]> git.saurik.com Git - apple/xnu.git/blob - osfmk/i386/db_interface.c
xnu-792.21.3.tar.gz
[apple/xnu.git] / osfmk / i386 / db_interface.c
1 /*
2 * Copyright (c) 2000 Apple Computer, Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*
29 * @OSF_COPYRIGHT@
30 */
31 /*
32 * Mach Operating System
33 * Copyright (c) 1991,1990 Carnegie Mellon University
34 * All Rights Reserved.
35 *
36 * Permission to use, copy, modify and distribute this software and its
37 * documentation is hereby granted, provided that both the copyright
38 * notice and this permission notice appear in all copies of the
39 * software, derivative works or modified versions, and any portions
40 * thereof, and that both notices appear in supporting documentation.
41 *
42 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
43 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
44 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
45 *
46 * Carnegie Mellon requests users of this software to return to
47 *
48 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
49 * School of Computer Science
50 * Carnegie Mellon University
51 * Pittsburgh PA 15213-3890
52 *
53 * any improvements or extensions that they make and grant Carnegie Mellon
54 * the rights to redistribute these changes.
55 */
56 /*
57 */
58
59 /*
60 * Interface to new debugger.
61 */
62 #include <platforms.h>
63 #include <time_stamp.h>
64 #include <mach_mp_debug.h>
65 #include <mach_ldebug.h>
66 #include <kern/spl.h>
67 #include <kern/cpu_number.h>
68 #include <kern/kern_types.h>
69 #include <kern/misc_protos.h>
70 #include <vm/pmap.h>
71
72 #include <i386/thread.h>
73 #include <i386/db_machdep.h>
74 #include <i386/seg.h>
75 #include <i386/trap.h>
76 #include <i386/setjmp.h>
77 #include <i386/pmap.h>
78 #include <i386/misc_protos.h>
79
80 #include <mach/vm_param.h>
81 #include <vm/vm_map.h>
82 #include <kern/thread.h>
83 #include <kern/task.h>
84
85 #include <ddb/db_command.h>
86 #include <ddb/db_task_thread.h>
87 #include <ddb/db_run.h>
88 #include <ddb/db_trap.h>
89 #include <ddb/db_output.h>
90 #include <ddb/db_access.h>
91 #include <ddb/db_sym.h>
92 #include <ddb/db_break.h>
93 #include <ddb/db_watch.h>
94
95 int db_active = 0;
96 struct i386_saved_state *i386_last_saved_statep;
97 struct i386_saved_state i386_nested_saved_state;
98 unsigned i386_last_kdb_sp;
99
100 extern thread_t db_default_act;
101 extern pt_entry_t *DMAP1;
102 extern caddr_t DADDR1;
103
104 #if MACH_MP_DEBUG
105 extern int masked_state_cnt[];
106 #endif /* MACH_MP_DEBUG */
107
108 /*
109 * Enter KDB through a keyboard trap.
110 * We show the registers as of the keyboard interrupt
111 * instead of those at its call to KDB.
112 */
113 struct int_regs {
114 int gs;
115 int fs;
116 int edi;
117 int esi;
118 int ebp;
119 int ebx;
120 struct i386_interrupt_state *is;
121 };
122
123 extern char * trap_type[];
124 extern int TRAP_TYPES;
125
126 /* Forward */
127
128 extern void kdbprinttrap(
129 int type,
130 int code,
131 int *pc,
132 int sp);
133 extern void kdb_kentry(
134 struct int_regs *int_regs);
135 extern int db_user_to_kernel_address(
136 task_t task,
137 vm_offset_t addr,
138 unsigned *kaddr,
139 int flag);
140 extern void db_write_bytes_user_space(
141 vm_offset_t addr,
142 int size,
143 char *data,
144 task_t task);
145 extern int db_search_null(
146 task_t task,
147 unsigned *svaddr,
148 unsigned evaddr,
149 unsigned *skaddr,
150 int flag);
151 extern int kdb_enter(int);
152 extern void kdb_leave(void);
153 extern void lock_kdb(void);
154 extern void unlock_kdb(void);
155
156 /*
157 * kdb_trap - field a TRACE or BPT trap
158 */
159
160
161 extern jmp_buf_t *db_recover;
162
163 /*
164 * Translate the state saved in a task state segment into an
165 * exception frame. Since we "know" we always want the state
166 * in a ktss, we hard-wire that in, rather than indexing the gdt
167 * with tss_sel to derive a pointer to the desired tss.
