]> git.saurik.com Git - apple/xnu.git/blob - bsd/kern/kern_event.c
xnu-792.21.3.tar.gz
[apple/xnu.git] / bsd / kern / kern_event.c
1 /*
2 * Copyright (c) 2000-2005 Apple Computer, Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 *
28 */
29 /*-
30 * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon@FreeBSD.org>
31 * All rights reserved.
32 *
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
35 * are met:
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
41 *
42 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
43 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
44 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
45 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
46 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
47 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
48 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
49 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
50 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
51 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
52 * SUCH DAMAGE.
53 */
54 /*
55 * @(#)kern_event.c 1.0 (3/31/2000)
56 */
57 #include <stdint.h>
58
59 #include <sys/param.h>
60 #include <sys/systm.h>
61 #include <sys/filedesc.h>
62 #include <sys/kernel.h>
63 #include <sys/proc_internal.h>
64 #include <sys/kauth.h>
65 #include <sys/malloc.h>
66 #include <sys/unistd.h>
67 #include <sys/file_internal.h>
68 #include <sys/fcntl.h>
69 #include <sys/select.h>
70 #include <sys/queue.h>
71 #include <sys/event.h>
72 #include <sys/eventvar.h>
73 #include <sys/protosw.h>
74 #include <sys/socket.h>
75 #include <sys/socketvar.h>
76 #include <sys/stat.h>
77 #include <sys/sysctl.h>
78 #include <sys/uio.h>
79 #include <sys/sysproto.h>
80 #include <sys/user.h>
81 #include <string.h>
82
83 #include <kern/lock.h>
84 #include <kern/clock.h>
85 #include <kern/thread_call.h>
86 #include <kern/sched_prim.h>
87 #include <kern/zalloc.h>
88 #include <kern/assert.h>
89
90 #include <libkern/libkern.h>
91
92 extern void unix_syscall_return(int);
93
94 MALLOC_DEFINE(M_KQUEUE, "kqueue", "memory for kqueue system");
95
96 static inline void kqlock(struct kqueue *kq);
97 static inline void kqunlock(struct kqueue *kq);
98
99 static int kqlock2knoteuse(struct kqueue *kq, struct knote *kn);
100 static int kqlock2knoteusewait(struct kqueue *kq, struct knote *kn);
101 static int kqlock2knotedrop(struct kqueue *kq, struct knote *kn);
102 static int knoteuse2kqlock(struct kqueue *kq, struct knote *kn);
103
104 static void kqueue_wakeup(struct kqueue *kq);
105 static int kqueue_read(struct fileproc *fp, struct uio *uio,
106 kauth_cred_t cred, int flags, struct proc *p);
107 static int kqueue_write(struct fileproc *fp, struct uio *uio,
108 kauth_cred_t cred, int flags, struct proc *p);
109 static int kqueue_ioctl(struct fileproc *fp, u_long com, caddr_t data,
110 struct proc *p);
111 static int kqueue_select(struct fileproc *fp, int which, void *wql,
112 struct proc *p);
113 static int kqueue_close(struct fileglob *fp, struct proc *p);
114 static int kqueue_kqfilter(struct fileproc *fp, struct knote *kn, struct proc *p);
115 extern int kqueue_stat(struct fileproc *fp, struct stat *st, struct proc *p);
116
117 static struct fileops kqueueops = {
118 kqueue_read,
119 kqueue_write,
120 kqueue_ioctl,
121 kqueue_select,
122 kqueue_close,
123 kqueue_kqfilter,
124 0
125 };
126
127 static int kevent_copyin(user_addr_t *addrp, struct kevent *kevp, struct proc *p);
128 static int kevent_copyout(struct kevent *kevp, user_addr_t *addrp, struct proc *p);
129
130 static int kevent_callback(struct kqueue *kq, struct kevent *kevp, void *data);
131 static void kevent_continue(struct kqueue *kq, void *data, int error);
132 static void kevent_scan_continue(void *contp, wait_result_t wait_result);
133 static int kevent_process(struct kqueue *kq, kevent_callback_t callback,
134 void *data, int *countp, struct proc *p);
135 static void knote_put(struct knote *kn);
136 static int knote_fdpattach(struct knote *kn, struct filedesc *fdp, struct proc *p);
137 static void knote_drop(struct knote *kn, struct proc *p);
138 static void knote_activate(struct knote *kn);
139 static void knote_deactivate(struct knote *kn);
140 static void knote_enqueue(struct knote *kn);
141 static void knote_dequeue(struct knote *kn);
142 static struct knote *knote_alloc(void);
143 static void knote_free(struct knote *kn);
144 extern void knote_init(void);
145
146 static int filt_fileattach(struct knote *kn);
147 static struct filterops file_filtops =
148 { 1, filt_fileattach, NULL, NULL };
149
150 static void filt_kqdetach(struct knote *kn);
151 static int filt_kqueue(struct knote *kn, long hint);
152 static struct filterops kqread_filtops =
153 { 1, NULL, filt_kqdetach, filt_kqueue };
154
155 /*
156 * placeholder for not-yet-implemented filters
157 */
158 static int filt_badattach(struct knote *kn);
159 static struct filterops bad_filtops =
160 { 0, filt_badattach, 0 , 0 };
161
162 static int filt_procattach(struct knote *kn);
163 static void filt_procdetach(struct knote *kn);
164 static int filt_proc(struct knote *kn, long hint);
165
166 static struct filterops proc_filtops =
167 { 0, filt_procattach, filt_procdetach, filt_proc };
168
169 extern struct filterops fs_filtops;
170
171 extern struct filterops sig_filtops;
172
173
174 /* Timer filter */
175 static int filt_timercompute(struct knote *kn, uint64_t *abs_time);
176 static void filt_timerexpire(void *knx, void *param1);
177 static int filt_timerattach(struct knote *kn);
178 static void filt_timerdetach(struct knote *kn);
179 static int filt_timer(struct knote *kn, long hint);
180
181 static struct filterops timer_filtops =
182 { 0, filt_timerattach, filt_timerdetach, filt_timer };
183
184 /* to avoid arming timers that fire quicker than we can handle */
185 static uint64_t filt_timerfloor = 0;
186
187 static lck_mtx_t _filt_timerlock;
188 static void filt_timerlock(void);
189 static void filt_timerunlock(void);
190
191 /*
192 * Sentinel marker for a thread scanning through the list of
193 * active knotes.
194 */
195 static struct filterops threadmarker_filtops =
196 { 0, filt_badattach, 0, 0 };
197
198 static zone_t knote_zone;
199
200 #define KN_HASHSIZE 64 /* XXX should be tunable */
201 #define KN_HASH(val, mask) (((val) ^ (val >> 8)) & (mask))
202
203 #if 0
204 extern struct filterops aio_filtops;
205 #endif
206
207 /*
208 * Table for for all system-defined filters.
209 */
210 static struct filterops *sysfilt_ops[] = {
211 &file_filtops, /* EVFILT_READ */
212 &file_filtops, /* EVFILT_WRITE */
213 #if 0
214 &aio_filtops, /* EVFILT_AIO */
215 #else
216 &bad_filtops, /* EVFILT_AIO */
217 #endif
218 &file_filtops, /* EVFILT_VNODE */
219 &proc_filtops, /* EVFILT_PROC */
220 &sig_filtops, /* EVFILT_SIGNAL */
221 &timer_filtops, /* EVFILT_TIMER */
222 &bad_filtops, /* EVFILT_MACHPORT */
223 &fs_filtops /* EVFILT_FS */
224 };
225
226 /*
227 * kqueue/note lock attributes and implementations
228 *
229 * kqueues have locks, while knotes have use counts
230 * Most of the knote state is guarded by the object lock.
231 * the knote "inuse" count and status use the kqueue lock.
232 */
233 lck_grp_attr_t * kq_lck_grp_attr;
234 lck_grp_t * kq_lck_grp;
235 lck_attr_t * kq_lck_attr;
236
237 static inline void
238 kqlock(struct kqueue *kq)
239 {
240 lck_spin_lock(&kq->kq_lock);
241 }
242
243 static inline void
244 kqunlock(struct kqueue *kq)
245 {
246 lck_spin_unlock(&kq->kq_lock);
247 }
248
249 /*
250 * Convert a kq lock to a knote use referece.
251 *
252 * If the knote is being dropped, we can't get
253 * a use reference, so just return with it
254 * still locked.
255 *
256 * - kq locked at entry
257 * - unlock on exit if we get the use reference
258 */
259 static int
260 kqlock2knoteuse(struct kqueue *kq, struct knote *kn)
261 {
262 if (kn->kn_status & KN_DROPPING)
263 return 0;
264 kn->kn_inuse++;
265 kqunlock(kq);
266 return 1;
267 }
268
269 /*
270 * Convert a kq lock to a knote use referece.
271 *
272 * If the knote is being dropped, we can't get
273 * a use reference, so just return with it
274 * still locked.
275 *
276 * - kq locked at entry
277 * - kq always unlocked on exit
278 */
279 static int
280 kqlock2knoteusewait(struct kqueue *kq, struct knote *kn)
281 {
282 if (!kqlock2knoteuse(kq, kn)) {
283 kn->kn_status |= KN_DROPWAIT;
284 assert_wait(&kn->kn_status, THREAD_UNINT);
285 kqunlock(kq);
286 thread_block(THREAD_CONTINUE_NULL);
287 return 0;
288 }
289 return 1;
290 }
291
292 /*
293 * Convert from a knote use reference back to kq lock.
