASSERT_SINIFSCOPE(sa) { \
345 if ((sa)->sa_family != AF_INET || \
346 (sa)->sa_len < sizeof (struct sockaddr_in)) \
347 panic("%s: bad sockaddr_in %p\n", __func__, sa); \
350 #define ASSERT_SIN6IFSCOPE(sa) { \
351 if ((sa)->sa_family != AF_INET6 || \
352 (sa)->sa_len < sizeof (struct sockaddr_in6)) \
353 panic("%s: bad sockaddr_in6 %p\n", __func__, sa); \
357 * Argument to leaf-matching routine; at present it is scoped routing
358 * specific but can be expanded in future to include other search filters.
360 struct matchleaf_arg
{
361 unsigned int ifscope
; /* interface scope */
365 * For looking up the non-scoped default route (sockaddr instead
366 * of sockaddr_in for convenience).
368 static struct sockaddr sin_def
= {
369 .sa_len
= sizeof(struct sockaddr_in
),
370 .sa_family
= AF_INET
,
374 static struct sockaddr_in6 sin6_def
= {
375 .sin6_len
= sizeof(struct sockaddr_in6
),
376 .sin6_family
= AF_INET6
,
379 .sin6_addr
= IN6ADDR_ANY_INIT
,
384 * Interface index (scope) of the primary interface; determined at
385 * the time when the default, non-scoped route gets added, changed
386 * or deleted. Protected by rnh_lock.
388 static unsigned int primary_ifscope
= IFSCOPE_NONE
;
389 static unsigned int primary6_ifscope
= IFSCOPE_NONE
;
391 #define INET_DEFAULT(sa) \
392 ((sa)->sa_family == AF_INET && SIN(sa)->sin_addr.s_addr == 0)
394 #define INET6_DEFAULT(sa) \
395 ((sa)->sa_family == AF_INET6 && \
396 IN6_IS_ADDR_UNSPECIFIED(&SIN6(sa)->sin6_addr))
398 #define SA_DEFAULT(sa) (INET_DEFAULT(sa) || INET6_DEFAULT(sa))
399 #define RT(r) ((struct rtentry *)r)
400 #define RN(r) ((struct radix_node *)r)
401 #define RT_HOST(r) (RT(r)->rt_flags & RTF_HOST)
403 unsigned int rt_verbose
= 0;
404 #if (DEVELOPMENT || DEBUG)
405 SYSCTL_DECL(_net_route
);
406 SYSCTL_UINT(_net_route
, OID_AUTO
, verbose
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
408 #endif /* (DEVELOPMENT || DEBUG) */
411 rtable_init(void **table
)
415 domain_proto_mtx_lock_assert_held();
417 TAILQ_FOREACH(dom
, &domains
, dom_entry
) {
418 if (dom
->dom_rtattach
!= NULL
) {
419 dom
->dom_rtattach(&table
[dom
->dom_family
],
426 * Called by route_dinit().
433 _CASSERT(offsetof(struct route
, ro_rt
) ==
434 offsetof(struct route_in6
, ro_rt
));
435 _CASSERT(offsetof(struct route
, ro_lle
) ==
436 offsetof(struct route_in6
, ro_lle
));
437 _CASSERT(offsetof(struct route
, ro_srcia
) ==
438 offsetof(struct route_in6
, ro_srcia
));
439 _CASSERT(offsetof(struct route
, ro_flags
) ==
440 offsetof(struct route_in6
, ro_flags
));
441 _CASSERT(offsetof(struct route
, ro_dst
) ==
442 offsetof(struct route_in6
, ro_dst
));
444 PE_parse_boot_argn("rte_debug", &rte_debug
, sizeof(rte_debug
));
445 if (rte_debug
!= 0) {
446 rte_debug
|= RTD_DEBUG
;
449 rnh_lock_grp_attr
= lck_grp_attr_alloc_init();
450 rnh_lock_grp
= lck_grp_alloc_init("route", rnh_lock_grp_attr
);
451 rnh_lock_attr
= lck_attr_alloc_init();
452 lck_mtx_init(rnh_lock
, rnh_lock_grp
, rnh_lock_attr
);
454 rte_mtx_grp_attr
= lck_grp_attr_alloc_init();
455 rte_mtx_grp
= lck_grp_alloc_init(RTE_NAME
, rte_mtx_grp_attr
);
456 rte_mtx_attr
= lck_attr_alloc_init();
458 lck_mtx_lock(rnh_lock
);
459 rn_init(); /* initialize all zeroes, all ones, mask table */
460 lck_mtx_unlock(rnh_lock
);
461 rtable_init((void **)rt_tables
);
463 if (rte_debug
& RTD_DEBUG
) {
464 size
= sizeof(struct rtentry_dbg
);
466 size
= sizeof(struct rtentry
);
469 rte_zone
= zone_create(RTE_ZONE_NAME
, size
, ZC_NOENCRYPT
);
471 TAILQ_INIT(&rttrash_head
);
475 * Given a route, determine whether or not it is the non-scoped default
476 * route; dst typically comes from rt_key(rt) but may be coming from
477 * a separate place when rt is in the process of being created.
480 rt_primary_default(struct rtentry
*rt
, struct sockaddr
*dst
)
482 return SA_DEFAULT(dst
) && !(rt
->rt_flags
& RTF_IFSCOPE
);
486 * Set the ifscope of the primary interface; caller holds rnh_lock.
489 set_primary_ifscope(int af
, unsigned int ifscope
)
492 primary_ifscope
= ifscope
;
494 primary6_ifscope
= ifscope
;
499 * Return the ifscope of the primary interface; caller holds rnh_lock.
502 get_primary_ifscope(int af
)
504 return af
== AF_INET
? primary_ifscope
: primary6_ifscope
;
508 * Set the scope ID of a given a sockaddr_in.
511 sin_set_ifscope(struct sockaddr
*sa
, unsigned int ifscope
)
513 /* Caller must pass in sockaddr_in */
514 ASSERT_SINIFSCOPE(sa
);
516 SINIFSCOPE(sa
)->sin_scope_id
= ifscope
;
520 * Set the scope ID of given a sockaddr_in6.
523 sin6_set_ifscope(struct sockaddr
*sa
, unsigned int ifscope
)
525 /* Caller must pass in sockaddr_in6 */
526 ASSERT_SIN6IFSCOPE(sa
);
528 SIN6IFSCOPE(sa
)->sin6_scope_id
= ifscope
;
532 * Given a sockaddr_in, return the scope ID to the caller.
535 sin_get_ifscope(struct sockaddr
*sa
)
537 /* Caller must pass in sockaddr_in */
538 ASSERT_SINIFSCOPE(sa
);
540 return SINIFSCOPE(sa
)->sin_scope_id
;
544 * Given a sockaddr_in6, return the scope ID to the caller.
547 sin6_get_ifscope(struct sockaddr
*sa
)
549 /* Caller must pass in sockaddr_in6 */
550 ASSERT_SIN6IFSCOPE(sa
);
552 return SIN6IFSCOPE(sa
)->sin6_scope_id
;
556 sin6_set_embedded_ifscope(struct sockaddr
*sa
, unsigned int ifscope
)
558 /* Caller must pass in sockaddr_in6 */
559 ASSERT_SIN6IFSCOPE(sa
);
560 VERIFY(IN6_IS_SCOPE_EMBED(&(SIN6(sa
)->sin6_addr
)));
562 SIN6(sa
)->sin6_addr
.s6_addr16
[1] = htons(ifscope
);
565 static inline unsigned int
566 sin6_get_embedded_ifscope(struct sockaddr
*sa
)
568 /* Caller must pass in sockaddr_in6 */
569 ASSERT_SIN6IFSCOPE(sa
);
571 return ntohs(SIN6(sa
)->sin6_addr
.s6_addr16
[1]);
575 * Copy a sockaddr_{in,in6} src to a dst storage and set scope ID into dst.
577 * To clear the scope ID, pass is a NULL pifscope. To set the scope ID, pass
578 * in a non-NULL pifscope with non-zero ifscope. Otherwise if pifscope is
579 * non-NULL and ifscope is IFSCOPE_NONE, the existing scope ID is left intact.
580 * In any case, the effective scope ID value is returned to the caller via
581 * pifscope, if it is non-NULL.
584 sa_copy(struct sockaddr
*src
, struct sockaddr_storage
*dst
,
585 unsigned int *pifscope
)
587 int af
= src
->sa_family
;
588 unsigned int ifscope
= (pifscope
!= NULL
) ? *pifscope
: IFSCOPE_NONE
;
590 VERIFY(af
== AF_INET
|| af
== AF_INET6
);
592 bzero(dst
, sizeof(*dst
));
595 bcopy(src
, dst
, sizeof(struct sockaddr_in
));
596 dst
->ss_len
= sizeof(struct sockaddr_in
);
597 if (pifscope
== NULL
|| ifscope
!= IFSCOPE_NONE
) {
598 sin_set_ifscope(SA(dst
), ifscope
);
601 bcopy(src
, dst
, sizeof(struct sockaddr_in6
));
602 dst
->ss_len
= sizeof(struct sockaddr_in6
);
603 if (pifscope
!= NULL
&&
604 IN6_IS_SCOPE_EMBED(&SIN6(dst
)->sin6_addr
)) {
605 unsigned int eifscope
;
607 * If the address contains the embedded scope ID,
608 * use that as the value for sin6_scope_id as long
609 * the caller doesn't insist on clearing it (by
610 * passing NULL) or setting it.
612 eifscope
= sin6_get_embedded_ifscope(SA(dst
));
613 if (eifscope
!= IFSCOPE_NONE
&& ifscope
== IFSCOPE_NONE
) {
616 if (ifscope
!= IFSCOPE_NONE
) {
617 /* Set ifscope from pifscope or eifscope */
618 sin6_set_ifscope(SA(dst
), ifscope
);
620 /* If sin6_scope_id has a value, use that one */
621 ifscope
= sin6_get_ifscope(SA(dst
));
624 * If sin6_scope_id is set but the address doesn't
625 * contain the equivalent embedded value, set it.
627 if (ifscope
!= IFSCOPE_NONE
&& eifscope
!= ifscope
) {
628 sin6_set_embedded_ifscope(SA(dst
), ifscope
);
630 } else if (pifscope
== NULL
|| ifscope
!= IFSCOPE_NONE
) {
631 sin6_set_ifscope(SA(dst
), ifscope
);
635 if (pifscope
!= NULL
) {
636 *pifscope
= (af
== AF_INET
) ? sin_get_ifscope(SA(dst
)) :
637 sin6_get_ifscope(SA(dst
));
644 * Copy a mask from src to a dst storage and set scope ID into dst.
646 static struct sockaddr
*
647 ma_copy(int af
, struct sockaddr
*src
, struct sockaddr_storage
*dst
,
648 unsigned int ifscope
)
650 VERIFY(af
== AF_INET
|| af
== AF_INET6
);
652 bzero(dst
, sizeof(*dst
));
653 rt_maskedcopy(src
, SA(dst
), src
);
656 * The length of the mask sockaddr would need to be adjusted
657 * to cover the additional {sin,sin6}_ifscope field; when ifscope
658 * is IFSCOPE_NONE, we'd end up clearing the scope ID field on
659 * the destination mask in addition to extending the length
660 * of the sockaddr, as a side effect. This is okay, as any
661 * trailing zeroes would be skipped by rn_addmask prior to
662 * inserting or looking up the mask in the mask tree.
665 SINIFSCOPE(dst
)->sin_scope_id
= ifscope
;
666 SINIFSCOPE(dst
)->sin_len
=
667 offsetof(struct sockaddr_inifscope
, sin_scope_id
) +
668 sizeof(SINIFSCOPE(dst
)->sin_scope_id
);
670 SIN6IFSCOPE(dst
)->sin6_scope_id
= ifscope
;
671 SIN6IFSCOPE(dst
)->sin6_len
=
672 offsetof(struct sockaddr_in6
, sin6_scope_id
) +
673 sizeof(SIN6IFSCOPE(dst
)->sin6_scope_id
);
680 * Trim trailing zeroes on a sockaddr and update its length.
682 static struct sockaddr
*
683 sa_trim(struct sockaddr
*sa
, int skip
)
685 caddr_t cp
, base
= (caddr_t
)sa
+ skip
;
687 if (sa
->sa_len
<= skip
) {
691 for (cp
= base
+ (sa
->sa_len
- skip
); cp
> base
&& cp
[-1] == 0;) {
695 sa
->sa_len
= (cp
- base
) + skip
;
696 if (sa
->sa_len
< skip
) {
697 /* Must not happen, and if so, panic */
698 panic("%s: broken logic (sa_len %d < skip %d )", __func__
,
701 } else if (sa
->sa_len
== skip
) {
702 /* If we end up with all zeroes, then there's no mask */
710 * Called by rtm_msg{1,2} routines to "scrub" socket address structures of
711 * kernel private information, so that clients of the routing socket will
712 * not be confused by the presence of the information, or the side effect of
713 * the increased length due to that. The source sockaddr is not modified;
714 * instead, the scrubbing happens on the destination sockaddr storage that
715 * is passed in by the caller.
718 * - removing embedded scope identifiers from network mask and destination
719 * IPv4 and IPv6 socket addresses
720 * - optionally removing global scope interface hardware addresses from
721 * link-layer interface addresses when the MAC framework check fails.
724 rtm_scrub(int type
, int idx
, struct sockaddr
*hint
, struct sockaddr
*sa
,
725 void *buf
, uint32_t buflen
, kauth_cred_t
*credp
)
727 struct sockaddr_storage
*ss
= (struct sockaddr_storage
*)buf
;
728 struct sockaddr
*ret
= sa
;
730 VERIFY(buf
!= NULL
&& buflen
>= sizeof(*ss
));
736 * If this is for an AF_INET/AF_INET6 destination address,
737 * call sa_copy() to clear the scope ID field.
739 if (sa
->sa_family
== AF_INET
&&
740 SINIFSCOPE(sa
)->sin_scope_id
!= IFSCOPE_NONE
) {
741 ret
= sa_copy(sa
, ss
, NULL
);
742 } else if (sa
->sa_family
== AF_INET6
&&
743 SIN6IFSCOPE(sa
)->sin6_scope_id
!= IFSCOPE_NONE
) {
744 ret
= sa_copy(sa
, ss
, NULL
);
751 * If this is for a mask, we can't tell whether or not there
752 * is an valid scope ID value, as the span of bytes between
753 * sa_len and the beginning of the mask (offset of sin_addr in
754 * the case of AF_INET, or sin6_addr for AF_INET6) may be
755 * filled with all-ones by rn_addmask(), and hence we cannot
756 * rely on sa_family. Because of this, we use the sa_family
757 * of the hint sockaddr (RTAX_{DST,IFA}) as indicator as to
758 * whether or not the mask is to be treated as one for AF_INET
759 * or AF_INET6. Clearing the scope ID field involves setting
760 * it to IFSCOPE_NONE followed by calling sa_trim() to trim
761 * trailing zeroes from the storage sockaddr, which reverses
762 * what was done earlier by ma_copy() on the source sockaddr.
765 ((af
= hint
->sa_family
) != AF_INET
&& af
!= AF_INET6
)) {
766 break; /* nothing to do */
768 skip
= (af
== AF_INET
) ?
769 offsetof(struct sockaddr_in
, sin_addr
) :
770 offsetof(struct sockaddr_in6
, sin6_addr
);
772 if (sa
->sa_len
> skip
&& sa
->sa_len
<= sizeof(*ss
)) {
773 bcopy(sa
, ss
, sa
->sa_len
);
775 * Don't use {sin,sin6}_set_ifscope() as sa_family
776 * and sa_len for the netmask might not be set to
777 * the corresponding expected values of the hint.
779 if (hint
->sa_family
== AF_INET
) {
780 SINIFSCOPE(ss
)->sin_scope_id
= IFSCOPE_NONE
;
782 SIN6IFSCOPE(ss
)->sin6_scope_id
= IFSCOPE_NONE
;
784 ret
= sa_trim(SA(ss
), skip
);
787 * For AF_INET6 mask, set sa_len appropriately unless
788 * this is requested via systl_dumpentry(), in which
789 * case we return the raw value.
791 if (hint
->sa_family
== AF_INET6
&&
792 type
!= RTM_GET
&& type
!= RTM_GET2
) {
793 SA(ret
)->sa_len
= sizeof(struct sockaddr_in6
);
800 * Break if the gateway is not AF_LINK type (indirect routes)
802 * Else, if is, check if it is resolved. If not yet resolved
803 * simply break else scrub the link layer address.
805 if ((sa
->sa_family
!= AF_LINK
) || (SDL(sa
)->sdl_alen
== 0)) {
812 if (sa
->sa_family
== AF_LINK
&& credp
) {
813 struct sockaddr_dl
*sdl
= SDL(buf
);
817 /* caller should handle worst case: SOCK_MAXADDRLEN */
818 VERIFY(buflen
>= sa
->sa_len
);
820 bcopy(sa
, sdl
, sa
->sa_len
);
821 bytes
= dlil_ifaddr_bytes(sdl
, &size
, credp
);
822 if (bytes
!= CONST_LLADDR(sdl
)) {
823 VERIFY(sdl
->sdl_alen
== size
);
824 bcopy(bytes
, LLADDR(sdl
), size
);
826 ret
= (struct sockaddr
*)sdl
;
838 * Callback leaf-matching routine for rn_matchaddr_args used
839 * for looking up an exact match for a scoped route entry.
