]> git.saurik.com Git - apple/xnu.git/blob - bsd/netccitt/pk_subr.c
xnu-123.5.tar.gz
[apple/xnu.git] / bsd / netccitt / pk_subr.c
1 /*
2 * Copyright (c) 2000 Apple Computer, Inc. All rights reserved.
3 *
4 * @APPLE_LICENSE_HEADER_START@
5 *
6 * The contents of this file constitute Original Code as defined in and
7 * are subject to the Apple Public Source License Version 1.1 (the
8 * "License"). You may not use this file except in compliance with the
9 * License. Please obtain a copy of the License at
10 * http://www.apple.com/publicsource and read it before using this file.
11 *
12 * This Original Code and all software distributed under the License are
13 * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER
14 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
15 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the
17 * License for the specific language governing rights and limitations
18 * under the License.
19 *
20 * @APPLE_LICENSE_HEADER_END@
21 */
22 /*
23 * Copyright (c) University of British Columbia, 1984
24 * Copyright (C) Computer Science Department IV,
25 * University of Erlangen-Nuremberg, Germany, 1992
26 * Copyright (c) 1991, 1992, 1993
27 * The Regents of the University of California. All rights reserved.
28 *
29 * This code is derived from software contributed to Berkeley by the
30 * Laboratory for Computation Vision and the Computer Science Department
31 * of the the University of British Columbia and the Computer Science
32 * Department (IV) of the University of Erlangen-Nuremberg, Germany.
33 *
34 * Redistribution and use in source and binary forms, with or without
35 * modification, are permitted provided that the following conditions
36 * are met:
37 * 1. Redistributions of source code must retain the above copyright
38 * notice, this list of conditions and the following disclaimer.
39 * 2. Redistributions in binary form must reproduce the above copyright
40 * notice, this list of conditions and the following disclaimer in the
41 * documentation and/or other materials provided with the distribution.
42 * 3. All advertising materials mentioning features or use of this software
43 * must display the following acknowledgement:
44 * This product includes software developed by the University of
45 * California, Berkeley and its contributors.
46 * 4. Neither the name of the University nor the names of its contributors
47 * may be used to endorse or promote products derived from this software
48 * without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 * SUCH DAMAGE.
61 *
62 * @(#)pk_subr.c 8.1 (Berkeley) 6/10/93
63 */
64
65 #include <sys/param.h>
66 #include <sys/systm.h>
67 #include <sys/mbuf.h>
68 #include <sys/socket.h>
69 #include <sys/protosw.h>
70 #include <sys/socketvar.h>
71 #include <sys/errno.h>
72 #include <sys/time.h>
73 #include <sys/kernel.h>
74 #include <sys/malloc.h>
75
76 #include <net/if.h>
77 #include <net/route.h>
78
79 #include <netccitt/dll.h>
80 #include <netccitt/x25.h>
81 #include <netccitt/x25err.h>
82 #include <netccitt/pk.h>
83 #include <netccitt/pk_var.h>
84
85 int pk_sendspace = 1024 * 2 + 8;
86 int pk_recvspace = 1024 * 2 + 8;
87
88 struct pklcd_q pklcd_q = {&pklcd_q, &pklcd_q};
89
90 struct x25bitslice x25_bitslice[] = {
91 /* mask, shift value */
92 { 0xf0, 0x4 },
93 { 0xf, 0x0 },
94 { 0x80, 0x7 },
95 { 0x40, 0x6 },
96 { 0x30, 0x4 },
97 { 0xe0, 0x5 },
98 { 0x10, 0x4 },
99 { 0xe, 0x1 },
100 { 0x1, 0x0 }
101 };
102
103
104 /*
105 * Attach X.25 protocol to socket, allocate logical channel descripter
106 * and buffer space, and enter LISTEN state if we are to accept
107 * IN-COMMING CALL packets.
108 *
109 */
110
111 struct pklcd *
112 pk_attach (so)
113 struct socket *so;
114 {
115 register struct pklcd *lcp;
116 register int error = ENOBUFS;
117 int pk_output ();
118
119 MALLOC(lcp, struct pklcd *, sizeof (*lcp), M_PCB, M_NOWAIT);
120 if (lcp) {
121 bzero ((caddr_t)lcp, sizeof (*lcp));
122 insque (&lcp -> lcd_q, &pklcd_q);
123 lcp -> lcd_state = READY;
124 lcp -> lcd_send = pk_output;
125 if (so) {
126 error = soreserve (so, pk_sendspace, pk_recvspace);
127 lcp -> lcd_so = so;
128 if (so -> so_options & SO_ACCEPTCONN)
129 lcp -> lcd_state = LISTEN;
130 } else
131 sbreserve (&lcp -> lcd_sb, pk_sendspace);
132 }
133 if (so) {
134 so -> so_pcb = (caddr_t) lcp;
135 so -> so_error = error;
136 }
137 return (lcp);
138 }
139
140 /*
141 * Disconnect X.25 protocol from socket.