294 *
295 * Drop a use reference and wake any waiters if
296 * this is the last one.
297 *
298 * The exit return indicates if the knote is
299 * still alive - but the kqueue lock is taken
300 * unconditionally.
301 */
302 static int
303 knoteuse2kqlock(struct kqueue *kq, struct knote *kn)
304 {
305 kqlock(kq);
306 if ((--kn->kn_inuse == 0) &&
307 (kn->kn_status & KN_USEWAIT)) {
308 kn->kn_status &= ~KN_USEWAIT;
309 thread_wakeup(&kn->kn_inuse);
310 }
311 return ((kn->kn_status & KN_DROPPING) == 0);
312 }
313
314 /*
315 * Convert a kq lock to a knote drop referece.
316 *
317 * If the knote is in use, wait for the use count
318 * to subside. We first mark our intention to drop
319 * it - keeping other users from "piling on."
320 * If we are too late, we have to wait for the
321 * other drop to complete.
322 *
323 * - kq locked at entry
324 * - always unlocked on exit.
325 * - caller can't hold any locks that would prevent
326 * the other dropper from completing.
327 */
328 static int
329 kqlock2knotedrop(struct kqueue *kq, struct knote *kn)
330 {
331
332 if ((kn->kn_status & KN_DROPPING) == 0) {
333 kn->kn_status |= KN_DROPPING;
334 if (kn->kn_inuse > 0) {
335 kn->kn_status |= KN_USEWAIT;
336 assert_wait(&kn->kn_inuse, THREAD_UNINT);
337 kqunlock(kq);
338 thread_block(THREAD_CONTINUE_NULL);
339 } else
340 kqunlock(kq);
341 return 1;
342 } else {
343 kn->kn_status |= KN_DROPWAIT;
344 assert_wait(&kn->kn_status, THREAD_UNINT);
345 kqunlock(kq);
346 thread_block(THREAD_CONTINUE_NULL);
347 return 0;
348 }
349 }
350
351 /*
352 * Release a knote use count reference.
353 */
354 static void
355 knote_put(struct knote *kn)
356 {
357 struct kqueue *kq = kn->kn_kq;
358
359 kqlock(kq);
360 if ((--kn->kn_inuse == 0) &&
361 (kn->kn_status & KN_USEWAIT)) {
362 kn->kn_status &= ~KN_USEWAIT;
363 thread_wakeup(&kn->kn_inuse);
364 }
365 kqunlock(kq);
366 }
367
368
369
370 static int
371 filt_fileattach(struct knote *kn)
372 {
373
374 return (fo_kqfilter(kn->kn_fp, kn, current_proc()));
375 }
376
377 #define f_flag f_fglob->fg_flag
378 #define f_type f_fglob->fg_type
379 #define f_msgcount f_fglob->fg_msgcount
380 #define f_cred f_fglob->fg_cred
381 #define f_ops f_fglob->fg_ops
382 #define f_offset f_fglob->fg_offset
383 #define f_data f_fglob->fg_data
384
385 static void
386 filt_kqdetach(struct knote *kn)
387 {
388 struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data;
389
390 kqlock(kq);
391 KNOTE_DETACH(&kq->kq_sel.si_note, kn);
392 kqunlock(kq);
393 }
394
395 /*ARGSUSED*/
396 static int
397 filt_kqueue(struct knote *kn, __unused long hint)
398 {
399 struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data;
400
401 kn->kn_data = kq->kq_count;
402 return (kn->kn_data > 0);
403 }
404
405 static int
406 filt_procattach(struct knote *kn)
407 {
408 struct proc *p;
409 int funnel_state;
410
411 funnel_state = thread_funnel_set(kernel_flock, TRUE);
412
413 p = pfind(kn->kn_id);
414 if (p == NULL) {
415 thread_funnel_set(kernel_flock, funnel_state);
416 return (ESRCH);
417 }
418
419 kn->kn_flags |= EV_CLEAR; /* automatically set */
420
421 /*
422 * internal flag indicating registration done by kernel
423 */
424 if (kn->kn_flags & EV_FLAG1) {
425 kn->kn_data = (int)kn->kn_sdata; /* ppid */
426 kn->kn_fflags = NOTE_CHILD;
427 kn->kn_flags &= ~EV_FLAG1;
428 }
429
430 /* XXX lock the proc here while adding to the list? */
431 KNOTE_ATTACH(&p->p_klist, kn);
432
433 thread_funnel_set(kernel_flock, funnel_state);
434
435 return (0);
436 }
437
438 /*
439 * The knote may be attached to a different process, which may exit,
440 * leaving nothing for the knote to be attached to. So when the process
441 * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
442 * it will be deleted when read out. However, as part of the knote deletion,
443 * this routine is called, so a check is needed to avoid actually performing
444 * a detach, because the original process does not exist any more.
445 */
446 static void
447 filt_procdetach(struct knote *kn)
448 {
449 struct proc *p;
450 int funnel_state;
451
452 funnel_state = thread_funnel_set(kernel_flock, TRUE);
453 p = pfind(kn->kn_id);
454
455 if (p != (struct proc *)NULL)
456 KNOTE_DETACH(&p->p_klist, kn);
457
458 thread_funnel_set(kernel_flock, funnel_state);
459 }
460
461 static int
462 filt_proc(struct knote *kn, long hint)
463 {
464 u_int event;
465 int funnel_state;
466
467 funnel_state = thread_funnel_set(kernel_flock, TRUE);
468
469 /*
470 * mask off extra data
471 */
472 event = (u_int)hint & NOTE_PCTRLMASK;
473
474 /*
475 * if the user is interested in this event, record it.
476 */
477 if (kn->kn_sfflags & event)
478 kn->kn_fflags |= event;
479
480 /*
481 * process is gone, so flag the event as finished.
482 */
483 if (event == NOTE_EXIT) {
484 kn->kn_flags |= (EV_EOF | EV_ONESHOT);
485 thread_funnel_set(kernel_flock, funnel_state);
486 return (1);
487 }
488
489 /*
490 * process forked, and user wants to track the new process,
491 * so attach a new knote to it, and immediately report an
492 * event with the parent's pid.
493 */
494 if ((event == NOTE_FORK) && (kn->kn_sfflags & NOTE_TRACK)) {
495 struct kevent kev;
496 int error;
497
498 /*
499 * register knote with new process.
500 */
501 kev.ident = hint & NOTE_PDATAMASK; /* pid */
502 kev.filter = kn->kn_filter;
503 kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
504 kev.fflags = kn->kn_sfflags;
505 kev.data = kn->kn_id; /* parent */
506 kev.udata = kn->kn_kevent.udata; /* preserve udata */
507 error = kevent_register(kn->kn_kq, &kev, NULL);
508 if (error)
509 kn->kn_fflags |= NOTE_TRACKERR;
510 }
511 event = kn->kn_fflags;
512 thread_funnel_set(kernel_flock, funnel_state);
513
514 return (event != 0);
515 }
516
517 /*
518 * filt_timercompute - compute absolute timeout
519 *
520 * The saved-data field in the knote contains the
521 * time value. The saved filter-flags indicates
522 * the unit of measurement.
523 *
524 * If the timeout is not absolute, adjust it for
525 * the current time.
526 */
527 static int
528 filt_timercompute(struct knote *kn, uint64_t *abs_time)
529 {
530 uint64_t multiplier;
531 uint64_t raw;
532
533 switch (kn->kn_sfflags & (NOTE_SECONDS|NOTE_USECONDS|NOTE_NSECONDS)) {
534 case NOTE_SECONDS:
535 multiplier = NSEC_PER_SEC;
536 break;
537 case NOTE_USECONDS:
538 multiplier = NSEC_PER_USEC;
539 break;
540 case NOTE_NSECONDS:
541 multiplier = 1;
542 break;
543 case 0: /* milliseconds (default) */
544 multiplier = NSEC_PER_SEC / 1000;
545 break;
546 default:
547 return EINVAL;
548 }
549 nanoseconds_to_absolutetime((uint64_t)kn->kn_sdata * multiplier, &raw);
550 if (raw <= filt_timerfloor) {
551 *abs_time = 0;
552 return 0;
553 }
554 if ((kn->kn_sfflags & NOTE_ABSOLUTE) == NOTE_ABSOLUTE) {
555 uint32_t seconds, nanoseconds;
556 uint64_t now;
557
558 clock_get_calendar_nanotime(&seconds, &nanoseconds);
559 nanoseconds_to_absolutetime((uint64_t)seconds * NSEC_PER_SEC + nanoseconds,
560 &now);
561 if (now >= raw + filt_timerfloor) {
562 *abs_time = 0;
563 return 0;
564 }
565 raw -= now;
566 }
567 clock_absolutetime_interval_to_deadline(raw, abs_time);
568 return 0;
569 }
570
571 /*
572 * filt_timerexpire - the timer callout routine
573 *
574 * Just propagate the timer event into the knote
575 * filter routine (by going through the knote
576 * synchronization point). Pass a hint to
577 * indicate this is a real event, not just a
578 * query from above.
579 */
580 static void
581 filt_timerexpire(void *knx, __unused void *spare)
582 {
583 struct klist timer_list;
584 struct knote *kn = knx;
585
586 /* no "object" for timers, so fake a list */
587 SLIST_INIT(&timer_list);
588 SLIST_INSERT_HEAD(&timer_list, kn, kn_selnext);
589 KNOTE(&timer_list, 1);
590 }
591
592 /*
593 * data contains amount of time to sleep, in milliseconds,
594 * or a pointer to a timespec structure.