842 rn_match_ifscope(struct radix_node
*rn
, void *arg
)
844 struct rtentry
*rt
= (struct rtentry
*)rn
;
845 struct matchleaf_arg
*ma
= arg
;
846 int af
= rt_key(rt
)->sa_family
;
848 if (!(rt
->rt_flags
& RTF_IFSCOPE
) || (af
!= AF_INET
&& af
!= AF_INET6
)) {
852 return af
== AF_INET
?
853 (SINIFSCOPE(rt_key(rt
))->sin_scope_id
== ma
->ifscope
) :
854 (SIN6IFSCOPE(rt_key(rt
))->sin6_scope_id
== ma
->ifscope
);
858 * Atomically increment route generation counter
861 routegenid_update(void)
863 routegenid_inet_update();
864 routegenid_inet6_update();
868 routegenid_inet_update(void)
870 atomic_add_32(&route_genid_inet
, 1);
874 routegenid_inet6_update(void)
876 atomic_add_32(&route_genid_inet6
, 1);
880 * Packet routing routines.
883 rtalloc(struct route
*ro
)
889 rtalloc_scoped(struct route
*ro
, unsigned int ifscope
)
891 rtalloc_scoped_ign(ro
, 0, ifscope
);
895 rtalloc_ign_common_locked(struct route
*ro
, uint32_t ignore
,
896 unsigned int ifscope
)
900 if ((rt
= ro
->ro_rt
) != NULL
) {
902 if (rt
->rt_ifp
!= NULL
&& !ROUTE_UNUSABLE(ro
)) {
907 ROUTE_RELEASE_LOCKED(ro
); /* rnh_lock already held */
909 ro
->ro_rt
= rtalloc1_common_locked(&ro
->ro_dst
, 1, ignore
, ifscope
);
910 if (ro
->ro_rt
!= NULL
) {
911 RT_GENID_SYNC(ro
->ro_rt
);
912 RT_LOCK_ASSERT_NOTHELD(ro
->ro_rt
);
917 rtalloc_ign(struct route
*ro
, uint32_t ignore
)
919 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_NOTOWNED
);
920 lck_mtx_lock(rnh_lock
);
921 rtalloc_ign_common_locked(ro
, ignore
, IFSCOPE_NONE
);
922 lck_mtx_unlock(rnh_lock
);
926 rtalloc_scoped_ign(struct route
*ro
, uint32_t ignore
, unsigned int ifscope
)
928 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_NOTOWNED
);
929 lck_mtx_lock(rnh_lock
);
930 rtalloc_ign_common_locked(ro
, ignore
, ifscope
);
931 lck_mtx_unlock(rnh_lock
);
934 static struct rtentry
*
935 rtalloc1_locked(struct sockaddr
*dst
, int report
, uint32_t ignflags
)
937 return rtalloc1_common_locked(dst
, report
, ignflags
, IFSCOPE_NONE
);
941 rtalloc1_scoped_locked(struct sockaddr
*dst
, int report
, uint32_t ignflags
,
942 unsigned int ifscope
)
944 return rtalloc1_common_locked(dst
, report
, ignflags
, ifscope
);
948 route_ignore_protocol_cloning_for_dst(struct rtentry
*rt
, struct sockaddr
*dst
)
951 * For now keep protocol cloning for any type of IPv4
954 if (dst
->sa_family
!= AF_INET6
) {
959 * Limit protocol route creation of IPv6 ULA destinations
960 * from default route,
961 * Just to be safe, even though it doesn't affect routability,
962 * still allow protocol cloned routes if we happen to hit
963 * default route over companion link for ULA destination.
965 if (!IFNET_IS_COMPANION_LINK(rt
->rt_ifp
) &&
966 (rt
->rt_flags
& RTF_GATEWAY
) &&
967 (rt
->rt_flags
& RTF_PRCLONING
) &&
968 SA_DEFAULT(rt_key(rt
)) &&
969 IN6_IS_ADDR_UNIQUE_LOCAL(&SIN6(dst
)->sin6_addr
)) {
976 rtalloc1_common_locked(struct sockaddr
*dst
, int report
, uint32_t ignflags
,
977 unsigned int ifscope
)
979 struct radix_node_head
*rnh
= rt_tables
[dst
->sa_family
];
980 struct rtentry
*rt
, *newrt
= NULL
;
981 struct rt_addrinfo info
;
983 int err
= 0, msgtype
= RTM_MISS
;
990 * Find the longest prefix or exact (in the scoped case) address match;
991 * callee adds a reference to entry and checks for root node as well
993 rt
= rt_lookup(FALSE
, dst
, NULL
, rnh
, ifscope
);
999 * Explicitly ignore protocol cloning for certain destinations.
1000 * Some checks below are kind of redundant, as for now, RTF_PRCLONING
1001 * is only set on indirect (RTF_GATEWAY) routes.
1002 * Also, we do this only when the route lookup above, resulted in default
1004 * This is done to ensure, the resulting indirect host route doesn't
1005 * interfere when routing table gets configured with a indirect subnet
1006 * route/direct subnet route that is more specific than the current
1007 * parent route of the resulting protocol cloned route.
1009 * At the crux of it all, it is a problem that we maintain host cache
1010 * in the routing table. We should revisit this for a generic solution.
1012 if (route_ignore_protocol_cloning_for_dst(rt
, dst
)) {
1013 ignflags
|= RTF_PRCLONING
;
1018 nflags
= rt
->rt_flags
& ~ignflags
;
1021 if (report
&& (nflags
& (RTF_CLONING
| RTF_PRCLONING
))) {
1023 * We are apparently adding (report = 0 in delete).
1024 * If it requires that it be cloned, do so.
1025 * (This implies it wasn't a HOST route.)
1027 err
= rtrequest_locked(RTM_RESOLVE
, dst
, NULL
, NULL
, 0, &newrt
);
1030 * If the cloning didn't succeed, maybe what we
1031 * have from lookup above will do. Return that;
1032 * no need to hold another reference since it's
1040 * We cloned it; drop the original route found during lookup.
1041 * The resulted cloned route (newrt) would now have an extra
1042 * reference held during rtrequest.
1047 * If the newly created cloned route is a direct host route
1048 * then also check if it is to a router or not.
1049 * If it is, then set the RTF_ROUTER flag on the host route
1052 * XXX It is possible for the default route to be created post
1053 * cloned route creation of router's IP.
1054 * We can handle that corner case by special handing for RTM_ADD
1057 if ((newrt
->rt_flags
& (RTF_HOST
| RTF_LLINFO
)) ==
1058 (RTF_HOST
| RTF_LLINFO
)) {
1059 struct rtentry
*defrt
= NULL
;
1060 struct sockaddr_storage def_key
;
1062 bzero(&def_key
, sizeof(def_key
));
1063 def_key
.ss_len
= rt_key(newrt
)->sa_len
;
1064 def_key
.ss_family
= rt_key(newrt
)->sa_family
;
1066 defrt
= rtalloc1_scoped_locked((struct sockaddr
*)&def_key
,
1067 0, 0, newrt
->rt_ifp
->if_index
);
1070 if (equal(rt_key(newrt
), defrt
->rt_gateway
)) {
1071 newrt
->rt_flags
|= RTF_ROUTER
;
1073 rtfree_locked(defrt
);
1077 if ((rt
= newrt
) && (rt
->rt_flags
& RTF_XRESOLVE
)) {
1079 * If the new route specifies it be
1080 * externally resolved, then go do that.
1082 msgtype
= RTM_RESOLVE
;
1090 * Either we hit the root or couldn't find any match,
1091 * Which basically means "cant get there from here"
1093 rtstat
.rts_unreach
++;
1098 * If required, report the failure to the supervising
1100 * For a delete, this is not an error. (report == 0)
1102 bzero((caddr_t
)&info
, sizeof(info
));
1103 info
.rti_info
[RTAX_DST
] = dst
;
1104 rt_missmsg(msgtype
, &info
, 0, err
);
1111 rtalloc1(struct sockaddr
*dst
, int report
, uint32_t ignflags
)
1113 struct rtentry
*entry
;
1114 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_NOTOWNED
);
1115 lck_mtx_lock(rnh_lock
);
1116 entry
= rtalloc1_locked(dst
, report
, ignflags
);
1117 lck_mtx_unlock(rnh_lock
);
1122 rtalloc1_scoped(struct sockaddr
*dst
, int report
, uint32_t ignflags
,
1123 unsigned int ifscope
)
1125 struct rtentry
*entry
;
1126 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_NOTOWNED
);
1127 lck_mtx_lock(rnh_lock
);
1128 entry
= rtalloc1_scoped_locked(dst
, report
, ignflags
, ifscope
);
1129 lck_mtx_unlock(rnh_lock
);
1134 * Remove a reference count from an rtentry.
1135 * If the count gets low enough, take it out of the routing table
1138 rtfree_locked(struct rtentry
*rt
)
1140 rtfree_common(rt
, TRUE
);
1144 rtfree_common(struct rtentry
*rt
, boolean_t locked
)
1146 struct radix_node_head
*rnh
;
1148 LCK_MTX_ASSERT(rnh_lock
, locked
?
1149 LCK_MTX_ASSERT_OWNED
: LCK_MTX_ASSERT_NOTOWNED
);
1152 * Atomically decrement the reference count and if it reaches 0,
1153 * and there is a close function defined, call the close function.
1156 if (rtunref(rt
) > 0) {
1162 * To avoid violating lock ordering, we must drop rt_lock before
1163 * trying to acquire the global rnh_lock. If we are called with
1164 * rnh_lock held, then we already have exclusive access; otherwise
1165 * we do the lock dance.
1169 * Note that we check it again below after grabbing rnh_lock,
1170 * since it is possible that another thread doing a lookup wins
1171 * the race, grabs the rnh_lock first, and bumps up reference
1172 * count in which case the route should be left alone as it is
1173 * still in use. It's also possible that another thread frees
1174 * the route after we drop rt_lock; to prevent the route from
1175 * being freed, we hold an extra reference.
1177 RT_ADDREF_LOCKED(rt
);
1179 lck_mtx_lock(rnh_lock
);
1181 if (rtunref(rt
) > 0) {
1182 /* We've lost the race, so abort */
1189 * We may be blocked on other lock(s) as part of freeing
1190 * the entry below, so convert from spin to full mutex.
1192 RT_CONVERT_LOCK(rt
);
1194 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_OWNED
);
1196 /* Negative refcnt must never happen */
1197 if (rt
->rt_refcnt
!= 0) {
1198 panic("rt %p invalid refcnt %d", rt
, rt
->rt_refcnt
);
1201 /* Idle refcnt must have been dropped during rtunref() */
1202 VERIFY(!(rt
->rt_flags
& RTF_IFREF
));
1205 * find the tree for that address family
1206 * Note: in the case of igmp packets, there might not be an rnh
1208 rnh
= rt_tables
[rt_key(rt
)->sa_family
];
1211 * On last reference give the "close method" a chance to cleanup
1212 * private state. This also permits (for IPv4 and IPv6) a chance
1213 * to decide if the routing table entry should be purged immediately
1214 * or at a later time. When an immediate purge is to happen the
1215 * close routine typically issues RTM_DELETE which clears the RTF_UP
1216 * flag on the entry so that the code below reclaims the storage.
1218 if (rnh
!= NULL
&& rnh
->rnh_close
!= NULL
) {
1219 rnh
->rnh_close((struct radix_node
*)rt
, rnh
);
1223 * If we are no longer "up" (and ref == 0) then we can free the
1224 * resources associated with the route.
1226 if (!(rt
->rt_flags
& RTF_UP
)) {
1227 struct rtentry
*rt_parent
;
1228 struct ifaddr
*rt_ifa
;
1230 rt
->rt_flags
|= RTF_DEAD
;
1231 if (rt
->rt_nodes
->rn_flags
& (RNF_ACTIVE
| RNF_ROOT
)) {
1232 panic("rt %p freed while in radix tree\n", rt
);
1236 * the rtentry must have been removed from the routing table
1237 * so it is represented in rttrash; remove that now.
1239 (void) OSDecrementAtomic(&rttrash
);
1240 if (rte_debug
& RTD_DEBUG
) {
1241 TAILQ_REMOVE(&rttrash_head
, (struct rtentry_dbg
*)rt
,
1246 * release references on items we hold them on..
1247 * e.g other routes and ifaddrs.
1249 if ((rt_parent
= rt
->rt_parent
) != NULL
) {
1250 rt
->rt_parent
= NULL
;
1253 if ((rt_ifa
= rt
->rt_ifa
) != NULL
) {
1258 * Now free any attached link-layer info.
1260 if (rt
->rt_llinfo
!= NULL
) {
1261 if (rt
->rt_llinfo_free
!= NULL
) {
1262 (*rt
->rt_llinfo_free
)(rt
->rt_llinfo
);
1264 R_Free(rt
->rt_llinfo
);
1266 rt
->rt_llinfo
= NULL
;
1269 /* Destroy eventhandler lists context */
1270 eventhandler_lists_ctxt_destroy(&rt
->rt_evhdlr_ctxt
);
1273 * Route is no longer in the tree and refcnt is 0;
1274 * we have exclusive access, so destroy it.
1277 rte_lock_destroy(rt
);
1279 if (rt_parent
!= NULL
) {
1280 rtfree_locked(rt_parent
);
1283 if (rt_ifa
!= NULL
) {
1288 * The key is separately alloc'd so free it (see rt_setgate()).
1289 * This also frees the gateway, as they are always malloc'd
1295 * Free any statistics that may have been allocated
1297 nstat_route_detach(rt
);
1300 * and the rtentry itself of course
1305 * The "close method" has been called, but the route is
1306 * still in the radix tree with zero refcnt, i.e. "up"
1307 * and in the cached state.
1313 lck_mtx_unlock(rnh_lock
);
1318 rtfree(struct rtentry
*rt
)
1320 rtfree_common(rt
, FALSE
);
1324 * Decrements the refcount but does not free the route when
1325 * the refcount reaches zero. Unless you have really good reason,
1326 * use rtfree not rtunref.
1329 rtunref(struct rtentry
*p
)
1331 RT_LOCK_ASSERT_HELD(p
);
1333 if (p
->rt_refcnt
== 0) {
1334 panic("%s(%p) bad refcnt\n", __func__
, p
);
1336 } else if (--p
->rt_refcnt
== 0) {
1338 * Release any idle reference count held on the interface;
1339 * if the route is eligible, still UP and the refcnt becomes
1340 * non-zero at some point in future before it is purged from
1341 * the routing table, rt_set_idleref() will undo this.
1343 rt_clear_idleref(p
);
1346 if (rte_debug
& RTD_DEBUG
) {
1347 rtunref_audit((struct rtentry_dbg
*)p
);
1350 /* Return new value */
1351 return p
->rt_refcnt
;
1355 rtunref_audit(struct rtentry_dbg
*rte
)
1359 if (rte
->rtd_inuse
!= RTD_INUSE
) {
1360 panic("rtunref: on freed rte=%p\n", rte
);
1363 idx
= atomic_add_16_ov(&rte
->rtd_refrele_cnt
, 1) % CTRACE_HIST_SIZE
;
1364 if (rte_debug
& RTD_TRACE
) {
1365 ctrace_record(&rte
->rtd_refrele
[idx
]);
1370 * Add a reference count from an rtentry.
1373 rtref(struct rtentry
*p
)
1375 RT_LOCK_ASSERT_HELD(p
);
1377 VERIFY((p
->rt_flags
& RTF_DEAD
) == 0);
1378 if (++p
->rt_refcnt
== 0) {
1379 panic("%s(%p) bad refcnt\n", __func__
, p
);
1381 } else if (p
->rt_refcnt
== 1) {
1383 * Hold an idle reference count on the interface,
1384 * if the route is eligible for it.
1389 if (rte_debug
& RTD_DEBUG
) {
1390 rtref_audit((struct rtentry_dbg
*)p
);
1395 rtref_audit(struct rtentry_dbg
*rte
)
1399 if (rte
->rtd_inuse
!= RTD_INUSE
) {
1400 panic("rtref_audit: on freed rte=%p\n", rte
);
1403 idx
= atomic_add_16_ov(&rte
->rtd_refhold_cnt
, 1) % CTRACE_HIST_SIZE
;
1404 if (rte_debug
& RTD_TRACE
) {
1405 ctrace_record(&rte
->rtd_refhold
[idx
]);
1410 rtsetifa(struct rtentry
*rt
, struct ifaddr
*ifa
)
1412 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_OWNED
);
1414 RT_LOCK_ASSERT_HELD(rt
);
1416 if (rt
->rt_ifa
== ifa
) {
1420 /* Become a regular mutex, just in case */
1421 RT_CONVERT_LOCK(rt
);
1423 /* Release the old ifa */
1425 IFA_REMREF(rt
->rt_ifa
);
1431 /* Take a reference to the ifa */
1433 IFA_ADDREF(rt
->rt_ifa
);
1438 * Force a routing table entry to the specified
1439 * destination to go through the given gateway.
1440 * Normally called as a result of a routing redirect
1441 * message from the network layer.
