2 * Copyright (c) 2000-2010 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
32 * Mach Operating System
33 * Copyright (c) 1991,1990,1989,1988 Carnegie Mellon University
34 * All Rights Reserved.
36 * Permission to use, copy, modify and distribute this software and its
37 * documentation is hereby granted, provided that both the copyright
38 * notice and this permission notice appear in all copies of the
39 * software, derivative works or modified versions, and any portions
40 * thereof, and that both notices appear in supporting documentation.
42 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
43 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
44 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
46 * Carnegie Mellon requests users of this software to return to
48 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
49 * School of Computer Science
50 * Carnegie Mellon University
51 * Pittsburgh PA 15213-3890
53 * any improvements or extensions that they make and grant Carnegie Mellon
54 * the rights to redistribute these changes.
61 * Author: Avadis Tevanian, Jr., Michael Wayne Young
62 * (These guys wrote the Vax version)
64 * Physical Map management code for Intel i386, i486, and i860.
66 * Manages physical address maps.
68 * In addition to hardware address maps, this
69 * module is called upon to provide software-use-only
70 * maps which may or may not be stored in the same
71 * form as hardware maps. These pseudo-maps are
72 * used to store intermediate results from copy
73 * operations to and from address spaces.
75 * Since the information managed by this module is
76 * also stored by the logical address mapping module,
77 * this module may throw away valid virtual-to-physical
78 * mappings at almost any time. However, invalidations
79 * of virtual-to-physical mappings must be done as
82 * In order to cope with hardware architectures which
83 * make virtual-to-physical map invalidates expensive,
84 * this module may delay invalidate or reduced protection
85 * operations until such time as they are actually
86 * necessary. This module is given full information as
87 * to which processors are currently using which maps,
88 * and to when physical maps must be made correct.
92 #include <mach_ldebug.h>
94 #include <libkern/OSAtomic.h>
96 #include <mach/machine/vm_types.h>
98 #include <mach/boolean.h>
99 #include <kern/thread.h>
100 #include <kern/zalloc.h>
101 #include <kern/queue.h>
102 #include <kern/ledger.h>
103 #include <kern/mach_param.h>
105 #include <kern/lock.h>
106 #include <kern/kalloc.h>
107 #include <kern/spl.h>
110 #include <vm/vm_map.h>
111 #include <vm/vm_kern.h>
112 #include <mach/vm_param.h>
113 #include <mach/vm_prot.h>
114 #include <vm/vm_object.h>
115 #include <vm/vm_page.h>
117 #include <mach/machine/vm_param.h>
118 #include <machine/thread.h>
120 #include <kern/misc_protos.h> /* prototyping */
121 #include <i386/misc_protos.h>
122 #include <i386/i386_lowmem.h>
123 #include <x86_64/lowglobals.h>
125 #include <i386/cpuid.h>
126 #include <i386/cpu_data.h>
127 #include <i386/cpu_number.h>
128 #include <i386/machine_cpu.h>
129 #include <i386/seg.h>
130 #include <i386/serial_io.h>
131 #include <i386/cpu_capabilities.h>
132 #include <i386/machine_routines.h>
133 #include <i386/proc_reg.h>
134 #include <i386/tsc.h>
135 #include <i386/pmap_internal.h>
136 #include <i386/pmap_pcid.h>
138 #include <vm/vm_protos.h>
141 #include <i386/mp_desc.h>
142 #include <libkern/kernel_mach_header.h>
144 #include <pexpert/i386/efi.h>
150 #define POSTCODE_DELAY 1
151 #include <i386/postcode.h>
152 #endif /* IWANTTODEBUG */
155 #define DBG(x...) kprintf("DBG: " x)
159 /* Compile time assert to ensure adjacency/alignment of per-CPU data fields used
160 * in the trampolines for kernel/user boundary TLB coherency.
162 char pmap_cpu_data_assert
[(((offsetof(cpu_data_t
, cpu_tlb_invalid
) - offsetof(cpu_data_t
, cpu_active_cr3
)) == 8) && (offsetof(cpu_data_t
, cpu_active_cr3
) % 64 == 0)) ? 1 : -1];
163 boolean_t pmap_trace
= FALSE
;
165 boolean_t no_shared_cr3
= DEBUG
; /* TRUE for DEBUG by default */
167 int nx_enabled
= 1; /* enable no-execute protection */
168 int allow_data_exec
= VM_ABI_32
; /* 32-bit apps may execute data by default, 64-bit apps may not */
169 int allow_stack_exec
= 0; /* No apps may execute from the stack by default */
171 const boolean_t cpu_64bit
= TRUE
; /* Mais oui! */
173 uint64_t max_preemption_latency_tsc
= 0;
175 pv_hashed_entry_t
*pv_hash_table
; /* hash lists */
177 uint32_t npvhash
= 0;
179 pv_hashed_entry_t pv_hashed_free_list
= PV_HASHED_ENTRY_NULL
;
180 pv_hashed_entry_t pv_hashed_kern_free_list
= PV_HASHED_ENTRY_NULL
;
181 decl_simple_lock_data(,pv_hashed_free_list_lock
)
182 decl_simple_lock_data(,pv_hashed_kern_free_list_lock
)
183 decl_simple_lock_data(,pv_hash_table_lock
)
185 zone_t pv_hashed_list_zone
; /* zone of pv_hashed_entry structures */
188 * First and last physical addresses that we maintain any information
189 * for. Initialized to zero so that pmap operations done before
190 * pmap_init won't touch any non-existent structures.