595 */
596 static int
597 filt_timerattach(struct knote *kn)
598 {
599 thread_call_t callout;
600 uint64_t deadline;
601 int error;
602
603 error = filt_timercompute(kn, &deadline);
604 if (error)
605 return (error);
606
607 if (deadline) {
608 callout = thread_call_allocate(filt_timerexpire, kn);
609 if (NULL == callout)
610 return (ENOMEM);
611 } else {
612 /* handle as immediate */
613 kn->kn_sdata = 0;
614 callout = NULL;
615 }
616
617 filt_timerlock();
618 kn->kn_hook = (caddr_t)callout;
619
620 /* absolute=EV_ONESHOT */
621 if (kn->kn_sfflags & NOTE_ABSOLUTE)
622 kn->kn_flags |= EV_ONESHOT;
623
624 if (deadline) {
625 /* all others - if not faking immediate */
626 kn->kn_flags |= EV_CLEAR;
627 thread_call_enter_delayed(callout, deadline);
628 kn->kn_hookid = 0;
629 } else {
630 /* fake immediate */
631 kn->kn_hookid = 1;
632 }
633 filt_timerunlock();
634 return (0);
635 }
636
637 static void
638 filt_timerdetach(struct knote *kn)
639 {
640 thread_call_t callout;
641
642 filt_timerlock();
643 callout = (thread_call_t)kn->kn_hook;
644 if (callout != NULL) {
645 boolean_t cancelled;
646
647 /* cancel the callout if we can */
648 cancelled = thread_call_cancel(callout);
649 if (cancelled) {
650 /* got it, just free it */
651 kn->kn_hook = NULL;
652 filt_timerunlock();
653 thread_call_free(callout);
654 return;
655 }
656 /* we have to wait for the expire routine. */
657 kn->kn_hookid = -1; /* we are detaching */
658 assert_wait(&kn->kn_hook, THREAD_UNINT);
659 filt_timerunlock();
660 thread_block(THREAD_CONTINUE_NULL);
661 assert(kn->kn_hook == NULL);
662 return;
663 }
664 /* nothing to do */
665 filt_timerunlock();
666 }
667
668
669
670 static int
671 filt_timer(struct knote *kn, __unused long hint)
672 {
673 int result;
674
675 if (hint) {
676 /* real timer pop */
677 thread_call_t callout;
678 boolean_t detaching;
679
680 filt_timerlock();
681
682 kn->kn_data++;
683
684 detaching = (kn->kn_hookid < 0);
685 callout = (thread_call_t)kn->kn_hook;
686
687 if (!detaching && (kn->kn_flags & EV_ONESHOT) == 0) {
688 uint64_t deadline;
689 int error;
690
691 /* user input data may have changed - deal */
692 error = filt_timercompute(kn, &deadline);
693 if (error) {
694 kn->kn_flags |= EV_ERROR;
695 kn->kn_data = error;
696 } else if (deadline == 0) {
697 /* revert to fake immediate */
698 kn->kn_flags &= ~EV_CLEAR;
699 kn->kn_sdata = 0;
700 kn->kn_hookid = 1;
701 } else {
702 /* keep the callout and re-arm */
703 thread_call_enter_delayed(callout, deadline);
704 filt_timerunlock();
705 return 1;
706 }
707 }
708 kn->kn_hook = NULL;
709 filt_timerunlock();
710 thread_call_free(callout);
711
712 /* if someone is waiting for timer to pop */
713 if (detaching)
714 thread_wakeup(&kn->kn_hook);
715
716 return 1;
717 }
718
719 /* user-query */
720 filt_timerlock();
721
722 /* change fake timer to real if needed */
723 while (kn->kn_hookid > 0 && kn->kn_sdata > 0) {
724 int error;
725
726 /* update the fake timer (make real) */
727 kn->kn_hookid = 0;
728 kn->kn_data = 0;
729 filt_timerunlock();
730 error = filt_timerattach(kn);
731 filt_timerlock();
732 if (error) {
733 kn->kn_flags |= EV_ERROR;
734 kn->kn_data = error;
735 filt_timerunlock();
736 return 1;
737 }
738 }
739
740 /* if still fake, pretend it fired */
741 if (kn->kn_hookid > 0)
742 kn->kn_data = 1;
743
744 result = (kn->kn_data != 0);
745 filt_timerunlock();
746 return result;
747 }
748
749 static void
750 filt_timerlock(void)
751 {
752 lck_mtx_lock(&_filt_timerlock);
753 }
754
755 static void
756 filt_timerunlock(void)
757 {
758 lck_mtx_unlock(&_filt_timerlock);
759 }
760
761 /*
762 * JMM - placeholder for not-yet-implemented filters
763 */
764 static int
765 filt_badattach(__unused struct knote *kn)
766 {
767 return(ENOTSUP);
768 }
769
770
771 struct kqueue *
772 kqueue_alloc(struct proc *p)
773 {
774 struct filedesc *fdp = p->p_fd;
775 struct kqueue *kq;
776
777 MALLOC_ZONE(kq, struct kqueue *, sizeof(struct kqueue), M_KQUEUE, M_WAITOK);
778 if (kq != NULL) {
779 bzero(kq, sizeof(struct kqueue));
780 lck_spin_init(&kq->kq_lock, kq_lck_grp, kq_lck_attr);
781 TAILQ_INIT(&kq->kq_head);
782 TAILQ_INIT(&kq->kq_inprocess);
783 kq->kq_fdp = fdp;
784 }
785
786 if (fdp->fd_knlistsize < 0) {
787 proc_fdlock(p);
788 if (fdp->fd_knlistsize < 0)
789 fdp->fd_knlistsize = 0; /* this process has had a kq */
790 proc_fdunlock(p);
791 }
792
793 return kq;
794 }
795
796
797 /*
798 * kqueue_dealloc - detach all knotes from a kqueue and free it
799 *
800 * We walk each list looking for knotes referencing this
801 * this kqueue. If we find one, we try to drop it. But
802 * if we fail to get a drop reference, that will wait
803 * until it is dropped. So, we can just restart again
804 * safe in the assumption that the list will eventually
805 * not contain any more references to this kqueue (either
806 * we dropped them all, or someone else did).
807 *
808 * Assumes no new events are being added to the kqueue.
809 * Nothing locked on entry or exit.
810 */
811 void
812 kqueue_dealloc(struct kqueue *kq, struct proc *p)
813 {
814 struct filedesc *fdp = p->p_fd;
815 struct knote *kn;
816 int i;
817
818 proc_fdlock(p);
819 for (i = 0; i < fdp->fd_knlistsize; i++) {
820 kn = SLIST_FIRST(&fdp->fd_knlist[i]);
821 while (kn != NULL) {
822 if (kq == kn->kn_kq) {
823 kqlock(kq);
824 proc_fdunlock(p);
825 /* drop it ourselves or wait */
826 if (kqlock2knotedrop(kq, kn)) {
827 kn->kn_fop->f_detach(kn);
828 knote_drop(kn, p);
829 }
830 proc_fdlock(p);
831 /* start over at beginning of list */
832 kn = SLIST_FIRST(&fdp->fd_knlist[i]);
833 continue;
834 }
835 kn = SLIST_NEXT(kn, kn_link);
836 }
837 }
838 if (fdp->fd_knhashmask != 0) {
839 for (i = 0; i < (int)fdp->fd_knhashmask + 1; i++) {
840 kn = SLIST_FIRST(&fdp->fd_knhash[i]);
841 while (kn != NULL) {
842 if (kq == kn->kn_kq) {
843 kqlock(kq);
844 proc_fdunlock(p);
845 /* drop it ourselves or wait */
846 if (kqlock2knotedrop(kq, kn)) {
847 kn->kn_fop->f_detach(kn);
848 knote_drop(kn, p);
849 }
850 proc_fdlock(p);
851 /* start over at beginning of list */
852 kn = SLIST_FIRST(&fdp->fd_knhash[i]);
853 continue;
854 }
855 kn = SLIST_NEXT(kn, kn_link);
856 }
857 }
858 }
859 proc_fdunlock(p);
860 lck_spin_destroy(&kq->kq_lock, kq_lck_grp);
861 FREE_ZONE(kq, sizeof(struct kqueue), M_KQUEUE);
862 }
863
864 int
865 kqueue(struct proc *p, __unused struct kqueue_args *uap, register_t *retval)
866 {
867 struct kqueue *kq;
868 struct fileproc *fp;
869 int fd, error;
870
871 error = falloc(p, &fp, &fd);
872 if (error) {
873 return (error);
874 }
875
876 kq = kqueue_alloc(p);
877 if (kq == NULL) {
878 fp_free(p, fd, fp);
879 return (ENOMEM);
880 }
881
882 fp->f_flag = FREAD | FWRITE;
883 fp->f_type = DTYPE_KQUEUE;
884 fp->f_ops = &kqueueops;
885 fp->f_data = (caddr_t)kq;
886
887 proc_fdlock(p);
888 *fdflags(p, fd) &= ~UF_RESERVED;
889 fp_drop(p, fd, fp, 1);
890 proc_fdunlock(p);
891
892 *retval = fd;
893 return (error);
894 }
895
896 int
897 kqueue_portset_np(__unused struct proc *p,
898 __unused struct kqueue_portset_np_args *uap,
899 __unused register_t *retval)
900 {
901 /* JMM - Placeholder for now */
902 return (ENOTSUP);
903 }
904
905 int
906 kqueue_from_portset_np(__unused struct proc *p,
907 __unused struct kqueue_from_portset_np_args *uap,
908 __unused register_t *retval)
909 {
910 /* JMM - Placeholder for now */
911 return (ENOTSUP);
912 }
913
914 static int
915 kevent_copyin(user_addr_t *addrp, struct kevent *kevp, struct proc *p)
916 {
917 int advance;
918 int error;
919
920 if (IS_64BIT_PROCESS(p)) {
921 struct user_kevent kev64;
922
923 advance = sizeof(kev64);
924 error = copyin(*addrp, (caddr_t)&kev64, advance);
925 if (error)
926 return error;
927 kevp->ident = CAST_DOWN(uintptr_t, kev64.ident);
928 kevp->filter = kev64.filter;
929 kevp->flags = kev64.flags;
930 kevp->fflags = kev64.fflags;
931 kevp->data = CAST_DOWN(intptr_t, kev64.data);
932 kevp->udata = kev64.udata;
933 } else {
934 /*
935 * compensate for legacy in-kernel kevent layout
936 * where the udata field is alredy 64-bit.