1444 rtredirect(struct ifnet
*ifp
, struct sockaddr
*dst
, struct sockaddr
*gateway
,
1445 struct sockaddr
*netmask
, int flags
, struct sockaddr
*src
,
1446 struct rtentry
**rtp
)
1448 struct rtentry
*rt
= NULL
;
1451 struct rt_addrinfo info
;
1452 struct ifaddr
*ifa
= NULL
;
1453 unsigned int ifscope
= (ifp
!= NULL
) ? ifp
->if_index
: IFSCOPE_NONE
;
1454 struct sockaddr_storage ss
;
1455 int af
= src
->sa_family
;
1457 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_NOTOWNED
);
1458 lck_mtx_lock(rnh_lock
);
1461 * Transform src into the internal routing table form for
1462 * comparison against rt_gateway below.
1464 if ((af
== AF_INET
) || (af
== AF_INET6
)) {
1465 src
= sa_copy(src
, &ss
, &ifscope
);
1469 * Verify the gateway is directly reachable; if scoped routing
1470 * is enabled, verify that it is reachable from the interface
1471 * where the ICMP redirect arrived on.
1473 if ((ifa
= ifa_ifwithnet_scoped(gateway
, ifscope
)) == NULL
) {
1474 error
= ENETUNREACH
;
1478 /* Lookup route to the destination (from the original IP header) */
1479 rt
= rtalloc1_scoped_locked(dst
, 0, RTF_CLONING
| RTF_PRCLONING
, ifscope
);
1485 * If the redirect isn't from our current router for this dst,
1486 * it's either old or wrong. If it redirects us to ourselves,
1487 * we have a routing loop, perhaps as a result of an interface
1488 * going down recently. Holding rnh_lock here prevents the
1489 * possibility of rt_ifa/ifa's ifa_addr from changing (e.g.
1490 * in_ifinit), so okay to access ifa_addr without locking.
1492 if (!(flags
& RTF_DONE
) && rt
!= NULL
&&
1493 (!equal(src
, rt
->rt_gateway
) || !equal(rt
->rt_ifa
->ifa_addr
,
1498 if ((ifa
= ifa_ifwithaddr(gateway
))) {
1501 error
= EHOSTUNREACH
;
1518 * Create a new entry if we just got back a wildcard entry
1519 * or the the lookup failed. This is necessary for hosts
1520 * which use routing redirects generated by smart gateways
1521 * to dynamically build the routing tables.
1523 if ((rt
== NULL
) || (rt_mask(rt
) != NULL
&& rt_mask(rt
)->sa_len
< 2)) {
1527 * Don't listen to the redirect if it's
1528 * for a route to an interface.
1530 RT_LOCK_ASSERT_HELD(rt
);
1531 if (rt
->rt_flags
& RTF_GATEWAY
) {
1532 if (((rt
->rt_flags
& RTF_HOST
) == 0) && (flags
& RTF_HOST
)) {
1534 * Changing from route to net => route to host.
1535 * Create new route, rather than smashing route
1536 * to net; similar to cloned routes, the newly
1537 * created host route is scoped as well.
1543 flags
|= RTF_GATEWAY
| RTF_DYNAMIC
;
1544 error
= rtrequest_scoped_locked(RTM_ADD
, dst
,
1545 gateway
, netmask
, flags
, NULL
, ifscope
);
1546 stat
= &rtstat
.rts_dynamic
;
1549 * Smash the current notion of the gateway to
1550 * this destination. Should check about netmask!!!
1552 rt
->rt_flags
|= RTF_MODIFIED
;
1553 flags
|= RTF_MODIFIED
;
1554 stat
= &rtstat
.rts_newgateway
;
1556 * add the key and gateway (in one malloc'd chunk).
1558 error
= rt_setgate(rt
, rt_key(rt
), gateway
);
1563 error
= EHOSTUNREACH
;
1567 RT_LOCK_ASSERT_NOTHELD(rt
);
1569 /* Enqueue event to refresh flow route entries */
1570 route_event_enqueue_nwk_wq_entry(rt
, NULL
, ROUTE_ENTRY_REFRESH
, NULL
, FALSE
);
1582 rtstat
.rts_badredirect
++;
1588 if (af
== AF_INET
) {
1589 routegenid_inet_update();
1590 } else if (af
== AF_INET6
) {
1591 routegenid_inet6_update();
1594 lck_mtx_unlock(rnh_lock
);
1595 bzero((caddr_t
)&info
, sizeof(info
));
1596 info
.rti_info
[RTAX_DST
] = dst
;
1597 info
.rti_info
[RTAX_GATEWAY
] = gateway
;
1598 info
.rti_info
[RTAX_NETMASK
] = netmask
;
1599 info
.rti_info
[RTAX_AUTHOR
] = src
;
1600 rt_missmsg(RTM_REDIRECT
, &info
, flags
, error
);
1604 * Routing table ioctl interface.
1607 rtioctl(unsigned long req
, caddr_t data
, struct proc
*p
)
1609 #pragma unused(p, req, data)
1616 const struct sockaddr
*dst
,
1617 const struct sockaddr
*gateway
)
1621 lck_mtx_lock(rnh_lock
);
1622 ifa
= ifa_ifwithroute_locked(flags
, dst
, gateway
);
1623 lck_mtx_unlock(rnh_lock
);
1629 ifa_ifwithroute_locked(int flags
, const struct sockaddr
*dst
,
1630 const struct sockaddr
*gateway
)
1632 return ifa_ifwithroute_common_locked((flags
& ~RTF_IFSCOPE
), dst
,
1633 gateway
, IFSCOPE_NONE
);
1637 ifa_ifwithroute_scoped_locked(int flags
, const struct sockaddr
*dst
,
1638 const struct sockaddr
*gateway
, unsigned int ifscope
)
1640 if (ifscope
!= IFSCOPE_NONE
) {
1641 flags
|= RTF_IFSCOPE
;
1643 flags
&= ~RTF_IFSCOPE
;
1646 return ifa_ifwithroute_common_locked(flags
, dst
, gateway
, ifscope
);
1649 static struct ifaddr
*
1650 ifa_ifwithroute_common_locked(int flags
, const struct sockaddr
*dst
,
1651 const struct sockaddr
*gw
, unsigned int ifscope
)
1653 struct ifaddr
*ifa
= NULL
;
1654 struct rtentry
*rt
= NULL
;
1655 struct sockaddr_storage dst_ss
, gw_ss
;
1657 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_OWNED
);
1660 * Just in case the sockaddr passed in by the caller
1661 * contains a scope ID, make sure to clear it since
1662 * interface addresses aren't scoped.
1665 ((dst
->sa_family
== AF_INET
) ||
1666 (dst
->sa_family
== AF_INET6
))) {
1667 dst
= sa_copy(SA((uintptr_t)dst
), &dst_ss
, NULL
);
1671 ((gw
->sa_family
== AF_INET
) ||
1672 (gw
->sa_family
== AF_INET6
))) {
1673 gw
= sa_copy(SA((uintptr_t)gw
), &gw_ss
, NULL
);
1676 if (!(flags
& RTF_GATEWAY
)) {
1678 * If we are adding a route to an interface,
1679 * and the interface is a pt to pt link
1680 * we should search for the destination
1681 * as our clue to the interface. Otherwise
1682 * we can use the local address.
1684 if (flags
& RTF_HOST
) {
1685 ifa
= ifa_ifwithdstaddr(dst
);
1688 ifa
= ifa_ifwithaddr_scoped(gw
, ifscope
);
1692 * If we are adding a route to a remote net
1693 * or host, the gateway may still be on the
1694 * other end of a pt to pt link.
1696 ifa
= ifa_ifwithdstaddr(gw
);
1699 ifa
= ifa_ifwithnet_scoped(gw
, ifscope
);
1702 /* Workaround to avoid gcc warning regarding const variable */
1703 rt
= rtalloc1_scoped_locked((struct sockaddr
*)(size_t)dst
,
1709 /* Become a regular mutex */
1710 RT_CONVERT_LOCK(rt
);
1713 RT_REMREF_LOCKED(rt
);
1719 * Holding rnh_lock here prevents the possibility of ifa from
1720 * changing (e.g. in_ifinit), so it is safe to access its
1721 * ifa_addr (here and down below) without locking.
1723 if (ifa
!= NULL
&& ifa
->ifa_addr
->sa_family
!= dst
->sa_family
) {
1724 struct ifaddr
*newifa
;
1725 /* Callee adds reference to newifa upon success */
1726 newifa
= ifaof_ifpforaddr(dst
, ifa
->ifa_ifp
);
1727 if (newifa
!= NULL
) {
1733 * If we are adding a gateway, it is quite possible that the
1734 * routing table has a static entry in place for the gateway,
1735 * that may not agree with info garnered from the interfaces.
1736 * The routing table should carry more precedence than the
1737 * interfaces in this matter. Must be careful not to stomp
1738 * on new entries from rtinit, hence (ifa->ifa_addr != gw).
1741 !equal(ifa
->ifa_addr
, (struct sockaddr
*)(size_t)gw
)) &&
1742 (rt
= rtalloc1_scoped_locked((struct sockaddr
*)(size_t)gw
,
1743 0, 0, ifscope
)) != NULL
) {
1750 /* Become a regular mutex */
1751 RT_CONVERT_LOCK(rt
);
1754 RT_REMREF_LOCKED(rt
);
1758 * If an interface scope was specified, the interface index of
1759 * the found ifaddr must be equivalent to that of the scope;
1760 * otherwise there is no match.
1762 if ((flags
& RTF_IFSCOPE
) &&
1763 ifa
!= NULL
&& ifa
->ifa_ifp
->if_index
!= ifscope
) {
1769 * ifa's address family must match destination's address family
1770 * after all is said and done.
1773 ifa
->ifa_addr
->sa_family
!= dst
->sa_family
) {
1781 static int rt_fixdelete(struct radix_node
*, void *);
1782 static int rt_fixchange(struct radix_node
*, void *);
1785 struct rtentry
*rt0
;
1786 struct radix_node_head
*rnh
;
1790 rtrequest_locked(int req
, struct sockaddr
*dst
, struct sockaddr
*gateway
,
1791 struct sockaddr
*netmask
, int flags
, struct rtentry
**ret_nrt
)
1793 return rtrequest_common_locked(req
, dst
, gateway
, netmask
,
1794 (flags
& ~RTF_IFSCOPE
), ret_nrt
, IFSCOPE_NONE
);
1798 rtrequest_scoped_locked(int req
, struct sockaddr
*dst
,
1799 struct sockaddr
*gateway
, struct sockaddr
*netmask
, int flags
,
1800 struct rtentry
**ret_nrt
, unsigned int ifscope
)
1802 if (ifscope
!= IFSCOPE_NONE
) {
1803 flags
|= RTF_IFSCOPE
;
1805 flags
&= ~RTF_IFSCOPE
;
1808 return rtrequest_common_locked(req
, dst
, gateway
, netmask
,
1809 flags
, ret_nrt
, ifscope
);
1813 * Do appropriate manipulations of a routing tree given all the bits of
1816 * Storing the scope ID in the radix key is an internal job that should be
1817 * left to routines in this module. Callers should specify the scope value
1818 * to the "scoped" variants of route routines instead of manipulating the
1819 * key itself. This is typically done when creating a scoped route, e.g.
1820 * rtrequest(RTM_ADD). Once such a route is created and marked with the
1821 * RTF_IFSCOPE flag, callers can simply use its rt_key(rt) to clone it
1822 * (RTM_RESOLVE) or to remove it (RTM_DELETE). An exception to this is
1823 * during certain routing socket operations where the search key might be
1824 * derived from the routing message itself, in which case the caller must
1825 * specify the destination address and scope value for RTM_ADD/RTM_DELETE.
1828 rtrequest_common_locked(int req
, struct sockaddr
*dst0
,
1829 struct sockaddr
*gateway
, struct sockaddr
*netmask
, int flags
,
1830 struct rtentry
**ret_nrt
, unsigned int ifscope
)
1834 struct radix_node
*rn
;
1835 struct radix_node_head
*rnh
;
1836 struct ifaddr
*ifa
= NULL
;
1837 struct sockaddr
*ndst
, *dst
= dst0
;
1838 struct sockaddr_storage ss
, mask
;
1839 struct timeval caltime
;
1840 int af
= dst
->sa_family
;
1841 void (*ifa_rtrequest
)(int, struct rtentry
*, struct sockaddr
*);
1843 #define senderr(x) { error = x; goto bad; }
1845 DTRACE_ROUTE6(rtrequest
, int, req
, struct sockaddr
*, dst0
,
1846 struct sockaddr
*, gateway
, struct sockaddr
*, netmask
,
1847 int, flags
, unsigned int, ifscope
);
1849 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_OWNED
);
1851 * Find the correct routing tree to use for this Address Family
1853 if ((rnh
= rt_tables
[af
]) == NULL
) {
1857 * If we are adding a host route then we don't want to put
1858 * a netmask in the tree
1860 if (flags
& RTF_HOST
) {
1865 * If Scoped Routing is enabled, use a local copy of the destination
1866 * address to store the scope ID into. This logic is repeated below
1867 * in the RTM_RESOLVE handler since the caller does not normally
1868 * specify such a flag during a resolve, as well as for the handling
1869 * of IPv4 link-local address; instead, it passes in the route used for
1870 * cloning for which the scope info is derived from. Note also that
1871 * in the case of RTM_DELETE, the address passed in by the caller
1872 * might already contain the scope ID info when it is the key itself,
1873 * thus making RTF_IFSCOPE unnecessary; one instance where it is
1874 * explicitly set is inside route_output() as part of handling a
1875 * routing socket request.
1877 if (req
!= RTM_RESOLVE
&& ((af
== AF_INET
) || (af
== AF_INET6
))) {
1878 /* Transform dst into the internal routing table form */
1879 dst
= sa_copy(dst
, &ss
, &ifscope
);
1881 /* Transform netmask into the internal routing table form */
1882 if (netmask
!= NULL
) {
1883 netmask
= ma_copy(af
, netmask
, &mask
, ifscope
);
1886 if (ifscope
!= IFSCOPE_NONE
) {
1887 flags
|= RTF_IFSCOPE
;
1889 } else if ((flags
& RTF_IFSCOPE
) &&
1890 (af
!= AF_INET
&& af
!= AF_INET6
)) {
1894 if (ifscope
== IFSCOPE_NONE
) {
1895 flags
&= ~RTF_IFSCOPE
;
1900 struct rtentry
*gwrt
= NULL
;
1901 boolean_t was_router
= FALSE
;
1902 uint32_t old_rt_refcnt
= 0;
1904 * Remove the item from the tree and return it.
1905 * Complain if it is not there and do no more processing.
1907 if ((rn
= rnh
->rnh_deladdr(dst
, netmask
, rnh
)) == NULL
) {
1910 if (rn
->rn_flags
& (RNF_ACTIVE
| RNF_ROOT
)) {
1911 panic("rtrequest delete");
1914 rt
= (struct rtentry
*)rn
;
1917 old_rt_refcnt
= rt
->rt_refcnt
;
1918 rt
->rt_flags
&= ~RTF_UP
;
1920 * Release any idle reference count held on the interface
1921 * as this route is no longer externally visible.
1923 rt_clear_idleref(rt
);
1925 * Take an extra reference to handle the deletion of a route
1926 * entry whose reference count is already 0; e.g. an expiring
1927 * cloned route entry or an entry that was added to the table
1928 * with 0 reference. If the caller is interested in this route,
1929 * we will return it with the reference intact. Otherwise we
1930 * will decrement the reference via rtfree_locked() and then
1931 * possibly deallocate it.
1933 RT_ADDREF_LOCKED(rt
);
1936 * For consistency, in case the caller didn't set the flag.
1938 rt
->rt_flags
|= RTF_CONDEMNED
;
1941 * Clear RTF_ROUTER if it's set.
1943 if (rt
->rt_flags
& RTF_ROUTER
) {
1945 VERIFY(rt
->rt_flags
& RTF_HOST
);
1946 rt
->rt_flags
&= ~RTF_ROUTER
;
1950 * Enqueue work item to invoke callback for this route entry
1952 * If the old count is 0, it implies that last reference is being
1953 * removed and there's no one listening for this route event.
1955 if (old_rt_refcnt
!= 0) {
1956 route_event_enqueue_nwk_wq_entry(rt
, NULL
,
1957 ROUTE_ENTRY_DELETED
, NULL
, TRUE
);
1961 * Now search what's left of the subtree for any cloned
1962 * routes which might have been formed from this node.
1964 if ((rt
->rt_flags
& (RTF_CLONING
| RTF_PRCLONING
)) &&
1967 rnh
->rnh_walktree_from(rnh
, dst
, rt_mask(rt
),
1973 struct route_event rt_ev
;
1974 route_event_init(&rt_ev
, rt
, NULL
, ROUTE_LLENTRY_DELETED
);
1976 (void) rnh
->rnh_walktree(rnh
,
1977 route_event_walktree
, (void *)&rt_ev
);
1982 * Remove any external references we may have.
1984 if ((gwrt
= rt
->rt_gwroute
) != NULL
) {
1985 rt
->rt_gwroute
= NULL
;
1989 * give the protocol a chance to keep things in sync.
1991 if ((ifa
= rt
->rt_ifa
) != NULL
) {
1993 ifa_rtrequest
= ifa
->ifa_rtrequest
;
1995 if (ifa_rtrequest
!= NULL
) {
1996 ifa_rtrequest(RTM_DELETE
, rt
, NULL
);
1998 /* keep reference on rt_ifa */
2003 * one more rtentry floating around that is not
2004 * linked to the routing table.
