2 * Copyright (c) 2000-2011 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
32 * Mach Operating System
33 * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University
34 * All Rights Reserved.
36 * Permission to use, copy, modify and distribute this software and its
37 * documentation is hereby granted, provided that both the copyright
38 * notice and this permission notice appear in all copies of the
39 * software, derivative works or modified versions, and any portions
40 * thereof, and that both notices appear in supporting documentation.
42 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
43 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
44 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
46 * Carnegie Mellon requests users of this software to return to
48 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
49 * School of Computer Science
50 * Carnegie Mellon University
51 * Pittsburgh PA 15213-3890
53 * any improvements or extensions that they make and grant Carnegie Mellon
54 * the rights to redistribute these changes.
60 * Author: Avadis Tevanian, Jr.
62 * Zone-based memory allocator. A zone is a collection of fixed size
63 * data blocks for which quick allocation/deallocation is possible.
65 #include <zone_debug.h>
66 #include <zone_alias_addr.h>
68 #include <mach/mach_types.h>
69 #include <mach/vm_param.h>
70 #include <mach/kern_return.h>
71 #include <mach/mach_host_server.h>
72 #include <mach/task_server.h>
73 #include <mach/machine/vm_types.h>
74 #include <mach_debug/zone_info.h>
75 #include <mach/vm_map.h>
77 #include <kern/kern_types.h>
78 #include <kern/assert.h>
79 #include <kern/host.h>
80 #include <kern/macro_help.h>
81 #include <kern/sched.h>
82 #include <kern/locks.h>
83 #include <kern/sched_prim.h>
84 #include <kern/misc_protos.h>
85 #include <kern/thread_call.h>
86 #include <kern/zalloc.h>
87 #include <kern/kalloc.h>
88 #include <kern/btlog.h>
91 #include <vm/vm_map.h>
92 #include <vm/vm_kern.h>
93 #include <vm/vm_page.h>
95 #include <pexpert/pexpert.h>
97 #include <machine/machparam.h>
98 #include <machine/machine_routines.h> /* ml_cpu_get_info */
100 #include <libkern/OSDebug.h>
101 #include <libkern/OSAtomic.h>
102 #include <sys/kdebug.h>
107 * With this option enabled, zones with alloc_size <= PAGE_SIZE allocate
108 * a virtual page from the zone_map, but before zcram-ing the allocated memory
109 * into the zone, the page is translated to use the alias address of the page
110 * in the static kernel region. zone_gc reverses that translation when
111 * scanning the freelist to collect free pages so that it can look up the page
112 * in the zone_page_table, and free it to kmem_free.
114 * The static kernel region is a flat 1:1 mapping of physical memory passed
115 * to xnu by the booter. It is mapped to the range:
116 * [gVirtBase, gVirtBase + gPhysSize]
118 * Accessing memory via the static kernel region is faster due to the
119 * entire region being mapped via large pages, cutting down
122 * zinit favors using PAGE_SIZE backing allocations for a zone unless it would
123 * waste more than 10% space to use a single page, in order to take advantage
124 * of the speed benefit for as many zones as possible.
126 * Zones with > PAGE_SIZE allocations can't take advantage of this
127 * because kernel_memory_allocate doesn't give out physically contiguous pages.
129 * zone_virtual_addr()
130 * - translates an address from the static kernel region to the zone_map
131 * - returns the same address if it's not from the static kernel region
132 * It relies on the fact that a physical page mapped to the
133 * zone_map is not mapped anywhere else (except the static kernel region).
136 * - translates a virtual memory address from the zone_map to the
137 * corresponding address in the static kernel region
142 #define from_zone_map(addr, size) \
143 ((vm_offset_t)(addr) >= zone_map_min_address && \
144 ((vm_offset_t)(addr) + size - 1) < zone_map_max_address )
146 #define from_zone_map(addr, size) \
147 ((vm_offset_t)(zone_virtual_addr((vm_map_address_t)(uintptr_t)addr)) >= zone_map_min_address && \
148 ((vm_offset_t)(zone_virtual_addr((vm_map_address_t)(uintptr_t)addr)) + size -1) < zone_map_max_address )
152 * Zone Corruption Debugging
154 * We use three techniques to detect modification of a zone element
155 * after it's been freed.
157 * (1) Check the freelist next pointer for sanity.
158 * (2) Store a backup of the next pointer at the end of the element,
159 * and compare it to the primary next pointer when the element is allocated
160 * to detect corruption of the freelist due to use-after-free bugs.
161 * The backup pointer is also XORed with a per-boot random cookie.
162 * (3) Poison the freed element by overwriting it with 0xdeadbeef,
163 * and check for that value when the element is being reused to make sure
164 * no part of the element has been modified while it was on the freelist.
165 * This will also help catch read-after-frees, as code will now dereference
166 * 0xdeadbeef instead of a valid but freed pointer.
168 * (1) and (2) occur for every allocation and free to a zone.
169 * This is done to make it slightly more difficult for an attacker to
170 * manipulate the freelist to behave in a specific way.
172 * Poisoning (3) occurs periodically for every N frees (counted per-zone)
173 * and on every free for zones smaller than a cacheline. If -zp
174 * is passed as a boot arg, poisoning occurs for every free.
176 * Performance slowdown is inversely proportional to the frequency of poisoning,
177 * with a 4-5% hit around N=1, down to ~0.3% at N=16 and just "noise" at N=32
178 * and higher. You can expect to find a 100% reproducible bug in an average of
179 * N tries, with a standard deviation of about N, but you will want to set
180 * "-zp" to always poison every free if you are attempting to reproduce
183 * For a more heavyweight, but finer-grained method of detecting misuse
184 * of zone memory, look up the "Guard mode" zone allocator in gzalloc.c.
186 * Zone Corruption Logging
188 * You can also track where corruptions come from by using the boot-arguments
189 * "zlog=<zone name to log> -zc". Search for "Zone corruption logging" later
190 * in this document for more implementation and usage information.
192 * Zone Leak Detection
194 * To debug leaks of zone memory, use the zone leak detection tool 'zleaks'
195 * found later in this file via the showtopztrace and showz* macros in kgmacros,
196 * or use zlog without the -zc argument.
201 #if defined(__LP64__)
202 #define ZP_POISON 0xdeadbeefdeadbeef
204 #define ZP_POISON 0xdeadbeef
207 #define ZP_DEFAULT_SAMPLING_FACTOR 16
210 * A zp_factor of 0 indicates zone poisoning is disabled,
211 * however, we still poison zones smaller than zp_tiny_zone_limit (a cacheline).
212 * Passing the -no-zp boot-arg disables even this behavior.
213 * In all cases, we record and check the integrity of a backup pointer.
216 /* set by zp-factor=N boot arg, zero indicates non-tiny poisoning disabled */
217 uint32_t zp_factor
= 0;
219 /* set in zp_init, zero indicates -no-zp boot-arg */
220 vm_size_t zp_tiny_zone_limit
= 0;
222 /* initialized to a per-boot random value in zp_init */
223 uintptr_t zp_poisoned_cookie
= 0;
224 uintptr_t zp_nopoison_cookie
= 0;
228 * initialize zone poisoning
229 * called from zone_bootstrap before any allocations are made from zalloc
237 * Initialize backup pointer random cookie for poisoned elements
238 * Try not to call early_random() back to back, it may return
239 * the same value if mach_absolute_time doesn't have sufficient time
240 * to tick over between calls. <rdar://problem/11597395>
241 * (This is only a problem on embedded devices)
243 zp_poisoned_cookie
= (uintptr_t) early_random();
246 * Always poison zones smaller than a cacheline,
247 * because it's pretty close to free
249 ml_cpu_info_t cpu_info
;
250 ml_cpu_get_info(&cpu_info
);
251 zp_tiny_zone_limit
= (vm_size_t
) cpu_info
.cache_line_size
;
253 zp_factor
= ZP_DEFAULT_SAMPLING_FACTOR
;
255 //TODO: Bigger permutation?
257 * Permute the default factor +/- 1 to make it less predictable
258 * This adds or subtracts ~4 poisoned objects per 1000 frees.
260 if (zp_factor
!= 0) {
261 uint32_t rand_bits
= early_random() & 0x3;
263 if (rand_bits
== 0x1)
265 else if (rand_bits
== 0x2)
267 /* if 0x0 or 0x3, leave it alone */
270 /* -zp: enable poisoning for every alloc and free */
271 if (PE_parse_boot_argn("-zp", temp_buf
, sizeof(temp_buf
))) {
275 /* -no-zp: disable poisoning completely even for tiny zones */
276 if (PE_parse_boot_argn("-no-zp", temp_buf
, sizeof(temp_buf
))) {
278 zp_tiny_zone_limit
= 0;
279 printf("Zone poisoning disabled\n");
282 /* zp-factor=XXXX: override how often to poison freed zone elements */
283 if (PE_parse_boot_argn("zp-factor", &zp_factor
, sizeof(zp_factor
))) {
284 printf("Zone poisoning factor override: %u\n", zp_factor
);
287 /* Initialize backup pointer random cookie for unpoisoned elements */
288 zp_nopoison_cookie
= (uintptr_t) early_random();
291 if (zp_poisoned_cookie
== zp_nopoison_cookie
)
292 panic("early_random() is broken: %p and %p are not random\n",
293 (void *) zp_poisoned_cookie
, (void *) zp_nopoison_cookie
);
297 * Use the last bit in the backup pointer to hint poisoning state
298 * to backup_ptr_mismatch_panic. Valid zone pointers are aligned, so
299 * the low bits are zero.
301 zp_poisoned_cookie
|= (uintptr_t)0x1ULL
;
302 zp_nopoison_cookie
&= ~((uintptr_t)0x1ULL
);
304 #if defined(__LP64__)
306 * Make backup pointers more obvious in GDB for 64 bit
307 * by making OxFFFFFF... ^ cookie = 0xFACADE...
308 * (0xFACADE = 0xFFFFFF ^ 0x053521)
309 * (0xC0FFEE = 0xFFFFFF ^ 0x3f0011)
310 * The high 3 bytes of a zone pointer are always 0xFFFFFF, and are checked
311 * by the sanity check, so it's OK for that part of the cookie to be predictable.
313 * TODO: Use #defines, xors, and shifts
316 zp_poisoned_cookie
&= 0x000000FFFFFFFFFF;
317 zp_poisoned_cookie
|= 0x0535210000000000; /* 0xFACADE */
319 zp_nopoison_cookie
&= 0x000000FFFFFFFFFF;
320 zp_nopoison_cookie
|= 0x3f00110000000000; /* 0xC0FFEE */
324 /* zone_map page count for page table structure */
325 uint64_t zone_map_table_page_count
= 0;
328 * These macros are used to keep track of the number
329 * of pages being used by the zone currently. The
330 * z->page_count is protected by the zone lock.
332 #define ZONE_PAGE_COUNT_INCR(z, count) \
334 OSAddAtomic64(count, &(z->page_count)); \
337 #define ZONE_PAGE_COUNT_DECR(z, count) \
339 OSAddAtomic64(-count, &(z->page_count)); \
342 /* for is_sane_zone_element and garbage collection */
344 vm_offset_t zone_map_min_address
= 0; /* initialized in zone_init */
345 vm_offset_t zone_map_max_address
= 0;
347 /* Helpful for walking through a zone's free element list. */
348 struct zone_free_element
{
349 struct zone_free_element
*next
;
351 /* void *backup_ptr; */
354 struct zone_page_metadata
{
356 struct zone_free_element
*elements
;
358 uint16_t alloc_count
;
362 /* The backup pointer is stored in the last pointer-sized location in an element. */
363 static inline vm_offset_t
*
364 get_backup_ptr(vm_size_t elem_size
,
365 vm_offset_t
*element
)
367 return (vm_offset_t
*) ((vm_offset_t
)element
+ elem_size
- sizeof(vm_offset_t
));
370 static inline struct zone_page_metadata
*
371 get_zone_page_metadata(struct zone_free_element
*element
)
373 return (struct zone_page_metadata
*)(trunc_page((vm_offset_t
)element
) + PAGE_SIZE
- sizeof(struct zone_page_metadata
));
377 * Zone checking helper function.
378 * A pointer that satisfies these conditions is OK to be a freelist next pointer
379 * A pointer that doesn't satisfy these conditions indicates corruption
381 static inline boolean_t
382 is_sane_zone_ptr(zone_t zone
,
386 /* Must be aligned to pointer boundary */
387 if (__improbable((addr
& (sizeof(vm_offset_t
) - 1)) != 0))
390 /* Must be a kernel address */
391 if (__improbable(!pmap_kernel_va(addr
)))
394 /* Must be from zone map if the zone only uses memory from the zone_map */
396 * TODO: Remove the zone->collectable check when every
397 * zone using foreign memory is properly tagged with allows_foreign
399 if (zone
->collectable
&& !zone
->allows_foreign
) {
402 * If this address is in the static kernel region, it might be
403 * the alias address of a valid zone element.
404 * If we tried to find the zone_virtual_addr() of an invalid
405 * address in the static kernel region, it will panic, so don't
406 * check addresses in this region.
408 * TODO: Use a safe variant of zone_virtual_addr to
409 * make this check more accurate
411 * The static kernel region is mapped at:
412 * [gVirtBase, gVirtBase + gPhysSize]
414 if ((addr
- gVirtBase
) < gPhysSize
)
417 /* check if addr is from zone map */
418 if (addr
>= zone_map_min_address
&&
419 (addr
+ obj_size
- 1) < zone_map_max_address
)
428 static inline boolean_t
429 is_sane_zone_page_metadata(zone_t zone
,
430 vm_offset_t page_meta
)
432 /* NULL page metadata structures are invalid */
435 return is_sane_zone_ptr(zone
, page_meta
, sizeof(struct zone_page_metadata
));
438 static inline boolean_t
439 is_sane_zone_element(zone_t zone
,
442 /* NULL is OK because it indicates the tail of the list */
445 return is_sane_zone_ptr(zone
, addr
, zone
->elem_size
);
448 /* Someone wrote to freed memory. */
449 static inline void /* noreturn */
450 zone_element_was_modified_panic(zone_t zone
,
452 vm_offset_t expected
,
455 panic("a freed zone element has been modified: expected %p but found %p, bits changed %p, at offset %d of %d in zone: %s",
458 (void *) (expected
^ found
),
460 (uint32_t) zone
->elem_size
,
465 * The primary and backup pointers don't match.
466 * Determine which one was likely the corrupted pointer, find out what it
467 * probably should have been, and panic.
468 * I would like to mark this as noreturn, but panic() isn't marked noreturn.
470 static void /* noreturn */
471 backup_ptr_mismatch_panic(zone_t zone
,
475 vm_offset_t likely_backup
;
477 boolean_t sane_backup
;
478 boolean_t sane_primary
= is_sane_zone_element(zone
, primary
);
479 boolean_t element_was_poisoned
= (backup
& 0x1) ? TRUE
: FALSE
;
481 if (element_was_poisoned
) {
482 likely_backup
= backup
^ zp_poisoned_cookie
;
483 sane_backup
= is_sane_zone_element(zone
, likely_backup
);
485 likely_backup
= backup
^ zp_nopoison_cookie
;
486 sane_backup
= is_sane_zone_element(zone
, likely_backup
);
489 /* The primary is definitely the corrupted one */
490 if (!sane_primary
&& sane_backup
)
491 zone_element_was_modified_panic(zone
, primary
, likely_backup
, 0);
493 /* The backup is definitely the corrupted one */
494 if (sane_primary
&& !sane_backup
)
495 zone_element_was_modified_panic(zone
, backup
, primary
,
496 zone
->elem_size
- sizeof(vm_offset_t
));
499 * Not sure which is the corrupted one.
500 * It's less likely that the backup pointer was overwritten with
501 * ( (sane address) ^ (valid cookie) ), so we'll guess that the
502 * primary pointer has been overwritten with a sane but incorrect address.
504 if (sane_primary
&& sane_backup
)
505 zone_element_was_modified_panic(zone
, primary
, likely_backup
, 0);
507 /* Neither are sane, so just guess. */
508 zone_element_was_modified_panic(zone
, primary
, likely_backup
, 0);
513 * Sets the next element of tail to elem.
515 * Preserves the poisoning state of the element.