937 */
938 advance = sizeof(*kevp) + sizeof(void *) - sizeof(user_addr_t);
939 error = copyin(*addrp, (caddr_t)kevp, advance);
940 }
941 if (!error)
942 *addrp += advance;
943 return error;
944 }
945
946 static int
947 kevent_copyout(struct kevent *kevp, user_addr_t *addrp, struct proc *p)
948 {
949 int advance;
950 int error;
951
952 if (IS_64BIT_PROCESS(p)) {
953 struct user_kevent kev64;
954
955 kev64.ident = (uint64_t) kevp->ident;
956 kev64.filter = kevp->filter;
957 kev64.flags = kevp->flags;
958 kev64.fflags = kevp->fflags;
959 kev64.data = (int64_t) kevp->data;
960 kev64.udata = kevp->udata;
961 advance = sizeof(kev64);
962 error = copyout((caddr_t)&kev64, *addrp, advance);
963 } else {
964 /*
965 * compensate for legacy in-kernel kevent layout
966 * where the udata field is alredy 64-bit.
967 */
968 advance = sizeof(*kevp) + sizeof(void *) - sizeof(user_addr_t);
969 error = copyout((caddr_t)kevp, *addrp, advance);
970 }
971 if (!error)
972 *addrp += advance;
973 return error;
974 }
975
976 /*
977 * kevent_continue - continue a kevent syscall after blocking
978 *
979 * assume we inherit a use count on the kq fileglob.
980 */
981
982 static void
983 kevent_continue(__unused struct kqueue *kq, void *data, int error)
984 {
985 struct _kevent *cont_args;
986 struct fileproc *fp;
987 register_t *retval;
988 int noutputs;
989 int fd;
990 struct proc *p = current_proc();
991
992 cont_args = (struct _kevent *)data;
993 noutputs = cont_args->eventout;
994 retval = cont_args->retval;
995 fd = cont_args->fd;
996 fp = cont_args->fp;
997
998 fp_drop(p, fd, fp, 0);
999
1000 /* don't restart after signals... */
1001 if (error == ERESTART)
1002 error = EINTR;
1003 else if (error == EWOULDBLOCK)
1004 error = 0;
1005 if (error == 0)
1006 *retval = noutputs;
1007 unix_syscall_return(error);
1008 }
1009
1010 /*
1011 * kevent - [syscall] register and wait for kernel events
1012 *
1013 */
1014
1015 int
1016 kevent(struct proc *p, struct kevent_args *uap, register_t *retval)
1017 {
1018 user_addr_t changelist = uap->changelist;
1019 user_addr_t ueventlist = uap->eventlist;
1020 int nchanges = uap->nchanges;
1021 int nevents = uap->nevents;
1022 int fd = uap->fd;
1023
1024 struct _kevent *cont_args;
1025 uthread_t ut;
1026 struct kqueue *kq;
1027 struct fileproc *fp;
1028 struct kevent kev;
1029 int error, noutputs;
1030 struct timeval atv;
1031
1032 /* convert timeout to absolute - if we have one */
1033 if (uap->timeout != USER_ADDR_NULL) {
1034 struct timeval rtv;
1035 if ( IS_64BIT_PROCESS(p) ) {
1036 struct user_timespec ts;
1037 error = copyin( uap->timeout, &ts, sizeof(ts) );
1038 if ((ts.tv_sec & 0xFFFFFFFF00000000ull) != 0)
1039 error = EINVAL;
1040 else
1041 TIMESPEC_TO_TIMEVAL(&rtv, &ts);
1042 } else {
1043 struct timespec ts;
1044 error = copyin( uap->timeout, &ts, sizeof(ts) );
1045 TIMESPEC_TO_TIMEVAL(&rtv, &ts);
1046 }
1047 if (error)
1048 return error;
1049 if (itimerfix(&rtv))
1050 return EINVAL;
1051 getmicrouptime(&atv);
1052 timevaladd(&atv, &rtv);
1053 } else {
1054 atv.tv_sec = 0;
1055 atv.tv_usec = 0;
1056 }
1057
1058 /* get a usecount for the kq itself */
1059 if ((error = fp_getfkq(p, fd, &fp, &kq)) != 0)
1060 return(error);
1061
1062 /* register all the change requests the user provided... */
1063 noutputs = 0;
1064 while (nchanges > 0 && error == 0) {
1065 error = kevent_copyin(&changelist, &kev, p);
1066 if (error)
1067 break;
1068
1069 kev.flags &= ~EV_SYSFLAGS;
1070 error = kevent_register(kq, &kev, p);
1071 if (error && nevents > 0) {
1072 kev.flags = EV_ERROR;
1073 kev.data = error;
1074 error = kevent_copyout(&kev, &ueventlist, p);
1075 if (error == 0) {
1076 nevents--;
1077 noutputs++;
1078 }
1079 }
1080 nchanges--;
1081 }
1082
1083 /* store the continuation/completion data in the uthread */
1084 ut = (uthread_t)get_bsdthread_info(current_thread());
1085 cont_args = (struct _kevent *)&ut->uu_state.ss_kevent;
1086 cont_args->fp = fp;
1087 cont_args->fd = fd;
1088 cont_args->retval = retval;
1089 cont_args->eventlist = ueventlist;
1090 cont_args->eventcount = nevents;
1091 cont_args->eventout = noutputs;
1092
1093 if (nevents > 0 && noutputs == 0 && error == 0)
1094 error = kevent_scan(kq, kevent_callback,
1095 kevent_continue, cont_args,
1096 &atv, p);
1097 kevent_continue(kq, cont_args, error);
1098 /* NOTREACHED */
1099 return error;
1100 }
1101
1102
1103 /*
1104 * kevent_callback - callback for each individual event
1105 *
1106 * called with nothing locked
1107 * caller holds a reference on the kqueue
1108 */
1109
1110 static int
1111 kevent_callback(__unused struct kqueue *kq, struct kevent *kevp, void *data)
1112 {
1113 struct _kevent *cont_args;
1114 int error;
1115
1116 cont_args = (struct _kevent *)data;
1117 assert(cont_args->eventout < cont_arg->eventcount);
1118
1119 /*
1120 * Copy out the appropriate amount of event data for this user.
1121 */
1122 error = kevent_copyout(kevp, &cont_args->eventlist, current_proc());
1123
1124 /*
1125 * If there isn't space for additional events, return
1126 * a harmless error to stop the processing here
1127 */
1128 if (error == 0 && ++cont_args->eventout == cont_args->eventcount)
1129 error = EWOULDBLOCK;
1130 return error;
1131 }
1132
1133 /*
1134 * kevent_register - add a new event to a kqueue
1135 *
1136 * Creates a mapping between the event source and
1137 * the kqueue via a knote data structure.
1138 *
1139 * Because many/most the event sources are file
1140 * descriptor related, the knote is linked off
1141 * the filedescriptor table for quick access.
1142 *
1143 * called with nothing locked
1144 * caller holds a reference on the kqueue
1145 */
1146
1147 int
1148 kevent_register(struct kqueue *kq, struct kevent *kev, struct proc *p)
1149 {
1150 struct filedesc *fdp = kq->kq_fdp;
1151 struct filterops *fops;
1152 struct fileproc *fp = NULL;
1153 struct knote *kn = NULL;
1154 int error = 0;
1155
1156 if (kev->filter < 0) {
1157 if (kev->filter + EVFILT_SYSCOUNT < 0)
1158 return (EINVAL);
1159 fops = sysfilt_ops[~kev->filter]; /* to 0-base index */
1160 } else {
1161 /*
1162 * XXX
1163 * filter attach routine is responsible for insuring that
1164 * the identifier can be attached to it.