2006 (void) OSIncrementAtomic(&rttrash
);
2007 if (rte_debug
& RTD_DEBUG
) {
2008 TAILQ_INSERT_TAIL(&rttrash_head
,
2009 (struct rtentry_dbg
*)rt
, rtd_trash_link
);
2013 * If this is the (non-scoped) default route, clear
2014 * the interface index used for the primary ifscope.
2016 if (rt_primary_default(rt
, rt_key(rt
))) {
2017 set_primary_ifscope(rt_key(rt
)->sa_family
,
2019 if ((rt
->rt_flags
& RTF_STATIC
) &&
2020 rt_key(rt
)->sa_family
== PF_INET6
) {
2021 trigger_v6_defrtr_select
= TRUE
;
2027 * If this is a change in a default route, update
2028 * necp client watchers to re-evaluate
2030 if (SA_DEFAULT(rt_key(rt
))) {
2031 if (rt
->rt_ifp
!= NULL
) {
2032 ifnet_touch_lastupdown(rt
->rt_ifp
);
2034 necp_update_all_clients();
2041 * This might result in another rtentry being freed if
2042 * we held its last reference. Do this after the rtentry
2043 * lock is dropped above, as it could lead to the same
2044 * lock being acquired if gwrt is a clone of rt.
2047 rtfree_locked(gwrt
);
2051 * If the caller wants it, then it can have it,
2052 * but it's up to it to free the rtentry as we won't be
2055 if (ret_nrt
!= NULL
) {
2056 /* Return the route to caller with reference intact */
2059 /* Dereference or deallocate the route */
2062 if (af
== AF_INET
) {
2063 routegenid_inet_update();
2064 } else if (af
== AF_INET6
) {
2065 routegenid_inet6_update();
2070 if (ret_nrt
== NULL
|| (rt
= *ret_nrt
) == NULL
) {
2074 * According to the UNIX conformance tests, we need to return
2075 * ENETUNREACH when the parent route is RTF_REJECT.
2076 * However, there isn't any point in cloning RTF_REJECT
2077 * routes, so we immediately return an error.
2079 if (rt
->rt_flags
& RTF_REJECT
) {
2080 if (rt
->rt_flags
& RTF_HOST
) {
2081 senderr(EHOSTUNREACH
);
2083 senderr(ENETUNREACH
);
2087 * If cloning, we have the parent route given by the caller
2088 * and will use its rt_gateway, rt_rmx as part of the cloning
2089 * process below. Since rnh_lock is held at this point, the
2090 * parent's rt_ifa and rt_gateway will not change, and its
2091 * relevant rt_flags will not change as well. The only thing
2092 * that could change are the metrics, and thus we hold the
2093 * parent route's rt_lock later on during the actual copying
2098 flags
= rt
->rt_flags
&
2099 ~(RTF_CLONING
| RTF_PRCLONING
| RTF_STATIC
);
2100 flags
|= RTF_WASCLONED
;
2101 gateway
= rt
->rt_gateway
;
2102 if ((netmask
= rt
->rt_genmask
) == NULL
) {
2106 if (af
!= AF_INET
&& af
!= AF_INET6
) {
2111 * When scoped routing is enabled, cloned entries are
2112 * always scoped according to the interface portion of
2113 * the parent route. The exception to this are IPv4
2114 * link local addresses, or those routes that are cloned
2115 * from a RTF_PROXY route. For the latter, the clone
2116 * gets to keep the RTF_PROXY flag.
2118 if ((af
== AF_INET
&&
2119 IN_LINKLOCAL(ntohl(SIN(dst
)->sin_addr
.s_addr
))) ||
2120 (rt
->rt_flags
& RTF_PROXY
)) {
2121 ifscope
= IFSCOPE_NONE
;
2122 flags
&= ~RTF_IFSCOPE
;
2124 * These types of cloned routes aren't currently
2125 * eligible for idle interface reference counting.
2127 flags
|= RTF_NOIFREF
;
2129 if (flags
& RTF_IFSCOPE
) {
2130 ifscope
= (af
== AF_INET
) ?
2131 sin_get_ifscope(rt_key(rt
)) :
2132 sin6_get_ifscope(rt_key(rt
));
2134 ifscope
= rt
->rt_ifp
->if_index
;
2135 flags
|= RTF_IFSCOPE
;
2137 VERIFY(ifscope
!= IFSCOPE_NONE
);
2141 * Transform dst into the internal routing table form,
2142 * clearing out the scope ID field if ifscope isn't set.
2144 dst
= sa_copy(dst
, &ss
, (ifscope
== IFSCOPE_NONE
) ?
2147 /* Transform netmask into the internal routing table form */
2148 if (netmask
!= NULL
) {
2149 netmask
= ma_copy(af
, netmask
, &mask
, ifscope
);
2155 if ((flags
& RTF_GATEWAY
) && !gateway
) {
2156 panic("rtrequest: RTF_GATEWAY but no gateway");
2159 if (flags
& RTF_IFSCOPE
) {
2160 ifa
= ifa_ifwithroute_scoped_locked(flags
, dst0
,
2163 ifa
= ifa_ifwithroute_locked(flags
, dst0
, gateway
);
2166 senderr(ENETUNREACH
);
2170 * We land up here for both RTM_RESOLVE and RTM_ADD
2171 * when we decide to create a route.
2173 if ((rt
= rte_alloc()) == NULL
) {
2176 Bzero(rt
, sizeof(*rt
));
2178 eventhandler_lists_ctxt_init(&rt
->rt_evhdlr_ctxt
);
2179 getmicrotime(&caltime
);
2180 rt
->base_calendartime
= caltime
.tv_sec
;
2181 rt
->base_uptime
= net_uptime();
2183 rt
->rt_flags
= RTF_UP
| flags
;
2186 * Point the generation ID to the tree's.
2190 rt
->rt_tree_genid
= &route_genid_inet
;
2193 rt
->rt_tree_genid
= &route_genid_inet6
;
2200 * Add the gateway. Possibly re-malloc-ing the storage for it
2201 * also add the rt_gwroute if possible.
2203 if ((error
= rt_setgate(rt
, dst
, gateway
)) != 0) {
2206 nstat_route_detach(rt
);
2207 rte_lock_destroy(rt
);
2213 * point to the (possibly newly malloc'd) dest address.
2218 * make sure it contains the value we want (masked if needed).
2221 rt_maskedcopy(dst
, ndst
, netmask
);
2223 Bcopy(dst
, ndst
, dst
->sa_len
);
2227 * Note that we now have a reference to the ifa.
2228 * This moved from below so that rnh->rnh_addaddr() can
2229 * examine the ifa and ifa->ifa_ifp if it so desires.
2232 rt
->rt_ifp
= rt
->rt_ifa
->ifa_ifp
;
2234 /* XXX mtu manipulation will be done in rnh_addaddr -- itojun */
2236 rn
= rnh
->rnh_addaddr((caddr_t
)ndst
, (caddr_t
)netmask
,
2239 struct rtentry
*rt2
;
2241 * Uh-oh, we already have one of these in the tree.
2242 * We do a special hack: if the route that's already
2243 * there was generated by the protocol-cloning
2244 * mechanism, then we just blow it away and retry
2245 * the insertion of the new one.
2247 if (flags
& RTF_IFSCOPE
) {
2248 rt2
= rtalloc1_scoped_locked(dst0
, 0,
2249 RTF_CLONING
| RTF_PRCLONING
, ifscope
);
2251 rt2
= rtalloc1_locked(dst
, 0,
2252 RTF_CLONING
| RTF_PRCLONING
);
2254 if (rt2
&& rt2
->rt_parent
) {
2256 * rnh_lock is held here, so rt_key and
2257 * rt_gateway of rt2 will not change.
2259 (void) rtrequest_locked(RTM_DELETE
, rt_key(rt2
),
2260 rt2
->rt_gateway
, rt_mask(rt2
),
2263 rn
= rnh
->rnh_addaddr((caddr_t
)ndst
,
2264 (caddr_t
)netmask
, rnh
, rt
->rt_nodes
);
2266 /* undo the extra ref we got */
2272 * If it still failed to go into the tree,
2273 * then un-make it (this should be a function)
2276 /* Clear gateway route */
2277 rt_set_gwroute(rt
, rt_key(rt
), NULL
);
2279 IFA_REMREF(rt
->rt_ifa
);
2284 nstat_route_detach(rt
);
2285 rte_lock_destroy(rt
);
2290 rt
->rt_parent
= NULL
;
2293 * If we got here from RESOLVE, then we are cloning so clone
2294 * the rest, and note that we are a clone (and increment the
2295 * parent's references). rnh_lock is still held, which prevents
2296 * a lookup from returning the newly-created route. Hence
2297 * holding and releasing the parent's rt_lock while still
2298 * holding the route's rt_lock is safe since the new route
2299 * is not yet externally visible.
2301 if (req
== RTM_RESOLVE
) {
2302 RT_LOCK_SPIN(*ret_nrt
);
2303 VERIFY((*ret_nrt
)->rt_expire
== 0 ||
2304 (*ret_nrt
)->rt_rmx
.rmx_expire
!= 0);
2305 VERIFY((*ret_nrt
)->rt_expire
!= 0 ||
2306 (*ret_nrt
)->rt_rmx
.rmx_expire
== 0);
2307 rt
->rt_rmx
= (*ret_nrt
)->rt_rmx
;
2308 rt_setexpire(rt
, (*ret_nrt
)->rt_expire
);
2309 if ((*ret_nrt
)->rt_flags
&
2310 (RTF_CLONING
| RTF_PRCLONING
)) {
2311 rt
->rt_parent
= (*ret_nrt
);
2312 RT_ADDREF_LOCKED(*ret_nrt
);
2314 RT_UNLOCK(*ret_nrt
);
2318 * if this protocol has something to add to this then
2319 * allow it to do that as well.
2322 ifa_rtrequest
= ifa
->ifa_rtrequest
;
2324 if (ifa_rtrequest
!= NULL
) {
2325 ifa_rtrequest(req
, rt
, SA(ret_nrt
? *ret_nrt
: NULL
));
2331 * If this is the (non-scoped) default route, record
2332 * the interface index used for the primary ifscope.
2334 if (rt_primary_default(rt
, rt_key(rt
))) {
2335 set_primary_ifscope(rt_key(rt
)->sa_family
,
2336 rt
->rt_ifp
->if_index
);
2341 * If this is a change in a default route, update
2342 * necp client watchers to re-evaluate
2344 if (SA_DEFAULT(rt_key(rt
))) {
2345 if (rt
->rt_ifp
!= NULL
) {
2346 ifnet_touch_lastupdown(rt
->rt_ifp
);
2348 necp_update_all_clients();
2353 * actually return a resultant rtentry and
2354 * give the caller a single reference.
2358 RT_ADDREF_LOCKED(rt
);
2361 if (af
== AF_INET
) {
2362 routegenid_inet_update();
2363 } else if (af
== AF_INET6
) {
2364 routegenid_inet6_update();
2370 * We repeat the same procedures from rt_setgate() here
2371 * because they weren't completed when we called it earlier,
2372 * since the node was embryonic.
2374 if ((rt
->rt_flags
& RTF_GATEWAY
) && rt
->rt_gwroute
!= NULL
) {
2375 rt_set_gwroute(rt
, rt_key(rt
), rt
->rt_gwroute
);
2378 if (req
== RTM_ADD
&&
2379 !(rt
->rt_flags
& RTF_HOST
) && rt_mask(rt
) != NULL
) {
2380 struct rtfc_arg arg
;
2384 rnh
->rnh_walktree_from(rnh
, rt_key(rt
), rt_mask(rt
),
2385 rt_fixchange
, &arg
);
2390 nstat_route_new_entry(rt
);
2402 rtrequest(int req
, struct sockaddr
*dst
, struct sockaddr
*gateway
,
2403 struct sockaddr
*netmask
, int flags
, struct rtentry
**ret_nrt
)
2406 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_NOTOWNED
);
2407 lck_mtx_lock(rnh_lock
);
2408 error
= rtrequest_locked(req
, dst
, gateway
, netmask
, flags
, ret_nrt
);
2409 lck_mtx_unlock(rnh_lock
);
2414 rtrequest_scoped(int req
, struct sockaddr
*dst
, struct sockaddr
*gateway
,
2415 struct sockaddr
*netmask
, int flags
, struct rtentry
**ret_nrt
,
2416 unsigned int ifscope
)
2419 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_NOTOWNED
);
2420 lck_mtx_lock(rnh_lock
);
2421 error
= rtrequest_scoped_locked(req
, dst
, gateway
, netmask
, flags
,
2423 lck_mtx_unlock(rnh_lock
);
2428 * Called from rtrequest(RTM_DELETE, ...) to fix up the route's ``family''
2429 * (i.e., the routes related to it by the operation of cloning). This
2430 * routine is iterated over all potential former-child-routes by way of
2431 * rnh->rnh_walktree_from() above, and those that actually are children of
2432 * the late parent (passed in as VP here) are themselves deleted.
2435 rt_fixdelete(struct radix_node
*rn
, void *vp
)
2437 struct rtentry
*rt
= (struct rtentry
*)rn
;
2438 struct rtentry
*rt0
= vp
;
2440 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_OWNED
);
2443 if (rt
->rt_parent
== rt0
&&
2444 !(rt
->rt_flags
& (RTF_CLONING
| RTF_PRCLONING
))) {
2446 * Safe to drop rt_lock and use rt_key, since holding
2447 * rnh_lock here prevents another thread from calling
2448 * rt_setgate() on this route.
2451 return rtrequest_locked(RTM_DELETE
, rt_key(rt
), NULL
,
2452 rt_mask(rt
), rt
->rt_flags
, NULL
);
2459 * This routine is called from rt_setgate() to do the analogous thing for
2460 * adds and changes. There is the added complication in this case of a
2461 * middle insert; i.e., insertion of a new network route between an older
2462 * network route and (cloned) host routes. For this reason, a simple check
2463 * of rt->rt_parent is insufficient; each candidate route must be tested
2464 * against the (mask, value) of the new route (passed as before in vp)
2465 * to see if the new route matches it.
2467 * XXX - it may be possible to do fixdelete() for changes and reserve this
2468 * routine just for adds. I'm not sure why I thought it was necessary to do
2472 rt_fixchange(struct radix_node
*rn
, void *vp
)
2474 struct rtentry
*rt
= (struct rtentry
*)rn
;
2475 struct rtfc_arg
*ap
= vp
;
2476 struct rtentry
*rt0
= ap
->rt0
;
2477 struct radix_node_head
*rnh
= ap
->rnh
;
2478 u_char
*xk1
, *xm1
, *xk2
, *xmp
;
2481 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_OWNED
);
2485 if (!rt
->rt_parent
||
2486 (rt
->rt_flags
& (RTF_CLONING
| RTF_PRCLONING
))) {
2491 if (rt
->rt_parent
== rt0
) {
2496 * There probably is a function somewhere which does this...
2497 * if not, there should be.
2499 len
= imin(rt_key(rt0
)->sa_len
, rt_key(rt
)->sa_len
);
2501 xk1
= (u_char
*)rt_key(rt0
);
2502 xm1
= (u_char
*)rt_mask(rt0
);
2503 xk2
= (u_char
*)rt_key(rt
);
2506 * Avoid applying a less specific route; do this only if the parent
2507 * route (rt->rt_parent) is a network route, since otherwise its mask
2508 * will be NULL if it is a cloning host route.
2510 if ((xmp
= (u_char
*)rt_mask(rt
->rt_parent
)) != NULL
) {
2511 int mlen
= rt_mask(rt
->rt_parent
)->sa_len
;
2512 if (mlen
> rt_mask(rt0
)->sa_len
) {
2517 for (i
= rnh
->rnh_treetop
->rn_offset
; i
< mlen
; i
++) {
2518 if ((xmp
[i
] & ~(xmp
[i
] ^ xm1
[i
])) != xmp
[i
]) {
2525 for (i
= rnh
->rnh_treetop
->rn_offset
; i
< len
; i
++) {
2526 if ((xk2
[i
] & xm1
[i
]) != xk1
[i
]) {
2533 * OK, this node is a clone, and matches the node currently being
2534 * changed/added under the node's mask. So, get rid of it.
2538 * Safe to drop rt_lock and use rt_key, since holding rnh_lock here
2539 * prevents another thread from calling rt_setgate() on this route.
2542 return rtrequest_locked(RTM_DELETE
, rt_key(rt
), NULL
,
2543 rt_mask(rt
), rt
->rt_flags
, NULL
);
2547 * Round up sockaddr len to multiples of 32-bytes. This will reduce
2548 * or even eliminate the need to re-allocate the chunk of memory used
2549 * for rt_key and rt_gateway in the event the gateway portion changes.
2550 * Certain code paths (e.g. IPsec) are notorious for caching the address
2551 * of rt_gateway; this rounding-up would help ensure that the gateway
2552 * portion never gets deallocated (though it may change contents) and
2553 * thus greatly simplifies things.
2555 #define SA_SIZE(x) (-(-((uintptr_t)(x)) & -(32)))
2558 * Sets the gateway and/or gateway route portion of a route; may be
2559 * called on an existing route to modify the gateway portion. Both
2560 * rt_key and rt_gateway are allocated out of the same memory chunk.