518 append_zone_element(zone_t zone
,
519 struct zone_free_element
*tail
,
520 struct zone_free_element
*elem
)
522 vm_offset_t
*backup
= get_backup_ptr(zone
->elem_size
, (vm_offset_t
*) tail
);
524 vm_offset_t old_backup
= *backup
;
526 vm_offset_t old_next
= (vm_offset_t
) tail
->next
;
527 vm_offset_t new_next
= (vm_offset_t
) elem
;
529 if (old_next
== (old_backup
^ zp_nopoison_cookie
))
530 *backup
= new_next
^ zp_nopoison_cookie
;
531 else if (old_next
== (old_backup
^ zp_poisoned_cookie
))
532 *backup
= new_next
^ zp_poisoned_cookie
;
534 backup_ptr_mismatch_panic(zone
,
543 * Insert a linked list of elements (delineated by head and tail) at the head of
544 * the zone free list. Every element in the list being added has already gone
545 * through append_zone_element, so their backup pointers are already
547 * Precondition: There should be no elements after tail
550 add_list_to_zone(zone_t zone
,
551 struct zone_free_element
*head
,
552 struct zone_free_element
*tail
)
554 assert(tail
->next
== NULL
);
555 assert(!zone
->use_page_list
);
557 append_zone_element(zone
, tail
, zone
->free_elements
);
559 zone
->free_elements
= head
;
564 * Adds the element to the head of the zone's free list
565 * Keeps a backup next-pointer at the end of the element
566 * Poisons the element with ZP_POISON every zp_factor frees
569 free_to_zone(zone_t zone
,
572 vm_offset_t old_head
;
573 struct zone_page_metadata
*page_meta
;
575 vm_offset_t
*primary
= (vm_offset_t
*) element
;
576 vm_offset_t
*backup
= get_backup_ptr(zone
->elem_size
, primary
);
578 if (zone
->use_page_list
) {
579 page_meta
= get_zone_page_metadata((struct zone_free_element
*)element
);
580 assert(page_meta
->zone
== zone
);
581 old_head
= (vm_offset_t
)page_meta
->elements
;
583 old_head
= (vm_offset_t
)zone
->free_elements
;
587 if (__improbable(!is_sane_zone_element(zone
, old_head
)))
588 panic("zfree: invalid head pointer %p for freelist of zone %s\n",
589 (void *) old_head
, zone
->zone_name
);
592 if (__improbable(!is_sane_zone_element(zone
, element
)))
593 panic("zfree: freeing invalid pointer %p to zone %s\n",
594 (void *) element
, zone
->zone_name
);
596 boolean_t poison
= FALSE
;
598 /* Always poison tiny zones' elements (limit is 0 if -no-zp is set) */
599 if (zone
->elem_size
<= zp_tiny_zone_limit
)
601 else if (zp_factor
!= 0 && ++zone
->zp_count
>= zp_factor
) {
602 /* Poison zone elements periodically */
608 /* memset_pattern{4|8} could help make this faster: <rdar://problem/4662004> */
609 vm_offset_t
*element_cursor
= primary
+ 1;
611 for ( ; element_cursor
< backup
; element_cursor
++)
612 *element_cursor
= ZP_POISON
;
616 * Always write a redundant next pointer
617 * So that it is more difficult to forge, xor it with a random cookie
618 * A poisoned element is indicated by using zp_poisoned_cookie
619 * instead of zp_nopoison_cookie
622 *backup
= old_head
^ (poison
? zp_poisoned_cookie
: zp_nopoison_cookie
);
624 /* Insert this element at the head of the free list */
626 if (zone
->use_page_list
) {
627 page_meta
->elements
= (struct zone_free_element
*)element
;
628 page_meta
->free_count
++;
629 if (zone
->allows_foreign
&& !from_zone_map(element
, zone
->elem_size
)) {
630 if (page_meta
->free_count
== 1) {
631 /* first foreign element freed on page, move from all_used */
632 remqueue((queue_entry_t
)page_meta
);
633 enqueue_tail(&zone
->pages
.any_free_foreign
, (queue_entry_t
)page_meta
);
635 /* no other list transitions */
637 } else if (page_meta
->free_count
== page_meta
->alloc_count
) {
638 /* whether the page was on the intermediate or all_used, queue, move it to free */
639 remqueue((queue_entry_t
)page_meta
);
640 enqueue_tail(&zone
->pages
.all_free
, (queue_entry_t
)page_meta
);
641 } else if (page_meta
->free_count
== 1) {
642 /* first free element on page, move from all_used */
643 remqueue((queue_entry_t
)page_meta
);
644 enqueue_tail(&zone
->pages
.intermediate
, (queue_entry_t
)page_meta
);
647 zone
->free_elements
= (struct zone_free_element
*)element
;
655 * Removes an element from the zone's free list, returning 0 if the free list is empty.
656 * Verifies that the next-pointer and backup next-pointer are intact,
657 * and verifies that a poisoned element hasn't been modified.
659 static inline vm_offset_t
660 try_alloc_from_zone(zone_t zone
)
663 struct zone_page_metadata
*page_meta
;
665 /* if zone is empty, bail */
666 if (zone
->use_page_list
) {
667 if (zone
->allows_foreign
&& !queue_empty(&zone
->pages
.any_free_foreign
))
668 page_meta
= (struct zone_page_metadata
*)queue_first(&zone
->pages
.any_free_foreign
);
669 else if (!queue_empty(&zone
->pages
.intermediate
))
670 page_meta
= (struct zone_page_metadata
*)queue_first(&zone
->pages
.intermediate
);
671 else if (!queue_empty(&zone
->pages
.all_free
))
672 page_meta
= (struct zone_page_metadata
*)queue_first(&zone
->pages
.all_free
);
677 /* Check if page_meta passes is_sane_zone_element */
678 if (__improbable(!is_sane_zone_page_metadata(zone
, (vm_offset_t
)page_meta
)))
679 panic("zalloc: invalid metadata structure %p for freelist of zone %s\n",
680 (void *) page_meta
, zone
->zone_name
);
681 assert(page_meta
->zone
== zone
);
682 element
= (vm_offset_t
)page_meta
->elements
;
684 if (zone
->free_elements
== NULL
)
687 element
= (vm_offset_t
)zone
->free_elements
;
691 if (__improbable(!is_sane_zone_element(zone
, element
)))
692 panic("zfree: invalid head pointer %p for freelist of zone %s\n",
693 (void *) element
, zone
->zone_name
);
696 vm_offset_t
*primary
= (vm_offset_t
*) element
;
697 vm_offset_t
*backup
= get_backup_ptr(zone
->elem_size
, primary
);
699 vm_offset_t next_element
= *primary
;
700 vm_offset_t next_element_backup
= *backup
;
703 * backup_ptr_mismatch_panic will determine what next_element
704 * should have been, and print it appropriately
706 if (__improbable(!is_sane_zone_element(zone
, next_element
)))
707 backup_ptr_mismatch_panic(zone
, next_element
, next_element_backup
);
709 /* Check the backup pointer for the regular cookie */
710 if (__improbable(next_element
!= (next_element_backup
^ zp_nopoison_cookie
))) {
712 /* Check for the poisoned cookie instead */
713 if (__improbable(next_element
!= (next_element_backup
^ zp_poisoned_cookie
)))
714 /* Neither cookie is valid, corruption has occurred */
715 backup_ptr_mismatch_panic(zone
, next_element
, next_element_backup
);
718 * Element was marked as poisoned, so check its integrity,
719 * skipping the primary and backup pointers at the beginning and end.
721 vm_offset_t
*element_cursor
= primary
+ 1;
723 for ( ; element_cursor
< backup
; element_cursor
++)
724 if (__improbable(*element_cursor
!= ZP_POISON
))
725 zone_element_was_modified_panic(zone
,
728 ((vm_offset_t
)element_cursor
) - element
);
731 if (zone
->use_page_list
) {
733 /* Make sure the page_meta is at the correct offset from the start of page */
734 if (__improbable(page_meta
!= get_zone_page_metadata((struct zone_free_element
*)element
)))
735 panic("zalloc: metadata located at incorrect location on page of zone %s\n",
738 /* Make sure next_element belongs to the same page as page_meta */
740 if (__improbable(page_meta
!= get_zone_page_metadata((struct zone_free_element
*)next_element
)))
741 panic("zalloc: next element pointer %p for element %p points to invalid element for zone %s\n",
742 (void *)next_element
, (void *)element
, zone
->zone_name
);
747 * Clear out the old next pointer and backup to avoid leaking the cookie
748 * and so that only values on the freelist have a valid cookie
750 *primary
= ZP_POISON
;
753 /* Remove this element from the free list */
754 if (zone
->use_page_list
) {
756 page_meta
->elements
= (struct zone_free_element
*)next_element
;
757 page_meta
->free_count
--;
759 if (zone
->allows_foreign
&& !from_zone_map(element
, zone
->elem_size
)) {
760 if (page_meta
->free_count
== 0) {
761 /* move to all used */
762 remqueue((queue_entry_t
)page_meta
);
763 enqueue_tail(&zone
->pages
.all_used
, (queue_entry_t
)page_meta
);
765 /* no other list transitions */
767 } else if (page_meta
->free_count
== 0) {
768 /* remove from intermediate or free, move to all_used */
769 remqueue((queue_entry_t
)page_meta
);
770 enqueue_tail(&zone
->pages
.all_used
, (queue_entry_t
)page_meta
);
771 } else if (page_meta
->alloc_count
== page_meta
->free_count
+ 1) {
772 /* remove from free, move to intermediate */
773 remqueue((queue_entry_t
)page_meta
);
774 enqueue_tail(&zone
->pages
.intermediate
, (queue_entry_t
)page_meta
);
777 zone
->free_elements
= (struct zone_free_element
*)next_element
;
788 * End of zone poisoning
792 * Fake zones for things that want to report via zprint but are not actually zones.
794 struct fake_zone_info
{
798 vm_size_t
*, vm_size_t
*, vm_size_t
*, vm_size_t
*,
799 uint64_t *, int *, int *, int *);
802 static const struct fake_zone_info fake_zones
[] = {
804 .name
= "kernel_stacks",
805 .init
= stack_fake_zone_init
,
806 .query
= stack_fake_zone_info
,
809 .name
= "page_tables",
810 .init
= pt_fake_zone_init
,
811 .query
= pt_fake_zone_info
,
814 .name
= "kalloc.large",
815 .init
= kalloc_fake_zone_init
,
816 .query
= kalloc_fake_zone_info
,
819 static const unsigned int num_fake_zones
=
820 sizeof (fake_zones
) / sizeof (fake_zones
[0]);
825 boolean_t zinfo_per_task
= FALSE
; /* enabled by -zinfop in boot-args */
826 #define ZINFO_SLOTS 200 /* for now */
827 #define ZONES_MAX (ZINFO_SLOTS - num_fake_zones - 1)
830 * Support for garbage collection of unused zone pages
832 * The kernel virtually allocates the "zone map" submap of the kernel
833 * map. When an individual zone needs more storage, memory is allocated
834 * out of the zone map, and the two-level "zone_page_table" is
835 * on-demand expanded so that it has entries for those pages.
836 * zone_page_init()/zone_page_alloc() initialize "alloc_count"
837 * to the number of zone elements that occupy the zone page (which may
838 * be a minimum of 1, including if a zone element spans multiple
841 * Asynchronously, the zone_gc() logic attempts to walk zone free
842 * lists to see if all the elements on a zone page are free. If
843 * "collect_count" (which it increments during the scan) matches
844 * "alloc_count", the zone page is a candidate for collection and the
845 * physical page is returned to the VM system. During this process, the
846 * first word of the zone page is re-used to maintain a linked list of
847 * to-be-collected zone pages.
849 typedef uint32_t zone_page_index_t
;
850 #define ZONE_PAGE_INDEX_INVALID ((zone_page_index_t)0xFFFFFFFFU)
852 struct zone_page_table_entry
{
853 volatile uint16_t alloc_count
;
854 volatile uint16_t collect_count
;
857 #define ZONE_PAGE_USED 0
858 #define ZONE_PAGE_UNUSED 0xffff
865 void zone_page_alloc(
869 void zone_page_free_element(
870 zone_page_index_t
*free_page_head
,
871 zone_page_index_t
*free_page_tail
,
875 void zone_page_collect(
879 boolean_t
zone_page_collectable(
887 void zone_display_zprint(void);
889 zone_t
zone_find_largest(void);
892 * Async allocation of zones
893 * This mechanism allows for bootstrapping an empty zone which is setup with
894 * non-blocking flags. The first call to zalloc_noblock() will kick off a thread_call
895 * to zalloc_async. We perform a zalloc() (which may block) and then an immediate free.
896 * This will prime the zone for the next use.
898 * Currently the thread_callout function (zalloc_async) will loop through all zones
899 * looking for any zone with async_pending set and do the work for it.
901 * NOTE: If the calling thread for zalloc_noblock is lower priority than thread_call,
902 * then zalloc_noblock to an empty zone may succeed.
905 thread_call_param_t p0
,
906 thread_call_param_t p1
);
908 static thread_call_data_t call_async_alloc
;
910 vm_map_t zone_map
= VM_MAP_NULL
;
912 zone_t zone_zone
= ZONE_NULL
; /* the zone containing other zones */
914 zone_t zinfo_zone
= ZONE_NULL
; /* zone of per-task zone info */
917 * The VM system gives us an initial chunk of memory.
918 * It has to be big enough to allocate the zone_zone
919 * all the way through the pmap zone.
923 vm_size_t zdata_size
;
925 #define zone_wakeup(zone) thread_wakeup((event_t)(zone))
926 #define zone_sleep(zone) \
927 (void) lck_mtx_sleep(&(zone)->lock, LCK_SLEEP_SPIN, (event_t)(zone), THREAD_UNINT);
930 * The zone_locks_grp allows for collecting lock statistics.
931 * All locks are associated to this group in zinit.
932 * Look at tools/lockstat for debugging lock contention.
935 lck_grp_t zone_locks_grp
;
936 lck_grp_attr_t zone_locks_grp_attr
;
938 #define lock_zone_init(zone) \
940 lck_attr_setdefault(&(zone)->lock_attr); \
941 lck_mtx_init_ext(&(zone)->lock, &(zone)->lock_ext, \
942 &zone_locks_grp, &(zone)->lock_attr); \
945 #define lock_try_zone(zone) lck_mtx_try_lock_spin(&zone->lock)
948 * Garbage collection map information
950 #define ZONE_PAGE_TABLE_FIRST_LEVEL_SIZE (32)
951 struct zone_page_table_entry
* volatile zone_page_table
[ZONE_PAGE_TABLE_FIRST_LEVEL_SIZE
];
952 vm_size_t zone_page_table_used_size
;
953 unsigned int zone_pages
;
954 unsigned int zone_page_table_second_level_size
; /* power of 2 */
955 unsigned int zone_page_table_second_level_shift_amount
;
957 #define zone_page_table_first_level_slot(x) ((x) >> zone_page_table_second_level_shift_amount)
958 #define zone_page_table_second_level_slot(x) ((x) & (zone_page_table_second_level_size - 1))
960 void zone_page_table_expand(zone_page_index_t pindex
);
961 struct zone_page_table_entry
*zone_page_table_lookup(zone_page_index_t pindex
);
964 * Exclude more than one concurrent garbage collection
966 decl_lck_mtx_data(, zone_gc_lock
)
968 lck_attr_t zone_gc_lck_attr
;
969 lck_grp_t zone_gc_lck_grp
;
970 lck_grp_attr_t zone_gc_lck_grp_attr
;
971 lck_mtx_ext_t zone_gc_lck_ext
;
974 * Protects first_zone, last_zone, num_zones,
975 * and the next_zone field of zones.
977 decl_simple_lock_data(, all_zones_lock
)
980 unsigned int num_zones
;
982 boolean_t zone_gc_allowed
= TRUE
;
983 boolean_t zone_gc_forced
= FALSE
;
984 boolean_t panic_include_zprint
= FALSE
;
985 boolean_t zone_gc_allowed_by_time_throttle
= TRUE
;
987 #define ZALLOC_DEBUG_ZONEGC 0x00000001
988 #define ZALLOC_DEBUG_ZCRAM 0x00000002
989 uint32_t zalloc_debug
= 0;
992 * Zone leak debugging code
994 * When enabled, this code keeps a log to track allocations to a particular zone that have not
995 * yet been freed. Examining this log will reveal the source of a zone leak. The log is allocated
996 * only when logging is enabled, so there is no effect on the system when it's turned off. Logging is
999 * Enable the logging via the boot-args. Add the parameter "zlog=<zone>" to boot-args where <zone>
1000 * is the name of the zone you wish to log.
1002 * This code only tracks one zone, so you need to identify which one is leaking first.
1003 * Generally, you'll know you have a leak when you get a "zalloc retry failed 3" panic from the zone
1004 * garbage collector. Note that the zone name printed in the panic message is not necessarily the one
1005 * containing the leak. So do a zprint from gdb and locate the zone with the bloated size. This
1006 * is most likely the problem zone, so set zlog in boot-args to this zone name, reboot and re-run the test. The
1007 * next time it panics with this message, examine the log using the kgmacros zstack, findoldest and countpcs.
1008 * See the help in the kgmacros for usage info.
1011 * Zone corruption logging
1013 * Logging can also be used to help identify the source of a zone corruption. First, identify the zone
1014 * that is being corrupted, then add "-zc zlog=<zone name>" to the boot-args. When -zc is used in conjunction
1015 * with zlog, it changes the logging style to track both allocations and frees to the zone. So when the
1016 * corruption is detected, examining the log will show you the stack traces of the callers who last allocated
1017 * and freed any particular element in the zone. Use the findelem kgmacro with the address of the element that's been
1018 * corrupted to examine its history. This should lead to the source of the corruption.
1021 static int log_records
; /* size of the log, expressed in number of records */
1023 #define MAX_ZONE_NAME 32 /* max length of a zone name we can take from the boot-args */
1025 static char zone_name_to_log
[MAX_ZONE_NAME
] = ""; /* the zone name we're logging, if any */
1027 /* Log allocations and frees to help debug a zone element corruption */
1028 boolean_t corruption_debug_flag
= FALSE
; /* enabled by "-zc" boot-arg */
1031 * The number of records in the log is configurable via the zrecs parameter in boot-args. Set this to
1032 * the number of records you want in the log. For example, "zrecs=1000" sets it to 1000 records. Note
1033 * that the larger the size of the log, the slower the system will run due to linear searching in the log,
1034 * but one doesn't generally care about performance when tracking down a leak. The log is capped at 8000
1035 * records since going much larger than this tends to make the system unresponsive and unbootable on small
1036 * memory configurations. The default value is 4000 records.