1165 */
1166 printf("unknown filter: %d\n", kev->filter);
1167 return (EINVAL);
1168 }
1169
1170 /* this iocount needs to be dropped if it is not registered */
1171 if (fops->f_isfd && (error = fp_lookup(p, kev->ident, &fp, 0)) != 0)
1172 return(error);
1173
1174 restart:
1175 proc_fdlock(p);
1176 if (fops->f_isfd) {
1177 /* fd-based knotes are linked off the fd table */
1178 if (kev->ident < (u_int)fdp->fd_knlistsize) {
1179 SLIST_FOREACH(kn, &fdp->fd_knlist[kev->ident], kn_link)
1180 if (kq == kn->kn_kq &&
1181 kev->filter == kn->kn_filter)
1182 break;
1183 }
1184 } else {
1185 /* hash non-fd knotes here too */
1186 if (fdp->fd_knhashmask != 0) {
1187 struct klist *list;
1188
1189 list = &fdp->fd_knhash[
1190 KN_HASH((u_long)kev->ident, fdp->fd_knhashmask)];
1191 SLIST_FOREACH(kn, list, kn_link)
1192 if (kev->ident == kn->kn_id &&
1193 kq == kn->kn_kq &&
1194 kev->filter == kn->kn_filter)
1195 break;
1196 }
1197 }
1198
1199 /*
1200 * kn now contains the matching knote, or NULL if no match
1201 */
1202 if (kn == NULL) {
1203 if ((kev->flags & (EV_ADD|EV_DELETE)) == EV_ADD) {
1204 kn = knote_alloc();
1205 if (kn == NULL) {
1206 proc_fdunlock(p);
1207 error = ENOMEM;
1208 goto done;
1209 }
1210 kn->kn_fp = fp;
1211 kn->kn_kq = kq;
1212 kn->kn_tq = &kq->kq_head;
1213 kn->kn_fop = fops;
1214 kn->kn_sfflags = kev->fflags;
1215 kn->kn_sdata = kev->data;
1216 kev->fflags = 0;
1217 kev->data = 0;
1218 kn->kn_kevent = *kev;
1219 kn->kn_inuse = 1; /* for f_attach() */
1220 kn->kn_status = 0;
1221
1222 /* before anyone can find it */
1223 if (kev->flags & EV_DISABLE)
1224 kn->kn_status |= KN_DISABLED;
1225
1226 error = knote_fdpattach(kn, fdp, p);
1227 proc_fdunlock(p);
1228
1229 if (error) {
1230 knote_free(kn);
1231 goto done;
1232 }
1233
1234 /*
1235 * apply reference count to knote structure, and
1236 * do not release it at the end of this routine.
1237 */
1238 fp = NULL;
1239
1240 /*
1241 * If the attach fails here, we can drop it knowing
1242 * that nobody else has a reference to the knote.
1243 */
1244 if ((error = fops->f_attach(kn)) != 0) {
1245 knote_drop(kn, p);
1246 goto done;
1247 }
1248 } else {
1249 proc_fdunlock(p);
1250 error = ENOENT;
1251 goto done;
1252 }
1253 } else {
1254 /* existing knote - get kqueue lock */
1255 kqlock(kq);
1256 proc_fdunlock(p);
1257
1258 if (kev->flags & EV_DELETE) {
1259 knote_dequeue(kn);
1260 kn->kn_status |= KN_DISABLED;
1261 if (kqlock2knotedrop(kq, kn)) {
1262 kn->kn_fop->f_detach(kn);
1263 knote_drop(kn, p);
1264 }
1265 goto done;
1266 }
1267
1268 /* update status flags for existing knote */
1269 if (kev->flags & EV_DISABLE) {
1270 knote_dequeue(kn);
1271 kn->kn_status |= KN_DISABLED;
1272 } else if (kev->flags & EV_ENABLE) {
1273 kn->kn_status &= ~KN_DISABLED;
1274 if (kn->kn_status & KN_ACTIVE)
1275 knote_enqueue(kn);
1276 }
1277
1278 /*
1279 * If somebody is in the middle of dropping this
1280 * knote - go find/insert a new one. But we have
1281 * wait for this one to go away first.
1282 */
1283 if (!kqlock2knoteusewait(kq, kn))
1284 /* kqueue unlocked */
1285 goto restart;
1286
1287 /*
1288 * The user may change some filter values after the
1289 * initial EV_ADD, but doing so will not reset any
1290 * filter which have already been triggered.
1291 */
1292 kn->kn_sfflags = kev->fflags;
1293 kn->kn_sdata = kev->data;
1294 kn->kn_kevent.udata = kev->udata;
1295 }
1296
1297 /* still have use ref on knote */
1298 if (kn->kn_fop->f_event(kn, 0)) {
1299 if (knoteuse2kqlock(kq, kn))
1300 knote_activate(kn);
1301 kqunlock(kq);
1302 } else {
1303 knote_put(kn);
1304 }
1305
1306 done:
1307 if (fp != NULL)
1308 fp_drop(p, kev->ident, fp, 0);
1309 return (error);
1310 }
1311
1312 /*
1313 * kevent_process - process the triggered events in a kqueue
1314 *
1315 * Walk the queued knotes and validate that they are
1316 * really still triggered events by calling the filter
1317 * routines (if necessary). Hold a use reference on
1318 * the knote to avoid it being detached. For each event
1319 * that is still considered triggered, invoke the
1320 * callback routine provided.
1321 *
1322 * caller holds a reference on the kqueue.
1323 * kqueue locked on entry and exit - but may be dropped
1324 */
1325
1326 static int
1327 kevent_process(struct kqueue *kq,
1328 kevent_callback_t callback,
1329 void *data,
1330 int *countp,
1331 struct proc *p)
1332 {
1333 struct knote *kn;
1334 struct kevent kev;
1335 int nevents;
1336 int error;
1337
1338 restart:
1339 if (kq->kq_count == 0) {
1340 *countp = 0;
1341 return 0;
1342 }
1343
1344 /* if someone else is processing the queue, wait */
1345 if (!TAILQ_EMPTY(&kq->kq_inprocess)) {
1346 assert_wait(&kq->kq_inprocess, THREAD_UNINT);
1347 kq->kq_state |= KQ_PROCWAIT;
1348 kqunlock(kq);
1349 thread_block(THREAD_CONTINUE_NULL);
1350 kqlock(kq);
1351 goto restart;
1352 }
1353
1354 error = 0;
1355 nevents = 0;
1356 while (error == 0 &&
1357 (kn = TAILQ_FIRST(&kq->kq_head)) != NULL) {
1358
1359 /*
1360 * move knote to the processed queue.
1361 * this is also protected by the kq lock.
1362 */
1363 assert(kn->kn_tq == &kq->kq_head);
1364 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1365 kn->kn_tq = &kq->kq_inprocess;
1366 TAILQ_INSERT_TAIL(&kq->kq_inprocess, kn, kn_tqe);
1367
1368 /*
1369 * Non-EV_ONESHOT events must be re-validated.
1370 *
1371 * Convert our lock to a use-count and call the event's
1372 * filter routine to update.
1373 *
1374 * If the event is dropping (or no longer valid), we
1375 * already have it off the active queue, so just
1376 * finish the job of deactivating it.
1377 */
1378 if ((kn->kn_flags & EV_ONESHOT) == 0) {
1379 int result;
1380
1381 if (kqlock2knoteuse(kq, kn)) {
1382
1383 /* call the filter with just a ref */
1384 result = kn->kn_fop->f_event(kn, 0);
1385
1386 if (!knoteuse2kqlock(kq, kn) || result == 0) {
1387 knote_deactivate(kn);
1388 continue;
1389 }
1390 } else {
1391 knote_deactivate(kn);
1392 continue;
1393 }
1394 }
1395
1396 /*
1397 * Got a valid triggered knote with the kqueue
1398 * still locked. Snapshot the data, and determine
1399 * how to dispatch the knote for future events.
1400 */
1401 kev = kn->kn_kevent;
1402
1403 /* now what happens to it? */
1404 if (kn->kn_flags & EV_ONESHOT) {
1405 knote_deactivate(kn);
1406 if (kqlock2knotedrop(kq, kn)) {
1407 kn->kn_fop->f_detach(kn);
1408 knote_drop(kn, p);
1409 }
1410 } else if (kn->kn_flags & EV_CLEAR) {
1411 knote_deactivate(kn);
1412 kn->kn_data = 0;
1413 kn->kn_fflags = 0;
1414 kqunlock(kq);
1415 } else {
1416 /*
1417 * leave on in-process queue. We'll
1418 * move all the remaining ones back
1419 * the kq queue and wakeup any
1420 * waiters when we are done.
1421 */
1422 kqunlock(kq);
1423 }
1424
1425 /* callback to handle each event as we find it */
1426 error = (callback)(kq, &kev, data);
1427 nevents++;
1428
1429 kqlock(kq);
1430 }
1431
1432 /*
1433 * With the kqueue still locked, move any knotes
1434 * remaining on the in-process queue back to the
1435 * kq's queue and wake up any waiters.
1436 */
1437 while ((kn = TAILQ_FIRST(&kq->kq_inprocess)) != NULL) {
1438 assert(kn->kn_tq == &kq->kq_inprocess);
1439 TAILQ_REMOVE(&kq->kq_inprocess, kn, kn_tqe);
1440 kn->kn_tq = &kq->kq_head;
1441 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1442 }
1443 if (kq->kq_state & KQ_PROCWAIT) {
1444 kq->kq_state &= ~KQ_PROCWAIT;
1445 thread_wakeup(&kq->kq_inprocess);
1446 }
1447
1448 *countp = nevents;
1449 return error;
1450 }
1451
1452
1453 static void
1454 kevent_scan_continue(void *data, wait_result_t wait_result)
1455 {
1456 uthread_t ut = (uthread_t)get_bsdthread_info(current_thread());
1457 struct _kevent_scan * cont_args = &ut->uu_state.ss_kevent_scan;
1458 struct kqueue *kq = (struct kqueue *)data;
1459 int error;
1460 int count;
1461
1462 /* convert the (previous) wait_result to a proper error */
1463 switch (wait_result) {
1464 case THREAD_AWAKENED:
1465 kqlock(kq);
1466 error = kevent_process(kq, cont_args->call, cont_args, &count, current_proc());
1467 if (error == 0 && count == 0) {
1468 assert_wait_deadline(kq, THREAD_ABORTSAFE, cont_args->deadline);
1469 kq->kq_state |= KQ_SLEEP;
1470 kqunlock(kq);
1471 thread_block_parameter(kevent_scan_continue, kq);
1472 /* NOTREACHED */
1473 }
1474 kqunlock(kq);
1475 break;
1476 case THREAD_TIMED_OUT:
1477 error = EWOULDBLOCK;
1478 break;
1479 case THREAD_INTERRUPTED:
1480 error = EINTR;
1481 break;
1482 default:
1483 panic("kevent_scan_cont() - invalid wait_result (%d)", wait_result);
1484 error = 0;
1485 }
1486
1487 /* call the continuation with the results */
1488 assert(cont_args->cont != NULL);
1489 (cont_args->cont)(kq, cont_args->data, error);
1490 }
1491
1492
1493 /*
1494 * kevent_scan - scan and wait for events in a kqueue
1495 *
1496 * Process the triggered events in a kqueue.