2561 * Route entry lock must be held by caller; this routine will return
2562 * with the lock held.
2565 rt_setgate(struct rtentry
*rt
, struct sockaddr
*dst
, struct sockaddr
*gate
)
2567 int dlen
= SA_SIZE(dst
->sa_len
), glen
= SA_SIZE(gate
->sa_len
);
2568 struct radix_node_head
*rnh
= NULL
;
2569 boolean_t loop
= FALSE
;
2571 if (dst
->sa_family
!= AF_INET
&& dst
->sa_family
!= AF_INET6
) {
2575 rnh
= rt_tables
[dst
->sa_family
];
2576 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_OWNED
);
2577 RT_LOCK_ASSERT_HELD(rt
);
2580 * If this is for a route that is on its way of being removed,
2581 * or is temporarily frozen, reject the modification request.
2583 if (rt
->rt_flags
& RTF_CONDEMNED
) {
2587 /* Add an extra ref for ourselves */
2588 RT_ADDREF_LOCKED(rt
);
2590 if (rt
->rt_flags
& RTF_GATEWAY
) {
2591 if ((dst
->sa_len
== gate
->sa_len
) &&
2592 (dst
->sa_family
== AF_INET
|| dst
->sa_family
== AF_INET6
)) {
2593 struct sockaddr_storage dst_ss
, gate_ss
;
2595 (void) sa_copy(dst
, &dst_ss
, NULL
);
2596 (void) sa_copy(gate
, &gate_ss
, NULL
);
2598 loop
= equal(SA(&dst_ss
), SA(&gate_ss
));
2600 loop
= (dst
->sa_len
== gate
->sa_len
&&
2606 * A (cloning) network route with the destination equal to the gateway
2607 * will create an endless loop (see notes below), so disallow it.
2609 if (((rt
->rt_flags
& (RTF_HOST
| RTF_GATEWAY
| RTF_LLINFO
)) ==
2610 RTF_GATEWAY
) && loop
) {
2611 /* Release extra ref */
2612 RT_REMREF_LOCKED(rt
);
2613 return EADDRNOTAVAIL
;
2617 * A host route with the destination equal to the gateway
2618 * will interfere with keeping LLINFO in the routing
2619 * table, so disallow it.
2621 if (((rt
->rt_flags
& (RTF_HOST
| RTF_GATEWAY
| RTF_LLINFO
)) ==
2622 (RTF_HOST
| RTF_GATEWAY
)) && loop
) {
2624 * The route might already exist if this is an RTM_CHANGE
2625 * or a routing redirect, so try to delete it.
2627 if (rt_key(rt
) != NULL
) {
2629 * Safe to drop rt_lock and use rt_key, rt_gateway,
2630 * since holding rnh_lock here prevents another thread
2631 * from calling rt_setgate() on this route.
2634 (void) rtrequest_locked(RTM_DELETE
, rt_key(rt
),
2635 rt
->rt_gateway
, rt_mask(rt
), rt
->rt_flags
, NULL
);
2638 /* Release extra ref */
2639 RT_REMREF_LOCKED(rt
);
2640 return EADDRNOTAVAIL
;
2644 * The destination is not directly reachable. Get a route
2645 * to the next-hop gateway and store it in rt_gwroute.
2647 if (rt
->rt_flags
& RTF_GATEWAY
) {
2648 struct rtentry
*gwrt
;
2649 unsigned int ifscope
;
2651 if (dst
->sa_family
== AF_INET
) {
2652 ifscope
= sin_get_ifscope(dst
);
2653 } else if (dst
->sa_family
== AF_INET6
) {
2654 ifscope
= sin6_get_ifscope(dst
);
2656 ifscope
= IFSCOPE_NONE
;
2661 * Don't ignore RTF_CLONING, since we prefer that rt_gwroute
2662 * points to a clone rather than a cloning route; see above
2663 * check for cloning loop avoidance (dst == gate).
2665 gwrt
= rtalloc1_scoped_locked(gate
, 1, RTF_PRCLONING
, ifscope
);
2667 RT_LOCK_ASSERT_NOTHELD(gwrt
);
2672 * Cloning loop avoidance:
2674 * In the presence of protocol-cloning and bad configuration,
2675 * it is possible to get stuck in bottomless mutual recursion
2676 * (rtrequest rt_setgate rtalloc1). We avoid this by not
2677 * allowing protocol-cloning to operate for gateways (which
2678 * is probably the correct choice anyway), and avoid the
2679 * resulting reference loops by disallowing any route to run
2680 * through itself as a gateway. This is obviously mandatory
2681 * when we get rt->rt_output(). It implies that a route to
2682 * the gateway must already be present in the system in order
2683 * for the gateway to be referred to by another route.
2686 RT_REMREF_LOCKED(gwrt
);
2687 /* Release extra ref */
2688 RT_REMREF_LOCKED(rt
);
2689 return EADDRINUSE
; /* failure */
2693 * If scoped, the gateway route must use the same interface;
2694 * we're holding rnh_lock now, so rt_gateway and rt_ifp of gwrt
2695 * should not change and are freely accessible.
2697 if (ifscope
!= IFSCOPE_NONE
&& (rt
->rt_flags
& RTF_IFSCOPE
) &&
2698 gwrt
!= NULL
&& gwrt
->rt_ifp
!= NULL
&&
2699 gwrt
->rt_ifp
->if_index
!= ifscope
) {
2700 rtfree_locked(gwrt
); /* rt != gwrt, no deadlock */
2701 /* Release extra ref */
2702 RT_REMREF_LOCKED(rt
);
2703 return (rt
->rt_flags
& RTF_HOST
) ?
2704 EHOSTUNREACH
: ENETUNREACH
;
2707 /* Check again since we dropped the lock above */
2708 if (rt
->rt_flags
& RTF_CONDEMNED
) {
2710 rtfree_locked(gwrt
);
2712 /* Release extra ref */
2713 RT_REMREF_LOCKED(rt
);
2717 /* Set gateway route; callee adds ref to gwrt if non-NULL */
2718 rt_set_gwroute(rt
, dst
, gwrt
);
2721 * In case the (non-scoped) default route gets modified via
2722 * an ICMP redirect, record the interface index used for the
2723 * primary ifscope. Also done in rt_setif() to take care
2724 * of the non-redirect cases.
2726 if (rt_primary_default(rt
, dst
) && rt
->rt_ifp
!= NULL
) {
2727 set_primary_ifscope(dst
->sa_family
,
2728 rt
->rt_ifp
->if_index
);
2733 * If this is a change in a default route, update
2734 * necp client watchers to re-evaluate
2736 if (SA_DEFAULT(dst
)) {
2737 necp_update_all_clients();
2742 * Tell the kernel debugger about the new default gateway
2743 * if the gateway route uses the primary interface, or
2744 * if we are in a transient state before the non-scoped
2745 * default gateway is installed (similar to how the system
2746 * was behaving in the past). In future, it would be good
2747 * to do all this only when KDP is enabled.
2749 if ((dst
->sa_family
== AF_INET
) &&
2750 gwrt
!= NULL
&& gwrt
->rt_gateway
->sa_family
== AF_LINK
&&
2751 (gwrt
->rt_ifp
->if_index
== get_primary_ifscope(AF_INET
) ||
2752 get_primary_ifscope(AF_INET
) == IFSCOPE_NONE
)) {
2753 kdp_set_gateway_mac(SDL((void *)gwrt
->rt_gateway
)->
2757 /* Release extra ref from rtalloc1() */
2764 * Prepare to store the gateway in rt_gateway. Both dst and gateway
2765 * are stored one after the other in the same malloc'd chunk. If we
2766 * have room, reuse the old buffer since rt_gateway already points
2767 * to the right place. Otherwise, malloc a new block and update
2768 * the 'dst' address and point rt_gateway to the right place.
2770 if (rt
->rt_gateway
== NULL
|| glen
> SA_SIZE(rt
->rt_gateway
->sa_len
)) {
2773 /* The underlying allocation is done with M_WAITOK set */
2774 R_Malloc(new, caddr_t
, dlen
+ glen
);
2776 /* Clear gateway route */
2777 rt_set_gwroute(rt
, dst
, NULL
);
2778 /* Release extra ref */
2779 RT_REMREF_LOCKED(rt
);
2784 * Copy from 'dst' and not rt_key(rt) because we can get
2785 * here to initialize a newly allocated route entry, in
2786 * which case rt_key(rt) is NULL (and so does rt_gateway).
2788 bzero(new, dlen
+ glen
);
2789 Bcopy(dst
, new, dst
->sa_len
);
2790 R_Free(rt_key(rt
)); /* free old block; NULL is okay */
2791 rt
->rt_nodes
->rn_key
= new;
2792 rt
->rt_gateway
= (struct sockaddr
*)(new + dlen
);
2796 * Copy the new gateway value into the memory chunk.
2798 Bcopy(gate
, rt
->rt_gateway
, gate
->sa_len
);
2801 * For consistency between rt_gateway and rt_key(gwrt).
2803 if ((rt
->rt_flags
& RTF_GATEWAY
) && rt
->rt_gwroute
!= NULL
&&
2804 (rt
->rt_gwroute
->rt_flags
& RTF_IFSCOPE
)) {
2805 if (rt
->rt_gateway
->sa_family
== AF_INET
&&
2806 rt_key(rt
->rt_gwroute
)->sa_family
== AF_INET
) {
2807 sin_set_ifscope(rt
->rt_gateway
,
2808 sin_get_ifscope(rt_key(rt
->rt_gwroute
)));
2809 } else if (rt
->rt_gateway
->sa_family
== AF_INET6
&&
2810 rt_key(rt
->rt_gwroute
)->sa_family
== AF_INET6
) {
2811 sin6_set_ifscope(rt
->rt_gateway
,
2812 sin6_get_ifscope(rt_key(rt
->rt_gwroute
)));
2817 * This isn't going to do anything useful for host routes, so
2818 * don't bother. Also make sure we have a reasonable mask
2819 * (we don't yet have one during adds).
2821 if (!(rt
->rt_flags
& RTF_HOST
) && rt_mask(rt
) != 0) {
2822 struct rtfc_arg arg
;
2826 rnh
->rnh_walktree_from(rnh
, rt_key(rt
), rt_mask(rt
),
2827 rt_fixchange
, &arg
);
2831 /* Release extra ref */
2832 RT_REMREF_LOCKED(rt
);
2839 rt_set_gwroute(struct rtentry
*rt
, struct sockaddr
*dst
, struct rtentry
*gwrt
)
2841 boolean_t gwrt_isrouter
;
2843 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_OWNED
);
2844 RT_LOCK_ASSERT_HELD(rt
);
2847 RT_ADDREF(gwrt
); /* for this routine */
2850 * Get rid of existing gateway route; if rt_gwroute is already
2851 * set to gwrt, this is slightly redundant (though safe since
2852 * we held an extra ref above) but makes the code simpler.
2854 if (rt
->rt_gwroute
!= NULL
) {
2855 struct rtentry
*ogwrt
= rt
->rt_gwroute
;
2857 VERIFY(rt
!= ogwrt
); /* sanity check */
2858 rt
->rt_gwroute
= NULL
;
2860 rtfree_locked(ogwrt
);
2862 VERIFY(rt
->rt_gwroute
== NULL
);
2866 * And associate the new gateway route.
2868 if ((rt
->rt_gwroute
= gwrt
) != NULL
) {
2869 RT_ADDREF(gwrt
); /* for rt */
2871 if (rt
->rt_flags
& RTF_WASCLONED
) {
2872 /* rt_parent might be NULL if rt is embryonic */
2873 gwrt_isrouter
= (rt
->rt_parent
!= NULL
&&
2874 SA_DEFAULT(rt_key(rt
->rt_parent
)) &&
2875 !RT_HOST(rt
->rt_parent
));
2877 gwrt_isrouter
= (SA_DEFAULT(dst
) && !RT_HOST(rt
));
2880 /* If gwrt points to a default router, mark it accordingly */
2881 if (gwrt_isrouter
&& RT_HOST(gwrt
) &&
2882 !(gwrt
->rt_flags
& RTF_ROUTER
)) {
2884 gwrt
->rt_flags
|= RTF_ROUTER
;
2888 RT_REMREF(gwrt
); /* for this routine */
2893 rt_maskedcopy(const struct sockaddr
*src
, struct sockaddr
*dst
,
2894 const struct sockaddr
*netmask
)
2896 const char *netmaskp
= &netmask
->sa_data
[0];
2897 const char *srcp
= &src
->sa_data
[0];
2898 char *dstp
= &dst
->sa_data
[0];
2899 const char *maskend
= (char *)dst
2900 + MIN(netmask
->sa_len
, src
->sa_len
);
2901 const char *srcend
= (char *)dst
+ src
->sa_len
;
2903 dst
->sa_len
= src
->sa_len
;
2904 dst
->sa_family
= src
->sa_family
;
2906 while (dstp
< maskend
) {
2907 *dstp
++ = *srcp
++ & *netmaskp
++;
2909 if (dstp
< srcend
) {
2910 memset(dstp
, 0, (size_t)(srcend
- dstp
));
2915 * Lookup an AF_INET/AF_INET6 scoped or non-scoped route depending on the
2916 * ifscope value passed in by the caller (IFSCOPE_NONE implies non-scoped).
2918 static struct radix_node
*
2919 node_lookup(struct sockaddr
*dst
, struct sockaddr
*netmask
,
2920 unsigned int ifscope
)
2922 struct radix_node_head
*rnh
;
2923 struct radix_node
*rn
;
2924 struct sockaddr_storage ss
, mask
;
2925 int af
= dst
->sa_family
;
2926 struct matchleaf_arg ma
= { .ifscope
= ifscope
};
2927 rn_matchf_t
*f
= rn_match_ifscope
;
2930 if (af
!= AF_INET
&& af
!= AF_INET6
) {
2934 rnh
= rt_tables
[af
];
2937 * Transform dst into the internal routing table form,
2938 * clearing out the scope ID field if ifscope isn't set.
2940 dst
= sa_copy(dst
, &ss
, (ifscope
== IFSCOPE_NONE
) ? NULL
: &ifscope
);
2942 /* Transform netmask into the internal routing table form */
2943 if (netmask
!= NULL
) {
2944 netmask
= ma_copy(af
, netmask
, &mask
, ifscope
);
2947 if (ifscope
== IFSCOPE_NONE
) {
2951 rn
= rnh
->rnh_lookup_args(dst
, netmask
, rnh
, f
, w
);
2952 if (rn
!= NULL
&& (rn
->rn_flags
& RNF_ROOT
)) {
2960 * Lookup the AF_INET/AF_INET6 non-scoped default route.
2962 static struct radix_node
*
2963 node_lookup_default(int af
)
2965 struct radix_node_head
*rnh
;
2967 VERIFY(af
== AF_INET
|| af
== AF_INET6
);
2968 rnh
= rt_tables
[af
];
2970 return af
== AF_INET
? rnh
->rnh_lookup(&sin_def
, NULL
, rnh
) :
2971 rnh
->rnh_lookup(&sin6_def
, NULL
, rnh
);
2975 rt_ifa_is_dst(struct sockaddr
*dst
, struct ifaddr
*ifa
)
2977 boolean_t result
= FALSE
;
2979 if (ifa
== NULL
|| ifa
->ifa_addr
== NULL
) {
2985 if (dst
->sa_family
== ifa
->ifa_addr
->sa_family
&&
2986 ((dst
->sa_family
== AF_INET
&&
2987 SIN(dst
)->sin_addr
.s_addr
==
2988 SIN(ifa
->ifa_addr
)->sin_addr
.s_addr
) ||
2989 (dst
->sa_family
== AF_INET6
&&
2990 SA6_ARE_ADDR_EQUAL(SIN6(dst
), SIN6(ifa
->ifa_addr
))))) {
3000 * Common routine to lookup/match a route. It invokes the lookup/matchaddr
3001 * callback which could be address family-specific. The main difference
3002 * between the two (at least for AF_INET/AF_INET6) is that a lookup does
3003 * not alter the expiring state of a route, whereas a match would unexpire
3004 * or revalidate the route.
3006 * The optional scope or interface index property of a route allows for a
3007 * per-interface route instance. This permits multiple route entries having
3008 * the same destination (but not necessarily the same gateway) to exist in
3009 * the routing table; each of these entries is specific to the corresponding
3010 * interface. This is made possible by storing the scope ID value into the
3011 * radix key, thus making each route entry unique. These scoped entries
3012 * exist along with the regular, non-scoped entries in the same radix tree
3013 * for a given address family (AF_INET/AF_INET6); the scope logically
3014 * partitions it into multiple per-interface sub-trees.
3016 * When a scoped route lookup is performed, the routing table is searched for
3017 * the best match that would result in a route using the same interface as the
3018 * one associated with the scope (the exception to this are routes that point
3019 * to the loopback interface). The search rule follows the longest matching
3020 * prefix with the additional interface constraint.