142 */
143
144 pk_disconnect (lcp)
145 register struct pklcd *lcp;
146 {
147 register struct socket *so = lcp -> lcd_so;
148 register struct pklcd *l, *p;
149
150 switch (lcp -> lcd_state) {
151 case LISTEN:
152 for (p = 0, l = pk_listenhead; l && l != lcp; p = l, l = l -> lcd_listen);
153 if (p == 0) {
154 if (l != 0)
155 pk_listenhead = l -> lcd_listen;
156 }
157 else
158 if (l != 0)
159 p -> lcd_listen = l -> lcd_listen;
160 pk_close (lcp);
161 break;
162
163 case READY:
164 pk_acct (lcp);
165 pk_close (lcp);
166 break;
167
168 case SENT_CLEAR:
169 case RECEIVED_CLEAR:
170 break;
171
172 default:
173 pk_acct (lcp);
174 if (so) {
175 soisdisconnecting (so);
176 sbflush (&so -> so_rcv);
177 }
178 pk_clear (lcp, 241, 0); /* Normal Disconnect */
179
180 }
181 }
182
183 /*
184 * Close an X.25 Logical Channel. Discard all space held by the
185 * connection and internal descriptors. Wake up any sleepers.
186 */
187
188 pk_close (lcp)
189 struct pklcd *lcp;
190 {
191 register struct socket *so = lcp -> lcd_so;
192
193 /*
194 * If the X.25 connection is torn down due to link
195 * level failure (e.g. LLC2 FRMR) and at the same the user
196 * level is still filling up the socket send buffer that
197 * send buffer is locked. An attempt to sbflush () that send
198 * buffer will lead us into - no, not temptation but - panic!
199 * So - we'll just check wether the send buffer is locked
200 * and if that's the case we'll mark the lcp as zombie and
201 * have the pk_timer () do the cleaning ...
202 */
203
204 if (so && so -> so_snd.sb_flags & SB_LOCK)
205 lcp -> lcd_state = LCN_ZOMBIE;
206 else
207 pk_freelcd (lcp);
208
209 if (so == NULL)
210 return;
211
212 so -> so_pcb = 0;
213 soisdisconnected (so);
214 /* sofree (so); /* gak!!! you can't do that here */
215 }
216
217 /*
218 * Create a template to be used to send X.25 packets on a logical
219 * channel. It allocates an mbuf and fills in a skeletal packet
220 * depending on its type. This packet is passed to pk_output where
221 * the remainer of the packet is filled in.
222 */
223
224 struct mbuf *
225 pk_template (lcn, type)
226 int lcn, type;
227 {
228 register struct mbuf *m;
229 register struct x25_packet *xp;
230
231 MGETHDR (m, M_DONTWAIT, MT_HEADER);
232 if (m == 0)
233 panic ("pk_template");
234 m -> m_act = 0;
235
236 /*
237 * Efficiency hack: leave a four byte gap at the beginning
238 * of the packet level header with the hope that this will
239 * be enough room for the link level to insert its header.
240 */
241 m -> m_data += max_linkhdr;
242 m -> m_pkthdr.len = m -> m_len = PKHEADERLN;
243
244 xp = mtod (m, struct x25_packet *);
245 *(long *)xp = 0; /* ugly, but fast */
246 /* xp -> q_bit = 0;*/
247 X25SBITS(xp -> bits, fmt_identifier, 1);
248 /* xp -> lc_group_number = 0;*/
249
250 SET_LCN(xp, lcn);
251 xp -> packet_type = type;
252
253 return (m);
254 }
255
256 /*
257 * This routine restarts all the virtual circuits. Actually,
258 * the virtual circuits are not "restarted" as such. Instead,
259 * any active switched circuit is simply returned to READY
260 * state.
261 */
262
263 pk_restart (pkp, restart_cause)
264 register struct pkcb *pkp;
265 int restart_cause;
266 {
267 register struct mbuf *m;
268 register struct pklcd *lcp;
269 register int i;
270
271 /* Restart all logical channels. */
272 if (pkp -> pk_chan == 0)
273 return;
274
275 /*
276 * Don't do this if we're doing a restart issued from
277 * inside pk_connect () --- which is only done if and
278 * only if the X.25 link is down, i.e. a RESTART needs
279 * to be done to get it up.
280 */
281 if (!(pkp -> pk_dxerole & DTE_CONNECTPENDING)) {
282 for (i = 1; i <= pkp -> pk_maxlcn; ++i)
283 if ((lcp = pkp -> pk_chan[i]) != NULL) {
284 if (lcp -> lcd_so) {
285 lcp -> lcd_so -> so_error = ENETRESET;
286 pk_close (lcp);
287 } else {
288 pk_flush (lcp);
289 lcp -> lcd_state = READY;
290 if (lcp -> lcd_upper)
291 lcp -> lcd_upper (lcp, 0);
292 }
293 }
294 }
295
296 if (restart_cause < 0)
297 return;
298
299 pkp -> pk_state = DTE_SENT_RESTART;
300 pkp -> pk_dxerole &= ~(DTE_PLAYDCE | DTE_PLAYDTE);
301 lcp = pkp -> pk_chan[0];
302 m = lcp -> lcd_template = pk_template (lcp -> lcd_lcn, X25_RESTART);
303 m -> m_pkthdr.len = m -> m_len += 2;
304 mtod (m, struct x25_packet *) -> packet_data = 0; /* DTE only */
305 mtod (m, octet *)[4] = restart_cause;
306 pk_output (lcp);
307 }
308
309
310 /*
311 * This procedure frees up the Logical Channel Descripter.