1497 *
1498 * If there are no events triggered arrange to
1499 * wait for them. If the caller provided a
1500 * continuation routine, then kevent_scan will
1501 * also.
1502 *
1503 * The callback routine must be valid.
1504 * The caller must hold a use-count reference on the kq.
1505 */
1506
1507 int
1508 kevent_scan(struct kqueue *kq,
1509 kevent_callback_t callback,
1510 kevent_continue_t continuation,
1511 void *data,
1512 struct timeval *atvp,
1513 struct proc *p)
1514 {
1515 thread_continue_t cont = THREAD_CONTINUE_NULL;
1516 uint64_t deadline;
1517 int error;
1518 int first;
1519
1520 assert(callback != NULL);
1521
1522 first = 1;
1523 for (;;) {
1524 wait_result_t wait_result;
1525 int count;
1526
1527 /*
1528 * Make a pass through the kq to find events already
1529 * triggered.
1530 */
1531 kqlock(kq);
1532 error = kevent_process(kq, callback, data, &count, p);
1533 if (error || count)
1534 break; /* lock still held */
1535
1536 /* looks like we have to consider blocking */
1537 if (first) {
1538 first = 0;
1539 /* convert the timeout to a deadline once */
1540 if (atvp->tv_sec || atvp->tv_usec) {
1541 uint32_t seconds, nanoseconds;
1542 uint64_t now;
1543
1544 clock_get_uptime(&now);
1545 nanoseconds_to_absolutetime((uint64_t)atvp->tv_sec * NSEC_PER_SEC +
1546 atvp->tv_usec * NSEC_PER_USEC,
1547 &deadline);
1548 if (now >= deadline) {
1549 /* non-blocking call */
1550 error = EWOULDBLOCK;
1551 break; /* lock still held */
1552 }
1553 deadline -= now;
1554 clock_absolutetime_interval_to_deadline(deadline, &deadline);
1555 } else {
1556 deadline = 0; /* block forever */
1557 }
1558
1559 if (continuation) {
1560 uthread_t ut = (uthread_t)get_bsdthread_info(current_thread());
1561 struct _kevent_scan *cont_args = &ut->uu_state.ss_kevent_scan;
1562
1563 cont_args->call = callback;
1564 cont_args->cont = continuation;
1565 cont_args->deadline = deadline;
1566 cont_args->data = data;
1567 cont = kevent_scan_continue;
1568 }
1569 }
1570
1571 /* go ahead and wait */
1572 assert_wait_deadline(kq, THREAD_ABORTSAFE, deadline);
1573 kq->kq_state |= KQ_SLEEP;
1574 kqunlock(kq);
1575 wait_result = thread_block_parameter(cont, kq);
1576 /* NOTREACHED if (continuation != NULL) */
1577
1578 switch (wait_result) {
1579 case THREAD_AWAKENED:
1580 continue;
1581 case THREAD_TIMED_OUT:
1582 return EWOULDBLOCK;
1583 case THREAD_INTERRUPTED:
1584 return EINTR;
1585 default:
1586 panic("kevent_scan - bad wait_result (%d)",
1587 wait_result);
1588 error = 0;
1589 }
1590 }
1591 kqunlock(kq);
1592 return error;
1593 }
1594
1595
1596 /*
1597 * XXX
1598 * This could be expanded to call kqueue_scan, if desired.
1599 */
1600 /*ARGSUSED*/
1601 static int
1602 kqueue_read(__unused struct fileproc *fp,
1603 __unused struct uio *uio,
1604 __unused kauth_cred_t cred,
1605 __unused int flags,
1606 __unused struct proc *p)
1607 {
1608 return (ENXIO);
1609 }
1610
1611 /*ARGSUSED*/
1612 static int
1613 kqueue_write(__unused struct fileproc *fp,
1614 __unused struct uio *uio,
1615 __unused kauth_cred_t cred,
1616 __unused int flags,
1617 __unused struct proc *p)
1618 {
1619 return (ENXIO);
1620 }
1621
1622 /*ARGSUSED*/
1623 static int
1624 kqueue_ioctl(__unused struct fileproc *fp,
1625 __unused u_long com,
1626 __unused caddr_t data,
1627 __unused struct proc *p)
1628 {
1629 return (ENOTTY);
1630 }
1631
1632 /*ARGSUSED*/
1633 static int
1634 kqueue_select(struct fileproc *fp, int which, void *wql, struct proc *p)
1635 {
1636 struct kqueue *kq = (struct kqueue *)fp->f_data;
1637 int retnum = 0;
1638
1639 if (which == FREAD) {
1640 kqlock(kq);
1641 if (kq->kq_count) {
1642 retnum = 1;
1643 } else {
1644 selrecord(p, &kq->kq_sel, wql);
1645 kq->kq_state |= KQ_SEL;
1646 }
1647 kqunlock(kq);
1648 }
1649 return (retnum);
1650 }
1651
1652 /*
1653 * kqueue_close -
1654 */
1655 /*ARGSUSED*/
1656 static int
1657 kqueue_close(struct fileglob *fg, struct proc *p)
1658 {
1659 struct kqueue *kq = (struct kqueue *)fg->fg_data;
1660
1661 kqueue_dealloc(kq, p);
1662 fg->fg_data = NULL;
1663 return (0);
1664 }
1665
1666 /*ARGSUSED*/
1667 /*
1668 * The callers has taken a use-count reference on this kqueue and will donate it
1669 * to the kqueue we are being added to. This keeps the kqueue from closing until
1670 * that relationship is torn down.
1671 */
1672 static int
1673 kqueue_kqfilter(__unused struct fileproc *fp, struct knote *kn, __unused struct proc *p)
1674 {
1675 struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data;
1676
1677 if (kn->kn_filter != EVFILT_READ)
1678 return (1);
1679
1680 kn->kn_fop = &kqread_filtops;
1681 kqlock(kq);
1682 KNOTE_ATTACH(&kq->kq_sel.si_note, kn);
1683 kqunlock(kq);
1684 return (0);
1685 }
1686
1687 /*ARGSUSED*/
1688 int
1689 kqueue_stat(struct fileproc *fp, struct stat *st, __unused struct proc *p)
1690 {
1691 struct kqueue *kq = (struct kqueue *)fp->f_data;
1692
1693 bzero((void *)st, sizeof(*st));
1694 st->st_size = kq->kq_count;
1695 st->st_blksize = sizeof(struct kevent);
1696 st->st_mode = S_IFIFO;
1697 return (0);
1698 }
1699
1700 /*
1701 * Called with the kqueue locked
1702 */
1703 static void
1704 kqueue_wakeup(struct kqueue *kq)
1705 {
1706
1707 if (kq->kq_state & KQ_SLEEP) {
1708 kq->kq_state &= ~KQ_SLEEP;
1709 thread_wakeup(kq);
1710 }
1711 if (kq->kq_state & KQ_SEL) {
1712 kq->kq_state &= ~KQ_SEL;
1713 selwakeup(&kq->kq_sel);
1714 }
1715 KNOTE(&kq->kq_sel.si_note, 0);
1716 }
1717
1718 void
1719 klist_init(struct klist *list)
1720 {
1721 SLIST_INIT(list);
1722 }
1723
1724
1725 /*
1726 * Query/Post each knote in the object's list
1727 *
1728 * The object lock protects the list. It is assumed
1729 * that the filter/event routine for the object can
1730 * determine that the object is already locked (via
1731 * the hind) and not deadlock itself.
1732 *
1733 * The object lock should also hold off pending
1734 * detach/drop operations. But we'll prevent it here
1735 * too - just in case.
1736 */
1737 void
1738 knote(struct klist *list, long hint)
1739 {
1740 struct knote *kn;
1741
1742 SLIST_FOREACH(kn, list, kn_selnext) {
1743 struct kqueue *kq = kn->kn_kq;
1744
1745 kqlock(kq);
1746 if (kqlock2knoteuse(kq, kn)) {
1747 int result;
1748
1749 /* call the event with only a use count */
1750 result = kn->kn_fop->f_event(kn, hint);
1751
1752 /* if its not going away and triggered */
1753 if (knoteuse2kqlock(kq, kn) && result)
1754 knote_activate(kn);
1755 /* lock held again */
1756 }
1757 kqunlock(kq);
1758 }
1759 }
1760
1761 /*
1762 * attach a knote to the specified list. Return true if this is the first entry.
1763 * The list is protected by whatever lock the object it is associated with uses.