3022 static struct rtentry
*
3023 rt_lookup_common(boolean_t lookup_only
, boolean_t coarse
, struct sockaddr
*dst
,
3024 struct sockaddr
*netmask
, struct radix_node_head
*rnh
, unsigned int ifscope
)
3026 struct radix_node
*rn0
, *rn
= NULL
;
3027 int af
= dst
->sa_family
;
3028 struct sockaddr_storage dst_ss
;
3029 struct sockaddr_storage mask_ss
;
3031 #if (DEVELOPMENT || DEBUG)
3032 char dbuf
[MAX_SCOPE_ADDR_STR_LEN
], gbuf
[MAX_IPv6_STR_LEN
];
3033 char s_dst
[MAX_IPv6_STR_LEN
], s_netmask
[MAX_IPv6_STR_LEN
];
3035 VERIFY(!coarse
|| ifscope
== IFSCOPE_NONE
);
3037 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_OWNED
);
3039 * While we have rnh_lock held, see if we need to schedule the timer.
3041 if (nd6_sched_timeout_want
) {
3042 nd6_sched_timeout(NULL
, NULL
);
3050 * Non-scoped route lookup.
3052 if (af
!= AF_INET
&& af
!= AF_INET6
) {
3053 rn
= rnh
->rnh_matchaddr(dst
, rnh
);
3056 * Don't return a root node; also, rnh_matchaddr callback
3057 * would have done the necessary work to clear RTPRF_OURS
3058 * for certain protocol families.
3060 if (rn
!= NULL
&& (rn
->rn_flags
& RNF_ROOT
)) {
3064 RT_LOCK_SPIN(RT(rn
));
3065 if (!(RT(rn
)->rt_flags
& RTF_CONDEMNED
)) {
3066 RT_ADDREF_LOCKED(RT(rn
));
3076 /* Transform dst/netmask into the internal routing table form */
3077 dst
= sa_copy(dst
, &dst_ss
, &ifscope
);
3078 if (netmask
!= NULL
) {
3079 netmask
= ma_copy(af
, netmask
, &mask_ss
, ifscope
);
3081 dontcare
= (ifscope
== IFSCOPE_NONE
);
3083 #if (DEVELOPMENT || DEBUG)
3085 if (af
== AF_INET
) {
3086 (void) inet_ntop(af
, &SIN(dst
)->sin_addr
.s_addr
,
3087 s_dst
, sizeof(s_dst
));
3089 (void) inet_ntop(af
, &SIN6(dst
)->sin6_addr
,
3090 s_dst
, sizeof(s_dst
));
3093 if (netmask
!= NULL
&& af
== AF_INET
) {
3094 (void) inet_ntop(af
, &SIN(netmask
)->sin_addr
.s_addr
,
3095 s_netmask
, sizeof(s_netmask
));
3097 if (netmask
!= NULL
&& af
== AF_INET6
) {
3098 (void) inet_ntop(af
, &SIN6(netmask
)->sin6_addr
,
3099 s_netmask
, sizeof(s_netmask
));
3103 printf("%s (%d, %d, %s, %s, %u)\n",
3104 __func__
, lookup_only
, coarse
, s_dst
, s_netmask
, ifscope
);
3109 * Scoped route lookup:
3111 * We first perform a non-scoped lookup for the original result.
3112 * Afterwards, depending on whether or not the caller has specified
3113 * a scope, we perform a more specific scoped search and fallback
3114 * to this original result upon failure.
3116 rn0
= rn
= node_lookup(dst
, netmask
, IFSCOPE_NONE
);
3119 * If the caller did not specify a scope, use the primary scope
3120 * derived from the system's non-scoped default route. If, for
3121 * any reason, there is no primary interface, ifscope will be
3122 * set to IFSCOPE_NONE; if the above lookup resulted in a route,
3123 * we'll do a more-specific search below, scoped to the interface
3127 ifscope
= get_primary_ifscope(af
);
3131 * Keep the original result if either of the following is true:
3133 * 1) The interface portion of the route has the same interface
3134 * index as the scope value and it is marked with RTF_IFSCOPE.
3135 * 2) The route uses the loopback interface, in which case the
3136 * destination (host/net) is local/loopback.
3138 * Otherwise, do a more specified search using the scope;
3139 * we're holding rnh_lock now, so rt_ifp should not change.
3142 struct rtentry
*rt
= RT(rn
);
3143 #if (DEVELOPMENT || DEBUG)
3145 rt_str(rt
, dbuf
, sizeof(dbuf
), gbuf
, sizeof(gbuf
));
3146 printf("%s unscoped search %p to %s->%s->%s ifa_ifp %s\n",
3149 (rt
->rt_ifp
!= NULL
) ? rt
->rt_ifp
->if_xname
: "",
3150 (rt
->rt_ifa
->ifa_ifp
!= NULL
) ?
3151 rt
->rt_ifa
->ifa_ifp
->if_xname
: "");
3154 if (!(rt
->rt_ifp
->if_flags
& IFF_LOOPBACK
) ||
3155 (rt
->rt_flags
& RTF_GATEWAY
)) {
3156 if (rt
->rt_ifp
->if_index
!= ifscope
) {
3158 * Wrong interface; keep the original result
3159 * only if the caller did not specify a scope,
3160 * and do a more specific scoped search using
3161 * the scope of the found route. Otherwise,
3162 * start again from scratch.
3164 * For loopback scope we keep the unscoped
3165 * route for local addresses
3169 ifscope
= rt
->rt_ifp
->if_index
;
3170 } else if (ifscope
!= lo_ifp
->if_index
||
3171 rt_ifa_is_dst(dst
, rt
->rt_ifa
) == FALSE
) {
3174 } else if (!(rt
->rt_flags
& RTF_IFSCOPE
)) {
3176 * Right interface, except that this route
3177 * isn't marked with RTF_IFSCOPE. Do a more
3178 * specific scoped search. Keep the original
3179 * result and return it it in case the scoped
3188 * Scoped search. Find the most specific entry having the same
3189 * interface scope as the one requested. The following will result
3190 * in searching for the longest prefix scoped match.
3193 rn
= node_lookup(dst
, netmask
, ifscope
);
3194 #if (DEVELOPMENT || DEBUG)
3195 if (rt_verbose
&& rn
!= NULL
) {
3196 struct rtentry
*rt
= RT(rn
);
3198 rt_str(rt
, dbuf
, sizeof(dbuf
), gbuf
, sizeof(gbuf
));
3199 printf("%s scoped search %p to %s->%s->%s ifa %s\n",
3202 (rt
->rt_ifp
!= NULL
) ? rt
->rt_ifp
->if_xname
: "",
3203 (rt
->rt_ifa
->ifa_ifp
!= NULL
) ?
3204 rt
->rt_ifa
->ifa_ifp
->if_xname
: "");
3209 * Use the original result if either of the following is true:
3211 * 1) The scoped search did not yield any result.
3212 * 2) The caller insists on performing a coarse-grained lookup.
3213 * 3) The result from the scoped search is a scoped default route,
3214 * and the original (non-scoped) result is not a default route,
3215 * i.e. the original result is a more specific host/net route.
3216 * 4) The scoped search yielded a net route but the original
3217 * result is a host route, i.e. the original result is treated
3218 * as a more specific route.
3220 if (rn
== NULL
|| coarse
|| (rn0
!= NULL
&&
3221 ((SA_DEFAULT(rt_key(RT(rn
))) && !SA_DEFAULT(rt_key(RT(rn0
)))) ||
3222 (!RT_HOST(rn
) && RT_HOST(rn0
))))) {
3227 * If we still don't have a route, use the non-scoped default
3228 * route as long as the interface portion satistifes the scope.
3230 if (rn
== NULL
&& (rn
= node_lookup_default(af
)) != NULL
&&
3231 RT(rn
)->rt_ifp
->if_index
!= ifscope
) {
3237 * Manually clear RTPRF_OURS using rt_validate() and
3238 * bump up the reference count after, and not before;
3239 * we only get here for AF_INET/AF_INET6. node_lookup()
3240 * has done the check against RNF_ROOT, so we can be sure
3241 * that we're not returning a root node here.
3243 RT_LOCK_SPIN(RT(rn
));
3244 if (rt_validate(RT(rn
))) {
3245 RT_ADDREF_LOCKED(RT(rn
));
3252 #if (DEVELOPMENT || DEBUG)
3255 printf("%s %u return NULL\n", __func__
, ifscope
);
3257 struct rtentry
*rt
= RT(rn
);
3259 rt_str(rt
, dbuf
, sizeof(dbuf
), gbuf
, sizeof(gbuf
));
3261 printf("%s %u return %p to %s->%s->%s ifa_ifp %s\n",
3262 __func__
, ifscope
, rt
,
3264 (rt
->rt_ifp
!= NULL
) ? rt
->rt_ifp
->if_xname
: "",
3265 (rt
->rt_ifa
->ifa_ifp
!= NULL
) ?
3266 rt
->rt_ifa
->ifa_ifp
->if_xname
: "");
3274 rt_lookup(boolean_t lookup_only
, struct sockaddr
*dst
, struct sockaddr
*netmask
,
3275 struct radix_node_head
*rnh
, unsigned int ifscope
)
3277 return rt_lookup_common(lookup_only
, FALSE
, dst
, netmask
,
3282 rt_lookup_coarse(boolean_t lookup_only
, struct sockaddr
*dst
,
3283 struct sockaddr
*netmask
, struct radix_node_head
*rnh
)
3285 return rt_lookup_common(lookup_only
, TRUE
, dst
, netmask
,
3290 rt_validate(struct rtentry
*rt
)
3292 RT_LOCK_ASSERT_HELD(rt
);
3294 if ((rt
->rt_flags
& (RTF_UP
| RTF_CONDEMNED
)) == RTF_UP
) {
3295 int af
= rt_key(rt
)->sa_family
;
3297 if (af
== AF_INET
) {
3298 (void) in_validate(RN(rt
));
3299 } else if (af
== AF_INET6
) {
3300 (void) in6_validate(RN(rt
));
3310 * Set up a routing table entry, normally
3314 rtinit(struct ifaddr
*ifa
, int cmd
, int flags
)
3318 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_NOTOWNED
);
3320 lck_mtx_lock(rnh_lock
);
3321 error
= rtinit_locked(ifa
, cmd
, flags
);
3322 lck_mtx_unlock(rnh_lock
);
3328 rtinit_locked(struct ifaddr
*ifa
, int cmd
, int flags
)
3330 struct radix_node_head
*rnh
;
3331 uint8_t nbuf
[128]; /* long enough for IPv6 */
3332 #if (DEVELOPMENT || DEBUG)
3333 char dbuf
[MAX_IPv6_STR_LEN
], gbuf
[MAX_IPv6_STR_LEN
];
3334 char abuf
[MAX_IPv6_STR_LEN
];
3336 struct rtentry
*rt
= NULL
;
3337 struct sockaddr
*dst
;
3338 struct sockaddr
*netmask
;
3342 * Holding rnh_lock here prevents the possibility of ifa from
3343 * changing (e.g. in_ifinit), so it is safe to access its
3344 * ifa_{dst}addr (here and down below) without locking.
3346 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_OWNED
);
3348 if (flags
& RTF_HOST
) {
3349 dst
= ifa
->ifa_dstaddr
;
3352 dst
= ifa
->ifa_addr
;
3353 netmask
= ifa
->ifa_netmask
;
3356 if (dst
->sa_len
== 0) {
3357 log(LOG_ERR
, "%s: %s failed, invalid dst sa_len %d\n",
3358 __func__
, rtm2str(cmd
), dst
->sa_len
);
3362 if (netmask
!= NULL
&& netmask
->sa_len
> sizeof(nbuf
)) {
3363 log(LOG_ERR
, "%s: %s failed, mask sa_len %d too large\n",
3364 __func__
, rtm2str(cmd
), dst
->sa_len
);
3369 #if (DEVELOPMENT || DEBUG)
3370 if (dst
->sa_family
== AF_INET
) {
3371 (void) inet_ntop(AF_INET
, &SIN(dst
)->sin_addr
.s_addr
,
3372 abuf
, sizeof(abuf
));
3373 } else if (dst
->sa_family
== AF_INET6
) {
3374 (void) inet_ntop(AF_INET6
, &SIN6(dst
)->sin6_addr
,
3375 abuf
, sizeof(abuf
));
3377 #endif /* (DEVELOPMENT || DEBUG) */
3379 if ((rnh
= rt_tables
[dst
->sa_family
]) == NULL
) {
3385 * If it's a delete, check that if it exists, it's on the correct
3386 * interface or we might scrub a route to another ifa which would
3387 * be confusing at best and possibly worse.
3389 if (cmd
== RTM_DELETE
) {
3391 * It's a delete, so it should already exist..
3392 * If it's a net, mask off the host bits
3393 * (Assuming we have a mask)
3395 if (netmask
!= NULL
) {
3396 rt_maskedcopy(dst
, SA(nbuf
), netmask
);
3400 * Get an rtentry that is in the routing tree and contains
3401 * the correct info. Note that we perform a coarse-grained
3402 * lookup here, in case there is a scoped variant of the
3403 * subnet/prefix route which we should ignore, as we never
3404 * add a scoped subnet/prefix route as part of adding an
3405 * interface address.
3407 rt
= rt_lookup_coarse(TRUE
, dst
, NULL
, rnh
);
3409 #if (DEVELOPMENT || DEBUG)
3410 rt_str(rt
, dbuf
, sizeof(dbuf
), gbuf
, sizeof(gbuf
));
3413 * Ok so we found the rtentry. it has an extra reference
3414 * for us at this stage. we won't need that so
3418 if (rt
->rt_ifa
!= ifa
) {
3420 * If the interface address in the rtentry
3421 * doesn't match the interface we are using,
3422 * then we don't want to delete it, so return
3423 * an error. This seems to be the only point
3424 * of this whole RTM_DELETE clause.
3426 #if (DEVELOPMENT || DEBUG)
3428 log(LOG_DEBUG
, "%s: not removing "
3429 "route to %s->%s->%s, flags %b, "
3430 "ifaddr %s, rt_ifa 0x%llx != "
3431 "ifa 0x%llx\n", __func__
, dbuf
,
3432 gbuf
, ((rt
->rt_ifp
!= NULL
) ?
3433 rt
->rt_ifp
->if_xname
: ""),
3434 rt
->rt_flags
, RTF_BITS
, abuf
,
3435 (uint64_t)VM_KERNEL_ADDRPERM(
3437 (uint64_t)VM_KERNEL_ADDRPERM(ifa
));
3439 #endif /* (DEVELOPMENT || DEBUG) */
3440 RT_REMREF_LOCKED(rt
);
3443 error
= ((flags
& RTF_HOST
) ?
3444 EHOSTUNREACH
: ENETUNREACH
);
3446 } else if (rt
->rt_flags
& RTF_STATIC
) {
3448 * Don't remove the subnet/prefix route if
3449 * this was manually added from above.
3451 #if (DEVELOPMENT || DEBUG)
3453 log(LOG_DEBUG
, "%s: not removing "
3454 "static route to %s->%s->%s, "
3455 "flags %b, ifaddr %s\n", __func__
,
3456 dbuf
, gbuf
, ((rt
->rt_ifp
!= NULL
) ?
3457 rt
->rt_ifp
->if_xname
: ""),
3458 rt
->rt_flags
, RTF_BITS
, abuf
);
3460 #endif /* (DEVELOPMENT || DEBUG) */
3461 RT_REMREF_LOCKED(rt
);
3467 #if (DEVELOPMENT || DEBUG)
3469 log(LOG_DEBUG
, "%s: removing route to "
3470 "%s->%s->%s, flags %b, ifaddr %s\n",
3471 __func__
, dbuf
, gbuf
,
3472 ((rt
->rt_ifp
!= NULL
) ?
3473 rt
->rt_ifp
->if_xname
: ""),
3474 rt
->rt_flags
, RTF_BITS
, abuf
);
3476 #endif /* (DEVELOPMENT || DEBUG) */
3477 RT_REMREF_LOCKED(rt
);
3483 * Do the actual request
3485 if ((error
= rtrequest_locked(cmd
, dst
, ifa
->ifa_addr
, netmask
,
3486 flags
| ifa
->ifa_flags
, &rt
)) != 0) {
3491 #if (DEVELOPMENT || DEBUG)
3492 rt_str(rt
, dbuf
, sizeof(dbuf
), gbuf
, sizeof(gbuf
));
3493 #endif /* (DEVELOPMENT || DEBUG) */
3497 * If we are deleting, and we found an entry, then it's
3498 * been removed from the tree. Notify any listening
3499 * routing agents of the change and throw it away.
3502 rt_newaddrmsg(cmd
, ifa
, error
, rt
);
3504 #if (DEVELOPMENT || DEBUG)
3506 log(LOG_DEBUG
, "%s: removed route to %s->%s->%s, "
3507 "flags %b, ifaddr %s\n", __func__
, dbuf
, gbuf
,
3508 ((rt
->rt_ifp
!= NULL
) ? rt
->rt_ifp
->if_xname
: ""),
3509 rt
->rt_flags
, RTF_BITS
, abuf
);
3511 #endif /* (DEVELOPMENT || DEBUG) */
3517 * We are adding, and we have a returned routing entry.
3518 * We need to sanity check the result. If it came back
3519 * with an unexpected interface, then it must have already
3520 * existed or something.
3523 if (rt
->rt_ifa
!= ifa
) {
3524 void (*ifa_rtrequest
)
3525 (int, struct rtentry
*, struct sockaddr
*);
3526 #if (DEVELOPMENT || DEBUG)
3528 if (!(rt
->rt_ifa
->ifa_ifp
->if_flags
&
3529 (IFF_POINTOPOINT
| IFF_LOOPBACK
))) {
3530 log(LOG_ERR
, "%s: %s route to %s->%s->%s, "
3531 "flags %b, ifaddr %s, rt_ifa 0x%llx != "
3532 "ifa 0x%llx\n", __func__
, rtm2str(cmd
),
3533 dbuf
, gbuf
, ((rt
->rt_ifp
!= NULL
) ?