1039 #if defined(__LP64__)
1040 #define ZRECORDS_MAX 128000 /* Max records allowed in the log */
1042 #define ZRECORDS_MAX 8000 /* Max records allowed in the log */
1044 #define ZRECORDS_DEFAULT 4000 /* default records in log if zrecs is not specificed in boot-args */
1047 * Each record in the log contains a pointer to the zone element it refers to,
1048 * and a small array to hold the pc's from the stack trace. A
1049 * record is added to the log each time a zalloc() is done in the zone_of_interest. For leak debugging,
1050 * the record is cleared when a zfree() is done. For corruption debugging, the log tracks both allocs and frees.
1051 * If the log fills, old records are replaced as if it were a circular buffer.
1056 * Opcodes for the btlog operation field:
1063 * The allocation log and all the related variables are protected by the zone lock for the zone_of_interest
1065 static btlog_t
*zlog_btlog
; /* the log itself, dynamically allocated when logging is enabled */
1066 static zone_t zone_of_interest
= NULL
; /* the zone being watched; corresponds to zone_name_to_log */
1069 * Decide if we want to log this zone by doing a string compare between a zone name and the name
1070 * of the zone to log. Return true if the strings are equal, false otherwise. Because it's not
1071 * possible to include spaces in strings passed in via the boot-args, a period in the logname will
1072 * match a space in the zone name.
1076 log_this_zone(const char *zonename
, const char *logname
)
1079 const char *zc
= zonename
;
1080 const char *lc
= logname
;
1083 * Compare the strings. We bound the compare by MAX_ZONE_NAME.
1086 for (len
= 1; len
<= MAX_ZONE_NAME
; zc
++, lc
++, len
++) {
1089 * If the current characters don't match, check for a space in
1090 * in the zone name and a corresponding period in the log name.
1091 * If that's not there, then the strings don't match.
1094 if (*zc
!= *lc
&& !(*zc
== ' ' && *lc
== '.'))
1098 * The strings are equal so far. If we're at the end, then it's a match.
1110 * Test if we want to log this zalloc/zfree event. We log if this is the zone we're interested in and
1111 * the buffer for the records has been allocated.
1114 #define DO_LOGGING(z) (zlog_btlog && (z) == zone_of_interest)
1116 extern boolean_t kmem_alloc_ready
;
1120 #pragma mark Zone Leak Detection
1123 * The zone leak detector, abbreviated 'zleak', keeps track of a subset of the currently outstanding
1124 * allocations made by the zone allocator. Every zleak_sample_factor allocations in each zone, we capture a
1125 * backtrace. Every free, we examine the table and determine if the allocation was being tracked,
1126 * and stop tracking it if it was being tracked.
1128 * We track the allocations in the zallocations hash table, which stores the address that was returned from
1129 * the zone allocator. Each stored entry in the zallocations table points to an entry in the ztraces table, which
1130 * stores the backtrace associated with that allocation. This provides uniquing for the relatively large
1131 * backtraces - we don't store them more than once.
1133 * Data collection begins when the zone map is 50% full, and only occurs for zones that are taking up
1134 * a large amount of virtual space.
1136 #define ZLEAK_STATE_ENABLED 0x01 /* Zone leak monitoring should be turned on if zone_map fills up. */
1137 #define ZLEAK_STATE_ACTIVE 0x02 /* We are actively collecting traces. */
1138 #define ZLEAK_STATE_ACTIVATING 0x04 /* Some thread is doing setup; others should move along. */
1139 #define ZLEAK_STATE_FAILED 0x08 /* Attempt to allocate tables failed. We will not try again. */
1140 uint32_t zleak_state
= 0; /* State of collection, as above */
1142 boolean_t panic_include_ztrace
= FALSE
; /* Enable zleak logging on panic */
1143 vm_size_t zleak_global_tracking_threshold
; /* Size of zone map at which to start collecting data */
1144 vm_size_t zleak_per_zone_tracking_threshold
; /* Size a zone will have before we will collect data on it */
1145 unsigned int zleak_sample_factor
= 1000; /* Allocations per sample attempt */
1148 * Counters for allocation statistics.
1151 /* Times two active records want to occupy the same spot */
1152 unsigned int z_alloc_collisions
= 0;
1153 unsigned int z_trace_collisions
= 0;
1155 /* Times a new record lands on a spot previously occupied by a freed allocation */
1156 unsigned int z_alloc_overwrites
= 0;
1157 unsigned int z_trace_overwrites
= 0;
1159 /* Times a new alloc or trace is put into the hash table */
1160 unsigned int z_alloc_recorded
= 0;
1161 unsigned int z_trace_recorded
= 0;
1163 /* Times zleak_log returned false due to not being able to acquire the lock */
1164 unsigned int z_total_conflicts
= 0;
1167 #pragma mark struct zallocation
1169 * Structure for keeping track of an allocation
1170 * An allocation bucket is in use if its element is not NULL
1172 struct zallocation
{
1173 uintptr_t za_element
; /* the element that was zalloc'ed or zfree'ed, NULL if bucket unused */
1174 vm_size_t za_size
; /* how much memory did this allocation take up? */
1175 uint32_t za_trace_index
; /* index into ztraces for backtrace associated with allocation */
1176 /* TODO: #if this out */
1177 uint32_t za_hit_count
; /* for determining effectiveness of hash function */
1180 /* Size must be a power of two for the zhash to be able to just mask off bits instead of mod */
1181 uint32_t zleak_alloc_buckets
= CONFIG_ZLEAK_ALLOCATION_MAP_NUM
;
1182 uint32_t zleak_trace_buckets
= CONFIG_ZLEAK_TRACE_MAP_NUM
;
1184 vm_size_t zleak_max_zonemap_size
;
1186 /* Hashmaps of allocations and their corresponding traces */
1187 static struct zallocation
* zallocations
;
1188 static struct ztrace
* ztraces
;
1190 /* not static so that panic can see this, see kern/debug.c */
1191 struct ztrace
* top_ztrace
;
1193 /* Lock to protect zallocations, ztraces, and top_ztrace from concurrent modification. */
1194 static lck_spin_t zleak_lock
;
1195 static lck_attr_t zleak_lock_attr
;
1196 static lck_grp_t zleak_lock_grp
;
1197 static lck_grp_attr_t zleak_lock_grp_attr
;
1200 * Initializes the zone leak monitor. Called from zone_init()
1203 zleak_init(vm_size_t max_zonemap_size
)
1205 char scratch_buf
[16];
1206 boolean_t zleak_enable_flag
= FALSE
;
1208 zleak_max_zonemap_size
= max_zonemap_size
;
1209 zleak_global_tracking_threshold
= max_zonemap_size
/ 2;
1210 zleak_per_zone_tracking_threshold
= zleak_global_tracking_threshold
/ 8;
1212 /* -zleakoff (flag to disable zone leak monitor) */
1213 if (PE_parse_boot_argn("-zleakoff", scratch_buf
, sizeof(scratch_buf
))) {
1214 zleak_enable_flag
= FALSE
;
1215 printf("zone leak detection disabled\n");
1217 zleak_enable_flag
= TRUE
;
1218 printf("zone leak detection enabled\n");
1221 /* zfactor=XXXX (override how often to sample the zone allocator) */
1222 if (PE_parse_boot_argn("zfactor", &zleak_sample_factor
, sizeof(zleak_sample_factor
))) {
1223 printf("Zone leak factor override: %u\n", zleak_sample_factor
);
1226 /* zleak-allocs=XXXX (override number of buckets in zallocations) */
1227 if (PE_parse_boot_argn("zleak-allocs", &zleak_alloc_buckets
, sizeof(zleak_alloc_buckets
))) {
1228 printf("Zone leak alloc buckets override: %u\n", zleak_alloc_buckets
);
1229 /* uses 'is power of 2' trick: (0x01000 & 0x00FFF == 0) */
1230 if (zleak_alloc_buckets
== 0 || (zleak_alloc_buckets
& (zleak_alloc_buckets
-1))) {
1231 printf("Override isn't a power of two, bad things might happen!\n");
1235 /* zleak-traces=XXXX (override number of buckets in ztraces) */
1236 if (PE_parse_boot_argn("zleak-traces", &zleak_trace_buckets
, sizeof(zleak_trace_buckets
))) {
1237 printf("Zone leak trace buckets override: %u\n", zleak_trace_buckets
);
1238 /* uses 'is power of 2' trick: (0x01000 & 0x00FFF == 0) */
1239 if (zleak_trace_buckets
== 0 || (zleak_trace_buckets
& (zleak_trace_buckets
-1))) {
1240 printf("Override isn't a power of two, bad things might happen!\n");
1244 /* allocate the zleak_lock */
1245 lck_grp_attr_setdefault(&zleak_lock_grp_attr
);
1246 lck_grp_init(&zleak_lock_grp
, "zleak_lock", &zleak_lock_grp_attr
);
1247 lck_attr_setdefault(&zleak_lock_attr
);
1248 lck_spin_init(&zleak_lock
, &zleak_lock_grp
, &zleak_lock_attr
);
1250 if (zleak_enable_flag
) {
1251 zleak_state
= ZLEAK_STATE_ENABLED
;
1258 * Support for kern.zleak.active sysctl - a simplified
1259 * version of the zleak_state variable.
1262 get_zleak_state(void)
1264 if (zleak_state
& ZLEAK_STATE_FAILED
)
1266 if (zleak_state
& ZLEAK_STATE_ACTIVE
)
1275 zleak_activate(void)
1277 kern_return_t retval
;
1278 vm_size_t z_alloc_size
= zleak_alloc_buckets
* sizeof(struct zallocation
);
1279 vm_size_t z_trace_size
= zleak_trace_buckets
* sizeof(struct ztrace
);
1280 void *allocations_ptr
= NULL
;
1281 void *traces_ptr
= NULL
;
1283 /* Only one thread attempts to activate at a time */
1284 if (zleak_state
& (ZLEAK_STATE_ACTIVE
| ZLEAK_STATE_ACTIVATING
| ZLEAK_STATE_FAILED
)) {
1285 return KERN_SUCCESS
;
1288 /* Indicate that we're doing the setup */
1289 lck_spin_lock(&zleak_lock
);
1290 if (zleak_state
& (ZLEAK_STATE_ACTIVE
| ZLEAK_STATE_ACTIVATING
| ZLEAK_STATE_FAILED
)) {
1291 lck_spin_unlock(&zleak_lock
);
1292 return KERN_SUCCESS
;
1295 zleak_state
|= ZLEAK_STATE_ACTIVATING
;
1296 lck_spin_unlock(&zleak_lock
);
1298 /* Allocate and zero tables */
1299 retval
= kmem_alloc_kobject(kernel_map
, (vm_offset_t
*)&allocations_ptr
, z_alloc_size
);
1300 if (retval
!= KERN_SUCCESS
) {
1304 retval
= kmem_alloc_kobject(kernel_map
, (vm_offset_t
*)&traces_ptr
, z_trace_size
);
1305 if (retval
!= KERN_SUCCESS
) {
1309 bzero(allocations_ptr
, z_alloc_size
);
1310 bzero(traces_ptr
, z_trace_size
);
1312 /* Everything's set. Install tables, mark active. */
1313 zallocations
= allocations_ptr
;
1314 ztraces
= traces_ptr
;
1317 * Initialize the top_ztrace to the first entry in ztraces,
1318 * so we don't have to check for null in zleak_log
1320 top_ztrace
= &ztraces
[0];
1323 * Note that we do need a barrier between installing
1324 * the tables and setting the active flag, because the zfree()
1325 * path accesses the table without a lock if we're active.
1327 lck_spin_lock(&zleak_lock
);
1328 zleak_state
|= ZLEAK_STATE_ACTIVE
;
1329 zleak_state
&= ~ZLEAK_STATE_ACTIVATING
;
1330 lck_spin_unlock(&zleak_lock
);
1336 * If we fail to allocate memory, don't further tax
1337 * the system by trying again.
1339 lck_spin_lock(&zleak_lock
);
1340 zleak_state
|= ZLEAK_STATE_FAILED
;
1341 zleak_state
&= ~ZLEAK_STATE_ACTIVATING
;
1342 lck_spin_unlock(&zleak_lock
);
1344 if (allocations_ptr
!= NULL
) {
1345 kmem_free(kernel_map
, (vm_offset_t
)allocations_ptr
, z_alloc_size
);
1348 if (traces_ptr
!= NULL
) {
1349 kmem_free(kernel_map
, (vm_offset_t
)traces_ptr
, z_trace_size
);
1356 * TODO: What about allocations that never get deallocated,
1357 * especially ones with unique backtraces? Should we wait to record
1358 * until after boot has completed?
1359 * (How many persistent zallocs are there?)
1363 * This function records the allocation in the allocations table,
1364 * and stores the associated backtrace in the traces table
1365 * (or just increments the refcount if the trace is already recorded)
1366 * If the allocation slot is in use, the old allocation is replaced with the new allocation, and
1367 * the associated trace's refcount is decremented.
1368 * If the trace slot is in use, it returns.
1369 * The refcount is incremented by the amount of memory the allocation consumes.
1370 * The return value indicates whether to try again next time.
1373 zleak_log(uintptr_t* bt
,
1376 vm_size_t allocation_size
)
1378 /* Quit if there's someone else modifying the hash tables */
1379 if (!lck_spin_try_lock(&zleak_lock
)) {
1380 z_total_conflicts
++;
1384 struct zallocation
* allocation
= &zallocations
[hashaddr(addr
, zleak_alloc_buckets
)];
1386 uint32_t trace_index
= hashbacktrace(bt
, depth
, zleak_trace_buckets
);
1387 struct ztrace
* trace
= &ztraces
[trace_index
];
1389 allocation
->za_hit_count
++;
1390 trace
->zt_hit_count
++;
1393 * If the allocation bucket we want to be in is occupied, and if the occupier
1394 * has the same trace as us, just bail.
1396 if (allocation
->za_element
!= (uintptr_t) 0 && trace_index
== allocation
->za_trace_index
) {
1397 z_alloc_collisions
++;
1399 lck_spin_unlock(&zleak_lock
);
1403 /* STEP 1: Store the backtrace in the traces array. */
1404 /* A size of zero indicates that the trace bucket is free. */
1406 if (trace
->zt_size
> 0 && bcmp(trace
->zt_stack
, bt
, (depth
* sizeof(uintptr_t))) != 0 ) {
1408 * Different unique trace with same hash!
1409 * Just bail - if we're trying to record the leaker, hopefully the other trace will be deallocated
1410 * and get out of the way for later chances
1412 trace
->zt_collisions
++;
1413 z_trace_collisions
++;
1415 lck_spin_unlock(&zleak_lock
);
1417 } else if (trace
->zt_size
> 0) {
1418 /* Same trace, already added, so increment refcount */
1419 trace
->zt_size
+= allocation_size
;
1421 /* Found an unused trace bucket, record the trace here! */
1422 if (trace
->zt_depth
!= 0) /* if this slot was previously used but not currently in use */
1423 z_trace_overwrites
++;
1426 trace
->zt_size
= allocation_size
;
1427 memcpy(trace
->zt_stack
, bt
, (depth
* sizeof(uintptr_t)) );
1429 trace
->zt_depth
= depth
;
1430 trace
->zt_collisions
= 0;
1433 /* STEP 2: Store the allocation record in the allocations array. */
1435 if (allocation
->za_element
!= (uintptr_t) 0) {
1437 * Straight up replace any allocation record that was there. We don't want to do the work
1438 * to preserve the allocation entries that were there, because we only record a subset of the
1439 * allocations anyways.
1442 z_alloc_collisions
++;
1444 struct ztrace
* associated_trace
= &ztraces
[allocation
->za_trace_index
];
1445 /* Knock off old allocation's size, not the new allocation */
1446 associated_trace
->zt_size
-= allocation
->za_size
;
1447 } else if (allocation
->za_trace_index
!= 0) {
1448 /* Slot previously used but not currently in use */
1449 z_alloc_overwrites
++;
1452 allocation
->za_element
= addr
;
1453 allocation
->za_trace_index
= trace_index
;
1454 allocation
->za_size
= allocation_size
;
1458 if (top_ztrace
->zt_size
< trace
->zt_size
)
1461 lck_spin_unlock(&zleak_lock
);
1466 * Free the allocation record and release the stacktrace.
1467 * This should be as fast as possible because it will be called for every free.
1470 zleak_free(uintptr_t addr
,
1471 vm_size_t allocation_size
)
1473 if (addr
== (uintptr_t) 0)
1476 struct zallocation
* allocation
= &zallocations
[hashaddr(addr
, zleak_alloc_buckets
)];
1478 /* Double-checked locking: check to find out if we're interested, lock, check to make
1479 * sure it hasn't changed, then modify it, and release the lock.