312 */
313
314 pk_freelcd (lcp)
315 register struct pklcd *lcp;
316 {
317 if (lcp == NULL)
318 return;
319
320 if (lcp -> lcd_lcn > 0)
321 lcp -> lcd_pkp -> pk_chan[lcp -> lcd_lcn] = NULL;
322
323 pk_flush (lcp);
324 remque (&lcp -> lcd_q);
325 FREE((caddr_t)lcp, M_PCB);
326 }
327
328 static struct x25_ifaddr *
329 pk_ifwithaddr (sx)
330 struct sockaddr_x25 *sx;
331 {
332 struct ifnet *ifp;
333 struct ifaddr *ifa;
334 register struct x25_ifaddr *ia;
335 char *addr = sx -> x25_addr;
336
337 for (ifp = ifnet; ifp; ifp = ifp -> if_next)
338 for (ifa = ifp -> if_addrlist; ifa; ifa = ifa -> ifa_next)
339 if (ifa -> ifa_addr -> sa_family == AF_CCITT) {
340 ia = (struct x25_ifaddr *)ifa;
341 if (bcmp (addr, ia -> ia_xc.xc_addr.x25_addr,
342 16) == 0)
343 return (ia);
344
345 }
346 return ((struct x25_ifaddr *)0);
347 }
348
349
350 /*
351 * Bind a address and protocol value to a socket. The important
352 * part is the protocol value - the first four characters of the
353 * Call User Data field.
354 */
355
356 #define XTRACTPKP(rt) ((rt) -> rt_flags & RTF_GATEWAY ? \
357 ((rt) -> rt_llinfo ? \
358 (struct pkcb *) ((struct rtentry *)((rt) -> rt_llinfo)) -> rt_llinfo : \
359 (struct pkcb *) NULL) : \
360 (struct pkcb *)((rt) -> rt_llinfo))
361
362 pk_bind (lcp, nam)
363 struct pklcd *lcp;
364 struct mbuf *nam;
365 {
366 register struct pklcd *pp;
367 register struct sockaddr_x25 *sa;
368
369 if (nam == NULL)
370 return (EADDRNOTAVAIL);
371 if (lcp -> lcd_ceaddr) /* XXX */
372 return (EADDRINUSE);
373 if (pk_checksockaddr (nam))
374 return (EINVAL);
375 sa = mtod (nam, struct sockaddr_x25 *);
376
377 /*
378 * If the user wishes to accept calls only from a particular
379 * net (net != 0), make sure the net is known
380 */
381
382 if (sa -> x25_addr[0]) {
383 if (!pk_ifwithaddr (sa))
384 return (ENETUNREACH);
385 } else if (sa -> x25_net) {
386 if (!ifa_ifwithnet ((struct sockaddr *)sa))
387 return (ENETUNREACH);
388 }
389
390 /*
391 * For ISO's sake permit default listeners, but only one such . . .
392 */
393 for (pp = pk_listenhead; pp; pp = pp -> lcd_listen) {
394 register struct sockaddr_x25 *sa2 = pp -> lcd_ceaddr;
395 if ((sa2 -> x25_udlen == sa -> x25_udlen) &&
396 (sa2 -> x25_udlen == 0 ||
397 (bcmp (sa2 -> x25_udata, sa -> x25_udata,
398 min (sa2 -> x25_udlen, sa -> x25_udlen)) == 0)))
399 return (EADDRINUSE);
400 }
401 lcp -> lcd_laddr = *sa;
402 lcp -> lcd_ceaddr = &lcp -> lcd_laddr;
403 return (0);
404 }
405
406 /*
407 * Include a bound control block in the list of listeners.
408 */
409 pk_listen (lcp)
410 register struct pklcd *lcp;
411 {
412 register struct pklcd **pp;
413
414 if (lcp -> lcd_ceaddr == 0)
415 return (EDESTADDRREQ);
416
417 lcp -> lcd_state = LISTEN;
418 /*
419 * Add default listener at end, any others at start.
420 */
421 if (lcp -> lcd_ceaddr -> x25_udlen == 0) {
422 for (pp = &pk_listenhead; *pp; )
423 pp = &((*pp) -> lcd_listen);
424 *pp = lcp;
425 } else {
426 lcp -> lcd_listen = pk_listenhead;
427 pk_listenhead = lcp;
428 }
429 return (0);
430 }
431 /*
432 * Include a listening control block for the benefit of other protocols.
433 */
434 pk_protolisten (spi, spilen, callee)
435 int (*callee) ();
436 {
437 register struct pklcd *lcp = pk_attach ((struct socket *)0);
438 register struct mbuf *nam;
439 register struct sockaddr_x25 *sa;
440 int error = ENOBUFS;
441
442 if (lcp) {
443 if (nam = m_getclr (MT_SONAME, M_DONTWAIT)) {
444 sa = mtod (nam, struct sockaddr_x25 *);
445 sa -> x25_family = AF_CCITT;
446 sa -> x25_len = nam -> m_len = sizeof (*sa);
447 sa -> x25_udlen = spilen;
448 sa -> x25_udata[0] = spi;
449 lcp -> lcd_upper = callee;
450 lcp -> lcd_flags = X25_MBS_HOLD;
451 if ((error = pk_bind (lcp, nam)) == 0)
452 error = pk_listen (lcp);
453 (void) m_free (nam);
454 }
455 if (error)
456 pk_freelcd (lcp);
457 }
458 return error; /* Hopefully Zero !*/
459 }
460
461 /*
462 * Associate a logical channel descriptor with a network.
463 * Fill in the default network specific parameters and then
464 * set any parameters explicitly specified by the user or
465 * by the remote DTE.