168 */
169 void
170 db_tss_to_frame(
171 int tss_sel,
172 struct i386_saved_state *regs)
173 {
174 extern struct i386_tss ktss;
175 int mycpu = cpu_number();
176 struct i386_tss *tss;
177
178 tss = cpu_datap(mycpu)->cpu_desc_index.cdi_ktss; /* XXX */
179
180 /*
181 * ddb will overwrite whatever's in esp, so put esp0 elsewhere, too.
182 */
183 regs->esp = tss->esp0;
184 regs->efl = tss->eflags;
185 regs->eip = tss->eip;
186 regs->trapno = tss->ss0; /* XXX */
187 regs->err = tss->esp0; /* XXX */
188 regs->eax = tss->eax;
189 regs->ecx = tss->ecx;
190 regs->edx = tss->edx;
191 regs->ebx = tss->ebx;
192 regs->uesp = tss->esp;
193 regs->ebp = tss->ebp;
194 regs->esi = tss->esi;
195 regs->edi = tss->edi;
196 regs->es = tss->es;
197 regs->ss = tss->ss;
198 regs->cs = tss->cs;
199 regs->ds = tss->ds;
200 regs->fs = tss->fs;
201 regs->gs = tss->gs;
202 }
203
204 /*
205 * Compose a call to the debugger from the saved state in regs. (No
206 * reason not to do this in C.)
207 */
208 boolean_t
209 db_trap_from_asm(
210 struct i386_saved_state *regs)
211 {
212 int code;
213 int type;
214
215 type = regs->trapno;
216 code = regs->err;
217 return (kdb_trap(type, code, regs));
218 }
219
220 int
221 kdb_trap(
222 int type,
223 int code,
224 struct i386_saved_state *regs)
225 {
226 extern char etext;
227 boolean_t trap_from_user;
228 spl_t s = splhigh();
229
230 switch (type) {
231 case T_DEBUG: /* single_step */
232 {
233 extern int dr_addr[];
234 int addr;
235 int status = dr6();
236
237 if (status & 0xf) { /* hmm hdw break */
238 addr = status & 0x8 ? dr_addr[3] :
239 status & 0x4 ? dr_addr[2] :
240 status & 0x2 ? dr_addr[1] :
241 dr_addr[0];
242 regs->efl |= EFL_RF;
243 db_single_step_cmd(addr, 0, 1, "p");
244 }
245 }
246 case T_INT3: /* breakpoint */
247 case T_WATCHPOINT: /* watchpoint */
248 case -1: /* keyboard interrupt */
249 break;
250
251 default:
252 if (db_recover) {
253 i386_nested_saved_state = *regs;
254 db_printf("Caught ");
255 if (type < 0 || type > TRAP_TYPES)
256 db_printf("type %d", type);
257 else
258 db_printf("%s", trap_type[type]);
259 db_printf(" trap, code = %x, pc = %x\n",
260 code, regs->eip);
261 splx(s);
262 db_error("");
263 /*NOTREACHED*/
264 }
265 kdbprinttrap(type, code, (int *)&regs->eip, regs->uesp);
266 }
267
268 disable_preemption();
269
270 current_cpu_datap()->cpu_kdb_saved_ipl = s;
271 current_cpu_datap()->cpu_kdb_saved_state = regs;
272
273 i386_last_saved_statep = regs;
274 i386_last_kdb_sp = (unsigned) &type;
275
276 if (!kdb_enter(regs->eip))
277 goto kdb_exit;
278
279 /* Should switch to kdb's own stack here. */
280
281 if (!IS_USER_TRAP(regs, &etext)) {
282 bzero((char *)&ddb_regs, sizeof (ddb_regs));
283 *(struct i386_saved_state_from_kernel *)&ddb_regs =
284 *(struct i386_saved_state_from_kernel *)regs;
285 trap_from_user = FALSE;
286 }
287 else {
288 ddb_regs = *regs;
289 trap_from_user = TRUE;
290 }