1764 */
1765 int
1766 knote_attach(struct klist *list, struct knote *kn)
1767 {
1768 int ret = SLIST_EMPTY(list);
1769 SLIST_INSERT_HEAD(list, kn, kn_selnext);
1770 return ret;
1771 }
1772
1773 /*
1774 * detach a knote from the specified list. Return true if that was the last entry.
1775 * The list is protected by whatever lock the object it is associated with uses.
1776 */
1777 int
1778 knote_detach(struct klist *list, struct knote *kn)
1779 {
1780 SLIST_REMOVE(list, kn, knote, kn_selnext);
1781 return SLIST_EMPTY(list);
1782 }
1783
1784 /*
1785 * remove all knotes referencing a specified fd
1786 *
1787 * Essentially an inlined knote_remove & knote_drop
1788 * when we know for sure that the thing is a file
1789 *
1790 * Entered with the proc_fd lock already held.
1791 * It returns the same way, but may drop it temporarily.
1792 */
1793 void
1794 knote_fdclose(struct proc *p, int fd)
1795 {
1796 struct filedesc *fdp = p->p_fd;
1797 struct klist *list;
1798 struct knote *kn;
1799
1800 list = &fdp->fd_knlist[fd];
1801 while ((kn = SLIST_FIRST(list)) != NULL) {
1802 struct kqueue *kq = kn->kn_kq;
1803
1804 kqlock(kq);
1805 proc_fdunlock(p);
1806
1807 /*
1808 * Convert the lock to a drop ref.
1809 * If we get it, go ahead and drop it.
1810 * Otherwise, we waited for it to
1811 * be dropped by the other guy, so
1812 * it is safe to move on in the list.
1813 */
1814 if (kqlock2knotedrop(kq, kn)) {
1815 kn->kn_fop->f_detach(kn);
1816 knote_drop(kn, p);
1817 }
1818
1819 proc_fdlock(p);
1820
1821 /* the fd tables may have changed - start over */
1822 list = &fdp->fd_knlist[fd];
1823 }
1824 }
1825
1826 /* proc_fdlock held on entry (and exit) */
1827 static int
1828 knote_fdpattach(struct knote *kn, struct filedesc *fdp, __unused struct proc *p)
1829 {
1830 struct klist *list = NULL;
1831
1832 if (! kn->kn_fop->f_isfd) {
1833 if (fdp->fd_knhashmask == 0)
1834 fdp->fd_knhash = hashinit(KN_HASHSIZE, M_KQUEUE,
1835 &fdp->fd_knhashmask);
1836 list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
1837 } else {
1838 if ((u_int)fdp->fd_knlistsize <= kn->kn_id) {
1839 u_int size = 0;
1840
1841 /* have to grow the fd_knlist */
1842 size = fdp->fd_knlistsize;
1843 while (size <= kn->kn_id)
1844 size += KQEXTENT;
1845 MALLOC(list, struct klist *,
1846 size * sizeof(struct klist *), M_KQUEUE, M_WAITOK);
1847 if (list == NULL)
1848 return (ENOMEM);
1849
1850 bcopy((caddr_t)fdp->fd_knlist, (caddr_t)list,
1851 fdp->fd_knlistsize * sizeof(struct klist *));
1852 bzero((caddr_t)list +
1853 fdp->fd_knlistsize * sizeof(struct klist *),
1854 (size - fdp->fd_knlistsize) * sizeof(struct klist *));
1855 FREE(fdp->fd_knlist, M_KQUEUE);
1856 fdp->fd_knlist = list;
1857 fdp->fd_knlistsize = size;
1858 }
1859 list = &fdp->fd_knlist[kn->kn_id];
1860 }
1861 SLIST_INSERT_HEAD(list, kn, kn_link);
1862 return (0);
1863 }
1864
1865
1866
1867 /*
1868 * should be called at spl == 0, since we don't want to hold spl
1869 * while calling fdrop and free.
1870 */
1871 static void
1872 knote_drop(struct knote *kn, struct proc *p)
1873 {
1874 struct filedesc *fdp = p->p_fd;
1875 struct kqueue *kq = kn->kn_kq;
1876 struct klist *list;
1877
1878 proc_fdlock(p);
1879 if (kn->kn_fop->f_isfd)
1880 list = &fdp->fd_knlist[kn->kn_id];
1881 else
1882 list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
1883
1884 SLIST_REMOVE(list, kn, knote, kn_link);
1885 kqlock(kq);
1886 knote_dequeue(kn);
1887 if (kn->kn_status & KN_DROPWAIT)
1888 thread_wakeup(&kn->kn_status);
1889 kqunlock(kq);
1890 proc_fdunlock(p);
1891
1892 if (kn->kn_fop->f_isfd)
1893 fp_drop(p, kn->kn_id, kn->kn_fp, 0);
1894
1895 knote_free(kn);
1896 }
1897
1898 /* called with kqueue lock held */
1899 static void
1900 knote_activate(struct knote *kn)
1901 {
1902 struct kqueue *kq = kn->kn_kq;
1903
1904 kn->kn_status |= KN_ACTIVE;
1905 knote_enqueue(kn);
1906 kqueue_wakeup(kq);
1907 }
1908
1909 /* called with kqueue lock held */
1910 static void
1911 knote_deactivate(struct knote *kn)
1912 {
1913 kn->kn_status &= ~KN_ACTIVE;
1914 knote_dequeue(kn);
1915 }
1916
1917 /* called with kqueue lock held */
1918 static void
1919 knote_enqueue(struct knote *kn)
1920 {
1921 struct kqueue *kq = kn->kn_kq;
1922
1923 if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0) {
1924 struct kqtailq *tq = kn->kn_tq;
1925
1926 TAILQ_INSERT_TAIL(tq, kn, kn_tqe);
1927 kn->kn_status |= KN_QUEUED;
1928 kq->kq_count++;
1929 }
1930 }
1931
1932 /* called with kqueue lock held */
1933 static void
1934 knote_dequeue(struct knote *kn)
1935 {
1936 struct kqueue *kq = kn->kn_kq;
1937
1938 assert((kn->kn_status & KN_DISABLED) == 0);
1939 if ((kn->kn_status & KN_QUEUED) == KN_QUEUED) {
1940 struct kqtailq *tq = kn->kn_tq;
1941
1942 TAILQ_REMOVE(tq, kn, kn_tqe);
1943 kn->kn_tq = &kq->kq_head;
1944 kn->kn_status &= ~KN_QUEUED;
1945 kq->kq_count--;
1946 }
1947 }
1948
1949 void
1950 knote_init(void)
1951 {
1952 knote_zone = zinit(sizeof(struct knote), 8192*sizeof(struct knote), 8192, "knote zone");
1953
1954 /* allocate kq lock group attribute and group */
1955 kq_lck_grp_attr= lck_grp_attr_alloc_init();
1956 lck_grp_attr_setstat(kq_lck_grp_attr);
1957
1958 kq_lck_grp = lck_grp_alloc_init("kqueue", kq_lck_grp_attr);
1959
1960 /* Allocate kq lock attribute */
1961 kq_lck_attr = lck_attr_alloc_init();
1962 lck_attr_setdefault(kq_lck_attr);
1963
1964 /* Initialize the timer filter lock */
1965 lck_mtx_init(&_filt_timerlock, kq_lck_grp, kq_lck_attr);
1966 }
1967 SYSINIT(knote, SI_SUB_PSEUDO, SI_ORDER_ANY, knote_init, NULL)
1968
1969 static struct knote *
1970 knote_alloc(void)
1971 {
1972 return ((struct knote *)zalloc(knote_zone));
1973 }
1974
1975 static void
1976 knote_free(struct knote *kn)
1977 {
1978 zfree(knote_zone, kn);
1979 }
1980
1981 #include <sys/param.h>
1982 #include <sys/socket.h>
1983 #include <sys/protosw.h>
1984 #include <sys/domain.h>
1985 #include <sys/mbuf.h>
1986 #include <sys/kern_event.h>
1987 #include <sys/malloc.h>
1988 #include <sys/sys_domain.h>
1989 #include <sys/syslog.h>
1990
1991
1992 static int kev_attach(struct socket *so, int proto, struct proc *p);
1993 static int kev_detach(struct socket *so);
1994 static int kev_control(struct socket *so, u_long cmd, caddr_t data, struct ifnet *ifp, struct proc *p);
1995
1996 struct pr_usrreqs event_usrreqs = {
1997 pru_abort_notsupp, pru_accept_notsupp, kev_attach, pru_bind_notsupp, pru_connect_notsupp,
1998 pru_connect2_notsupp, kev_control, kev_detach, pru_disconnect_notsupp,
1999 pru_listen_notsupp, pru_peeraddr_notsupp, pru_rcvd_notsupp, pru_rcvoob_notsupp,
2000 pru_send_notsupp, pru_sense_null, pru_shutdown_notsupp, pru_sockaddr_notsupp,
2001 pru_sosend_notsupp, soreceive, pru_sopoll_notsupp
2002 };
2003
2004 struct protosw eventsw[] = {
2005 {
2006 SOCK_RAW, &systemdomain, SYSPROTO_EVENT, PR_ATOMIC,
2007 0, 0, 0, 0,
2008 0,
2009 0, 0, 0, 0,
2010 #if __APPLE__
2011 0,
2012 #endif
2013 &event_usrreqs,
2014 0, 0, 0,