466 */
467
468 pk_assoc (pkp, lcp, sa)
469 register struct pkcb *pkp;
470 register struct pklcd *lcp;
471 register struct sockaddr_x25 *sa;
472 {
473
474 lcp -> lcd_pkp = pkp;
475 lcp -> lcd_packetsize = pkp -> pk_xcp -> xc_psize;
476 lcp -> lcd_windowsize = pkp -> pk_xcp -> xc_pwsize;
477 lcp -> lcd_rsn = MODULUS - 1;
478 pkp -> pk_chan[lcp -> lcd_lcn] = lcp;
479
480 if (sa -> x25_opts.op_psize)
481 lcp -> lcd_packetsize = sa -> x25_opts.op_psize;
482 else
483 sa -> x25_opts.op_psize = lcp -> lcd_packetsize;
484 if (sa -> x25_opts.op_wsize)
485 lcp -> lcd_windowsize = sa -> x25_opts.op_wsize;
486 else
487 sa -> x25_opts.op_wsize = lcp -> lcd_windowsize;
488 sa -> x25_net = pkp -> pk_xcp -> xc_addr.x25_net;
489 lcp -> lcd_flags |= sa -> x25_opts.op_flags;
490 lcp -> lcd_stime = time.tv_sec;
491 }
492
493 pk_connect (lcp, sa)
494 register struct pklcd *lcp;
495 register struct sockaddr_x25 *sa;
496 {
497 register struct pkcb *pkp;
498 register struct rtentry *rt;
499 register struct rtentry *nrt;
500
501 struct rtentry *npaidb_enter ();
502 struct pkcb *pk_newlink ();
503
504 if (sa -> x25_addr[0] == '\0')
505 return (EDESTADDRREQ);
506
507 /*
508 * Is the destination address known?
509 */
510 if (!(rt = rtalloc1 ((struct sockaddr *)sa, 1)))
511 return (ENETUNREACH);
512
513 if (!(pkp = XTRACTPKP(rt)))
514 pkp = pk_newlink ((struct x25_ifaddr *) (rt -> rt_ifa),
515 (caddr_t) 0);
516
517 /*
518 * Have we entered the LLC address?
519 */
520 if (nrt = npaidb_enter (rt -> rt_gateway, rt_key (rt), rt, 0))
521 pkp -> pk_llrt = nrt;
522
523 /*
524 * Have we allocated an LLC2 link yet?
525 */
526 if (pkp -> pk_llnext == (caddr_t)0 && pkp -> pk_llctlinput) {
527 struct dll_ctlinfo ctlinfo;
528
529 ctlinfo.dlcti_rt = rt;
530 ctlinfo.dlcti_pcb = (caddr_t) pkp;
531 ctlinfo.dlcti_conf =
532 (struct dllconfig *) (&((struct x25_ifaddr *)(rt -> rt_ifa)) -> ia_xc);
533 pkp -> pk_llnext =
534 (pkp -> pk_llctlinput) (PRC_CONNECT_REQUEST, 0, &ctlinfo);
535 }
536
537 if (pkp -> pk_state != DTE_READY && pkp -> pk_state != DTE_WAITING)
538 return (ENETDOWN);
539 if ((lcp -> lcd_lcn = pk_getlcn (pkp)) == 0)
540 return (EMFILE);
541
542 lcp -> lcd_faddr = *sa;
543 lcp -> lcd_ceaddr = & lcp -> lcd_faddr;
544 pk_assoc (pkp, lcp, lcp -> lcd_ceaddr);
545
546 /*
547 * If the link is not up yet, initiate an X.25 RESTART
548 */
549 if (pkp -> pk_state == DTE_WAITING) {
550 pkp -> pk_dxerole |= DTE_CONNECTPENDING;
551 pk_ctlinput (PRC_LINKUP, (struct sockaddr *)0, pkp);
552 if (lcp -> lcd_so)
553 soisconnecting (lcp -> lcd_so);
554 return 0;
555 }
556
557 if (lcp -> lcd_so)
558 soisconnecting (lcp -> lcd_so);
559 lcp -> lcd_template = pk_template (lcp -> lcd_lcn, X25_CALL);
560 pk_callrequest (lcp, lcp -> lcd_ceaddr, pkp -> pk_xcp);
561 return (*pkp -> pk_ia -> ia_start) (lcp);
562 }
563
564 /*
565 * Complete all pending X.25 call requests --- this gets called after
566 * the X.25 link has been restarted.
567 */
568 #define RESHUFFLELCN(maxlcn, lcn) ((maxlcn) - (lcn) + 1)
569
570 pk_callcomplete (pkp)
571 register struct pkcb *pkp;
572 {
573 register struct pklcd *lcp;
574 register int i;
575 register int ni;
576
577
578 if (pkp -> pk_dxerole & DTE_CONNECTPENDING)
579 pkp -> pk_dxerole &= ~DTE_CONNECTPENDING;
580 else return;
581
582 if (pkp -> pk_chan == 0)
583 return;
584
585 /*
586 * We pretended to be a DTE for allocating lcns, if
587 * it turns out that we are in reality performing as a
588 * DCE we need to reshuffle the lcps.