192 boolean_t pmap_initialized
= FALSE
;/* Has pmap_init completed? */
194 static struct vm_object kptobj_object_store
;
195 static struct vm_object kpml4obj_object_store
;
196 static struct vm_object kpdptobj_object_store
;
199 * Array of physical page attribites for managed pages.
200 * One byte per physical page.
202 char *pmap_phys_attributes
;
203 ppnum_t last_managed_page
= 0;
206 * Amount of virtual memory mapped by one
207 * page-directory entry.
210 uint64_t pde_mapped_size
= PDE_MAPPED_SIZE
;
212 unsigned pmap_memory_region_count
;
213 unsigned pmap_memory_region_current
;
215 pmap_memory_region_t pmap_memory_regions
[PMAP_MEMORY_REGIONS_SIZE
];
218 * Other useful macros.
220 #define current_pmap() (vm_map_pmap(current_thread()->map))
222 struct pmap kernel_pmap_store
;
225 struct zone
*pmap_zone
; /* zone of pmap structures */
227 struct zone
*pmap_anchor_zone
;
228 int pmap_debug
= 0; /* flag for debugging prints */
230 unsigned int inuse_ptepages_count
= 0;
231 long long alloc_ptepages_count
__attribute__((aligned(8))) = 0; /* aligned for atomic access */
232 unsigned int bootstrap_wired_pages
= 0;
233 int pt_fake_zone_index
= -1;
235 extern long NMIPI_acks
;
237 boolean_t kernel_text_ps_4K
= TRUE
;
238 boolean_t wpkernel
= TRUE
;
244 pt_entry_t
*DMAP1
, *DMAP2
;
248 const boolean_t pmap_disable_kheap_nx
= FALSE
;
249 const boolean_t pmap_disable_kstack_nx
= FALSE
;
250 extern boolean_t doconstro_override
;
252 extern long __stack_chk_guard
[];
255 * Map memory at initialization. The physical addresses being
256 * mapped are not managed and are never unmapped.
258 * For now, VM is already on, we only need to map the
264 vm_map_offset_t start_addr
,
265 vm_map_offset_t end_addr
,
272 while (start_addr
< end_addr
) {
273 pmap_enter(kernel_pmap
, (vm_map_offset_t
)virt
,
274 (ppnum_t
) i386_btop(start_addr
), prot
, VM_PROT_NONE
, flags
, TRUE
);
281 extern char *first_avail
;
282 extern vm_offset_t virtual_avail
, virtual_end
;
283 extern pmap_paddr_t avail_start
, avail_end
;
284 extern vm_offset_t sHIB
;
285 extern vm_offset_t eHIB
;
286 extern vm_offset_t stext
;
287 extern vm_offset_t etext
;
288 extern vm_offset_t sdata
, edata
;
289 extern vm_offset_t sconstdata
, econstdata
;
291 extern void *KPTphys
;
293 boolean_t pmap_smep_enabled
= FALSE
;
298 cpu_data_t
*cdp
= current_cpu_datap();
300 * Here early in the life of a processor (from cpu_mode_init()).
301 * Ensure global page feature is disabled at this point.
304 set_cr4(get_cr4() &~ CR4_PGE
);
307 * Initialize the per-cpu, TLB-related fields.
309 cdp
->cpu_kernel_cr3
= kernel_pmap
->pm_cr3
;
310 cdp
->cpu_active_cr3
= kernel_pmap
->pm_cr3
;
311 cdp
->cpu_tlb_invalid
= FALSE
;
312 cdp
->cpu_task_map
= TASK_MAP_64BIT
;
313 pmap_pcid_configure();
314 if (cpuid_leaf7_features() & CPUID_LEAF7_FEATURE_SMEP
) {
316 if (!PE_parse_boot_argn("-pmap_smep_disable", &nsmep
, sizeof(nsmep
))) {
317 set_cr4(get_cr4() | CR4_SMEP
);
318 pmap_smep_enabled
= TRUE
;
322 if (cdp
->cpu_fixed_pmcs_enabled
) {
323 boolean_t enable
= TRUE
;
324 cpu_pmc_control(&enable
);
331 * Bootstrap the system enough to run with virtual memory.