1482 if (allocation
->za_element
== addr
&& allocation
->za_trace_index
< zleak_trace_buckets
) {
1483 /* if the allocation was the one, grab the lock, check again, then delete it */
1484 lck_spin_lock(&zleak_lock
);
1486 if (allocation
->za_element
== addr
&& allocation
->za_trace_index
< zleak_trace_buckets
) {
1487 struct ztrace
*trace
;
1489 /* allocation_size had better match what was passed into zleak_log - otherwise someone is freeing into the wrong zone! */
1490 if (allocation
->za_size
!= allocation_size
) {
1491 panic("Freeing as size %lu memory that was allocated with size %lu\n",
1492 (uintptr_t)allocation_size
, (uintptr_t)allocation
->za_size
);
1495 trace
= &ztraces
[allocation
->za_trace_index
];
1497 /* size of 0 indicates trace bucket is unused */
1498 if (trace
->zt_size
> 0) {
1499 trace
->zt_size
-= allocation_size
;
1502 /* A NULL element means the allocation bucket is unused */
1503 allocation
->za_element
= 0;
1505 lck_spin_unlock(&zleak_lock
);
1509 #endif /* CONFIG_ZLEAKS */
1511 /* These functions outside of CONFIG_ZLEAKS because they are also used in
1512 * mbuf.c for mbuf leak-detection. This is why they lack the z_ prefix.
1516 * This function captures a backtrace from the current stack and
1517 * returns the number of frames captured, limited by max_frames.
1518 * It's fast because it does no checking to make sure there isn't bad data.
1519 * Since it's only called from threads that we're going to keep executing,
1520 * if there's bad data we were going to die eventually.
1521 * If this function is inlined, it doesn't record the frame of the function it's inside.
1522 * (because there's no stack frame!)
1526 fastbacktrace(uintptr_t* bt
, uint32_t max_frames
)
1528 uintptr_t* frameptr
= NULL
, *frameptr_next
= NULL
;
1529 uintptr_t retaddr
= 0;
1530 uint32_t frame_index
= 0, frames
= 0;
1531 uintptr_t kstackb
, kstackt
;
1532 thread_t cthread
= current_thread();
1534 if (__improbable(cthread
== NULL
))
1537 kstackb
= cthread
->kernel_stack
;
1538 kstackt
= kstackb
+ kernel_stack_size
;
1539 /* Load stack frame pointer (EBP on x86) into frameptr */
1540 frameptr
= __builtin_frame_address(0);
1541 if (((uintptr_t)frameptr
> kstackt
) || ((uintptr_t)frameptr
< kstackb
))
1544 while (frameptr
!= NULL
&& frame_index
< max_frames
) {
1545 /* Next frame pointer is pointed to by the previous one */
1546 frameptr_next
= (uintptr_t*) *frameptr
;
1548 /* Bail if we see a zero in the stack frame, that means we've reached the top of the stack */
1549 /* That also means the return address is worthless, so don't record it */
1550 if (frameptr_next
== NULL
)
1552 /* Verify thread stack bounds */
1553 if (((uintptr_t)frameptr_next
> kstackt
) || ((uintptr_t)frameptr_next
< kstackb
))
1555 /* Pull return address from one spot above the frame pointer */
1556 retaddr
= *(frameptr
+ 1);
1558 /* Store it in the backtrace array */
1559 bt
[frame_index
++] = retaddr
;
1561 frameptr
= frameptr_next
;
1564 /* Save the number of frames captured for return value */
1565 frames
= frame_index
;
1567 /* Fill in the rest of the backtrace with zeros */
1568 while (frame_index
< max_frames
)
1569 bt
[frame_index
++] = 0;
1574 /* "Thomas Wang's 32/64 bit mix functions." http://www.concentric.net/~Ttwang/tech/inthash.htm */
1576 hash_mix(uintptr_t x
)
1599 hashbacktrace(uintptr_t* bt
, uint32_t depth
, uint32_t max_size
)
1603 uintptr_t mask
= max_size
- 1;
1606 hash
+= bt
[--depth
];
1609 hash
= hash_mix(hash
) & mask
;
1611 assert(hash
< max_size
);
1613 return (uint32_t) hash
;
1617 * TODO: Determine how well distributed this is
1618 * max_size must be a power of 2. i.e 0x10000 because 0x10000-1 is 0x0FFFF which is a great bitmask
1621 hashaddr(uintptr_t pt
, uint32_t max_size
)
1624 uintptr_t mask
= max_size
- 1;
1626 hash
= hash_mix(pt
) & mask
;
1628 assert(hash
< max_size
);
1630 return (uint32_t) hash
;
1633 /* End of all leak-detection code */
1637 * zinit initializes a new zone. The zone data structures themselves
1638 * are stored in a zone, which is initially a static structure that
1639 * is initialized by zone_init.
1643 vm_size_t size
, /* the size of an element */
1644 vm_size_t max
, /* maximum memory to use */
1645 vm_size_t alloc
, /* allocation size */
1646 const char *name
) /* a name for the zone */
1649 boolean_t use_page_list
= FALSE
;
1651 if (zone_zone
== ZONE_NULL
) {
1653 z
= (struct zone
*)zdata
;
1654 /* special handling in zcram() because the first element is being used */
1656 z
= (zone_t
) zalloc(zone_zone
);
1661 /* Zone elements must fit both a next pointer and a backup pointer */
1662 vm_size_t minimum_element_size
= sizeof(vm_offset_t
) * 2;
1663 if (size
< minimum_element_size
)
1664 size
= minimum_element_size
;
1667 * Round element size to a multiple of sizeof(pointer)
1668 * This also enforces that allocations will be aligned on pointer boundaries
1670 size
= ((size
-1) + sizeof(vm_offset_t
)) -
1671 ((size
-1) % sizeof(vm_offset_t
));
1676 alloc
= round_page(alloc
);
1677 max
= round_page(max
);
1680 * we look for an allocation size with less than 1% waste
1681 * up to 5 pages in size...
1682 * otherwise, we look for an allocation size with least fragmentation
1683 * in the range of 1 - 5 pages
1684 * This size will be used unless
1685 * the user suggestion is larger AND has less fragmentation
1688 /* Favor PAGE_SIZE allocations unless we waste >10% space */
1689 if ((size
< PAGE_SIZE
) && (PAGE_SIZE
% size
<= PAGE_SIZE
/ 10))
1693 #if defined(__LP64__)
1694 if (((alloc
% size
) != 0) || (alloc
> PAGE_SIZE
* 8))
1697 vm_size_t best
, waste
; unsigned int i
;
1699 waste
= best
% size
;
1701 for (i
= 1; i
<= 5; i
++) {
1702 vm_size_t tsize
, twaste
;
1704 tsize
= i
* PAGE_SIZE
;
1706 if ((tsize
% size
) < (tsize
/ 100)) {
1708 goto use_this_allocation
;
1710 twaste
= tsize
% size
;
1712 best
= tsize
, waste
= twaste
;
1714 if (alloc
<= best
|| (alloc
% size
>= waste
))
1717 use_this_allocation
:
1718 if (max
&& (max
< alloc
))
1722 * Opt into page list tracking if we can reliably map an allocation
1723 * to its page_metadata, and if the wastage in the tail of
1724 * the allocation is not too large
1726 if (alloc
== PAGE_SIZE
) {
1727 if ((PAGE_SIZE
% size
) >= sizeof(struct zone_page_metadata
)) {
1728 use_page_list
= TRUE
;
1729 } else if ((PAGE_SIZE
- sizeof(struct zone_page_metadata
)) % size
<= PAGE_SIZE
/ 100) {
1730 use_page_list
= TRUE
;
1734 z
->free_elements
= NULL
;
1735 queue_init(&z
->pages
.any_free_foreign
);
1736 queue_init(&z
->pages
.all_free
);
1737 queue_init(&z
->pages
.intermediate
);
1738 queue_init(&z
->pages
.all_used
);
1742 z
->elem_size
= size
;
1743 z
->alloc_size
= alloc
;
1744 z
->zone_name
= name
;
1748 z
->doing_alloc
= FALSE
;
1749 z
->doing_gc
= FALSE
;
1750 z
->exhaustible
= FALSE
;
1751 z
->collectable
= TRUE
;
1752 z
->allows_foreign
= FALSE
;
1753 z
->expandable
= TRUE
;
1755 z
->async_pending
= FALSE
;
1756 z
->caller_acct
= TRUE
;
1757 z
->noencrypt
= FALSE
;
1758 z
->no_callout
= FALSE
;
1759 z
->async_prio_refill
= FALSE
;
1760 z
->gzalloc_exempt
= FALSE
;
1761 z
->alignment_required
= FALSE
;
1762 z
->use_page_list
= use_page_list
;
1763 z
->prio_refill_watermark
= 0;
1764 z
->zone_replenish_thread
= NULL
;
1767 z
->zleak_capture
= 0;
1768 z
->zleak_on
= FALSE
;
1769 #endif /* CONFIG_ZLEAKS */
1772 z
->active_zones
.next
= z
->active_zones
.prev
= NULL
;
1773 zone_debug_enable(z
);
1774 #endif /* ZONE_DEBUG */
1778 * Add the zone to the all-zones list.
1779 * If we are tracking zone info per task, and we have
1780 * already used all the available stat slots, then keep
1781 * using the overflow zone slot.
1783 z
->next_zone
= ZONE_NULL
;
1784 simple_lock(&all_zones_lock
);
1786 last_zone
= &z
->next_zone
;
1787 z
->index
= num_zones
;
1788 if (zinfo_per_task
) {
1789 if (num_zones
> ZONES_MAX
)
1790 z
->index
= ZONES_MAX
;
1793 simple_unlock(&all_zones_lock
);
1796 * Check if we should be logging this zone. If so, remember the zone pointer.
1798 if (log_this_zone(z
->zone_name
, zone_name_to_log
)) {
1799 zone_of_interest
= z
;
1803 * If we want to log a zone, see if we need to allocate buffer space for the log. Some vm related zones are
1804 * zinit'ed before we can do a kmem_alloc, so we have to defer allocation in that case. kmem_alloc_ready is set to
1805 * TRUE once enough of the VM system is up and running to allow a kmem_alloc to work. If we want to log one
1806 * of the VM related zones that's set up early on, we will skip allocation of the log until zinit is called again
1807 * later on some other zone. So note we may be allocating a buffer to log a zone other than the one being initialized
1810 if (zone_of_interest
!= NULL
&& zlog_btlog
== NULL
&& kmem_alloc_ready
) {
1811 zlog_btlog
= btlog_create(log_records
, MAX_ZTRACE_DEPTH
, NULL
, NULL
, NULL
);
1813 printf("zone: logging started for zone %s\n", zone_of_interest
->zone_name
);
1815 printf("zone: couldn't allocate memory for zrecords, turning off zleak logging\n");
1816 zone_of_interest
= NULL
;
1820 gzalloc_zone_init(z
);
1824 unsigned zone_replenish_loops
, zone_replenish_wakeups
, zone_replenish_wakeups_initiated
, zone_replenish_throttle_count
;
1826 static void zone_replenish_thread(zone_t
);
1828 /* High priority VM privileged thread used to asynchronously refill a designated
1829 * zone, such as the reserved VM map entry zone.
1831 static void zone_replenish_thread(zone_t z
) {
1832 vm_size_t free_size
;
1833 current_thread()->options
|= TH_OPT_VMPRIV
;
1837 assert(z
->prio_refill_watermark
!= 0);
1838 while ((free_size
= (z
->cur_size
- (z
->count
* z
->elem_size
))) < (z
->prio_refill_watermark
* z
->elem_size
)) {
1839 assert(z
->doing_alloc
== FALSE
);
1840 assert(z
->async_prio_refill
== TRUE
);
1843 int zflags
= KMA_KOBJECT
|KMA_NOPAGEWAIT
;
1844 vm_offset_t space
, alloc_size
;
1848 alloc_size
= round_page(z
->elem_size
);
1850 alloc_size
= z
->alloc_size
;
1853 zflags
|= KMA_NOENCRYPT
;
1855 kr
= kernel_memory_allocate(zone_map
, &space
, alloc_size
, 0, zflags
);
1857 if (kr
== KERN_SUCCESS
) {
1859 if (alloc_size
== PAGE_SIZE
)
1860 space
= zone_alias_addr(space
);
1862 ZONE_PAGE_COUNT_INCR(z
, (alloc_size
/ PAGE_SIZE
));
1863 zcram(z
, space
, alloc_size
);
1864 } else if (kr
== KERN_RESOURCE_SHORTAGE
) {
1866 } else if (kr
== KERN_NO_SPACE
) {
1867 kr
= kernel_memory_allocate(kernel_map
, &space
, alloc_size
, 0, zflags
);
1868 if (kr
== KERN_SUCCESS
) {
1870 if (alloc_size
== PAGE_SIZE
)
1871 space
= zone_alias_addr(space
);
1873 zcram(z
, space
, alloc_size
);
1875 assert_wait_timeout(&z
->zone_replenish_thread
, THREAD_UNINT
, 1, 100 * NSEC_PER_USEC
);
1876 thread_block(THREAD_CONTINUE_NULL
);
1881 zone_replenish_loops
++;
1885 /* Signal any potential throttled consumers, terminating
1886 * their timer-bounded waits.
1890 assert_wait(&z
->zone_replenish_thread
, THREAD_UNINT
);
1891 thread_block(THREAD_CONTINUE_NULL
);
1892 zone_replenish_wakeups
++;
1897 zone_prio_refill_configure(zone_t z
, vm_size_t low_water_mark
) {
1898 z
->prio_refill_watermark
= low_water_mark
;
1900 z
->async_prio_refill
= TRUE
;
1902 kern_return_t tres
= kernel_thread_start_priority((thread_continue_t
)zone_replenish_thread
, z
, MAXPRI_KERNEL
, &z
->zone_replenish_thread
);
1904 if (tres
!= KERN_SUCCESS
) {
1905 panic("zone_prio_refill_configure, thread create: 0x%x", tres
);
1908 thread_deallocate(z
->zone_replenish_thread
);
1912 * Cram the given memory into the specified zone.
1920 vm_size_t elem_size
;
1921 boolean_t from_zm
= FALSE
;
1923 /* Basic sanity checks */
1924 assert(zone
!= ZONE_NULL
&& newmem
!= (vm_offset_t
)0);
1925 assert(!zone
->collectable
|| zone
->allows_foreign
1926 || (from_zone_map(newmem
, size
)));
1928 elem_size
= zone
->elem_size
;
1930 if (from_zone_map(newmem
, size
))
1933 if (zalloc_debug
& ZALLOC_DEBUG_ZCRAM
)
1934 kprintf("zcram(%p[%s], 0x%lx%s, 0x%lx)\n", zone
, zone
->zone_name
,
1935 (unsigned long)newmem
, from_zm
? "" : "[F]", (unsigned long)size
);
1937 if (from_zm
&& !zone
->use_page_list
)
1938 zone_page_init(newmem
, size
);
1942 if (zone
->use_page_list
) {
1943 struct zone_page_metadata
*page_metadata
;
1945 assert((newmem
& PAGE_MASK
) == 0);
1946 assert((size
& PAGE_MASK
) == 0);
1947 for (; size
> 0; newmem
+= PAGE_SIZE
, size
-= PAGE_SIZE
) {
1949 vm_size_t pos_in_page
;
1950 page_metadata
= (struct zone_page_metadata
*)(newmem
+ PAGE_SIZE
- sizeof(struct zone_page_metadata
));
1952 page_metadata
->pages
.next
= NULL
;
1953 page_metadata
->pages
.prev
= NULL
;
1954 page_metadata
->elements
= NULL
;
1955 page_metadata
->zone
= zone
;
1956 page_metadata
->alloc_count
= 0;
1957 page_metadata
->free_count
= 0;
1959 enqueue_tail(&zone
->pages
.all_used
, (queue_entry_t
)page_metadata
);
1961 for (pos_in_page
= 0; (newmem
+ pos_in_page
+ elem_size
) < (vm_offset_t
)page_metadata
; pos_in_page
+= elem_size
) {
1962 page_metadata
->alloc_count
++;
1963 zone
->count
++; /* compensate for free_to_zone */
1964 if ((newmem
+ pos_in_page
) == (vm_offset_t
)zone
) {
1966 * special case for the "zone_zone" zone, which is using the first
1967 * allocation of its pmap_steal_memory()-ed allocation for
1968 * the "zone_zone" variable already.
1971 free_to_zone(zone
, newmem
+ pos_in_page
);
1973 zone
->cur_size
+= elem_size
;
1977 while (size
>= elem_size
) {
1978 zone
->count
++; /* compensate for free_to_zone */
1979 if (newmem
== (vm_offset_t
)zone
) {
1980 /* Don't free zone_zone zone */
1982 free_to_zone(zone
, newmem
);
1985 zone_page_alloc(newmem
, elem_size
);
1987 newmem
+= elem_size
;
1988 zone
->cur_size
+= elem_size
;
1996 * Steal memory for the zone package. Called from
1997 * vm_page_bootstrap().
2000 zone_steal_memory(void)
2003 gzalloc_configure();
2005 /* Request enough early memory to get to the pmap zone */
2006 zdata_size
= 12 * sizeof(struct zone
);
2007 zdata_size
= round_page(zdata_size
);
2008 zdata
= (vm_offset_t
)pmap_steal_memory(zdata_size
);
2013 * Fill a zone with enough memory to contain at least nelem elements.
2014 * Memory is obtained with kmem_alloc_kobject from the kernel_map.
2015 * Return the number of elements actually put into the zone, which may
2016 * be more than the caller asked for since the memory allocation is
2017 * rounded up to a full page.