291 if (!trap_from_user) {
292 /*
293 * Kernel mode - esp and ss not saved
294 */
295 ddb_regs.uesp = (int)&regs->uesp; /* kernel stack pointer */
296 ddb_regs.ss = KERNEL_DS;
297 }
298
299 db_active++;
300 db_task_trap(type, code, trap_from_user);
301 db_active--;
302
303 regs->eip = ddb_regs.eip;
304 regs->efl = ddb_regs.efl;
305 regs->eax = ddb_regs.eax;
306 regs->ecx = ddb_regs.ecx;
307 regs->edx = ddb_regs.edx;
308 regs->ebx = ddb_regs.ebx;
309 if (trap_from_user) {
310 /*
311 * user mode - saved esp and ss valid
312 */
313 regs->uesp = ddb_regs.uesp; /* user stack pointer */
314 regs->ss = ddb_regs.ss & 0xffff; /* user stack segment */
315 }
316 regs->ebp = ddb_regs.ebp;
317 regs->esi = ddb_regs.esi;
318 regs->edi = ddb_regs.edi;
319 regs->es = ddb_regs.es & 0xffff;
320 regs->cs = ddb_regs.cs & 0xffff;
321 regs->ds = ddb_regs.ds & 0xffff;
322 regs->fs = ddb_regs.fs & 0xffff;
323 regs->gs = ddb_regs.gs & 0xffff;
324
325 if ((type == T_INT3) &&
326 (db_get_task_value(regs->eip,
327 BKPT_SIZE,
328 FALSE,
329 db_target_space(current_thread(),
330 trap_from_user))
331 == BKPT_INST))
332 regs->eip += BKPT_SIZE;
333
334 kdb_exit:
335 kdb_leave();
336
337 current_cpu_datap()->cpu_kdb_saved_state = 0;
338
339 #if MACH_MP_DEBUG
340 current_cpu_datap()->cpu_masked_state_cnt = 0;
341 #endif /* MACH_MP_DEBUG */
342
343 enable_preemption();
344
345 splx(s);
346
347 /* Allow continue to upper layers of exception handling if
348 * trap was not a debugging trap.
349 */
350
351 if (trap_from_user && type != T_DEBUG && type != T_INT3
352 && type != T_WATCHPOINT)
353 return 0;
354 else
355 return (1);
356 }
357
358 /*
359 * Enter KDB through a keyboard trap.
360 * We show the registers as of the keyboard interrupt
361 * instead of those at its call to KDB.
362 */
363
364 spl_t kdb_oldspl;
365
366 void
367 kdb_kentry(
368 struct int_regs *int_regs)
369 {
370 extern char etext;
371 boolean_t trap_from_user;
372 struct i386_interrupt_state *is = int_regs->is;
373 struct i386_saved_state regs;
374 spl_t s;
375
376 s = splhigh();
377 kdb_oldspl = s;
378
379 if (IS_USER_TRAP(is, &etext))
380 {
381 regs.uesp = ((int *)(is+1))[0];
382 regs.ss = ((int *)(is+1))[1];
383 }
384 else {
385 regs.ss = KERNEL_DS;
386 regs.uesp= (int)(is+1);
387 }
388 regs.efl = is->efl;
389 regs.cs = is->cs;
390 regs.eip = is->eip;
391 regs.eax = is->eax;
392 regs.ecx = is->ecx;
393 regs.edx = is->edx;
394 regs.ebx = int_regs->ebx;
395 regs.ebp = int_regs->ebp;
396 regs.esi = int_regs->esi;
397 regs.edi = int_regs->edi;
398 regs.ds = is->ds;
399 regs.es = is->es;
400 regs.fs = int_regs->fs;
401 regs.gs = int_regs->gs;
402
403 disable_preemption();
404
405 current_cpu_datap()->cpu_kdb_saved_state = &regs;
406
407 if (!kdb_enter(regs.eip))
408 goto kdb_exit;
409
410 bcopy((char *)&regs, (char *)&ddb_regs, sizeof (ddb_regs));
411 trap_from_user = IS_USER_TRAP(&ddb_regs, &etext);