2015 #if __APPLE__
2016 {0, 0}, 0, {0}
2017 #endif
2018 }
2019 };
2020
2021 static
2022 struct kern_event_head kern_event_head;
2023
2024 static u_long static_event_id = 0;
2025 struct domain *sysdom = &systemdomain;
2026
2027 static lck_grp_t *evt_mtx_grp;
2028 static lck_attr_t *evt_mtx_attr;
2029 static lck_grp_attr_t *evt_mtx_grp_attr;
2030 lck_mtx_t *evt_mutex;
2031 /*
2032 * Install the protosw's for the NKE manager. Invoked at
2033 * extension load time
2034 */
2035 int
2036 kern_event_init(void)
2037 {
2038 int retval;
2039
2040 if ((retval = net_add_proto(eventsw, &systemdomain)) != 0) {
2041 log(LOG_WARNING, "Can't install kernel events protocol (%d)\n", retval);
2042 return(retval);
2043 }
2044
2045 /*
2046 * allocate lock group attribute and group for kern event
2047 */
2048 evt_mtx_grp_attr = lck_grp_attr_alloc_init();
2049
2050 evt_mtx_grp = lck_grp_alloc_init("eventlist", evt_mtx_grp_attr);
2051
2052 /*
2053 * allocate the lock attribute for mutexes
2054 */
2055 evt_mtx_attr = lck_attr_alloc_init();
2056 lck_attr_setdefault(evt_mtx_attr);
2057 evt_mutex = lck_mtx_alloc_init(evt_mtx_grp, evt_mtx_attr);
2058 if (evt_mutex == NULL)
2059 return (ENOMEM);
2060
2061 return(KERN_SUCCESS);
2062 }
2063
2064 static int
2065 kev_attach(struct socket *so, __unused int proto, __unused struct proc *p)
2066 {
2067 int error;
2068 struct kern_event_pcb *ev_pcb;
2069
2070 error = soreserve(so, KEV_SNDSPACE, KEV_RECVSPACE);
2071 if (error)
2072 return error;
2073
2074 MALLOC(ev_pcb, struct kern_event_pcb *, sizeof(struct kern_event_pcb), M_PCB, M_WAITOK);
2075 if (ev_pcb == 0)
2076 return ENOBUFS;
2077
2078 ev_pcb->ev_socket = so;
2079 ev_pcb->vendor_code_filter = 0xffffffff;
2080
2081 so->so_pcb = (caddr_t) ev_pcb;
2082 lck_mtx_lock(evt_mutex);
2083 LIST_INSERT_HEAD(&kern_event_head, ev_pcb, ev_link);
2084 lck_mtx_unlock(evt_mutex);
2085
2086 return 0;
2087 }
2088
2089
2090 static int
2091 kev_detach(struct socket *so)
2092 {
2093 struct kern_event_pcb *ev_pcb = (struct kern_event_pcb *) so->so_pcb;
2094
2095 if (ev_pcb != 0) {
2096 lck_mtx_lock(evt_mutex);
2097 LIST_REMOVE(ev_pcb, ev_link);
2098 lck_mtx_unlock(evt_mutex);
2099 FREE(ev_pcb, M_PCB);
2100 so->so_pcb = 0;
2101 so->so_flags |= SOF_PCBCLEARING;
2102 }
2103
2104 return 0;
2105 }
2106
2107 /*
2108 * For now, kev_vender_code and mbuf_tags use the same
2109 * mechanism.
2110 */
2111 extern errno_t mbuf_tag_id_find_internal(const char *string, u_long *out_id,
2112 int create);
2113
2114 errno_t kev_vendor_code_find(
2115 const char *string,
2116 u_long *out_vender_code)
2117 {
2118 if (strlen(string) >= KEV_VENDOR_CODE_MAX_STR_LEN) {
2119 return EINVAL;
2120 }
2121 return mbuf_tag_id_find_internal(string, out_vender_code, 1);
2122 }
2123
2124 extern void mbuf_tag_id_first_last(u_long *first, u_long *last);
2125
2126 errno_t kev_msg_post(struct kev_msg *event_msg)
2127 {
2128 u_long min_vendor, max_vendor;
2129
2130 mbuf_tag_id_first_last(&min_vendor, &max_vendor);
2131
2132 if (event_msg == NULL)
2133 return EINVAL;
2134
2135 /* Limit third parties to posting events for registered vendor codes only */
2136 if (event_msg->vendor_code < min_vendor ||
2137 event_msg->vendor_code > max_vendor)
2138 {
2139 return EINVAL;
2140 }
2141
2142 return kev_post_msg(event_msg);
2143 }
2144
2145
2146 int kev_post_msg(struct kev_msg *event_msg)
2147 {
2148 struct mbuf *m, *m2;
2149 struct kern_event_pcb *ev_pcb;
2150 struct kern_event_msg *ev;
2151 char *tmp;
2152 unsigned long total_size;
2153 int i;
2154
2155 /* Verify the message is small enough to fit in one mbuf w/o cluster */
2156 total_size = KEV_MSG_HEADER_SIZE;
2157
2158 for (i = 0; i < 5; i++) {
2159 if (event_msg->dv[i].data_length == 0)
2160 break;
2161 total_size += event_msg->dv[i].data_length;
2162 }
2163
2164 if (total_size > MLEN) {
2165 return EMSGSIZE;
2166 }
2167
2168 m = m_get(M_DONTWAIT, MT_DATA);
2169 if (m == 0)
2170 return ENOBUFS;
2171
2172 ev = mtod(m, struct kern_event_msg *);
2173 total_size = KEV_MSG_HEADER_SIZE;
2174
2175 tmp = (char *) &ev->event_data[0];
2176 for (i = 0; i < 5; i++) {
2177 if (event_msg->dv[i].data_length == 0)
2178 break;
2179
2180 total_size += event_msg->dv[i].data_length;
2181 bcopy(event_msg->dv[i].data_ptr, tmp,
2182 event_msg->dv[i].data_length);
2183 tmp += event_msg->dv[i].data_length;
2184 }
2185
2186 ev->id = ++static_event_id;
2187 ev->total_size = total_size;
2188 ev->vendor_code = event_msg->vendor_code;
2189 ev->kev_class = event_msg->kev_class;
2190 ev->kev_subclass = event_msg->kev_subclass;
2191 ev->event_code = event_msg->event_code;
2192
2193 m->m_len = total_size;
2194 lck_mtx_lock(evt_mutex);
2195 for (ev_pcb = LIST_FIRST(&kern_event_head);
2196 ev_pcb;
2197 ev_pcb = LIST_NEXT(ev_pcb, ev_link)) {
2198
2199 if (ev_pcb->vendor_code_filter != KEV_ANY_VENDOR) {
2200 if (ev_pcb->vendor_code_filter != ev->vendor_code)
2201 continue;
2202
2203 if (ev_pcb->class_filter != KEV_ANY_CLASS) {
2204 if (ev_pcb->class_filter != ev->kev_class)
2205 continue;
2206
2207 if ((ev_pcb->subclass_filter != KEV_ANY_SUBCLASS) &&
2208 (ev_pcb->subclass_filter != ev->kev_subclass))
2209 continue;
2210 }
2211 }
2212
2213 m2 = m_copym(m, 0, m->m_len, M_NOWAIT);
2214 if (m2 == 0) {
2215 m_free(m);
2216 lck_mtx_unlock(evt_mutex);
2217 return ENOBUFS;
2218 }
2219 socket_lock(ev_pcb->ev_socket, 1);
2220 if (sbappendrecord(&ev_pcb->ev_socket->so_rcv, m2))
2221 sorwakeup(ev_pcb->ev_socket);
2222 socket_unlock(ev_pcb->ev_socket, 1);
2223 }
2224
2225 m_free(m);
2226 lck_mtx_unlock(evt_mutex);
2227 return 0;
2228 }
2229
2230 static int
2231 kev_control(struct socket *so,
2232 u_long cmd,
2233 caddr_t data,
2234 __unused struct ifnet *ifp,
2235 __unused struct proc *p)
2236 {
2237 struct kev_request *kev_req = (struct kev_request *) data;
2238 struct kern_event_pcb *ev_pcb;
2239 struct kev_vendor_code *kev_vendor;
2240 u_long *id_value = (u_long *) data;
2241
2242
2243 switch (cmd) {
2244
2245 case SIOCGKEVID:
2246 *id_value = static_event_id;
2247 break;
2248
2249 case SIOCSKEVFILT:
2250 ev_pcb = (struct kern_event_pcb *) so->so_pcb;
2251 ev_pcb->vendor_code_filter = kev_req->vendor_code;
2252 ev_pcb->class_filter = kev_req->kev_class;
2253 ev_pcb->subclass_filter = kev_req->kev_subclass;
2254 break;
2255
2256 case SIOCGKEVFILT:
2257 ev_pcb = (struct kern_event_pcb *) so->so_pcb;
2258 kev_req->vendor_code = ev_pcb->vendor_code_filter;
2259 kev_req->kev_class = ev_pcb->class_filter;
2260 kev_req->kev_subclass = ev_pcb->subclass_filter;
2261 break;
2262
2263 case SIOCGKEVVENDOR:
2264 kev_vendor = (struct kev_vendor_code*)data;
2265
2266 /* Make sure string is NULL terminated */
2267 kev_vendor->vendor_string[KEV_VENDOR_CODE_MAX_STR_LEN-1] = 0;
2268
2269 return mbuf_tag_id_find_internal(kev_vendor->vendor_string,
2270 &kev_vendor->vendor_code, 0);
2271
2272 default:
2273 return ENOTSUP;
2274 }
2275
2276 return 0;
2277 }
2278
2279
2280
2281