2032 size
= nelem
* zone
->elem_size
;
2033 size
= round_page(size
);
2034 kr
= kmem_alloc_kobject(kernel_map
, &memory
, size
);
2035 if (kr
!= KERN_SUCCESS
)
2038 zone_change(zone
, Z_FOREIGN
, TRUE
);
2039 ZONE_PAGE_COUNT_INCR(zone
, (size
/ PAGE_SIZE
));
2040 zcram(zone
, memory
, size
);
2041 nalloc
= (int)(size
/ zone
->elem_size
);
2042 assert(nalloc
>= nelem
);
2048 * Initialize the "zone of zones" which uses fixed memory allocated
2049 * earlier in memory initialization. zone_bootstrap is called
2053 zone_bootstrap(void)
2057 if (PE_parse_boot_argn("-zinfop", temp_buf
, sizeof(temp_buf
))) {
2058 zinfo_per_task
= TRUE
;
2061 if (!PE_parse_boot_argn("zalloc_debug", &zalloc_debug
, sizeof(zalloc_debug
)))
2064 /* Set up zone element poisoning */
2067 /* should zlog log to debug zone corruption instead of leaks? */
2068 if (PE_parse_boot_argn("-zc", temp_buf
, sizeof(temp_buf
))) {
2069 corruption_debug_flag
= TRUE
;
2073 * Check for and set up zone leak detection if requested via boot-args. We recognized two
2076 * zlog=<zone_to_log>
2077 * zrecs=<num_records_in_log>
2079 * The zlog arg is used to specify the zone name that should be logged, and zrecs is used to
2080 * control the size of the log. If zrecs is not specified, a default value is used.
2083 if (PE_parse_boot_argn("zlog", zone_name_to_log
, sizeof(zone_name_to_log
)) == TRUE
) {
2084 if (PE_parse_boot_argn("zrecs", &log_records
, sizeof(log_records
)) == TRUE
) {
2087 * Don't allow more than ZRECORDS_MAX records even if the user asked for more.
2088 * This prevents accidentally hogging too much kernel memory and making the system
2092 log_records
= MIN(ZRECORDS_MAX
, log_records
);
2095 log_records
= ZRECORDS_DEFAULT
;
2099 simple_lock_init(&all_zones_lock
, 0);
2101 first_zone
= ZONE_NULL
;
2102 last_zone
= &first_zone
;
2104 thread_call_setup(&call_async_alloc
, zalloc_async
, NULL
);
2106 /* assertion: nobody else called zinit before us */
2107 assert(zone_zone
== ZONE_NULL
);
2109 /* initializing global lock group for zones */
2110 lck_grp_attr_setdefault(&zone_locks_grp_attr
);
2111 lck_grp_init(&zone_locks_grp
, "zone_locks", &zone_locks_grp_attr
);
2113 zone_zone
= zinit(sizeof(struct zone
), 128 * sizeof(struct zone
),
2114 sizeof(struct zone
), "zones");
2115 zone_change(zone_zone
, Z_COLLECT
, FALSE
);
2116 zone_change(zone_zone
, Z_CALLERACCT
, FALSE
);
2117 zone_change(zone_zone
, Z_NOENCRYPT
, TRUE
);
2119 zcram(zone_zone
, zdata
, zdata_size
);
2121 /* initialize fake zones and zone info if tracking by task */
2122 if (zinfo_per_task
) {
2123 vm_size_t zisize
= sizeof(zinfo_usage_store_t
) * ZINFO_SLOTS
;
2126 for (i
= 0; i
< num_fake_zones
; i
++)
2127 fake_zones
[i
].init(ZINFO_SLOTS
- num_fake_zones
+ i
);
2128 zinfo_zone
= zinit(zisize
, zisize
* CONFIG_TASK_MAX
,
2129 zisize
, "per task zinfo");
2130 zone_change(zinfo_zone
, Z_CALLERACCT
, FALSE
);
2135 zinfo_task_init(task_t task
)
2137 if (zinfo_per_task
) {
2138 task
->tkm_zinfo
= zalloc(zinfo_zone
);
2139 memset(task
->tkm_zinfo
, 0, sizeof(zinfo_usage_store_t
) * ZINFO_SLOTS
);
2141 task
->tkm_zinfo
= NULL
;
2146 zinfo_task_free(task_t task
)
2148 assert(task
!= kernel_task
);
2149 if (task
->tkm_zinfo
!= NULL
) {
2150 zfree(zinfo_zone
, task
->tkm_zinfo
);
2151 task
->tkm_zinfo
= NULL
;
2155 /* Global initialization of Zone Allocator.
2156 * Runs after zone_bootstrap.
2160 vm_size_t max_zonemap_size
)
2162 kern_return_t retval
;
2163 vm_offset_t zone_min
;
2164 vm_offset_t zone_max
;
2166 retval
= kmem_suballoc(kernel_map
, &zone_min
, max_zonemap_size
,
2167 FALSE
, VM_FLAGS_ANYWHERE
| VM_FLAGS_PERMANENT
,
2170 if (retval
!= KERN_SUCCESS
)
2171 panic("zone_init: kmem_suballoc failed");
2172 zone_max
= zone_min
+ round_page(max_zonemap_size
);
2174 gzalloc_init(max_zonemap_size
);
2177 * Setup garbage collection information:
2179 zone_map_min_address
= zone_min
;
2180 zone_map_max_address
= zone_max
;
2182 zone_pages
= (unsigned int)atop_kernel(zone_max
- zone_min
);
2183 zone_page_table_used_size
= sizeof(zone_page_table
);
2185 zone_page_table_second_level_size
= 1;
2186 zone_page_table_second_level_shift_amount
= 0;
2189 * Find the power of 2 for the second level that allows
2190 * the first level to fit in ZONE_PAGE_TABLE_FIRST_LEVEL_SIZE
2193 while ((zone_page_table_first_level_slot(zone_pages
-1)) >= ZONE_PAGE_TABLE_FIRST_LEVEL_SIZE
) {
2194 zone_page_table_second_level_size
<<= 1;
2195 zone_page_table_second_level_shift_amount
++;
2198 lck_grp_attr_setdefault(&zone_gc_lck_grp_attr
);
2199 lck_grp_init(&zone_gc_lck_grp
, "zone_gc", &zone_gc_lck_grp_attr
);
2200 lck_attr_setdefault(&zone_gc_lck_attr
);
2201 lck_mtx_init_ext(&zone_gc_lock
, &zone_gc_lck_ext
, &zone_gc_lck_grp
, &zone_gc_lck_attr
);
2205 * Initialize the zone leak monitor
2207 zleak_init(max_zonemap_size
);
2208 #endif /* CONFIG_ZLEAKS */
2212 zone_page_table_expand(zone_page_index_t pindex
)
2214 unsigned int first_index
;
2215 struct zone_page_table_entry
* volatile * first_level_ptr
;
2217 assert(pindex
< zone_pages
);
2219 first_index
= zone_page_table_first_level_slot(pindex
);
2220 first_level_ptr
= &zone_page_table
[first_index
];
2222 if (*first_level_ptr
== NULL
) {
2224 * We were able to verify the old first-level slot
2225 * had NULL, so attempt to populate it.
2228 vm_offset_t second_level_array
= 0;
2229 vm_size_t second_level_size
= round_page(zone_page_table_second_level_size
* sizeof(struct zone_page_table_entry
));
2230 zone_page_index_t i
;
2231 struct zone_page_table_entry
*entry_array
;
2233 if (kmem_alloc_kobject(zone_map
, &second_level_array
,
2234 second_level_size
) != KERN_SUCCESS
) {
2235 panic("zone_page_table_expand");
2237 zone_map_table_page_count
+= (second_level_size
/ PAGE_SIZE
);
2240 * zone_gc() may scan the "zone_page_table" directly,
2241 * so make sure any slots have a valid unused state.
2243 entry_array
= (struct zone_page_table_entry
*)second_level_array
;
2244 for (i
=0; i
< zone_page_table_second_level_size
; i
++) {
2245 entry_array
[i
].alloc_count
= ZONE_PAGE_UNUSED
;
2246 entry_array
[i
].collect_count
= 0;
2249 if (OSCompareAndSwapPtr(NULL
, entry_array
, first_level_ptr
)) {
2250 /* Old slot was NULL, replaced with expanded level */
2251 OSAddAtomicLong(second_level_size
, &zone_page_table_used_size
);
2253 /* Old slot was not NULL, someone else expanded first */
2254 kmem_free(zone_map
, second_level_array
, second_level_size
);
2255 zone_map_table_page_count
-= (second_level_size
/ PAGE_SIZE
);
2258 /* Old slot was not NULL, already been expanded */
2262 struct zone_page_table_entry
*
2263 zone_page_table_lookup(zone_page_index_t pindex
)
2265 unsigned int first_index
= zone_page_table_first_level_slot(pindex
);
2266 struct zone_page_table_entry
*second_level
= zone_page_table
[first_index
];
2269 return &second_level
[zone_page_table_second_level_slot(pindex
)];
2275 extern volatile SInt32 kfree_nop_count
;
2278 #pragma mark zalloc_canblock
2281 * zalloc returns an element from the specified zone.
2288 vm_offset_t addr
= 0;
2289 kern_return_t retval
;
2290 uintptr_t zbt
[MAX_ZTRACE_DEPTH
]; /* used in zone leak logging and zone leak detection */
2292 boolean_t zone_replenish_wakeup
= FALSE
, zone_alloc_throttle
= FALSE
;
2293 #if CONFIG_GZALLOC || ZONE_DEBUG
2294 boolean_t did_gzalloc
= FALSE
;
2296 thread_t thr
= current_thread();
2299 uint32_t zleak_tracedepth
= 0; /* log this allocation if nonzero */
2300 #endif /* CONFIG_ZLEAKS */
2302 assert(zone
!= ZONE_NULL
);
2305 addr
= gzalloc_alloc(zone
, canblock
);
2306 did_gzalloc
= (addr
!= 0);
2310 * If zone logging is turned on and this is the zone we're tracking, grab a backtrace.
2312 if (__improbable(DO_LOGGING(zone
)))
2313 numsaved
= OSBacktrace((void*) zbt
, MAX_ZTRACE_DEPTH
);
2320 * Zone leak detection: capture a backtrace every zleak_sample_factor
2321 * allocations in this zone.
2323 if (zone
->zleak_on
&& (++zone
->zleak_capture
>= zleak_sample_factor
)) {
2324 zone
->zleak_capture
= 0;
2326 /* Avoid backtracing twice if zone logging is on */
2328 zleak_tracedepth
= fastbacktrace(zbt
, MAX_ZTRACE_DEPTH
);
2330 zleak_tracedepth
= numsaved
;
2332 #endif /* CONFIG_ZLEAKS */
2334 if (zone
->async_prio_refill
&& zone
->zone_replenish_thread
) {
2336 vm_size_t zfreec
= (zone
->cur_size
- (zone
->count
* zone
->elem_size
));
2337 vm_size_t zrefillwm
= zone
->prio_refill_watermark
* zone
->elem_size
;
2338 zone_replenish_wakeup
= (zfreec
< zrefillwm
);
2339 zone_alloc_throttle
= (zfreec
< (zrefillwm
/ 2)) && ((thr
->options
& TH_OPT_VMPRIV
) == 0);
2341 if (zone_replenish_wakeup
) {
2342 zone_replenish_wakeups_initiated
++;
2344 /* Signal the potentially waiting
2347 thread_wakeup(&zone
->zone_replenish_thread
);
2349 /* Scheduling latencies etc. may prevent
2350 * the refill thread from keeping up
2351 * with demand. Throttle consumers
2352 * when we fall below half the
2353 * watermark, unless VM privileged
2355 if (zone_alloc_throttle
) {
2356 zone_replenish_throttle_count
++;
2357 assert_wait_timeout(zone
, THREAD_UNINT
, 1, NSEC_PER_MSEC
);
2358 thread_block(THREAD_CONTINUE_NULL
);
2362 } while (zone_alloc_throttle
== TRUE
);
2365 if (__probable(addr
== 0))
2366 addr
= try_alloc_from_zone(zone
);
2369 while ((addr
== 0) && canblock
) {
2371 * If nothing was there, try to get more
2373 if (zone
->doing_alloc
) {
2375 * Someone is allocating memory for this zone.
2376 * Wait for it to show up, then try again.
2378 zone
->waiting
= TRUE
;
2380 } else if (zone
->doing_gc
) {
2381 /* zone_gc() is running. Since we need an element
2382 * from the free list that is currently being
2383 * collected, set the waiting bit and try to
2384 * interrupt the GC process, and try again
2385 * when we obtain the lock.
2387 zone
->waiting
= TRUE
;
2391 vm_size_t alloc_size
;
2394 if ((zone
->cur_size
+ zone
->elem_size
) >
2396 if (zone
->exhaustible
)
2398 if (zone
->expandable
) {
2400 * We're willing to overflow certain
2401 * zones, but not without complaining.
2403 * This is best used in conjunction
2404 * with the collectable flag. What we
2405 * want is an assurance we can get the
2406 * memory back, assuming there's no
2409 zone
->max_size
+= (zone
->max_size
>> 1);
2413 panic_include_zprint
= TRUE
;
2415 if (zleak_state
& ZLEAK_STATE_ACTIVE
)
2416 panic_include_ztrace
= TRUE
;
2417 #endif /* CONFIG_ZLEAKS */
2418 panic("zalloc: zone \"%s\" empty.", zone
->zone_name
);
2421 zone
->doing_alloc
= TRUE
;
2425 int zflags
= KMA_KOBJECT
|KMA_NOPAGEWAIT
;
2427 if (vm_pool_low() || retry
>= 1)
2429 round_page(zone
->elem_size
);
2431 alloc_size
= zone
->alloc_size
;
2433 if (zone
->noencrypt
)
2434 zflags
|= KMA_NOENCRYPT
;
2436 retval
= kernel_memory_allocate(zone_map
, &space
, alloc_size
, 0, zflags
);
2437 if (retval
== KERN_SUCCESS
) {
2439 if (alloc_size
== PAGE_SIZE
)
2440 space
= zone_alias_addr(space
);
2444 if ((zleak_state
& (ZLEAK_STATE_ENABLED
| ZLEAK_STATE_ACTIVE
)) == ZLEAK_STATE_ENABLED
) {
2445 if (zone_map
->size
>= zleak_global_tracking_threshold
) {
2448 kr
= zleak_activate();
2449 if (kr
!= KERN_SUCCESS
) {
2450 printf("Failed to activate live zone leak debugging (%d).\n", kr
);
2455 if ((zleak_state
& ZLEAK_STATE_ACTIVE
) && !(zone
->zleak_on
)) {
2456 if (zone
->cur_size
> zleak_per_zone_tracking_threshold
) {
2457 zone
->zleak_on
= TRUE
;
2460 #endif /* CONFIG_ZLEAKS */
2461 ZONE_PAGE_COUNT_INCR(zone
, (alloc_size
/ PAGE_SIZE
));
2462 zcram(zone
, space
, alloc_size
);
2465 } else if (retval
!= KERN_RESOURCE_SHORTAGE
) {
2470 printf("zalloc did gc\n");
2471 zone_display_zprint();
2474 panic_include_zprint
= TRUE
;
2476 if ((zleak_state
& ZLEAK_STATE_ACTIVE
)) {
2477 panic_include_ztrace
= TRUE
;
2479 #endif /* CONFIG_ZLEAKS */
2480 if (retval
== KERN_NO_SPACE
) {
2481 zone_t zone_largest
= zone_find_largest();
2482 panic("zalloc: zone map exhausted while allocating from zone %s, likely due to memory leak in zone %s (%lu total bytes, %d elements allocated)",
2483 zone
->zone_name
, zone_largest
->zone_name
,
2484 (unsigned long)zone_largest
->cur_size
, zone_largest
->count
);
2487 panic("zalloc: \"%s\" (%d elements) retry fail %d, kfree_nop_count: %d", zone
->zone_name
, zone
->count
, retval
, (int)kfree_nop_count
);
2494 zone
->doing_alloc
= FALSE
;
2495 if (zone
->waiting
) {
2496 zone
->waiting
= FALSE
;
2499 addr
= try_alloc_from_zone(zone
);
2501 retval
== KERN_RESOURCE_SHORTAGE
) {
2509 addr
= try_alloc_from_zone(zone
);
2513 /* Zone leak detection:
2514 * If we're sampling this allocation, add it to the zleaks hash table.
2516 if (addr
&& zleak_tracedepth
> 0) {
2517 /* Sampling can fail if another sample is happening at the same time in a different zone. */
2518 if (!zleak_log(zbt
, addr
, zleak_tracedepth
, zone
->elem_size
)) {
2519 /* If it failed, roll back the counter so we sample the next allocation instead. */
2520 zone
->zleak_capture
= zleak_sample_factor
;
2523 #endif /* CONFIG_ZLEAKS */
2526 if ((addr
== 0) && !canblock
&& (zone
->async_pending
== FALSE
) && (zone
->no_callout
== FALSE
) && (zone
->exhaustible
== FALSE
) && (!vm_pool_low())) {
2527 zone
->async_pending
= TRUE
;
2529 thread_call_enter(&call_async_alloc
);
2531 addr
= try_alloc_from_zone(zone
);
2535 * See if we should be logging allocations in this zone. Logging is rarely done except when a leak is
2536 * suspected, so this code rarely executes. We need to do this code while still holding the zone lock
2537 * since it protects the various log related data structures.