412
413 db_active++;
414 db_task_trap(-1, 0, trap_from_user);
415 db_active--;
416
417 if (trap_from_user) {
418 ((int *)(is+1))[0] = ddb_regs.uesp;
419 ((int *)(is+1))[1] = ddb_regs.ss & 0xffff;
420 }
421 is->efl = ddb_regs.efl;
422 is->cs = ddb_regs.cs & 0xffff;
423 is->eip = ddb_regs.eip;
424 is->eax = ddb_regs.eax;
425 is->ecx = ddb_regs.ecx;
426 is->edx = ddb_regs.edx;
427 int_regs->ebx = ddb_regs.ebx;
428 int_regs->ebp = ddb_regs.ebp;
429 int_regs->esi = ddb_regs.esi;
430 int_regs->edi = ddb_regs.edi;
431 is->ds = ddb_regs.ds & 0xffff;
432 is->es = ddb_regs.es & 0xffff;
433 int_regs->fs = ddb_regs.fs & 0xffff;
434 int_regs->gs = ddb_regs.gs & 0xffff;
435
436 kdb_exit:
437 kdb_leave();
438 current_cpu_datap()->cpu_kdb_saved_state = 0;
439
440 enable_preemption();
441
442 splx(s);
443 }
444
445 /*
446 * Print trap reason.
447 */
448
449 void
450 kdbprinttrap(
451 int type,
452 int code,
453 int *pc,
454 int sp)
455 {
456 printf("kernel: ");
457 if (type < 0 || type > TRAP_TYPES)
458 db_printf("type %d", type);
459 else
460 db_printf("%s", trap_type[type]);
461 db_printf(" trap, code=%x eip@%x = %x esp=%x\n",
462 code, pc, *(int *)pc, sp);
463 db_run_mode = STEP_CONTINUE;
464 }
465
466 int
467 db_user_to_kernel_address(
468 task_t task,
469 vm_offset_t addr,
470 unsigned *kaddr,
471 int flag)
472 {
473 register pt_entry_t *ptp;
474
475 ptp = pmap_pte(task->map->pmap, addr);
476 if (ptp == PT_ENTRY_NULL || (*ptp & INTEL_PTE_VALID) == 0) {
477 if (flag) {
478 db_printf("\nno memory is assigned to address %08x\n", addr);
479 db_error(0);
480 /* NOTREACHED */
481 }
482 return(-1);
483 }
484
485 src = (vm_offset_t)pte_to_pa(*ptp);
486 *(int *) DMAP1 = INTEL_PTE_VALID | INTEL_PTE_RW | (src & PG_FRAME) |
487 INTEL_PTE_REF | INTEL_PTE_MOD;
488 #if defined(I386_CPU)
489 if (cpu_class == CPUCLASS_386) {
490 invltlb();
491 } else
492 #endif
493 {
494 invlpg((u_int)DADDR1);
495 }
496
497 *kaddr = (unsigned)DADDR1 + (addr & PAGE_MASK);
498
499 return(0);
500 }
501
502 /*
503 * Read bytes from kernel address space for debugger.
504 */
505
506 void
507 db_read_bytes(
508 vm_offset_t addr,
509 int size,
510 char *data,
511 task_t task)
512 {
513 register char *src;
514 register int n;
515 unsigned kern_addr;
516
517 src = (char *)addr;
518 if (task == kernel_task || task == TASK_NULL) {
519 while (--size >= 0) {
520 if (addr++ > VM_MAX_KERNEL_ADDRESS) {
521 db_printf("\nbad address %x\n", addr);
522 db_error(0);
523 /* NOTREACHED */
524 }
525 *data++ = *src++;
526 }
527 return;
528 }
529 while (size > 0) {
530 if (db_user_to_kernel_address(task, addr, &kern_addr, 1) < 0)
531 return;
532 src = (char *)kern_addr;
533 n = intel_trunc_page(addr+INTEL_PGBYTES) - addr;
534 if (n > size)
535 n = size;
536 size -= n;
537 addr += n;
538 while (--n >= 0)
539 *data++ = *src++;
540 }
541 }
542
543 /*
544 * Write bytes to kernel address space for debugger.