589 *
590 * /+---------------+-------- -
591 * / | a (maxlcn-1) | \
592 * / +---------------+ \
593 * +--- * | b (maxlcn-2) | \
594 * | \ +---------------+ \
595 * r | \ | c (maxlcn-3) | \
596 * e | \+---------------+ |
597 * s | | . |
598 * h | | . | m
599 * u | | . | a
600 * f | | . | x
601 * f | | . | l
602 * l | /+---------------+ | c
603 * e | / | c' ( 3 ) | | n
604 * | / +---------------+ |
605 * +--> * | b' ( 2 ) | /
606 * \ +---------------+ /
607 * \ | a' ( 1 ) | /
608 * \+---------------+ /
609 * | 0 | /
610 * +---------------+-------- -
611 *
612 */
613 if (pkp -> pk_dxerole & DTE_PLAYDCE) {
614 /* Sigh, reshuffle it */
615 for (i = pkp -> pk_maxlcn; i > 0; --i)
616 if (pkp -> pk_chan[i]) {
617 ni = RESHUFFLELCN(pkp -> pk_maxlcn, i);
618 pkp -> pk_chan[ni] = pkp -> pk_chan[i];
619 pkp -> pk_chan[i] = NULL;
620 pkp -> pk_chan[ni] -> lcd_lcn = ni;
621 }
622 }
623
624 for (i = 1; i <= pkp -> pk_maxlcn; ++i)
625 if ((lcp = pkp -> pk_chan[i]) != NULL) {
626 /* if (lcp -> lcd_so)
627 soisconnecting (lcp -> lcd_so); */
628 lcp -> lcd_template = pk_template (lcp -> lcd_lcn, X25_CALL);
629 pk_callrequest (lcp, lcp -> lcd_ceaddr, pkp -> pk_xcp);
630 (*pkp -> pk_ia -> ia_start) (lcp);
631 }
632 }
633
634 struct bcdinfo {
635 octet *cp;
636 unsigned posn;
637 };
638 /*
639 * Build the rest of the CALL REQUEST packet. Fill in calling
640 * address, facilities fields and the user data field.
641 */
642
643 pk_callrequest (lcp, sa, xcp)
644 struct pklcd *lcp;
645 register struct sockaddr_x25 *sa;
646 register struct x25config *xcp;
647 {
648 register struct x25_calladdr *a;
649 register struct mbuf *m = lcp -> lcd_template;
650 register struct x25_packet *xp = mtod (m, struct x25_packet *);
651 struct bcdinfo b;
652
653 if (lcp -> lcd_flags & X25_DBIT)
654 X25SBITS(xp -> bits, d_bit, 1);
655 a = (struct x25_calladdr *) &xp -> packet_data;
656 b.cp = (octet *) a -> address_field;
657 b.posn = 0;
658 X25SBITS(a -> addrlens, called_addrlen, to_bcd (&b, sa, xcp));
659 X25SBITS(a -> addrlens, calling_addrlen, to_bcd (&b, &xcp -> xc_addr, xcp));
660 if (b.posn & 0x01)
661 *b.cp++ &= 0xf0;
662 m -> m_pkthdr.len = m -> m_len += b.cp - (octet *) a;
663
664 if (lcp -> lcd_facilities) {
665 m -> m_pkthdr.len +=
666 (m -> m_next = lcp -> lcd_facilities) -> m_pkthdr.len;
667 lcp -> lcd_facilities = 0;
668 } else
669 pk_build_facilities (m, sa, (int)xcp -> xc_type);
670
671 m_copyback (m, m -> m_pkthdr.len, sa -> x25_udlen, sa -> x25_udata);
672 }
673
674 pk_build_facilities (m, sa, type)
675 register struct mbuf *m;
676 struct sockaddr_x25 *sa;
677 {
678 register octet *cp;
679 register octet *fcp;
680 register int revcharge;
681
682 cp = mtod (m, octet *) + m -> m_len;
683 fcp = cp + 1;
684 revcharge = sa -> x25_opts.op_flags & X25_REVERSE_CHARGE ? 1 : 0;
685 /*
686 * This is specific to Datapac X.25(1976) DTEs. International
687 * calls must have the "hi priority" bit on.
688 */
689 if (type == X25_1976 && sa -> x25_opts.op_psize == X25_PS128)
690 revcharge |= 02;
691 if (revcharge) {
692 *fcp++ = FACILITIES_REVERSE_CHARGE;
693 *fcp++ = revcharge;
694 }
695 switch (type) {
696 case X25_1980:
697 case X25_1984:
698 *fcp++ = FACILITIES_PACKETSIZE;
699 *fcp++ = sa -> x25_opts.op_psize;
700 *fcp++ = sa -> x25_opts.op_psize;
701
702 *fcp++ = FACILITIES_WINDOWSIZE;
703 *fcp++ = sa -> x25_opts.op_wsize;
704 *fcp++ = sa -> x25_opts.op_wsize;
705 }
706 *cp = fcp - cp - 1;
707 m -> m_pkthdr.len = (m -> m_len += *cp + 1);
708 }
709
710 to_bcd (b, sa, xcp)
711 register struct bcdinfo *b;
712 struct sockaddr_x25 *sa;
713 register struct x25config *xcp;
714 {
715 register char *x = sa -> x25_addr;
716 unsigned start = b -> posn;
717 /*
718 * The nodnic and prepnd0 stuff looks tedious,
719 * but it does allow full X.121 addresses to be used,
720 * which is handy for routing info (& OSI type 37 addresses).