2540 if (__improbable(DO_LOGGING(zone
) && addr
)) {
2541 btlog_add_entry(zlog_btlog
, (void *)addr
, ZOP_ALLOC
, (void **)zbt
, numsaved
);
2545 if (!did_gzalloc
&& addr
&& zone_debug_enabled(zone
)) {
2546 enqueue_tail(&zone
->active_zones
, (queue_entry_t
)addr
);
2547 addr
+= ZONE_DEBUG_OFFSET
;
2553 TRACE_MACHLEAKS(ZALLOC_CODE
, ZALLOC_CODE_2
, zone
->elem_size
, addr
);
2557 zinfo_usage_t zinfo
;
2558 vm_size_t sz
= zone
->elem_size
;
2560 if (zone
->caller_acct
)
2561 ledger_credit(thr
->t_ledger
, task_ledgers
.tkm_private
, sz
);
2563 ledger_credit(thr
->t_ledger
, task_ledgers
.tkm_shared
, sz
);
2565 if ((task
= thr
->task
) != NULL
&& (zinfo
= task
->tkm_zinfo
) != NULL
)
2566 OSAddAtomic64(sz
, (int64_t *)&zinfo
[zone
->index
].alloc
);
2568 return((void *)addr
);
2574 register zone_t zone
)
2576 return( zalloc_canblock(zone
, TRUE
) );
2581 register zone_t zone
)
2583 return( zalloc_canblock(zone
, FALSE
) );
2588 __unused thread_call_param_t p0
,
2589 __unused thread_call_param_t p1
)
2591 zone_t current_z
= NULL
, head_z
;
2592 unsigned int max_zones
, i
;
2594 boolean_t pending
= FALSE
;
2596 simple_lock(&all_zones_lock
);
2597 head_z
= first_zone
;
2598 max_zones
= num_zones
;
2599 simple_unlock(&all_zones_lock
);
2601 for (i
= 0; i
< max_zones
; i
++) {
2602 lock_zone(current_z
);
2603 if (current_z
->async_pending
== TRUE
) {
2604 current_z
->async_pending
= FALSE
;
2607 unlock_zone(current_z
);
2609 if (pending
== TRUE
) {
2610 elt
= zalloc_canblock(current_z
, TRUE
);
2611 zfree(current_z
, elt
);
2615 * This is based on assumption that zones never get
2616 * freed once allocated and linked.
2617 * Hence a read outside of lock is OK.
2619 current_z
= current_z
->next_zone
;
2624 * zget returns an element from the specified zone
2625 * and immediately returns nothing if there is nothing there.
2627 * This form should be used when you can not block (like when
2628 * processing an interrupt).
2630 * XXX: It seems like only vm_page_grab_fictitious_common uses this, and its
2631 * friend vm_page_more_fictitious can block, so it doesn't seem like
2632 * this is used for interrupts any more....
2636 register zone_t zone
)
2641 uintptr_t zbt
[MAX_ZTRACE_DEPTH
]; /* used for zone leak detection */
2642 uint32_t zleak_tracedepth
= 0; /* log this allocation if nonzero */
2643 #endif /* CONFIG_ZLEAKS */
2645 assert( zone
!= ZONE_NULL
);
2647 if (!lock_try_zone(zone
))
2652 * Zone leak detection: capture a backtrace
2654 if (zone
->zleak_on
&& (++zone
->zleak_capture
>= zleak_sample_factor
)) {
2655 zone
->zleak_capture
= 0;
2656 zleak_tracedepth
= fastbacktrace(zbt
, MAX_ZTRACE_DEPTH
);
2658 #endif /* CONFIG_ZLEAKS */
2660 addr
= try_alloc_from_zone(zone
);
2662 if (addr
&& zone_debug_enabled(zone
)) {
2663 enqueue_tail(&zone
->active_zones
, (queue_entry_t
)addr
);
2664 addr
+= ZONE_DEBUG_OFFSET
;
2666 #endif /* ZONE_DEBUG */
2670 * Zone leak detection: record the allocation
2672 if (zone
->zleak_on
&& zleak_tracedepth
> 0 && addr
) {
2673 /* Sampling can fail if another sample is happening at the same time in a different zone. */
2674 if (!zleak_log(zbt
, addr
, zleak_tracedepth
, zone
->elem_size
)) {
2675 /* If it failed, roll back the counter so we sample the next allocation instead. */
2676 zone
->zleak_capture
= zleak_sample_factor
;
2679 #endif /* CONFIG_ZLEAKS */
2683 return((void *) addr
);
2686 /* Keep this FALSE by default. Large memory machine run orders of magnitude
2687 slower in debug mode when true. Use debugger to enable if needed */
2688 /* static */ boolean_t zone_check
= FALSE
;
2690 static void zone_check_freelist(zone_t zone
, vm_offset_t elem
)
2692 struct zone_free_element
*this;
2693 struct zone_page_metadata
*thispage
;
2695 if (zone
->use_page_list
) {
2696 if (zone
->allows_foreign
) {
2697 for (thispage
= (struct zone_page_metadata
*)queue_first(&zone
->pages
.any_free_foreign
);
2698 !queue_end(&zone
->pages
.any_free_foreign
, (queue_entry_t
)thispage
);
2699 thispage
= (struct zone_page_metadata
*)queue_next((queue_chain_t
*)thispage
)) {
2700 for (this = thispage
->elements
;
2702 this = this->next
) {
2703 if (!is_sane_zone_element(zone
, (vm_address_t
)this) || (vm_address_t
)this == elem
)
2704 panic("zone_check_freelist");
2708 for (thispage
= (struct zone_page_metadata
*)queue_first(&zone
->pages
.all_free
);
2709 !queue_end(&zone
->pages
.all_free
, (queue_entry_t
)thispage
);
2710 thispage
= (struct zone_page_metadata
*)queue_next((queue_chain_t
*)thispage
)) {
2711 for (this = thispage
->elements
;
2713 this = this->next
) {
2714 if (!is_sane_zone_element(zone
, (vm_address_t
)this) || (vm_address_t
)this == elem
)
2715 panic("zone_check_freelist");
2718 for (thispage
= (struct zone_page_metadata
*)queue_first(&zone
->pages
.intermediate
);
2719 !queue_end(&zone
->pages
.intermediate
, (queue_entry_t
)thispage
);
2720 thispage
= (struct zone_page_metadata
*)queue_next((queue_chain_t
*)thispage
)) {
2721 for (this = thispage
->elements
;
2723 this = this->next
) {
2724 if (!is_sane_zone_element(zone
, (vm_address_t
)this) || (vm_address_t
)this == elem
)
2725 panic("zone_check_freelist");
2729 for (this = zone
->free_elements
;
2731 this = this->next
) {
2732 if (!is_sane_zone_element(zone
, (vm_address_t
)this) || (vm_address_t
)this == elem
)
2733 panic("zone_check_freelist");
2738 static zone_t zone_last_bogus_zone
= ZONE_NULL
;
2739 static vm_offset_t zone_last_bogus_elem
= 0;
2743 register zone_t zone
,
2746 vm_offset_t elem
= (vm_offset_t
) addr
;
2747 uintptr_t zbt
[MAX_ZTRACE_DEPTH
]; /* only used if zone logging is enabled via boot-args */
2749 boolean_t gzfreed
= FALSE
;
2751 assert(zone
!= ZONE_NULL
);
2754 if (zone
->use_page_list
) {
2755 struct zone_page_metadata
*page_meta
= get_zone_page_metadata((struct zone_free_element
*)addr
);
2756 if (zone
!= page_meta
->zone
) {
2758 * Something bad has happened. Someone tried to zfree a pointer but the metadata says it is from
2759 * a different zone (or maybe it's from a zone that doesn't use page free lists at all). We can repair
2760 * some cases of this, if:
2761 * 1) The specified zone had use_page_list, and the true zone also has use_page_list set. In that case
2762 * we can swap the zone_t
2763 * 2) The specified zone had use_page_list, but the true zone does not. In this case page_meta is garbage,
2764 * and dereferencing page_meta->zone might panic.
2765 * To distinguish the two, we enumerate the zone list to match it up.
2766 * We do not handle the case where an incorrect zone is passed that does not have use_page_list set,
2767 * even if the true zone did have this set.
2769 zone_t fixed_zone
= NULL
;
2770 int fixed_i
, max_zones
;
2772 simple_lock(&all_zones_lock
);
2773 max_zones
= num_zones
;
2774 fixed_zone
= first_zone
;
2775 simple_unlock(&all_zones_lock
);
2777 for (fixed_i
=0; fixed_i
< max_zones
; fixed_i
++, fixed_zone
= fixed_zone
->next_zone
) {
2778 if (fixed_zone
== page_meta
->zone
&& fixed_zone
->use_page_list
) {
2779 /* we can fix this */
2780 printf("Fixing incorrect zfree from zone %s to zone %s\n", zone
->zone_name
, fixed_zone
->zone_name
);
2790 * If zone logging is turned on and this is the zone we're tracking, grab a backtrace.
2793 if (__improbable(DO_LOGGING(zone
) && corruption_debug_flag
))
2794 numsaved
= OSBacktrace((void *)zbt
, MAX_ZTRACE_DEPTH
);
2797 /* Basic sanity checks */
2798 if (zone
== ZONE_NULL
|| elem
== (vm_offset_t
)0)
2799 panic("zfree: NULL");
2800 /* zone_gc assumes zones are never freed */
2801 if (zone
== zone_zone
)
2802 panic("zfree: freeing to zone_zone breaks zone_gc!");
2806 gzfreed
= gzalloc_free(zone
, addr
);
2809 TRACE_MACHLEAKS(ZFREE_CODE
, ZFREE_CODE_2
, zone
->elem_size
, (uintptr_t)addr
);
2811 if (__improbable(!gzfreed
&& zone
->collectable
&& !zone
->allows_foreign
&&
2812 !from_zone_map(elem
, zone
->elem_size
))) {
2814 panic("zfree: non-allocated memory in collectable zone!");
2816 zone_last_bogus_zone
= zone
;
2817 zone_last_bogus_elem
= elem
;
2824 * See if we're doing logging on this zone. There are two styles of logging used depending on
2825 * whether we're trying to catch a leak or corruption. See comments above in zalloc for details.
2828 if (__improbable(DO_LOGGING(zone
))) {
2829 if (corruption_debug_flag
) {
2831 * We're logging to catch a corruption. Add a record of this zfree operation
2834 btlog_add_entry(zlog_btlog
, (void *)addr
, ZOP_FREE
, (void **)zbt
, numsaved
);
2837 * We're logging to catch a leak. Remove any record we might have for this
2838 * element since it's being freed. Note that we may not find it if the buffer
2839 * overflowed and that's OK. Since the log is of a limited size, old records
2840 * get overwritten if there are more zallocs than zfrees.
2842 btlog_remove_entries_for_element(zlog_btlog
, (void *)addr
);
2847 if (!gzfreed
&& zone_debug_enabled(zone
)) {
2850 elem
-= ZONE_DEBUG_OFFSET
;
2852 /* check the zone's consistency */
2854 for (tmp_elem
= queue_first(&zone
->active_zones
);
2855 !queue_end(tmp_elem
, &zone
->active_zones
);
2856 tmp_elem
= queue_next(tmp_elem
))
2857 if (elem
== (vm_offset_t
)tmp_elem
)
2859 if (elem
!= (vm_offset_t
)tmp_elem
)
2860 panic("zfree()ing element from wrong zone");
2862 remqueue((queue_t
) elem
);
2864 #endif /* ZONE_DEBUG */
2866 zone_check_freelist(zone
, elem
);
2869 if (__probable(!gzfreed
))
2870 free_to_zone(zone
, elem
);
2873 if (zone
->count
< 0)
2874 panic("zfree: zone count underflow in zone %s while freeing element %p, possible cause: double frees or freeing memory that did not come from this zone",
2875 zone
->zone_name
, addr
);
2881 * Zone leak detection: un-track the allocation
2883 if (zone
->zleak_on
) {
2884 zleak_free(elem
, zone
->elem_size
);
2886 #endif /* CONFIG_ZLEAKS */
2889 * If elements have one or more pages, and memory is low,
2890 * request to run the garbage collection in the zone the next
2891 * time the pageout thread runs.
2893 if (zone
->elem_size
>= PAGE_SIZE
&&
2895 zone_gc_forced
= TRUE
;
2900 thread_t thr
= current_thread();
2902 zinfo_usage_t zinfo
;
2903 vm_size_t sz
= zone
->elem_size
;
2905 if (zone
->caller_acct
)
2906 ledger_debit(thr
->t_ledger
, task_ledgers
.tkm_private
, sz
);
2908 ledger_debit(thr
->t_ledger
, task_ledgers
.tkm_shared
, sz
);
2910 if ((task
= thr
->task
) != NULL
&& (zinfo
= task
->tkm_zinfo
) != NULL
)
2911 OSAddAtomic64(sz
, (int64_t *)&zinfo
[zone
->index
].free
);
2916 /* Change a zone's flags.
2917 * This routine must be called immediately after zinit.
2925 assert( zone
!= ZONE_NULL
);
2926 assert( value
== TRUE
|| value
== FALSE
);
2930 zone
->noencrypt
= value
;
2933 zone
->exhaustible
= value
;
2936 zone
->collectable
= value
;
2939 zone
->expandable
= value
;
2942 zone
->allows_foreign
= value
;
2945 zone
->caller_acct
= value
;
2948 zone
->no_callout
= value
;
2950 case Z_GZALLOC_EXEMPT
:
2951 zone
->gzalloc_exempt
= value
;
2953 gzalloc_reconfigure(zone
);
2956 case Z_ALIGNMENT_REQUIRED
:
2957 zone
->alignment_required
= value
;
2959 zone_debug_disable(zone
);
2962 gzalloc_reconfigure(zone
);
2966 panic("Zone_change: Wrong Item Type!");
2972 * Return the expected number of free elements in the zone.
2973 * This calculation will be incorrect if items are zfree'd that
2974 * were never zalloc'd/zget'd. The correct way to stuff memory
2975 * into a zone is by zcram.
2979 zone_free_count(zone_t zone
)
2981 integer_t free_count
;
2984 free_count
= zone
->countfree
;
2987 assert(free_count
>= 0);
2993 * Zone garbage collection subroutines
2997 zone_page_collectable(
3001 struct zone_page_table_entry
*zp
;
3002 zone_page_index_t i
, j
;
3005 addr
= zone_virtual_addr(addr
);
3008 if (!from_zone_map(addr
, size
))
3009 panic("zone_page_collectable");
3012 i
= (zone_page_index_t
)atop_kernel(addr
-zone_map_min_address
);
3013 j
= (zone_page_index_t
)atop_kernel((addr
+size
-1) - zone_map_min_address
);
3015 for (; i
<= j
; i
++) {
3016 zp
= zone_page_table_lookup(i
);
3017 if (zp
->collect_count
== zp
->alloc_count
)
3029 struct zone_page_table_entry
*zp
;
3030 zone_page_index_t i
, j
;
3033 addr
= zone_virtual_addr(addr
);
3036 if (!from_zone_map(addr
, size
))
3037 panic("zone_page_keep");
3040 i
= (zone_page_index_t
)atop_kernel(addr
-zone_map_min_address
);
3041 j
= (zone_page_index_t
)atop_kernel((addr
+size
-1) - zone_map_min_address
);
3043 for (; i
<= j
; i
++) {
3044 zp
= zone_page_table_lookup(i
);
3045 zp
->collect_count
= 0;
3054 struct zone_page_table_entry
*zp
;
3055 zone_page_index_t i
, j
;
3058 addr
= zone_virtual_addr(addr
);
3061 if (!from_zone_map(addr
, size
))
3062 panic("zone_page_collect");
3065 i
= (zone_page_index_t
)atop_kernel(addr
-zone_map_min_address
);
3066 j
= (zone_page_index_t
)atop_kernel((addr
+size
-1) - zone_map_min_address
);
3068 for (; i
<= j
; i
++) {
3069 zp
= zone_page_table_lookup(i
);
3070 ++zp
->collect_count
;
3079 struct zone_page_table_entry
*zp
;
3080 zone_page_index_t i
, j
;
3083 addr
= zone_virtual_addr(addr
);
3086 if (!from_zone_map(addr
, size
))
3087 panic("zone_page_init");
3090 i
= (zone_page_index_t
)atop_kernel(addr
-zone_map_min_address
);
3091 j
= (zone_page_index_t
)atop_kernel((addr
+size
-1) - zone_map_min_address
);
3093 for (; i
<= j
; i
++) {
3094 /* make sure entry exists before marking unused */
3095 zone_page_table_expand(i
);
3097 zp
= zone_page_table_lookup(i
);
3099 zp
->alloc_count
= ZONE_PAGE_UNUSED
;
3100 zp
->collect_count
= 0;
3109 struct zone_page_table_entry
*zp
;
3110 zone_page_index_t i
, j
;
3113 addr
= zone_virtual_addr(addr
);
3116 if (!from_zone_map(addr
, size
))
3117 panic("zone_page_alloc");
3120 i
= (zone_page_index_t
)atop_kernel(addr
-zone_map_min_address
);
3121 j
= (zone_page_index_t
)atop_kernel((addr
+size
-1) - zone_map_min_address
);
3123 for (; i
<= j
; i
++) {
3124 zp
= zone_page_table_lookup(i
);
3128 * Set alloc_count to ZONE_PAGE_USED if
3129 * it was previously set to ZONE_PAGE_UNUSED.