3534 rt
->rt_ifp
->if_xname
: ""), rt
->rt_flags
,
3536 (uint64_t)VM_KERNEL_ADDRPERM(rt
->rt_ifa
),
3537 (uint64_t)VM_KERNEL_ADDRPERM(ifa
));
3540 log(LOG_DEBUG
, "%s: %s route to %s->%s->%s, "
3541 "flags %b, ifaddr %s, rt_ifa was 0x%llx "
3542 "now 0x%llx\n", __func__
, rtm2str(cmd
),
3543 dbuf
, gbuf
, ((rt
->rt_ifp
!= NULL
) ?
3544 rt
->rt_ifp
->if_xname
: ""), rt
->rt_flags
,
3546 (uint64_t)VM_KERNEL_ADDRPERM(rt
->rt_ifa
),
3547 (uint64_t)VM_KERNEL_ADDRPERM(ifa
));
3549 #endif /* (DEVELOPMENT || DEBUG) */
3552 * Ask that the protocol in question
3553 * remove anything it has associated with
3554 * this route and ifaddr.
3556 ifa_rtrequest
= rt
->rt_ifa
->ifa_rtrequest
;
3557 if (ifa_rtrequest
!= NULL
) {
3558 ifa_rtrequest(RTM_DELETE
, rt
, NULL
);
3561 * Set the route's ifa.
3565 if (rt
->rt_ifp
!= ifa
->ifa_ifp
) {
3567 * Purge any link-layer info caching.
3569 if (rt
->rt_llinfo_purge
!= NULL
) {
3570 rt
->rt_llinfo_purge(rt
);
3573 * Adjust route ref count for the interfaces.
3575 if (rt
->rt_if_ref_fn
!= NULL
) {
3576 rt
->rt_if_ref_fn(ifa
->ifa_ifp
, 1);
3577 rt
->rt_if_ref_fn(rt
->rt_ifp
, -1);
3582 * And substitute in references to the ifaddr
3585 rt
->rt_ifp
= ifa
->ifa_ifp
;
3587 * If rmx_mtu is not locked, update it
3588 * to the MTU used by the new interface.
3590 if (!(rt
->rt_rmx
.rmx_locks
& RTV_MTU
)) {
3591 rt
->rt_rmx
.rmx_mtu
= rt
->rt_ifp
->if_mtu
;
3592 if (dst
->sa_family
== AF_INET
&&
3593 INTF_ADJUST_MTU_FOR_CLAT46(rt
->rt_ifp
)) {
3594 rt
->rt_rmx
.rmx_mtu
= IN6_LINKMTU(rt
->rt_ifp
);
3595 /* Further adjust the size for CLAT46 expansion */
3596 rt
->rt_rmx
.rmx_mtu
-= CLAT46_HDR_EXPANSION_OVERHD
;
3601 * Now ask the protocol to check if it needs
3602 * any special processing in its new form.
3604 ifa_rtrequest
= ifa
->ifa_rtrequest
;
3605 if (ifa_rtrequest
!= NULL
) {
3606 ifa_rtrequest(RTM_ADD
, rt
, NULL
);
3609 #if (DEVELOPMENT || DEBUG)
3611 log(LOG_DEBUG
, "%s: added route to %s->%s->%s, "
3612 "flags %b, ifaddr %s\n", __func__
, dbuf
,
3613 gbuf
, ((rt
->rt_ifp
!= NULL
) ?
3614 rt
->rt_ifp
->if_xname
: ""), rt
->rt_flags
,
3617 #endif /* (DEVELOPMENT || DEBUG) */
3620 * notify any listenning routing agents of the change
3622 rt_newaddrmsg(cmd
, ifa
, error
, rt
);
3624 * We just wanted to add it; we don't actually need a
3625 * reference. This will result in a route that's added
3626 * to the routing table without a reference count. The
3627 * RTM_DELETE code will do the necessary step to adjust
3628 * the reference count at deletion time.
3630 RT_REMREF_LOCKED(rt
);
3643 rt_set_idleref(struct rtentry
*rt
)
3645 RT_LOCK_ASSERT_HELD(rt
);
3648 * We currently keep idle refcnt only on unicast cloned routes
3649 * that aren't marked with RTF_NOIFREF.
3651 if (rt
->rt_parent
!= NULL
&& !(rt
->rt_flags
&
3652 (RTF_NOIFREF
| RTF_BROADCAST
| RTF_MULTICAST
)) &&
3653 (rt
->rt_flags
& (RTF_UP
| RTF_WASCLONED
| RTF_IFREF
)) ==
3654 (RTF_UP
| RTF_WASCLONED
)) {
3655 rt_clear_idleref(rt
); /* drop existing refcnt if any */
3656 rt
->rt_if_ref_fn
= rte_if_ref
;
3657 /* Become a regular mutex, just in case */
3658 RT_CONVERT_LOCK(rt
);
3659 rt
->rt_if_ref_fn(rt
->rt_ifp
, 1);
3660 rt
->rt_flags
|= RTF_IFREF
;
3665 rt_clear_idleref(struct rtentry
*rt
)
3667 RT_LOCK_ASSERT_HELD(rt
);
3669 if (rt
->rt_if_ref_fn
!= NULL
) {
3670 VERIFY((rt
->rt_flags
& (RTF_NOIFREF
| RTF_IFREF
)) == RTF_IFREF
);
3671 /* Become a regular mutex, just in case */
3672 RT_CONVERT_LOCK(rt
);
3673 rt
->rt_if_ref_fn(rt
->rt_ifp
, -1);
3674 rt
->rt_flags
&= ~RTF_IFREF
;
3675 rt
->rt_if_ref_fn
= NULL
;
3680 rt_set_proxy(struct rtentry
*rt
, boolean_t set
)
3682 lck_mtx_lock(rnh_lock
);
3685 * Search for any cloned routes which might have
3686 * been formed from this node, and delete them.
3688 if (rt
->rt_flags
& (RTF_CLONING
| RTF_PRCLONING
)) {
3689 struct radix_node_head
*rnh
= rt_tables
[rt_key(rt
)->sa_family
];
3692 rt
->rt_flags
|= RTF_PROXY
;
3694 rt
->rt_flags
&= ~RTF_PROXY
;
3698 if (rnh
!= NULL
&& rt_mask(rt
)) {
3699 rnh
->rnh_walktree_from(rnh
, rt_key(rt
), rt_mask(rt
),
3705 lck_mtx_unlock(rnh_lock
);
3709 rte_lock_init(struct rtentry
*rt
)
3711 lck_mtx_init(&rt
->rt_lock
, rte_mtx_grp
, rte_mtx_attr
);
3715 rte_lock_destroy(struct rtentry
*rt
)
3717 RT_LOCK_ASSERT_NOTHELD(rt
);
3718 lck_mtx_destroy(&rt
->rt_lock
, rte_mtx_grp
);
3722 rt_lock(struct rtentry
*rt
, boolean_t spin
)
3724 RT_LOCK_ASSERT_NOTHELD(rt
);
3726 lck_mtx_lock_spin(&rt
->rt_lock
);
3728 lck_mtx_lock(&rt
->rt_lock
);
3730 if (rte_debug
& RTD_DEBUG
) {
3731 rte_lock_debug((struct rtentry_dbg
*)rt
);
3736 rt_unlock(struct rtentry
*rt
)
3738 if (rte_debug
& RTD_DEBUG
) {
3739 rte_unlock_debug((struct rtentry_dbg
*)rt
);
3741 lck_mtx_unlock(&rt
->rt_lock
);
3745 rte_lock_debug(struct rtentry_dbg
*rte
)
3749 RT_LOCK_ASSERT_HELD((struct rtentry
*)rte
);
3750 idx
= atomic_add_32_ov(&rte
->rtd_lock_cnt
, 1) % CTRACE_HIST_SIZE
;
3751 if (rte_debug
& RTD_TRACE
) {
3752 ctrace_record(&rte
->rtd_lock
[idx
]);
3757 rte_unlock_debug(struct rtentry_dbg
*rte
)
3761 RT_LOCK_ASSERT_HELD((struct rtentry
*)rte
);
3762 idx
= atomic_add_32_ov(&rte
->rtd_unlock_cnt
, 1) % CTRACE_HIST_SIZE
;
3763 if (rte_debug
& RTD_TRACE
) {
3764 ctrace_record(&rte
->rtd_unlock
[idx
]);
3768 static struct rtentry
*
3771 if (rte_debug
& RTD_DEBUG
) {
3772 return rte_alloc_debug();
3775 return (struct rtentry
*)zalloc(rte_zone
);
3779 rte_free(struct rtentry
*p
)
3781 if (rte_debug
& RTD_DEBUG
) {
3786 if (p
->rt_refcnt
!= 0) {
3787 panic("rte_free: rte=%p refcnt=%d non-zero\n", p
, p
->rt_refcnt
);
3795 rte_if_ref(struct ifnet
*ifp
, int cnt
)
3797 struct kev_msg ev_msg
;
3798 struct net_event_data ev_data
;
3801 /* Force cnt to 1 increment/decrement */
3802 if (cnt
< -1 || cnt
> 1) {
3803 panic("%s: invalid count argument (%d)", __func__
, cnt
);
3806 old
= atomic_add_32_ov(&ifp
->if_route_refcnt
, cnt
);
3807 if (cnt
< 0 && old
== 0) {
3808 panic("%s: ifp=%p negative route refcnt!", __func__
, ifp
);
3812 * The following is done without first holding the ifnet lock,
3813 * for performance reasons. The relevant ifnet fields, with
3814 * the exception of the if_idle_flags, are never changed
3815 * during the lifetime of the ifnet. The if_idle_flags
3816 * may possibly be modified, so in the event that the value
3817 * is stale because IFRF_IDLE_NOTIFY was cleared, we'd end up
3818 * sending the event anyway. This is harmless as it is just
3819 * a notification to the monitoring agent in user space, and
3820 * it is expected to check via SIOCGIFGETRTREFCNT again anyway.
3822 if ((ifp
->if_idle_flags
& IFRF_IDLE_NOTIFY
) && cnt
< 0 && old
== 1) {
3823 bzero(&ev_msg
, sizeof(ev_msg
));
3824 bzero(&ev_data
, sizeof(ev_data
));
3826 ev_msg
.vendor_code
= KEV_VENDOR_APPLE
;
3827 ev_msg
.kev_class
= KEV_NETWORK_CLASS
;
3828 ev_msg
.kev_subclass
= KEV_DL_SUBCLASS
;
3829 ev_msg
.event_code
= KEV_DL_IF_IDLE_ROUTE_REFCNT
;
3831 strlcpy(&ev_data
.if_name
[0], ifp
->if_name
, IFNAMSIZ
);
3833 ev_data
.if_family
= ifp
->if_family
;
3834 ev_data
.if_unit
= ifp
->if_unit
;
3835 ev_msg
.dv
[0].data_length
= sizeof(struct net_event_data
);
3836 ev_msg
.dv
[0].data_ptr
= &ev_data
;
3838 dlil_post_complete_msg(NULL
, &ev_msg
);
3842 static inline struct rtentry
*
3843 rte_alloc_debug(void)
3845 struct rtentry_dbg
*rte
;
3847 rte
= ((struct rtentry_dbg
*)zalloc(rte_zone
));
3849 bzero(rte
, sizeof(*rte
));
3850 if (rte_debug
& RTD_TRACE
) {
3851 ctrace_record(&rte
->rtd_alloc
);
3853 rte
->rtd_inuse
= RTD_INUSE
;
3855 return (struct rtentry
*)rte
;
3859 rte_free_debug(struct rtentry
*p
)
3861 struct rtentry_dbg
*rte
= (struct rtentry_dbg
*)p
;
3863 if (p
->rt_refcnt
!= 0) {
3864 panic("rte_free: rte=%p refcnt=%d\n", p
, p
->rt_refcnt
);
3867 if (rte
->rtd_inuse
== RTD_FREED
) {
3868 panic("rte_free: double free rte=%p\n", rte
);
3870 } else if (rte
->rtd_inuse
!= RTD_INUSE
) {
3871 panic("rte_free: corrupted rte=%p\n", rte
);
3874 bcopy((caddr_t
)p
, (caddr_t
)&rte
->rtd_entry_saved
, sizeof(*p
));
3875 /* Preserve rt_lock to help catch use-after-free cases */
3876 bzero((caddr_t
)p
, offsetof(struct rtentry
, rt_lock
));
3878 rte
->rtd_inuse
= RTD_FREED
;
3880 if (rte_debug
& RTD_TRACE
) {
3881 ctrace_record(&rte
->rtd_free
);
3884 if (!(rte_debug
& RTD_NO_FREE
)) {
3890 ctrace_record(ctrace_t
*tr
)
3892 tr
->th
= current_thread();
3893 bzero(tr
->pc
, sizeof(tr
->pc
));
3894 (void) OSBacktrace(tr
->pc
, CTRACE_STACK_SIZE
);
3898 route_copyout(struct route
*dst
, const struct route
*src
, size_t length
)
3900 /* Copy everything (rt, srcif, flags, dst) from src */
3901 bcopy(src
, dst
, length
);
3903 /* Hold one reference for the local copy of struct route */
3904 if (dst
->ro_rt
!= NULL
) {
3905 RT_ADDREF(dst
->ro_rt
);
3908 /* Hold one reference for the local copy of struct lle */
3909 if (dst
->ro_lle
!= NULL
) {
3910 LLE_ADDREF(dst
->ro_lle
);
3913 /* Hold one reference for the local copy of struct ifaddr */
3914 if (dst
->ro_srcia
!= NULL
) {
3915 IFA_ADDREF(dst
->ro_srcia
);
3920 route_copyin(struct route
*src
, struct route
*dst
, size_t length
)
3923 * No cached route at the destination?
3924 * If none, then remove old references if present
3925 * and copy entire src route.
3927 if (dst
->ro_rt
== NULL
) {
3929 * Ditch the cached link layer reference (dst)
3930 * since we're about to take everything there is in src
3932 if (dst
->ro_lle
!= NULL
) {
3933 LLE_REMREF(dst
->ro_lle
);
3936 * Ditch the address in the cached copy (dst) since
3937 * we're about to take everything there is in src.
3939 if (dst
->ro_srcia
!= NULL
) {
3940 IFA_REMREF(dst
->ro_srcia
);
3943 * Copy everything (rt, ro_lle, srcia, flags, dst) from src; the
3944 * references to rt and/or srcia were held at the time
3945 * of storage and are kept intact.
3947 bcopy(src
, dst
, length
);
3952 * We know dst->ro_rt is not NULL here.
3953 * If the src->ro_rt is the same, update ro_lle, srcia and flags
3954 * and ditch the route in the local copy.
3956 if (dst
->ro_rt
== src
->ro_rt
) {
3957 dst
->ro_flags
= src
->ro_flags
;
3959 if (dst
->ro_lle
!= src
->ro_lle
) {
3960 if (dst
->ro_lle
!= NULL
) {
3961 LLE_REMREF(dst
->ro_lle
);
3963 dst
->ro_lle
= src
->ro_lle
;
3964 } else if (src
->ro_lle
!= NULL
) {
3965 LLE_REMREF(src
->ro_lle
);
3968 if (dst
->ro_srcia
!= src
->ro_srcia
) {
3969 if (dst
->ro_srcia
!= NULL
) {
3970 IFA_REMREF(dst
->ro_srcia
);
3972 dst
->ro_srcia
= src
->ro_srcia
;
3973 } else if (src
->ro_srcia
!= NULL
) {
3974 IFA_REMREF(src
->ro_srcia
);
3981 * If they are dst's ro_rt is not equal to src's,
3982 * and src'd rt is not NULL, then remove old references
3983 * if present and copy entire src route.
3985 if (src
->ro_rt
!= NULL
) {
3988 if (dst
->ro_lle
!= NULL
) {
3989 LLE_REMREF(dst
->ro_lle
);
3991 if (dst
->ro_srcia
!= NULL
) {
3992 IFA_REMREF(dst
->ro_srcia
);
3994 bcopy(src
, dst
, length
);
3999 * Here, dst's cached route is not NULL but source's is.
4000 * Just get rid of all the other cached reference in src.
4002 if (src
->ro_srcia
!= NULL
) {
4004 * Ditch src address in the local copy (src) since we're
4005 * not caching the route entry anyway (ro_rt is NULL).
4007 IFA_REMREF(src
->ro_srcia
);
4009 if (src
->ro_lle
!= NULL
) {
4011 * Ditch cache lle in the local copy (src) since we're
4012 * not caching the route anyway (ro_rt is NULL).
4014 LLE_REMREF(src
->ro_lle
);
4017 /* This function consumes the references on src */
4020 src
->ro_srcia
= NULL
;
4024 * route_to_gwroute will find the gateway route for a given route.
4026 * If the route is down, look the route up again.
4027 * If the route goes through a gateway, get the route to the gateway.
4028 * If the gateway route is down, look it up again.
4029 * If the route is set to reject, verify it hasn't expired.
4031 * If the returned route is non-NULL, the caller is responsible for
4032 * releasing the reference and unlocking the route.