721 */
722 if (xcp -> xc_addr.x25_net && (xcp -> xc_nodnic || xcp -> xc_prepnd0)) {
723 char dnicname[sizeof (long) * NBBY/3 + 2];
724 register char *p = dnicname;
725
726 sprintf (p, "%d", xcp -> xc_addr.x25_net & 0x7fff);
727 for (; *p; p++) /* *p == 0 means dnic matched */
728 if ((*p ^ *x++) & 0x0f)
729 break;
730 if (*p || xcp -> xc_nodnic == 0)
731 x = sa -> x25_addr;
732 if (*p && xcp -> xc_prepnd0) {
733 if ((b -> posn)++ & 0x01)
734 *(b -> cp)++;
735 else
736 *(b -> cp) = 0;
737 }
738 }
739 while (*x)
740 if ((b -> posn)++ & 0x01)
741 *(b -> cp)++ |= *x++ & 0x0F;
742 else
743 *(b -> cp) = *x++ << 4;
744 return ((b -> posn) - start);
745 }
746
747 /*
748 * This routine gets the first available logical channel number. The
749 * search is
750 * - from the highest number to lowest number if playing DTE, and
751 * - from lowest to highest number if playing DCE.
752 */
753
754 pk_getlcn (pkp)
755 register struct pkcb *pkp;
756 {
757 register int i;
758
759 if (pkp -> pk_chan == 0)
760 return (0);
761 if ( pkp -> pk_dxerole & DTE_PLAYDCE ) {
762 for (i = 1; i <= pkp -> pk_maxlcn; ++i)
763 if (pkp -> pk_chan[i] == NULL)
764 break;
765 } else {
766 for (i = pkp -> pk_maxlcn; i > 0; --i)
767 if (pkp -> pk_chan[i] == NULL)
768 break;
769 }
770 i = ( i > pkp -> pk_maxlcn ? 0 : i );
771 return (i);
772 }
773
774 /*
775 * This procedure sends a CLEAR request packet. The lc state is
776 * set to "SENT_CLEAR".
777 */
778
779 pk_clear (lcp, diagnostic, abortive)
780 register struct pklcd *lcp;
781 {
782 register struct mbuf *m = pk_template (lcp -> lcd_lcn, X25_CLEAR);
783
784 m -> m_len += 2;
785 m -> m_pkthdr.len += 2;
786 mtod (m, struct x25_packet *) -> packet_data = 0;
787 mtod (m, octet *)[4] = diagnostic;
788 if (lcp -> lcd_facilities) {
789 m -> m_next = lcp -> lcd_facilities;
790 m -> m_pkthdr.len += m -> m_next -> m_len;
791 lcp -> lcd_facilities = 0;
792 }
793 if (abortive)
794 lcp -> lcd_template = m;
795 else {
796 struct socket *so = lcp -> lcd_so;
797 struct sockbuf *sb = so ? & so -> so_snd : & lcp -> lcd_sb;
798 sbappendrecord (sb, m);
799 }
800 pk_output (lcp);
801
802 }
803
804 /*
805 * This procedure generates RNR's or RR's to inhibit or enable
806 * inward data flow, if the current state changes (blocked ==> open or
807 * vice versa), or if forced to generate one. One forces RNR's to ack data.
808 */
809 pk_flowcontrol (lcp, inhibit, forced)
810 register struct pklcd *lcp;
811 {
812 inhibit = (inhibit != 0);
813 if (lcp == 0 || lcp -> lcd_state != DATA_TRANSFER ||
814 (forced == 0 && lcp -> lcd_rxrnr_condition == inhibit))
815 return;
816 lcp -> lcd_rxrnr_condition = inhibit;
817 lcp -> lcd_template =
818 pk_template (lcp -> lcd_lcn, inhibit ? X25_RNR : X25_RR);
819 pk_output (lcp);
820 }
821
822 /*
823 * This procedure sends a RESET request packet. It re-intializes
824 * virtual circuit.
825 */
826
827 static
828 pk_reset (lcp, diagnostic)
829 register struct pklcd *lcp;
830 {
831 register struct mbuf *m;
832 register struct socket *so = lcp -> lcd_so;
833
834 if (lcp -> lcd_state != DATA_TRANSFER)
835 return;
836
837 if (so)
838 so -> so_error = ECONNRESET;
839 lcp -> lcd_reset_condition = TRUE;
840
841 /* Reset all the control variables for the channel. */
842 pk_flush (lcp);
843 lcp -> lcd_window_condition = lcp -> lcd_rnr_condition =
844 lcp -> lcd_intrconf_pending = FALSE;
845 lcp -> lcd_rsn = MODULUS - 1;
846 lcp -> lcd_ssn = 0;
847 lcp -> lcd_output_window = lcp -> lcd_input_window =
848 lcp -> lcd_last_transmitted_pr = 0;
849 m = lcp -> lcd_template = pk_template (lcp -> lcd_lcn, X25_RESET);
850 m -> m_pkthdr.len = m -> m_len += 2;
851 mtod (m, struct x25_packet *) -> packet_data = 0;
852 mtod (m, octet *)[4] = diagnostic;
853 pk_output (lcp);
854
855 }
856
857 /*
858 * This procedure frees all data queued for output or delivery on a
859 * virtual circuit.
860 */
861
862 pk_flush (lcp)
863 register struct pklcd *lcp;
864 {
865 register struct socket *so;
866
867 if (lcp -> lcd_template)
868 m_freem (lcp -> lcd_template);
869
870 if (lcp -> lcd_cps) {
871 m_freem (lcp -> lcd_cps);
872 lcp -> lcd_cps = 0;
873 }
874 if (lcp -> lcd_facilities) {
875 m_freem (lcp -> lcd_facilities);
876 lcp -> lcd_facilities = 0;
877 }
878 if (so = lcp -> lcd_so)
879 sbflush (&so -> so_snd);
880 else
881 sbflush (&lcp -> lcd_sb);
882 }
883
884 /*
885 * This procedure handles all local protocol procedure errors.