3131 if (zp
->alloc_count
== ZONE_PAGE_UNUSED
)
3132 zp
->alloc_count
= ZONE_PAGE_USED
;
3139 zone_page_free_element(
3140 zone_page_index_t
*free_page_head
,
3141 zone_page_index_t
*free_page_tail
,
3145 struct zone_page_table_entry
*zp
;
3146 zone_page_index_t i
, j
;
3149 addr
= zone_virtual_addr(addr
);
3152 if (!from_zone_map(addr
, size
))
3153 panic("zone_page_free_element");
3156 /* Clear out the old next and backup pointers */
3157 vm_offset_t
*primary
= (vm_offset_t
*) addr
;
3158 vm_offset_t
*backup
= get_backup_ptr(size
, primary
);
3160 *primary
= ZP_POISON
;
3161 *backup
= ZP_POISON
;
3163 i
= (zone_page_index_t
)atop_kernel(addr
-zone_map_min_address
);
3164 j
= (zone_page_index_t
)atop_kernel((addr
+size
-1) - zone_map_min_address
);
3166 for (; i
<= j
; i
++) {
3167 zp
= zone_page_table_lookup(i
);
3169 if (zp
->collect_count
> 0)
3170 --zp
->collect_count
;
3171 if (--zp
->alloc_count
== 0) {
3172 vm_address_t free_page_address
;
3173 vm_address_t prev_free_page_address
;
3175 zp
->alloc_count
= ZONE_PAGE_UNUSED
;
3176 zp
->collect_count
= 0;
3180 * This element was the last one on this page, re-use the page's
3181 * storage for a page freelist
3183 free_page_address
= zone_map_min_address
+ PAGE_SIZE
* ((vm_size_t
)i
);
3184 *(zone_page_index_t
*)free_page_address
= ZONE_PAGE_INDEX_INVALID
;
3186 if (*free_page_head
== ZONE_PAGE_INDEX_INVALID
) {
3187 *free_page_head
= i
;
3188 *free_page_tail
= i
;
3190 prev_free_page_address
= zone_map_min_address
+ PAGE_SIZE
* ((vm_size_t
)(*free_page_tail
));
3191 *(zone_page_index_t
*)prev_free_page_address
= i
;
3192 *free_page_tail
= i
;
3202 uint64_t zgc_invoked
;
3203 uint64_t zgc_bailed
;
3206 uint32_t elems_collected
,
3211 /* Zone garbage collection
3213 * zone_gc will walk through all the free elements in all the
3214 * zones that are marked collectable looking for reclaimable
3215 * pages. zone_gc is called by consider_zone_gc when the system
3216 * begins to run out of memory.
3219 zone_gc(boolean_t all_zones
)
3221 unsigned int max_zones
;
3224 uint32_t old_pgs_freed
;
3225 zone_page_index_t zone_free_page_head
;
3226 zone_page_index_t zone_free_page_tail
;
3227 thread_t mythread
= current_thread();
3229 lck_mtx_lock(&zone_gc_lock
);
3231 zgc_stats
.zgc_invoked
++;
3232 old_pgs_freed
= zgc_stats
.pgs_freed
;
3234 simple_lock(&all_zones_lock
);
3235 max_zones
= num_zones
;
3237 simple_unlock(&all_zones_lock
);
3239 if (zalloc_debug
& ZALLOC_DEBUG_ZONEGC
)
3240 kprintf("zone_gc(all_zones=%s) starting...\n", all_zones
? "TRUE" : "FALSE");
3243 * it's ok to allow eager kernel preemption while
3244 * while holding a zone lock since it's taken
3245 * as a spin lock (which prevents preemption)
3247 thread_set_eager_preempt(mythread
);
3250 for (i
= 0; i
< zone_pages
; i
++) {
3251 struct zone_page_table_entry
*zp
;
3253 zp
= zone_page_table_lookup(i
);
3254 assert(!zp
|| (zp
->collect_count
== 0));
3256 #endif /* MACH_ASSERT */
3258 for (i
= 0; i
< max_zones
; i
++, z
= z
->next_zone
) {
3260 vm_size_t elt_size
, size_freed
;
3261 struct zone_free_element
*elt
, *base_elt
, *base_prev
, *prev
, *scan
, *keep
, *tail
;
3262 int kmem_frees
= 0, total_freed_pages
= 0;
3263 struct zone_page_metadata
*page_meta
;
3264 queue_head_t page_meta_head
;
3266 assert(z
!= ZONE_NULL
);
3268 if (!z
->collectable
)
3271 if (all_zones
== FALSE
&& z
->elem_size
< PAGE_SIZE
&& !z
->use_page_list
)
3276 elt_size
= z
->elem_size
;
3279 * Do a quick feasibility check before we scan the zone:
3280 * skip unless there is likelihood of getting pages back
3281 * (i.e we need a whole allocation block's worth of free
3282 * elements before we can garbage collect) and
3283 * the zone has more than 10 percent of it's elements free
3284 * or the element size is a multiple of the PAGE_SIZE
3286 if ((elt_size
& PAGE_MASK
) &&
3287 !z
->use_page_list
&&
3288 (((z
->cur_size
- z
->count
* elt_size
) <= (2 * z
->alloc_size
)) ||
3289 ((z
->cur_size
- z
->count
* elt_size
) <= (z
->cur_size
/ 10)))) {
3297 * Snatch all of the free elements away from the zone.
3300 if (z
->use_page_list
) {
3301 queue_new_head(&z
->pages
.all_free
, &page_meta_head
, struct zone_page_metadata
*, pages
);
3302 queue_init(&z
->pages
.all_free
);
3304 scan
= (void *)z
->free_elements
;
3305 z
->free_elements
= 0;
3310 if (z
->use_page_list
) {
3312 * For zones that maintain page lists (which in turn
3313 * track free elements on those pages), zone_gc()
3314 * is incredibly easy, and we bypass all the logic
3315 * for scanning elements and mapping them to
3321 queue_iterate(&page_meta_head
, page_meta
, struct zone_page_metadata
*, pages
) {
3322 assert(from_zone_map((vm_address_t
)page_meta
, sizeof(*page_meta
))); /* foreign elements should be in any_free_foreign */
3324 zgc_stats
.elems_freed
+= page_meta
->free_count
;
3325 size_freed
+= elt_size
* page_meta
->free_count
;
3326 zgc_stats
.elems_collected
+= page_meta
->free_count
;
3331 if (size_freed
> 0) {
3332 z
->cur_size
-= size_freed
;
3333 z
->countfree
-= size_freed
/elt_size
;
3336 z
->doing_gc
= FALSE
;
3344 if (queue_empty(&page_meta_head
))
3347 thread_clear_eager_preempt(mythread
);
3349 while ((page_meta
= (struct zone_page_metadata
*)dequeue_head(&page_meta_head
)) != NULL
) {
3350 vm_address_t free_page_address
;
3352 free_page_address
= trunc_page((vm_address_t
)page_meta
);
3354 free_page_address
= zone_virtual_addr(free_page_address
);
3356 kmem_free(zone_map
, free_page_address
, PAGE_SIZE
);
3357 ZONE_PAGE_COUNT_DECR(z
, 1);
3358 total_freed_pages
++;
3359 zgc_stats
.pgs_freed
+= 1;
3361 if (++kmem_frees
== 32) {
3362 thread_yield_internal(1);
3367 if (zalloc_debug
& ZALLOC_DEBUG_ZONEGC
)
3368 kprintf("zone_gc() of zone %s freed %lu elements, %d pages\n", z
->zone_name
, (unsigned long)size_freed
/elt_size
, total_freed_pages
);
3370 thread_set_eager_preempt(mythread
);
3371 continue; /* go to next zone */
3377 * Determine which elements we can attempt to collect
3378 * and count them up in the page table. Foreign elements
3379 * are returned to the zone.
3382 prev
= (void *)&scan
;
3384 n
= 0; tail
= keep
= NULL
;
3386 zone_free_page_head
= ZONE_PAGE_INDEX_INVALID
;
3387 zone_free_page_tail
= ZONE_PAGE_INDEX_INVALID
;
3390 while (elt
!= NULL
) {
3391 if (from_zone_map(elt
, elt_size
)) {
3392 zone_page_collect((vm_offset_t
)elt
, elt_size
);
3397 ++zgc_stats
.elems_collected
;
3403 append_zone_element(z
, tail
, elt
);
3407 append_zone_element(z
, prev
, elt
->next
);
3409 append_zone_element(z
, tail
, NULL
);
3413 * Dribble back the elements we are keeping.
3414 * If there are none, give some elements that we haven't looked at yet
3415 * back to the freelist so that others waiting on the zone don't get stuck
3416 * for too long. This might prevent us from recovering some memory,
3417 * but allows us to avoid having to allocate new memory to serve requests
3418 * while zone_gc has all the free memory tied up.
3419 * <rdar://problem/3893406>
3423 if (z
->waiting
== TRUE
) {
3424 /* z->waiting checked without lock held, rechecked below after locking */
3428 add_list_to_zone(z
, keep
, tail
);
3434 while ((elt
!= NULL
) && (++m
< 50)) {
3439 /* Extract the elements from the list and
3441 append_zone_element(z
, prev
, NULL
);
3442 add_list_to_zone(z
, base_elt
, prev
);
3443 append_zone_element(z
, base_prev
, elt
);
3460 * Return any remaining elements.
3466 add_list_to_zone(z
, keep
, tail
);
3479 * Determine which pages we can reclaim and
3480 * free those elements.
3485 n
= 0; tail
= keep
= NULL
;
3487 while (elt
!= NULL
) {
3488 if (zone_page_collectable((vm_offset_t
)elt
, elt_size
)) {
3489 struct zone_free_element
*next_elt
= elt
->next
;
3491 size_freed
+= elt_size
;
3494 * If this is the last allocation on the page(s),
3495 * we may use their storage to maintain the linked
3496 * list of free-able pages. So store elt->next because
3497 * "elt" may be scribbled over.
3499 zone_page_free_element(&zone_free_page_head
, &zone_free_page_tail
, (vm_offset_t
)elt
, elt_size
);
3503 ++zgc_stats
.elems_freed
;
3506 zone_page_keep((vm_offset_t
)elt
, elt_size
);
3511 append_zone_element(z
, tail
, elt
);
3516 append_zone_element(z
, tail
, NULL
);
3518 ++zgc_stats
.elems_kept
;
3522 * Dribble back the elements we are keeping,
3523 * and update the zone size info.
3529 z
->cur_size
-= size_freed
;
3530 z
->countfree
-= size_freed
/elt_size
;
3534 add_list_to_zone(z
, keep
, tail
);
3544 n
= 0; tail
= keep
= NULL
;
3549 * Return any remaining elements, and update
3550 * the zone size info.
3555 if (size_freed
> 0 || keep
!= NULL
) {
3557 z
->cur_size
-= size_freed
;
3558 z
->countfree
-= size_freed
/elt_size
;
3561 add_list_to_zone(z
, keep
, tail
);
3566 z
->doing_gc
= FALSE
;
3573 if (zone_free_page_head
== ZONE_PAGE_INDEX_INVALID
)
3577 * we don't want to allow eager kernel preemption while holding the
3578 * various locks taken in the kmem_free path of execution
3580 thread_clear_eager_preempt(mythread
);
3584 * This loop counts the number of pages that should be freed by the
3585 * next loop that tries to coalesce the kmem_frees()
3587 uint32_t pages_to_free_count
= 0;
3589 zone_page_index_t index
;
3590 for (index
= zone_free_page_head
; index
!= ZONE_PAGE_INDEX_INVALID
;) {
3591 pages_to_free_count
++;
3592 fpa
= zone_map_min_address
+ PAGE_SIZE
* ((vm_size_t
)index
);
3593 index
= *(zone_page_index_t
*)fpa
;
3597 * Reclaim the pages we are freeing.
3599 while (zone_free_page_head
!= ZONE_PAGE_INDEX_INVALID
) {
3600 zone_page_index_t zind
= zone_free_page_head
;
3601 vm_address_t free_page_address
;
3605 * Use the first word of the page about to be freed to find the next free page
3607 free_page_address
= zone_map_min_address
+ PAGE_SIZE
* ((vm_size_t
)zind
);
3608 zone_free_page_head
= *(zone_page_index_t
*)free_page_address
;
3611 total_freed_pages
++;
3613 while (zone_free_page_head
!= ZONE_PAGE_INDEX_INVALID
) {
3614 zone_page_index_t next_zind
= zone_free_page_head
;
3615 vm_address_t next_free_page_address
;
3617 next_free_page_address
= zone_map_min_address
+ PAGE_SIZE
* ((vm_size_t
)next_zind
);
3619 if (next_free_page_address
== (free_page_address
- PAGE_SIZE
)) {
3620 free_page_address
= next_free_page_address
;
3621 } else if (next_free_page_address
!= (free_page_address
+ (PAGE_SIZE
* page_count
)))
3624 zone_free_page_head
= *(zone_page_index_t
*)next_free_page_address
;
3626 total_freed_pages
++;
3628 kmem_free(zone_map
, free_page_address
, page_count
* PAGE_SIZE
);
3629 ZONE_PAGE_COUNT_DECR(z
, page_count
);
3630 zgc_stats
.pgs_freed
+= page_count
;
3631 pages_to_free_count
-= page_count
;
3633 if (++kmem_frees
== 32) {
3634 thread_yield_internal(1);
3639 /* Check that we actually free the exact number of pages we were supposed to */
3640 assert(pages_to_free_count
== 0);
3642 if (zalloc_debug
& ZALLOC_DEBUG_ZONEGC
)
3643 kprintf("zone_gc() of zone %s freed %lu elements, %d pages\n", z
->zone_name
, (unsigned long)size_freed
/elt_size
, total_freed_pages
);
3645 thread_set_eager_preempt(mythread
);
3648 if (old_pgs_freed
== zgc_stats
.pgs_freed
)
3649 zgc_stats
.zgc_bailed
++;
3651 thread_clear_eager_preempt(mythread
);
3653 lck_mtx_unlock(&zone_gc_lock
);
3657 extern vm_offset_t kmapoff_kaddr
;
3658 extern unsigned int kmapoff_pgcnt
;
3663 * Called by the pageout daemon when the system needs more free pages.
3667 consider_zone_gc(boolean_t force
)
3669 boolean_t all_zones
= FALSE
;
3671 if (kmapoff_kaddr
!= 0) {
3673 * One-time reclaim of kernel_map resources we allocated in
3676 (void) vm_deallocate(kernel_map
,
3677 kmapoff_kaddr
, kmapoff_pgcnt
* PAGE_SIZE_64
);
3681 if (zone_gc_allowed
&&
3682 (zone_gc_allowed_by_time_throttle
||
3685 if (zone_gc_allowed_by_time_throttle
== TRUE
) {
3686 zone_gc_allowed_by_time_throttle
= FALSE
;
3689 zone_gc_forced
= FALSE
;
3696 * By default, don't attempt zone GC more frequently
3697 * than once / 1 minutes.
3700 compute_zone_gc_throttle(void *arg __unused
)
3702 zone_gc_allowed_by_time_throttle
= TRUE
;
3706 #if CONFIG_TASK_ZONE_INFO
3711 mach_zone_name_array_t
*namesp
,
3712 mach_msg_type_number_t
*namesCntp
,
3713 task_zone_info_array_t
*infop
,
3714 mach_msg_type_number_t
*infoCntp
)
3716 mach_zone_name_t
*names
;
3717 vm_offset_t names_addr
;
3718 vm_size_t names_size
;
3719 task_zone_info_t
*info
;
3720 vm_offset_t info_addr
;
3721 vm_size_t info_size
;
3722 unsigned int max_zones
, i
;
3724 mach_zone_name_t
*zn
;
3725 task_zone_info_t
*zi
;
3732 if (task
== TASK_NULL
)
3733 return KERN_INVALID_TASK
;
3736 * We assume that zones aren't freed once allocated.
3737 * We won't pick up any zones that are allocated later.