545 */
546
547 void
548 db_write_bytes(
549 vm_offset_t addr,
550 int size,
551 char *data,
552 task_t task)
553 {
554 register char *dst;
555
556 register pt_entry_t *ptep0 = 0;
557 pt_entry_t oldmap0 = 0;
558 vm_offset_t addr1;
559 register pt_entry_t *ptep1 = 0;
560 pt_entry_t oldmap1 = 0;
561 extern char etext;
562
563 if (task && task != kernel_task) {
564 db_write_bytes_user_space(addr, size, data, task);
565 return;
566 }
567
568
569 if (addr >= VM_MIN_KERNEL_LOADED_ADDRESS) {
570 db_write_bytes_user_space(addr, size, data, kernel_task);
571 return;
572 }
573
574 if (addr >= VM_MIN_KERNEL_ADDRESS &&
575 addr <= (vm_offset_t)&etext)
576 {
577 ptep0 = pmap_pte(kernel_pmap, addr);
578 oldmap0 = *ptep0;
579 *ptep0 |= INTEL_PTE_WRITE;
580
581 addr1 = i386_trunc_page(addr + size - 1);
582 if (i386_trunc_page(addr) != addr1) {
583 /* data crosses a page boundary */
584
585 ptep1 = pmap_pte(kernel_pmap, addr1);
586 oldmap1 = *ptep1;
587 *ptep1 |= INTEL_PTE_WRITE;
588 }
589 flush_tlb();
590 }
591
592 dst = (char *)addr;
593
594 while (--size >= 0) {
595 if (addr++ > VM_MAX_KERNEL_ADDRESS) {
596 db_printf("\nbad address %x\n", addr);
597 db_error(0);
598 /* NOTREACHED */
599 }
600 *dst++ = *data++;
601 }
602
603 if (ptep0) {
604 *ptep0 = oldmap0;
605 if (ptep1) {
606 *ptep1 = oldmap1;
607 }
608 flush_tlb();
609 }
610 }
611
612 void
613 db_write_bytes_user_space(
614 vm_offset_t addr,
615 int size,
616 char *data,
617 task_t task)
618 {
619 register char *dst;
620 register int n;
621 unsigned kern_addr;
622
623 while (size > 0) {
624 if (db_user_to_kernel_address(task, addr, &kern_addr, 1) < 0)
625 return;
626 dst = (char *)kern_addr;
627 n = intel_trunc_page(addr+INTEL_PGBYTES) - addr;
628 if (n > size)
629 n = size;
630 size -= n;
631 addr += n;
632 while (--n >= 0)
633 *dst++ = *data++;
634 }
635 }
636
637 boolean_t
638 db_check_access(
639 vm_offset_t addr,
640 int size,
641 task_t task)
642 {
643 register n;
644 unsigned kern_addr;
645
646 if (task == kernel_task || task == TASK_NULL) {
647 if (kernel_task == TASK_NULL)
648 return(TRUE);
649 task = kernel_task;
650 } else if (task == TASK_NULL) {
651 if (current_thread() == THREAD_NULL)
652 return(FALSE);
653 task = current_thread()->task;
654 }
655 while (size > 0) {
656 if (db_user_to_kernel_address(task, addr, &kern_addr, 0) < 0)
657 return(FALSE);
658 n = intel_trunc_page(addr+INTEL_PGBYTES) - addr;
659 if (n > size)
660 n = size;
661 size -= n;
662 addr += n;
663 }
664 return(TRUE);
665 }
666
667 boolean_t
668 db_phys_eq(
669 task_t task1,
670 vm_offset_t addr1,
671 task_t task2,
672 vm_offset_t addr2)
673 {
674 unsigned kern_addr1, kern_addr2;
675
676 if ((addr1 & (INTEL_PGBYTES-1)) != (addr2 & (INTEL_PGBYTES-1)))
677 return(FALSE);
678 if (task1 == TASK_NULL) {
679 if (current_thread() == THREAD_NULL)
680 return(FALSE);
681 task1 = current_thread()->task;
682 }
683 if (db_user_to_kernel_address(task1, addr1, &kern_addr1, 0) < 0 ||
684 db_user_to_kernel_address(task2, addr2, &kern_addr2, 0) < 0)
685 return(FALSE);