886 */
887
888 pk_procerror (error, lcp, errstr, diagnostic)
889 register struct pklcd *lcp;
890 char *errstr;
891 {
892
893 pk_message (lcp -> lcd_lcn, lcp -> lcd_pkp -> pk_xcp, errstr);
894
895 switch (error) {
896 case CLEAR:
897 if (lcp -> lcd_so) {
898 lcp -> lcd_so -> so_error = ECONNABORTED;
899 soisdisconnecting (lcp -> lcd_so);
900 }
901 pk_clear (lcp, diagnostic, 1);
902 break;
903
904 case RESET:
905 pk_reset (lcp, diagnostic);
906 }
907 }
908
909 /*
910 * This procedure is called during the DATA TRANSFER state to check
911 * and process the P(R) values received in the DATA, RR OR RNR
912 * packets.
913 */
914
915 pk_ack (lcp, pr)
916 struct pklcd *lcp;
917 unsigned pr;
918 {
919 register struct socket *so = lcp -> lcd_so;
920
921 if (lcp -> lcd_output_window == pr)
922 return (PACKET_OK);
923 if (lcp -> lcd_output_window < lcp -> lcd_ssn) {
924 if (pr < lcp -> lcd_output_window || pr > lcp -> lcd_ssn) {
925 pk_procerror (RESET, lcp,
926 "p(r) flow control error", 2);
927 return (ERROR_PACKET);
928 }
929 }
930 else {
931 if (pr < lcp -> lcd_output_window && pr > lcp -> lcd_ssn) {
932 pk_procerror (RESET, lcp,
933 "p(r) flow control error #2", 2);
934 return (ERROR_PACKET);
935 }
936 }
937
938 lcp -> lcd_output_window = pr; /* Rotate window. */
939 if (lcp -> lcd_window_condition == TRUE)
940 lcp -> lcd_window_condition = FALSE;
941
942 if (so && ((so -> so_snd.sb_flags & SB_WAIT) ||
943 (so -> so_snd.sb_flags & SB_NOTIFY)))
944 sowwakeup (so);
945
946 return (PACKET_OK);
947 }
948
949 /*
950 * This procedure decodes the X.25 level 3 packet returning a
951 * code to be used in switchs or arrays.
952 */
953
954 pk_decode (xp)
955 register struct x25_packet *xp;
956 {
957 register int type;
958
959 if (X25GBITS(xp -> bits, fmt_identifier) != 1)
960 return (INVALID_PACKET);
961 #ifdef ancient_history
962 /*
963 * Make sure that the logical channel group number is 0.
964 * This restriction may be removed at some later date.
965 */
966 if (xp -> lc_group_number != 0)
967 return (INVALID_PACKET);
968 #endif
969 /*
970 * Test for data packet first.
971 */
972 if (!(xp -> packet_type & DATA_PACKET_DESIGNATOR))
973 return (DATA);
974
975 /*
976 * Test if flow control packet (RR or RNR).
977 */
978 if (!(xp -> packet_type & RR_OR_RNR_PACKET_DESIGNATOR))
979 switch (xp -> packet_type & 0x1f) {
980 case X25_RR:
981 return (RR);
982 case X25_RNR:
983 return (RNR);
984 case X25_REJECT:
985 return (REJECT);
986 }
987
988 /*
989 * Determine the rest of the packet types.
990 */
991 switch (xp -> packet_type) {
992 case X25_CALL:
993 type = CALL;
994 break;
995
996 case X25_CALL_ACCEPTED:
997 type = CALL_ACCEPTED;
998 break;
999
1000 case X25_CLEAR:
1001 type = CLEAR;
1002 break;
1003
1004 case X25_CLEAR_CONFIRM:
1005 type = CLEAR_CONF;
1006 break;
1007
1008 case X25_INTERRUPT:
1009 type = INTERRUPT;
1010 break;
1011
1012 case X25_INTERRUPT_CONFIRM:
1013 type = INTERRUPT_CONF;
1014 break;
1015
1016 case X25_RESET:
1017 type = RESET;
1018 break;
1019
1020 case X25_RESET_CONFIRM:
1021 type = RESET_CONF;
1022 break;
1023
1024 case X25_RESTART:
1025 type = RESTART;
1026 break;
1027
1028 case X25_RESTART_CONFIRM:
1029 type = RESTART_CONF;
1030 break;
1031
1032 case X25_DIAGNOSTIC:
1033 type = DIAG_TYPE;
1034 break;
1035
1036 default:
1037 type = INVALID_PACKET;
1038 }
1039 return (type);
1040 }
1041
1042 /*
1043 * A restart packet has been received. Print out the reason
1044 * for the restart.
1045 */
1046
1047 pk_restartcause (pkp, xp)
1048 struct pkcb *pkp;
1049 register struct x25_packet *xp;
1050 {
1051 register struct x25config *xcp = pkp -> pk_xcp;
1052 register int lcn = LCN(xp);
1053
1054 switch (xp -> packet_data) {
1055 case X25_RESTART_LOCAL_PROCEDURE_ERROR:
1056 pk_message (lcn, xcp, "restart: local procedure error");
1057 break;
1058
1059 case X25_RESTART_NETWORK_CONGESTION:
1060 pk_message (lcn, xcp, "restart: network congestion");
1061 break;
1062
1063 case X25_RESTART_NETWORK_OPERATIONAL:
1064 pk_message (lcn, xcp, "restart: network operational");
1065 break;
1066
1067 default:
1068 pk_message (lcn, xcp, "restart: unknown cause");
1069 }
1070 }
1071
1072 #define MAXRESETCAUSE 7
1073
1074 int Reset_cause[] = {
1075 EXRESET, EXROUT, 0, EXRRPE, 0, EXRLPE, 0, EXRNCG
1076 };
1077
1078 /*
1079 * A reset packet has arrived. Return the cause to the user.