4034 #define senderr(e) { error = (e); goto bad; }
4036 route_to_gwroute(const struct sockaddr
*net_dest
, struct rtentry
*hint0
,
4037 struct rtentry
**out_route
)
4040 struct rtentry
*rt
= hint0
, *hint
= hint0
;
4042 unsigned int ifindex
;
4052 * Next hop determination. Because we may involve the gateway route
4053 * in addition to the original route, locking is rather complicated.
4054 * The general concept is that regardless of whether the route points
4055 * to the original route or to the gateway route, this routine takes
4056 * an extra reference on such a route. This extra reference will be
4057 * released at the end.
4059 * Care must be taken to ensure that the "hint0" route never gets freed
4060 * via rtfree(), since the caller may have stored it inside a struct
4061 * route with a reference held for that placeholder.
4064 ifindex
= rt
->rt_ifp
->if_index
;
4065 RT_ADDREF_LOCKED(rt
);
4066 if (!(rt
->rt_flags
& RTF_UP
)) {
4067 RT_REMREF_LOCKED(rt
);
4069 /* route is down, find a new one */
4070 hint
= rt
= rtalloc1_scoped((struct sockaddr
*)
4071 (size_t)net_dest
, 1, 0, ifindex
);
4074 ifindex
= rt
->rt_ifp
->if_index
;
4076 senderr(EHOSTUNREACH
);
4081 * We have a reference to "rt" by now; it will either
4082 * be released or freed at the end of this routine.
4084 RT_LOCK_ASSERT_HELD(rt
);
4085 if ((gwroute
= (rt
->rt_flags
& RTF_GATEWAY
))) {
4086 struct rtentry
*gwrt
= rt
->rt_gwroute
;
4087 struct sockaddr_storage ss
;
4088 struct sockaddr
*gw
= (struct sockaddr
*)&ss
;
4091 RT_ADDREF_LOCKED(hint
);
4093 /* If there's no gateway rt, look it up */
4095 bcopy(rt
->rt_gateway
, gw
, MIN(sizeof(ss
),
4096 rt
->rt_gateway
->sa_len
));
4097 gw
->sa_len
= MIN(sizeof(ss
), rt
->rt_gateway
->sa_len
);
4101 /* Become a regular mutex */
4102 RT_CONVERT_LOCK(rt
);
4105 * Take gwrt's lock while holding route's lock;
4106 * this is okay since gwrt never points back
4107 * to "rt", so no lock ordering issues.
4110 if (!(gwrt
->rt_flags
& RTF_UP
)) {
4111 rt
->rt_gwroute
= NULL
;
4113 bcopy(rt
->rt_gateway
, gw
, MIN(sizeof(ss
),
4114 rt
->rt_gateway
->sa_len
));
4115 gw
->sa_len
= MIN(sizeof(ss
), rt
->rt_gateway
->sa_len
);
4119 lck_mtx_lock(rnh_lock
);
4120 gwrt
= rtalloc1_scoped_locked(gw
, 1, 0, ifindex
);
4124 * Bail out if the route is down, no route
4125 * to gateway, circular route, or if the
4126 * gateway portion of "rt" has changed.
4128 if (!(rt
->rt_flags
& RTF_UP
) || gwrt
== NULL
||
4129 gwrt
== rt
|| !equal(gw
, rt
->rt_gateway
)) {
4131 RT_REMREF_LOCKED(gwrt
);
4135 RT_REMREF_LOCKED(hint
);
4139 rtfree_locked(gwrt
);
4141 lck_mtx_unlock(rnh_lock
);
4142 senderr(EHOSTUNREACH
);
4144 VERIFY(gwrt
!= NULL
);
4146 * Set gateway route; callee adds ref to gwrt;
4147 * gwrt has an extra ref from rtalloc1() for
4150 rt_set_gwroute(rt
, rt_key(rt
), gwrt
);
4152 RT_REMREF_LOCKED(rt
); /* hint still holds a refcnt */
4154 lck_mtx_unlock(rnh_lock
);
4157 RT_ADDREF_LOCKED(gwrt
);
4160 RT_REMREF_LOCKED(rt
); /* hint still holds a refcnt */
4164 VERIFY(rt
== gwrt
&& rt
!= hint
);
4167 * This is an opportunity to revalidate the parent route's
4168 * rt_gwroute, in case it now points to a dead route entry.
4169 * Parent route won't go away since the clone (hint) holds
4170 * a reference to it. rt == gwrt.
4173 if ((hint
->rt_flags
& (RTF_WASCLONED
| RTF_UP
)) ==
4174 (RTF_WASCLONED
| RTF_UP
)) {
4175 struct rtentry
*prt
= hint
->rt_parent
;
4176 VERIFY(prt
!= NULL
);
4178 RT_CONVERT_LOCK(hint
);
4181 rt_revalidate_gwroute(prt
, rt
);
4187 /* Clean up "hint" now; see notes above regarding hint0 */
4188 if (hint
== hint0
) {
4195 /* rt == gwrt; if it is now down, give up */
4197 if (!(rt
->rt_flags
& RTF_UP
)) {
4199 senderr(EHOSTUNREACH
);
4203 if (rt
->rt_flags
& RTF_REJECT
) {
4204 VERIFY(rt
->rt_expire
== 0 || rt
->rt_rmx
.rmx_expire
!= 0);
4205 VERIFY(rt
->rt_expire
!= 0 || rt
->rt_rmx
.rmx_expire
== 0);
4206 timenow
= net_uptime();
4207 if (rt
->rt_expire
== 0 || timenow
< rt
->rt_expire
) {
4209 senderr(!gwroute
? EHOSTDOWN
: EHOSTUNREACH
);
4213 /* Become a regular mutex */
4214 RT_CONVERT_LOCK(rt
);
4216 /* Caller is responsible for cleaning up "rt" */
4221 /* Clean up route (either it is "rt" or "gwrt") */
4225 RT_REMREF_LOCKED(rt
);
4237 rt_revalidate_gwroute(struct rtentry
*rt
, struct rtentry
*gwrt
)
4239 VERIFY(gwrt
!= NULL
);
4242 if ((rt
->rt_flags
& (RTF_GATEWAY
| RTF_UP
)) == (RTF_GATEWAY
| RTF_UP
) &&
4243 rt
->rt_ifp
== gwrt
->rt_ifp
&& rt
->rt_gateway
->sa_family
==
4244 rt_key(gwrt
)->sa_family
&& (rt
->rt_gwroute
== NULL
||
4245 !(rt
->rt_gwroute
->rt_flags
& RTF_UP
))) {
4247 VERIFY(rt
->rt_flags
& (RTF_CLONING
| RTF_PRCLONING
));
4249 if (rt
->rt_gateway
->sa_family
== AF_INET
||
4250 rt
->rt_gateway
->sa_family
== AF_INET6
) {
4251 struct sockaddr_storage key_ss
, gw_ss
;
4253 * We need to compare rt_key and rt_gateway; create
4254 * local copies to get rid of any ifscope association.
4256 (void) sa_copy(rt_key(gwrt
), &key_ss
, NULL
);
4257 (void) sa_copy(rt
->rt_gateway
, &gw_ss
, NULL
);
4259 isequal
= equal(SA(&key_ss
), SA(&gw_ss
));
4261 isequal
= equal(rt_key(gwrt
), rt
->rt_gateway
);
4264 /* If they are the same, update gwrt */
4267 lck_mtx_lock(rnh_lock
);
4269 rt_set_gwroute(rt
, rt_key(rt
), gwrt
);
4271 lck_mtx_unlock(rnh_lock
);
4281 rt_str4(struct rtentry
*rt
, char *ds
, uint32_t dslen
, char *gs
, uint32_t gslen
)
4283 VERIFY(rt_key(rt
)->sa_family
== AF_INET
);
4286 (void) inet_ntop(AF_INET
,
4287 &SIN(rt_key(rt
))->sin_addr
.s_addr
, ds
, dslen
);
4288 if (dslen
>= MAX_SCOPE_ADDR_STR_LEN
&&
4289 SINIFSCOPE(rt_key(rt
))->sin_scope_id
!= IFSCOPE_NONE
) {
4292 snprintf(scpstr
, sizeof(scpstr
), "@%u",
4293 SINIFSCOPE(rt_key(rt
))->sin_scope_id
);
4295 strlcat(ds
, scpstr
, dslen
);
4300 if (rt
->rt_flags
& RTF_GATEWAY
) {
4301 (void) inet_ntop(AF_INET
,
4302 &SIN(rt
->rt_gateway
)->sin_addr
.s_addr
, gs
, gslen
);
4303 } else if (rt
->rt_ifp
!= NULL
) {
4304 snprintf(gs
, gslen
, "link#%u", rt
->rt_ifp
->if_unit
);
4306 snprintf(gs
, gslen
, "%s", "link");
4312 rt_str6(struct rtentry
*rt
, char *ds
, uint32_t dslen
, char *gs
, uint32_t gslen
)
4314 VERIFY(rt_key(rt
)->sa_family
== AF_INET6
);
4317 (void) inet_ntop(AF_INET6
,
4318 &SIN6(rt_key(rt
))->sin6_addr
, ds
, dslen
);
4319 if (dslen
>= MAX_SCOPE_ADDR_STR_LEN
&&
4320 SIN6IFSCOPE(rt_key(rt
))->sin6_scope_id
!= IFSCOPE_NONE
) {
4323 snprintf(scpstr
, sizeof(scpstr
), "@%u",
4324 SIN6IFSCOPE(rt_key(rt
))->sin6_scope_id
);
4326 strlcat(ds
, scpstr
, dslen
);
4331 if (rt
->rt_flags
& RTF_GATEWAY
) {
4332 (void) inet_ntop(AF_INET6
,
4333 &SIN6(rt
->rt_gateway
)->sin6_addr
, gs
, gslen
);
4334 } else if (rt
->rt_ifp
!= NULL
) {
4335 snprintf(gs
, gslen
, "link#%u", rt
->rt_ifp
->if_unit
);
4337 snprintf(gs
, gslen
, "%s", "link");
4343 rt_str(struct rtentry
*rt
, char *ds
, uint32_t dslen
, char *gs
, uint32_t gslen
)
4345 switch (rt_key(rt
)->sa_family
) {
4347 rt_str4(rt
, ds
, dslen
, gs
, gslen
);
4350 rt_str6(rt
, ds
, dslen
, gs
, gslen
);
4364 route_event_init(struct route_event
*p_route_ev
, struct rtentry
*rt
,
4365 struct rtentry
*gwrt
, int route_ev_code
)
4367 VERIFY(p_route_ev
!= NULL
);
4368 bzero(p_route_ev
, sizeof(*p_route_ev
));
4370 p_route_ev
->rt
= rt
;
4371 p_route_ev
->gwrt
= gwrt
;
4372 p_route_ev
->route_event_code
= route_ev_code
;
4376 route_event_callback(void *arg
)
4378 struct route_event
*p_rt_ev
= (struct route_event
*)arg
;
4379 struct rtentry
*rt
= p_rt_ev
->rt
;
4380 eventhandler_tag evtag
= p_rt_ev
->evtag
;
4381 int route_ev_code
= p_rt_ev
->route_event_code
;
4383 if (route_ev_code
== ROUTE_EVHDLR_DEREGISTER
) {
4384 VERIFY(evtag
!= NULL
);
4385 EVENTHANDLER_DEREGISTER(&rt
->rt_evhdlr_ctxt
, route_event
,
4391 EVENTHANDLER_INVOKE(&rt
->rt_evhdlr_ctxt
, route_event
, rt_key(rt
),
4392 route_ev_code
, (struct sockaddr
*)&p_rt_ev
->rt_addr
,
4395 /* The code enqueuing the route event held a reference */
4397 /* XXX No reference is taken on gwrt */
4401 route_event_walktree(struct radix_node
*rn
, void *arg
)
4403 struct route_event
*p_route_ev
= (struct route_event
*)arg
;
4404 struct rtentry
*rt
= (struct rtentry
*)rn
;
4405 struct rtentry
*gwrt
= p_route_ev
->rt
;
4407 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_OWNED
);
4411 /* Return if the entry is pending cleanup */
4412 if (rt
->rt_flags
& RTPRF_OURS
) {
4417 /* Return if it is not an indirect route */
4418 if (!(rt
->rt_flags
& RTF_GATEWAY
)) {
4423 if (rt
->rt_gwroute
!= gwrt
) {
4428 route_event_enqueue_nwk_wq_entry(rt
, gwrt
, p_route_ev
->route_event_code
,
4435 struct route_event_nwk_wq_entry
{
4436 struct nwk_wq_entry nwk_wqe
;
4437 struct route_event rt_ev_arg
;
4441 route_event_enqueue_nwk_wq_entry(struct rtentry
*rt
, struct rtentry
*gwrt
,
4442 uint32_t route_event_code
, eventhandler_tag evtag
, boolean_t rt_locked
)
4444 struct route_event_nwk_wq_entry
*p_rt_ev
= NULL
;
4445 struct sockaddr
*p_gw_saddr
= NULL
;
4447 MALLOC(p_rt_ev
, struct route_event_nwk_wq_entry
*,
4448 sizeof(struct route_event_nwk_wq_entry
),
4449 M_NWKWQ
, M_WAITOK
| M_ZERO
);
4452 * If the intent is to de-register, don't take
4453 * reference, route event registration already takes
4454 * a reference on route.
4456 if (route_event_code
!= ROUTE_EVHDLR_DEREGISTER
) {
4457 /* The reference is released by route_event_callback */
4459 RT_ADDREF_LOCKED(rt
);
4465 p_rt_ev
->rt_ev_arg
.rt
= rt
;
4466 p_rt_ev
->rt_ev_arg
.gwrt
= gwrt
;
4467 p_rt_ev
->rt_ev_arg
.evtag
= evtag
;
4470 p_gw_saddr
= gwrt
->rt_gateway
;
4472 p_gw_saddr
= rt
->rt_gateway
;
4475 VERIFY(p_gw_saddr
->sa_len
<= sizeof(p_rt_ev
->rt_ev_arg
.rt_addr
));
4476 bcopy(p_gw_saddr
, &(p_rt_ev
->rt_ev_arg
.rt_addr
), p_gw_saddr
->sa_len
);
4478 p_rt_ev
->rt_ev_arg
.route_event_code
= route_event_code
;
4479 p_rt_ev
->nwk_wqe
.func
= route_event_callback
;
4480 p_rt_ev
->nwk_wqe
.is_arg_managed
= TRUE
;
4481 p_rt_ev
->nwk_wqe
.arg
= &p_rt_ev
->rt_ev_arg
;
4482 nwk_wq_enqueue((struct nwk_wq_entry
*)p_rt_ev
);
4486 route_event2str(int route_event
)
4488 const char *route_event_str
= "ROUTE_EVENT_UNKNOWN";
4489 switch (route_event
) {
4490 case ROUTE_STATUS_UPDATE
:
4491 route_event_str
= "ROUTE_STATUS_UPDATE";
4493 case ROUTE_ENTRY_REFRESH
:
4494 route_event_str
= "ROUTE_ENTRY_REFRESH";
4496 case ROUTE_ENTRY_DELETED
:
4497 route_event_str
= "ROUTE_ENTRY_DELETED";
4499 case ROUTE_LLENTRY_RESOLVED
:
4500 route_event_str
= "ROUTE_LLENTRY_RESOLVED";
4502 case ROUTE_LLENTRY_UNREACH
:
4503 route_event_str
= "ROUTE_LLENTRY_UNREACH";
4505 case ROUTE_LLENTRY_CHANGED
:
4506 route_event_str
= "ROUTE_LLENTRY_CHANGED";
4508 case ROUTE_LLENTRY_STALE
:
4509 route_event_str
= "ROUTE_LLENTRY_STALE";
4511 case ROUTE_LLENTRY_TIMEDOUT
:
4512 route_event_str
= "ROUTE_LLENTRY_TIMEDOUT";
4514 case ROUTE_LLENTRY_DELETED
:
4515 route_event_str
= "ROUTE_LLENTRY_DELETED";
4517 case ROUTE_LLENTRY_EXPIRED
:
4518 route_event_str
= "ROUTE_LLENTRY_EXPIRED";
4520 case ROUTE_LLENTRY_PROBED
:
4521 route_event_str
= "ROUTE_LLENTRY_PROBED";
4523 case ROUTE_EVHDLR_DEREGISTER
:
4524 route_event_str
= "ROUTE_EVHDLR_DEREGISTER";
4527 /* Init'd to ROUTE_EVENT_UNKNOWN */
4530 return route_event_str
;
4534 route_op_entitlement_check(struct socket
*so
,
4537 boolean_t allow_root
)
4540 if (route_op_type
== ROUTE_OP_READ
) {
4542 * If needed we can later extend this for more
4543 * granular entitlements and return a bit set of
4546 if (soopt_cred_check(so
, PRIV_NET_RESTRICTED_ROUTE_NC_READ
,
4547 allow_root
, false) == 0) {
4553 } else if (cred
!= NULL
) {
4554 uid_t uid
= kauth_cred_getuid(cred
);
4556 /* uid is 0 for root */
4557 if (uid
!= 0 || !allow_root
) {
4558 if (route_op_type
== ROUTE_OP_READ
) {
4559 if (priv_check_cred(cred
,
4560 PRIV_NET_RESTRICTED_ROUTE_NC_READ
, 0) == 0) {