686 return(kern_addr1 == kern_addr2);
687 }
688
689 #define DB_USER_STACK_ADDR (VM_MIN_KERNEL_ADDRESS)
690 #define DB_NAME_SEARCH_LIMIT (DB_USER_STACK_ADDR-(INTEL_PGBYTES*3))
691
692 int
693 db_search_null(
694 task_t task,
695 unsigned *svaddr,
696 unsigned evaddr,
697 unsigned *skaddr,
698 int flag)
699 {
700 register unsigned vaddr;
701 register unsigned *kaddr;
702
703 kaddr = (unsigned *)*skaddr;
704 for (vaddr = *svaddr; vaddr > evaddr; vaddr -= sizeof(unsigned)) {
705 if (vaddr % INTEL_PGBYTES == 0) {
706 vaddr -= sizeof(unsigned);
707 if (db_user_to_kernel_address(task, vaddr, skaddr, 0) < 0)
708 return(-1);
709 kaddr = (unsigned *)*skaddr;
710 } else {
711 vaddr -= sizeof(unsigned);
712 kaddr--;
713 }
714 if ((*kaddr == 0) ^ (flag == 0)) {
715 *svaddr = vaddr;
716 *skaddr = (unsigned)kaddr;
717 return(0);
718 }
719 }
720 return(-1);
721 }
722
723 void
724 db_task_name(
725 task_t task)
726 {
727 register char *p;
728 register n;
729 unsigned vaddr, kaddr;
730
731 vaddr = DB_USER_STACK_ADDR;
732 kaddr = 0;
733
734 /*
735 * skip nulls at the end
736 */
737 if (db_search_null(task, &vaddr, DB_NAME_SEARCH_LIMIT, &kaddr, 0) < 0) {
738 db_printf(DB_NULL_TASK_NAME);
739 return;
740 }
741 /*
742 * search start of args
743 */
744 if (db_search_null(task, &vaddr, DB_NAME_SEARCH_LIMIT, &kaddr, 1) < 0) {
745 db_printf(DB_NULL_TASK_NAME);
746 return;
747 }
748
749 n = DB_TASK_NAME_LEN-1;
750 p = (char *)kaddr + sizeof(unsigned);
751 for (vaddr += sizeof(int); vaddr < DB_USER_STACK_ADDR && n > 0;
752 vaddr++, p++, n--) {
753 if (vaddr % INTEL_PGBYTES == 0) {
754 (void)db_user_to_kernel_address(task, vaddr, &kaddr, 0);
755 p = (char*)kaddr;
756 }
757 db_printf("%c", (*p < ' ' || *p > '~')? ' ': *p);
758 }
759 while (n-- >= 0) /* compare with >= 0 for one more space */
760 db_printf(" ");
761 }
762
763 /*
764 * Code used to synchronize kdb among all cpus, one active at a time, switch
765 * from on to another using kdb_on! #cpu or cpu #cpu
766 */
767
768 decl_simple_lock_data(, kdb_lock) /* kdb lock */
769
770 #define db_simple_lock_init(l, e) hw_lock_init(&((l)->interlock))
771 #define db_simple_lock_try(l) hw_lock_try(&((l)->interlock))
772 #define db_simple_unlock(l) hw_lock_unlock(&((l)->interlock))
773
774 int kdb_cpu = -1; /* current cpu running kdb */
775 int kdb_debug = 0;
776 volatile unsigned int cpus_holding_bkpts; /* counter for number of cpus holding
777 breakpoints (ie: cpus that did not
778 insert back breakpoints) */
779 extern boolean_t db_breakpoints_inserted;
780
781 void
782 db_machdep_init(void)
783 {
784 int c;
785
786 db_simple_lock_init(&kdb_lock, 0);
787 for (c = 0; c < real_ncpus; ++c) {
788 db_stacks[c] = (vm_offset_t) (db_stack_store +
789 (INTSTACK_SIZE * (c + 1)) - sizeof (natural_t));
790 if (c == master_cpu) {
791 dbtss.esp0 = (int)(db_task_stack_store +
792 (INTSTACK_SIZE * (c + 1)) - sizeof (natural_t));
793 dbtss.esp = dbtss.esp0;
794 dbtss.eip = (int)&db_task_start;
795 /*
796 * The TSS for the debugging task on each slave CPU
797 * is set up in mp_desc_init().