1080 */
1081
1082 pk_resetcause (pkp, xp)
1083 struct pkcb *pkp;
1084 register struct x25_packet *xp;
1085 {
1086 register struct pklcd *lcp =
1087 pkp -> pk_chan[LCN(xp)];
1088 register int code = xp -> packet_data;
1089
1090 if (code > MAXRESETCAUSE)
1091 code = 7; /* EXRNCG */
1092
1093 pk_message (LCN(xp), lcp -> lcd_pkp, "reset code 0x%x, diagnostic 0x%x",
1094 xp -> packet_data, 4[(u_char *)xp]);
1095
1096 if (lcp -> lcd_so)
1097 lcp -> lcd_so -> so_error = Reset_cause[code];
1098 }
1099
1100 #define MAXCLEARCAUSE 25
1101
1102 int Clear_cause[] = {
1103 EXCLEAR, EXCBUSY, 0, EXCINV, 0, EXCNCG, 0,
1104 0, 0, EXCOUT, 0, EXCAB, 0, EXCNOB, 0, 0, 0, EXCRPE,
1105 0, EXCLPE, 0, 0, 0, 0, 0, EXCRRC
1106 };
1107
1108 /*
1109 * A clear packet has arrived. Return the cause to the user.
1110 */
1111
1112 pk_clearcause (pkp, xp)
1113 struct pkcb *pkp;
1114 register struct x25_packet *xp;
1115 {
1116 register struct pklcd *lcp =
1117 pkp -> pk_chan[LCN(xp)];
1118 register int code = xp -> packet_data;
1119
1120 if (code > MAXCLEARCAUSE)
1121 code = 5; /* EXRNCG */
1122 if (lcp -> lcd_so)
1123 lcp -> lcd_so -> so_error = Clear_cause[code];
1124 }
1125
1126 char *
1127 format_ntn (xcp)
1128 register struct x25config *xcp;
1129 {
1130
1131 return (xcp -> xc_addr.x25_addr);
1132 }
1133
1134 /* VARARGS1 */
1135 pk_message (lcn, xcp, fmt, a1, a2, a3, a4, a5, a6)
1136 struct x25config *xcp;
1137 char *fmt;
1138 {
1139
1140 if (lcn)
1141 if (!PQEMPTY)
1142 printf ("X.25(%s): lcn %d: ", format_ntn (xcp), lcn);
1143 else
1144 printf ("X.25: lcn %d: ", lcn);
1145 else
1146 if (!PQEMPTY)
1147 printf ("X.25(%s): ", format_ntn (xcp));
1148 else
1149 printf ("X.25: ");
1150
1151 printf (fmt, a1, a2, a3, a4, a5, a6);
1152 printf ("\n");
1153 }
1154
1155 pk_fragment (lcp, m0, qbit, mbit, wait)
1156 struct mbuf *m0;
1157 register struct pklcd *lcp;
1158 {
1159 register struct mbuf *m = m0;
1160 register struct x25_packet *xp;
1161 register struct sockbuf *sb;
1162 struct mbuf *head = 0, *next, **mp = &head, *m_split ();
1163 int totlen, psize = 1 << (lcp -> lcd_packetsize);
1164
1165 if (m == 0)
1166 return 0;
1167 if (m -> m_flags & M_PKTHDR == 0)
1168 panic ("pk_fragment");
1169 totlen = m -> m_pkthdr.len;
1170 m -> m_act = 0;
1171 sb = lcp -> lcd_so ? &lcp -> lcd_so -> so_snd : & lcp -> lcd_sb;
1172 do {
1173 if (totlen > psize) {
1174 if ((next = m_split (m, psize, wait)) == 0)
1175 goto abort;
1176 totlen -= psize;
1177 } else
1178 next = 0;
1179 M_PREPEND(m, PKHEADERLN, wait);
1180 if (m == 0)
1181 goto abort;
1182 *mp = m;
1183 mp = & m -> m_act;
1184 *mp = 0;
1185 xp = mtod (m, struct x25_packet *);
1186 0[(char *)xp] = 0;
1187 if (qbit)
1188 X25SBITS(xp -> bits, q_bit, 1);
1189 if (lcp -> lcd_flags & X25_DBIT)
1190 X25SBITS(xp -> bits, d_bit, 1);
1191 X25SBITS(xp -> bits, fmt_identifier, 1);
1192 xp -> packet_type = X25_DATA;
1193 SET_LCN(xp, lcp -> lcd_lcn);
1194 if (next || (mbit && (totlen == psize ||
1195 (lcp -> lcd_flags & X25_DBIT))))
1196 SMBIT(xp, 1);
1197 } while (m = next);
1198 for (m = head; m; m = next) {
1199 next = m -> m_act;
1200 m -> m_act = 0;
1201 sbappendrecord (sb, m);
1202 }
1203 return 0;
1204 abort:
1205 if (wait)
1206 panic ("pk_fragment null mbuf after wait");
1207 if (next)
1208 m_freem (next);
1209 for (m = head; m; m = next) {
1210 next = m -> m_act;
1211 m_freem (m);
1212 }
1213 return ENOBUFS;
1214 }