332 * Map the kernel's code and data, and allocate the system page table.
333 * Called with mapping OFF. Page_size must already be set.
338 __unused vm_offset_t load_start
,
339 __unused boolean_t IA32e
)
341 #if NCOPY_WINDOWS > 0
347 vm_last_addr
= VM_MAX_KERNEL_ADDRESS
; /* Set the highest address
350 * The kernel's pmap is statically allocated so we don't
351 * have to use pmap_create, which is unlikely to work
352 * correctly at this part of the boot sequence.
355 kernel_pmap
= &kernel_pmap_store
;
356 kernel_pmap
->ref_count
= 1;
357 kernel_pmap
->nx_enabled
= TRUE
;
358 kernel_pmap
->pm_task_map
= TASK_MAP_64BIT
;
359 kernel_pmap
->pm_obj
= (vm_object_t
) NULL
;
360 kernel_pmap
->dirbase
= (pd_entry_t
*)((uintptr_t)IdlePTD
);
361 kernel_pmap
->pm_pdpt
= (pd_entry_t
*) ((uintptr_t)IdlePDPT
);
362 kernel_pmap
->pm_pml4
= IdlePML4
;
363 kernel_pmap
->pm_cr3
= (uintptr_t)ID_MAP_VTOP(IdlePML4
);
364 pmap_pcid_initialize_kernel(kernel_pmap
);
368 current_cpu_datap()->cpu_kernel_cr3
= (addr64_t
) kernel_pmap
->pm_cr3
;
371 OSAddAtomic(NKPT
, &inuse_ptepages_count
);
372 OSAddAtomic64(NKPT
, &alloc_ptepages_count
);
373 bootstrap_wired_pages
= NKPT
;
375 virtual_avail
= (vm_offset_t
)(VM_MIN_KERNEL_ADDRESS
) + (vm_offset_t
)first_avail
;
376 virtual_end
= (vm_offset_t
)(VM_MAX_KERNEL_ADDRESS
);
378 #if NCOPY_WINDOWS > 0
380 * Reserve some special page table entries/VA space for temporary
383 #define SYSMAP(c, p, v, n) \
384 v = (c)va; va += ((n)*INTEL_PGBYTES);
388 for (i
=0; i
<PMAP_NWINDOWS
; i
++) {
390 kprintf("trying to do SYSMAP idx %d %p\n", i
,
391 current_cpu_datap());
392 kprintf("cpu_pmap %p\n", current_cpu_datap()->cpu_pmap
);
393 kprintf("mapwindow %p\n", current_cpu_datap()->cpu_pmap
->mapwindow
);
394 kprintf("two stuff %p %p\n",
395 (void *)(current_cpu_datap()->cpu_pmap
->mapwindow
[i
].prv_CMAP
),
396 (void *)(current_cpu_datap()->cpu_pmap
->mapwindow
[i
].prv_CADDR
));
399 (current_cpu_datap()->cpu_pmap
->mapwindow
[i
].prv_CMAP
),
400 (current_cpu_datap()->cpu_pmap
->mapwindow
[i
].prv_CADDR
),
402 current_cpu_datap()->cpu_pmap
->mapwindow
[i
].prv_CMAP
=
403 &(current_cpu_datap()->cpu_pmap
->mapwindow
[i
].prv_CMAP_store
);
404 *current_cpu_datap()->cpu_pmap
->mapwindow
[i
].prv_CMAP
= 0;
407 /* DMAP user for debugger */
408 SYSMAP(caddr_t
, DMAP1
, DADDR1
, 1);
409 SYSMAP(caddr_t
, DMAP2
, DADDR2
, 1); /* XXX temporary - can remove */
414 if (PE_parse_boot_argn("npvhash", &npvhash
, sizeof (npvhash
))) {
415 if (0 != ((npvhash
+ 1) & npvhash
)) {
416 kprintf("invalid hash %d, must be ((2^N)-1), "
417 "using default %d\n", npvhash
, NPVHASH
);
424 simple_lock_init(&kernel_pmap
->lock
, 0);
425 simple_lock_init(&pv_hashed_free_list_lock
, 0);
426 simple_lock_init(&pv_hashed_kern_free_list_lock
, 0);
427 simple_lock_init(&pv_hash_table_lock
,0);
432 printf("PMAP: PCID enabled\n");
434 if (pmap_smep_enabled
)
435 printf("PMAP: Supervisor Mode Execute Protection enabled\n");
438 printf("Stack canary: 0x%lx\n", __stack_chk_guard
[0]);
439 printf("ml_early_random(): 0x%qx\n", ml_early_random());
442 /* Check if the user has requested disabling stack or heap no-execute
443 * enforcement. These are "const" variables; that qualifier is cast away
444 * when altering them. The TEXT/DATA const sections are marked
445 * write protected later in the kernel startup sequence, so altering
446 * them is possible at this point, in pmap_bootstrap().