798 */
799 }
800 }
801 }
802
803 /*
804 * Called when entering kdb:
805 * Takes kdb lock. If if we were called remotely (slave state) we just
806 * wait for kdb_cpu to be equal to cpu_number(). Otherwise enter kdb if
807 * not active on another cpu.
808 * If db_pass_thru[cpu_number()] > 0, then kdb can't stop now.
809 */
810
811 int
812 kdb_enter(int pc)
813 {
814 int mycpu;
815 int retval;
816
817 disable_preemption();
818
819 mycpu = cpu_number();
820
821 if (current_cpu_datap()->cpu_db_pass_thru) {
822 retval = 0;
823 goto kdb_exit;
824 }
825
826 current_cpu_datap()->cpu_kdb_active++;
827 lock_kdb();
828
829 if (kdb_debug)
830 db_printf("kdb_enter: cpu %d, is_slave %d, kdb_cpu %d, run mode %d pc %x (%x) holds %d\n",
831 my_cpu, current_cpu_datap()->cpu_kdb_is_slave, kdb_cpu,
832 db_run_mode, pc, *(int *)pc, cpus_holding_bkpts);
833 if (db_breakpoints_inserted)
834 cpus_holding_bkpts++;
835 if (kdb_cpu == -1 && !current_cpu_datap()->cpu_kdb_is_slave) {
836 kdb_cpu = my_cpu;
837 remote_kdb(); /* stop other cpus */
838 retval = 1;
839 } else if (kdb_cpu == my_cpu)
840 retval = 1;
841 else
842 retval = 0;
843
844 kdb_exit:
845 enable_preemption();
846
847 return (retval);
848 }
849
850 void
851 kdb_leave(void)
852 {
853 int my_cpu;
854 boolean_t wait = FALSE;
855
856 disable_preemption();
857
858 my_cpu = cpu_number();
859
860 if (db_run_mode == STEP_CONTINUE) {
861 wait = TRUE;
862 kdb_cpu = -1;
863 }
864 if (db_breakpoints_inserted)
865 cpus_holding_bkpts--;
866 if (current_cpu_datap()->cpu_kdb_is_slave)
867 current_cpu_datap()->cpu_kdb_is_slave--;
868 if (kdb_debug)
869 db_printf("kdb_leave: cpu %d, kdb_cpu %d, run_mode %d pc %x (%x) holds %d\n",
870 my_cpu, kdb_cpu, db_run_mode,
871 ddb_regs.eip, *(int *)ddb_regs.eip,
872 cpus_holding_bkpts);
873 clear_kdb_intr();
874 unlock_kdb();
875 current_cpu_datap()->cpu_kdb_active--;
876
877 enable_preemption();
878
879 if (wait) {
880 while(cpus_holding_bkpts);
881 }
882 }
883
884 void
885 lock_kdb(void)
886 {
887 int my_cpu;
888 register i;
889 extern void kdb_console(void);
890
891 disable_preemption();
892
893 my_cpu = cpu_number();
894
895 for(;;) {
896 kdb_console();
897 if (kdb_cpu != -1 && kdb_cpu != my_cpu) {
898 continue;
899 }
900 if (db_simple_lock_try(&kdb_lock)) {
901 if (kdb_cpu == -1 || kdb_cpu == my_cpu)
902 break;
903 db_simple_unlock(&kdb_lock);
904 }
905 }
906
907 enable_preemption();
908 }
909
910 #if TIME_STAMP
911 extern unsigned old_time_stamp;
912 #endif /* TIME_STAMP */