3740 simple_lock(&all_zones_lock
);
3741 max_zones
= (unsigned int)(num_zones
+ num_fake_zones
);
3743 simple_unlock(&all_zones_lock
);
3745 names_size
= round_page(max_zones
* sizeof *names
);
3746 kr
= kmem_alloc_pageable(ipc_kernel_map
,
3747 &names_addr
, names_size
);
3748 if (kr
!= KERN_SUCCESS
)
3750 names
= (mach_zone_name_t
*) names_addr
;
3752 info_size
= round_page(max_zones
* sizeof *info
);
3753 kr
= kmem_alloc_pageable(ipc_kernel_map
,
3754 &info_addr
, info_size
);
3755 if (kr
!= KERN_SUCCESS
) {
3756 kmem_free(ipc_kernel_map
,
3757 names_addr
, names_size
);
3761 info
= (task_zone_info_t
*) info_addr
;
3766 for (i
= 0; i
< max_zones
- num_fake_zones
; i
++) {
3769 assert(z
!= ZONE_NULL
);
3775 simple_lock(&all_zones_lock
);
3777 simple_unlock(&all_zones_lock
);
3779 /* assuming here the name data is static */
3780 (void) strncpy(zn
->mzn_name
, zcopy
.zone_name
,
3781 sizeof zn
->mzn_name
);
3782 zn
->mzn_name
[sizeof zn
->mzn_name
- 1] = '\0';
3784 zi
->tzi_count
= (uint64_t)zcopy
.count
;
3785 zi
->tzi_cur_size
= (uint64_t)zcopy
.cur_size
;
3786 zi
->tzi_max_size
= (uint64_t)zcopy
.max_size
;
3787 zi
->tzi_elem_size
= (uint64_t)zcopy
.elem_size
;
3788 zi
->tzi_alloc_size
= (uint64_t)zcopy
.alloc_size
;
3789 zi
->tzi_sum_size
= zcopy
.sum_count
* zcopy
.elem_size
;
3790 zi
->tzi_exhaustible
= (uint64_t)zcopy
.exhaustible
;
3791 zi
->tzi_collectable
= (uint64_t)zcopy
.collectable
;
3792 zi
->tzi_caller_acct
= (uint64_t)zcopy
.caller_acct
;
3793 if (task
->tkm_zinfo
!= NULL
) {
3794 zi
->tzi_task_alloc
= task
->tkm_zinfo
[zcopy
.index
].alloc
;
3795 zi
->tzi_task_free
= task
->tkm_zinfo
[zcopy
.index
].free
;
3797 zi
->tzi_task_alloc
= 0;
3798 zi
->tzi_task_free
= 0;
3805 * loop through the fake zones and fill them using the specialized
3808 for (i
= 0; i
< num_fake_zones
; i
++) {
3809 int count
, collectable
, exhaustible
, caller_acct
, index
;
3810 vm_size_t cur_size
, max_size
, elem_size
, alloc_size
;
3813 strncpy(zn
->mzn_name
, fake_zones
[i
].name
, sizeof zn
->mzn_name
);
3814 zn
->mzn_name
[sizeof zn
->mzn_name
- 1] = '\0';
3815 fake_zones
[i
].query(&count
, &cur_size
,
3816 &max_size
, &elem_size
,
3817 &alloc_size
, &sum_size
,
3818 &collectable
, &exhaustible
, &caller_acct
);
3819 zi
->tzi_count
= (uint64_t)count
;
3820 zi
->tzi_cur_size
= (uint64_t)cur_size
;
3821 zi
->tzi_max_size
= (uint64_t)max_size
;
3822 zi
->tzi_elem_size
= (uint64_t)elem_size
;
3823 zi
->tzi_alloc_size
= (uint64_t)alloc_size
;
3824 zi
->tzi_sum_size
= sum_size
;
3825 zi
->tzi_collectable
= (uint64_t)collectable
;
3826 zi
->tzi_exhaustible
= (uint64_t)exhaustible
;
3827 zi
->tzi_caller_acct
= (uint64_t)caller_acct
;
3828 if (task
->tkm_zinfo
!= NULL
) {
3829 index
= ZINFO_SLOTS
- num_fake_zones
+ i
;
3830 zi
->tzi_task_alloc
= task
->tkm_zinfo
[index
].alloc
;
3831 zi
->tzi_task_free
= task
->tkm_zinfo
[index
].free
;
3833 zi
->tzi_task_alloc
= 0;
3834 zi
->tzi_task_free
= 0;
3840 used
= max_zones
* sizeof *names
;
3841 if (used
!= names_size
)
3842 bzero((char *) (names_addr
+ used
), names_size
- used
);
3844 kr
= vm_map_copyin(ipc_kernel_map
, (vm_map_address_t
)names_addr
,
3845 (vm_map_size_t
)names_size
, TRUE
, ©
);
3846 assert(kr
== KERN_SUCCESS
);
3848 *namesp
= (mach_zone_name_t
*) copy
;
3849 *namesCntp
= max_zones
;
3851 used
= max_zones
* sizeof *info
;
3853 if (used
!= info_size
)
3854 bzero((char *) (info_addr
+ used
), info_size
- used
);
3856 kr
= vm_map_copyin(ipc_kernel_map
, (vm_map_address_t
)info_addr
,
3857 (vm_map_size_t
)info_size
, TRUE
, ©
);
3858 assert(kr
== KERN_SUCCESS
);
3860 *infop
= (task_zone_info_t
*) copy
;
3861 *infoCntp
= max_zones
;
3863 return KERN_SUCCESS
;
3866 #else /* CONFIG_TASK_ZONE_INFO */
3870 __unused task_t task
,
3871 __unused mach_zone_name_array_t
*namesp
,
3872 __unused mach_msg_type_number_t
*namesCntp
,
3873 __unused task_zone_info_array_t
*infop
,
3874 __unused mach_msg_type_number_t
*infoCntp
)
3876 return KERN_FAILURE
;
3879 #endif /* CONFIG_TASK_ZONE_INFO */
3884 mach_zone_name_array_t
*namesp
,
3885 mach_msg_type_number_t
*namesCntp
,
3886 mach_zone_info_array_t
*infop
,
3887 mach_msg_type_number_t
*infoCntp
)
3889 mach_zone_name_t
*names
;
3890 vm_offset_t names_addr
;
3891 vm_size_t names_size
;
3892 mach_zone_info_t
*info
;
3893 vm_offset_t info_addr
;
3894 vm_size_t info_size
;
3895 unsigned int max_zones
, i
;
3897 mach_zone_name_t
*zn
;
3898 mach_zone_info_t
*zi
;
3905 if (host
== HOST_NULL
)
3906 return KERN_INVALID_HOST
;
3907 #if CONFIG_DEBUGGER_FOR_ZONE_INFO
3908 if (!PE_i_can_has_debugger(NULL
))
3909 return KERN_INVALID_HOST
;
3913 * We assume that zones aren't freed once allocated.
3914 * We won't pick up any zones that are allocated later.
3917 simple_lock(&all_zones_lock
);
3918 max_zones
= (unsigned int)(num_zones
+ num_fake_zones
);
3920 simple_unlock(&all_zones_lock
);
3922 names_size
= round_page(max_zones
* sizeof *names
);
3923 kr
= kmem_alloc_pageable(ipc_kernel_map
,
3924 &names_addr
, names_size
);
3925 if (kr
!= KERN_SUCCESS
)
3927 names
= (mach_zone_name_t
*) names_addr
;
3929 info_size
= round_page(max_zones
* sizeof *info
);
3930 kr
= kmem_alloc_pageable(ipc_kernel_map
,
3931 &info_addr
, info_size
);
3932 if (kr
!= KERN_SUCCESS
) {
3933 kmem_free(ipc_kernel_map
,
3934 names_addr
, names_size
);
3938 info
= (mach_zone_info_t
*) info_addr
;
3943 for (i
= 0; i
< max_zones
- num_fake_zones
; i
++) {
3946 assert(z
!= ZONE_NULL
);
3952 simple_lock(&all_zones_lock
);
3954 simple_unlock(&all_zones_lock
);
3956 /* assuming here the name data is static */
3957 (void) strncpy(zn
->mzn_name
, zcopy
.zone_name
,
3958 sizeof zn
->mzn_name
);
3959 zn
->mzn_name
[sizeof zn
->mzn_name
- 1] = '\0';
3961 zi
->mzi_count
= (uint64_t)zcopy
.count
;
3962 zi
->mzi_cur_size
= (uint64_t)zcopy
.cur_size
;
3963 zi
->mzi_max_size
= (uint64_t)zcopy
.max_size
;
3964 zi
->mzi_elem_size
= (uint64_t)zcopy
.elem_size
;
3965 zi
->mzi_alloc_size
= (uint64_t)zcopy
.alloc_size
;
3966 zi
->mzi_sum_size
= zcopy
.sum_count
* zcopy
.elem_size
;
3967 zi
->mzi_exhaustible
= (uint64_t)zcopy
.exhaustible
;
3968 zi
->mzi_collectable
= (uint64_t)zcopy
.collectable
;
3974 * loop through the fake zones and fill them using the specialized
3977 for (i
= 0; i
< num_fake_zones
; i
++) {
3978 int count
, collectable
, exhaustible
, caller_acct
;
3979 vm_size_t cur_size
, max_size
, elem_size
, alloc_size
;
3982 strncpy(zn
->mzn_name
, fake_zones
[i
].name
, sizeof zn
->mzn_name
);
3983 zn
->mzn_name
[sizeof zn
->mzn_name
- 1] = '\0';
3984 fake_zones
[i
].query(&count
, &cur_size
,
3985 &max_size
, &elem_size
,
3986 &alloc_size
, &sum_size
,
3987 &collectable
, &exhaustible
, &caller_acct
);
3988 zi
->mzi_count
= (uint64_t)count
;
3989 zi
->mzi_cur_size
= (uint64_t)cur_size
;
3990 zi
->mzi_max_size
= (uint64_t)max_size
;
3991 zi
->mzi_elem_size
= (uint64_t)elem_size
;
3992 zi
->mzi_alloc_size
= (uint64_t)alloc_size
;
3993 zi
->mzi_sum_size
= sum_size
;
3994 zi
->mzi_collectable
= (uint64_t)collectable
;
3995 zi
->mzi_exhaustible
= (uint64_t)exhaustible
;
4001 used
= max_zones
* sizeof *names
;
4002 if (used
!= names_size
)
4003 bzero((char *) (names_addr
+ used
), names_size
- used
);
4005 kr
= vm_map_copyin(ipc_kernel_map
, (vm_map_address_t
)names_addr
,
4006 (vm_map_size_t
)names_size
, TRUE
, ©
);
4007 assert(kr
== KERN_SUCCESS
);
4009 *namesp
= (mach_zone_name_t
*) copy
;
4010 *namesCntp
= max_zones
;
4012 used
= max_zones
* sizeof *info
;
4014 if (used
!= info_size
)
4015 bzero((char *) (info_addr
+ used
), info_size
- used
);
4017 kr
= vm_map_copyin(ipc_kernel_map
, (vm_map_address_t
)info_addr
,
4018 (vm_map_size_t
)info_size
, TRUE
, ©
);
4019 assert(kr
== KERN_SUCCESS
);
4021 *infop
= (mach_zone_info_t
*) copy
;
4022 *infoCntp
= max_zones
;
4024 return KERN_SUCCESS
;
4028 * host_zone_info - LEGACY user interface for Mach zone information
4029 * Should use mach_zone_info() instead!
4034 zone_name_array_t
*namesp
,
4035 mach_msg_type_number_t
*namesCntp
,
4036 zone_info_array_t
*infop
,
4037 mach_msg_type_number_t
*infoCntp
)
4040 vm_offset_t names_addr
;
4041 vm_size_t names_size
;
4043 vm_offset_t info_addr
;
4044 vm_size_t info_size
;
4045 unsigned int max_zones
, i
;
4055 if (host
== HOST_NULL
)
4056 return KERN_INVALID_HOST
;
4057 #if CONFIG_DEBUGGER_FOR_ZONE_INFO
4058 if (!PE_i_can_has_debugger(NULL
))
4059 return KERN_INVALID_HOST
;
4062 #if defined(__LP64__)
4063 if (!thread_is_64bit(current_thread()))
4064 return KERN_NOT_SUPPORTED
;
4066 if (thread_is_64bit(current_thread()))
4067 return KERN_NOT_SUPPORTED
;
4071 * We assume that zones aren't freed once allocated.
4072 * We won't pick up any zones that are allocated later.
4075 simple_lock(&all_zones_lock
);
4076 max_zones
= (unsigned int)(num_zones
+ num_fake_zones
);
4078 simple_unlock(&all_zones_lock
);
4080 names_size
= round_page(max_zones
* sizeof *names
);
4081 kr
= kmem_alloc_pageable(ipc_kernel_map
,
4082 &names_addr
, names_size
);
4083 if (kr
!= KERN_SUCCESS
)
4085 names
= (zone_name_t
*) names_addr
;
4087 info_size
= round_page(max_zones
* sizeof *info
);
4088 kr
= kmem_alloc_pageable(ipc_kernel_map
,
4089 &info_addr
, info_size
);
4090 if (kr
!= KERN_SUCCESS
) {
4091 kmem_free(ipc_kernel_map
,
4092 names_addr
, names_size
);
4096 info
= (zone_info_t
*) info_addr
;
4101 for (i
= 0; i
< max_zones
- num_fake_zones
; i
++) {
4104 assert(z
!= ZONE_NULL
);
4110 simple_lock(&all_zones_lock
);
4112 simple_unlock(&all_zones_lock
);
4114 /* assuming here the name data is static */
4115 (void) strncpy(zn
->zn_name
, zcopy
.zone_name
,
4116 sizeof zn
->zn_name
);
4117 zn
->zn_name
[sizeof zn
->zn_name
- 1] = '\0';
4119 zi
->zi_count
= zcopy
.count
;
4120 zi
->zi_cur_size
= zcopy
.cur_size
;
4121 zi
->zi_max_size
= zcopy
.max_size
;
4122 zi
->zi_elem_size
= zcopy
.elem_size
;
4123 zi
->zi_alloc_size
= zcopy
.alloc_size
;
4124 zi
->zi_exhaustible
= zcopy
.exhaustible
;
4125 zi
->zi_collectable
= zcopy
.collectable
;
4132 * loop through the fake zones and fill them using the specialized
4135 for (i
= 0; i
< num_fake_zones
; i
++) {
4138 strncpy(zn
->zn_name
, fake_zones
[i
].name
, sizeof zn
->zn_name
);
4139 zn
->zn_name
[sizeof zn
->zn_name
- 1] = '\0';
4140 fake_zones
[i
].query(&zi
->zi_count
, &zi
->zi_cur_size
,
4141 &zi
->zi_max_size
, &zi
->zi_elem_size
,
4142 &zi
->zi_alloc_size
, &sum_space
,
4143 &zi
->zi_collectable
, &zi
->zi_exhaustible
, &caller_acct
);
4148 used
= max_zones
* sizeof *names
;
4149 if (used
!= names_size
)
4150 bzero((char *) (names_addr
+ used
), names_size
- used
);
4152 kr
= vm_map_copyin(ipc_kernel_map
, (vm_map_address_t
)names_addr
,
4153 (vm_map_size_t
)names_size
, TRUE
, ©
);
4154 assert(kr
== KERN_SUCCESS
);
4156 *namesp
= (zone_name_t
*) copy
;
4157 *namesCntp
= max_zones
;
4159 used
= max_zones
* sizeof *info
;
4160 if (used
!= info_size
)
4161 bzero((char *) (info_addr
+ used
), info_size
- used
);
4163 kr
= vm_map_copyin(ipc_kernel_map
, (vm_map_address_t
)info_addr
,
4164 (vm_map_size_t
)info_size
, TRUE
, ©
);
4165 assert(kr
== KERN_SUCCESS
);
4167 *infop
= (zone_info_t
*) copy
;
4168 *infoCntp
= max_zones
;
4170 return KERN_SUCCESS
;
4178 if (host
== HOST_NULL
)
4179 return KERN_INVALID_HOST
;
4181 consider_zone_gc(TRUE
);
4183 return (KERN_SUCCESS
);
4186 extern unsigned int stack_total
;
4187 extern unsigned long long stack_allocs
;
4189 #if defined(__i386__) || defined (__x86_64__)
4190 extern unsigned int inuse_ptepages_count
;
4191 extern long long alloc_ptepages_count
;
4194 void zone_display_zprint()
4199 if(first_zone
!=NULL
) {
4200 the_zone
= first_zone
;
4201 for (i
= 0; i
< num_zones
; i
++) {
4202 if(the_zone
->cur_size
> (1024*1024)) {
4203 printf("%.20s:\t%lu\n",the_zone
->zone_name
,(uintptr_t)the_zone
->cur_size
);
4206 if(the_zone
->next_zone
== NULL
) {
4210 the_zone
= the_zone
->next_zone
;
4214 printf("Kernel Stacks:\t%lu\n",(uintptr_t)(kernel_stack_size
* stack_total
));
4216 #if defined(__i386__) || defined (__x86_64__)
4217 printf("PageTables:\t%lu\n",(uintptr_t)(PAGE_SIZE
* inuse_ptepages_count
));
4220 printf("Kalloc.Large:\t%lu\n",(uintptr_t)kalloc_large_total
);
4224 zone_find_largest(void)
4227 unsigned int max_zones
;
4229 zone_t zone_largest
;
4231 simple_lock(&all_zones_lock
);
4232 the_zone
= first_zone
;
4233 max_zones
= num_zones
;
4234 simple_unlock(&all_zones_lock
);
4236 zone_largest
= the_zone
;
4237 for (i
= 0; i
< max_zones
; i
++) {
4238 if (the_zone
->cur_size
> zone_largest
->cur_size
) {
4239 zone_largest
= the_zone
;
4242 if (the_zone
->next_zone
== NULL
) {
4246 the_zone
= the_zone
->next_zone
;
4248 return zone_largest
;
4253 /* should we care about locks here ? */
4255 #define zone_in_use(z) ( z->count || z->free_elements \
4256 || !queue_empty(&z->pages.all_free) \
4257 || !queue_empty(&z->pages.intermediate) \
4258 || (z->allows_foreign && !queue_empty(&z->pages.any_free_foreign)))
4264 if (zone_debug_enabled(z
) || zone_in_use(z
) ||
4265 z
->alloc_size
< (z
->elem_size
+ ZONE_DEBUG_OFFSET
))
4267 queue_init(&z
->active_zones
);
4268 z
->elem_size
+= ZONE_DEBUG_OFFSET
;
4275 if (!zone_debug_enabled(z
) || zone_in_use(z
))
4277 z
->elem_size
-= ZONE_DEBUG_OFFSET
;
4278 z
->active_zones
.next
= z
->active_zones
.prev
= NULL
;
4282 #endif /* ZONE_DEBUG */