913
914 void
915 unlock_kdb(void)
916 {
917 db_simple_unlock(&kdb_lock);
918 #if TIME_STAMP
919 old_time_stamp = 0;
920 #endif /* TIME_STAMP */
921 }
922
923
924 #ifdef __STDC__
925 #define KDB_SAVE(type, name) extern type name; type name##_save = name
926 #define KDB_RESTORE(name) name = name##_save
927 #else /* __STDC__ */
928 #define KDB_SAVE(type, name) extern type name; type name/**/_save = name
929 #define KDB_RESTORE(name) name = name/**/_save
930 #endif /* __STDC__ */
931
932 #define KDB_SAVE_CTXT() \
933 KDB_SAVE(int, db_run_mode); \
934 KDB_SAVE(boolean_t, db_sstep_print); \
935 KDB_SAVE(int, db_loop_count); \
936 KDB_SAVE(int, db_call_depth); \
937 KDB_SAVE(int, db_inst_count); \
938 KDB_SAVE(int, db_last_inst_count); \
939 KDB_SAVE(int, db_load_count); \
940 KDB_SAVE(int, db_store_count); \
941 KDB_SAVE(boolean_t, db_cmd_loop_done); \
942 KDB_SAVE(jmp_buf_t *, db_recover); \
943 KDB_SAVE(db_addr_t, db_dot); \
944 KDB_SAVE(db_addr_t, db_last_addr); \
945 KDB_SAVE(db_addr_t, db_prev); \
946 KDB_SAVE(db_addr_t, db_next); \
947 KDB_SAVE(db_regs_t, ddb_regs);
948
949 #define KDB_RESTORE_CTXT() \
950 KDB_RESTORE(db_run_mode); \
951 KDB_RESTORE(db_sstep_print); \
952 KDB_RESTORE(db_loop_count); \
953 KDB_RESTORE(db_call_depth); \
954 KDB_RESTORE(db_inst_count); \
955 KDB_RESTORE(db_last_inst_count); \
956 KDB_RESTORE(db_load_count); \
957 KDB_RESTORE(db_store_count); \
958 KDB_RESTORE(db_cmd_loop_done); \
959 KDB_RESTORE(db_recover); \
960 KDB_RESTORE(db_dot); \
961 KDB_RESTORE(db_last_addr); \
962 KDB_RESTORE(db_prev); \
963 KDB_RESTORE(db_next); \
964 KDB_RESTORE(ddb_regs);
965
966 /*
967 * switch to another cpu
968 */
969
970 void
971 kdb_on(
972 int cpu)
973 {
974 KDB_SAVE_CTXT();
975 if (cpu < 0 || cpu >= real_ncpus || !cpu_datap(cpu)->cpu_kdb_active)
976 return;
977 db_set_breakpoints();
978 db_set_watchpoints();
979 kdb_cpu = cpu;
980 unlock_kdb();
981 lock_kdb();
982 db_clear_breakpoints();
983 db_clear_watchpoints();
984 KDB_RESTORE_CTXT();
985 if (kdb_cpu == -1) {/* someone continued */
986 kdb_cpu = cpu_number();
987 db_continue_cmd(0, 0, 0, "");
988 }
989 }
990
991 void db_reboot(
992 db_expr_t addr,
993 boolean_t have_addr,
994 db_expr_t count,
995 char *modif)
996 {
997 boolean_t reboot = TRUE;
998 char *cp, c;
999
1000 cp = modif;
1001 while ((c = *cp++) != 0) {
1002 if (c == 'r') /* reboot */
1003 reboot = TRUE;
1004 if (c == 'h') /* halt */
1005 reboot = FALSE;
1006 }
1007 halt_all_cpus(reboot);
1008 }