448 if (PE_parse_boot_argn("-pmap_disable_kheap_nx", &ptmp
, sizeof(ptmp
))) {
449 boolean_t
*pdknxp
= (boolean_t
*) &pmap_disable_kheap_nx
;
453 if (PE_parse_boot_argn("-pmap_disable_kstack_nx", &ptmp
, sizeof(ptmp
))) {
454 boolean_t
*pdknhp
= (boolean_t
*) &pmap_disable_kstack_nx
;
458 boot_args
*args
= (boot_args
*)PE_state
.bootArgs
;
459 if (args
->efiMode
== kBootArgsEfiMode32
) {
460 printf("EFI32: kernel virtual space limited to 4GB\n");
461 virtual_end
= VM_MAX_KERNEL_ADDRESS_EFI32
;
463 kprintf("Kernel virtual space from 0x%lx to 0x%lx.\n",
464 (long)KERNEL_BASE
, (long)virtual_end
);
465 kprintf("Available physical space from 0x%llx to 0x%llx\n",
466 avail_start
, avail_end
);
469 * The -no_shared_cr3 boot-arg is a debugging feature (set by default
470 * in the DEBUG kernel) to force the kernel to switch to its own map
471 * (and cr3) when control is in kernelspace. The kernel's map does not
472 * include (i.e. share) userspace so wild references will cause
473 * a panic. Only copyin and copyout are exempt from this.
475 (void) PE_parse_boot_argn("-no_shared_cr3",
476 &no_shared_cr3
, sizeof (no_shared_cr3
));
478 kprintf("Kernel not sharing user map\n");
481 if (PE_parse_boot_argn("-pmap_trace", &pmap_trace
, sizeof (pmap_trace
))) {
482 kprintf("Kernel traces for pmap operations enabled\n");
484 #endif /* PMAP_TRACES */
492 *startp
= virtual_avail
;
501 #include <IOKit/IOHibernatePrivate.h>
504 int32_t pmap_teardown_last_valid_compact_indx
= -1;
507 void hibernate_rebuild_pmap_structs(void);
508 void hibernate_teardown_pmap_structs(addr64_t
*, addr64_t
*);
509 void pmap_pack_index(uint32_t);
510 int32_t pmap_unpack_index(pv_rooted_entry_t
);
514 pmap_unpack_index(pv_rooted_entry_t pv_h
)
518 indx
= (int32_t)(*((uint64_t *)(&pv_h
->qlink
.next
)) >> 48);
520 indx
|= (int32_t)(*((uint64_t *)(&pv_h
->qlink
.prev
)) >> 48);
522 *((uint64_t *)(&pv_h
->qlink
.next
)) |= ((uint64_t)0xffff << 48);
523 *((uint64_t *)(&pv_h
->qlink
.prev
)) |= ((uint64_t)0xffff << 48);
530 pmap_pack_index(uint32_t indx
)
532 pv_rooted_entry_t pv_h
;
534 pv_h
= &pv_head_table
[indx
];
536 *((uint64_t *)(&pv_h
->qlink
.next
)) &= ~((uint64_t)0xffff << 48);
537 *((uint64_t *)(&pv_h
->qlink
.prev
)) &= ~((uint64_t)0xffff << 48);
539 *((uint64_t *)(&pv_h
->qlink
.next
)) |= ((uint64_t)(indx
>> 16)) << 48;
540 *((uint64_t *)(&pv_h
->qlink
.prev
)) |= ((uint64_t)(indx
& 0xffff)) << 48;
545 hibernate_teardown_pmap_structs(addr64_t
*unneeded_start
, addr64_t
*unneeded_end
)
548 int32_t compact_target_indx
;
550 compact_target_indx
= 0;
552 for (i
= 0; i
< pmap_npages
; i
++) {
553 if (pv_head_table
[i
].pmap
== PMAP_NULL
) {
555 if (pv_head_table
[compact_target_indx
].pmap
!= PMAP_NULL
)
556 compact_target_indx
= i
;
558 pmap_pack_index((uint32_t)i
);
560 if (pv_head_table
[compact_target_indx
].pmap
== PMAP_NULL
) {
562 * we've got a hole to fill, so
563 * move this pv_rooted_entry_t to it's new home
565 pv_head_table
[compact_target_indx
] = pv_head_table
[i
];
566 pv_head_table
[i
].pmap
= PMAP_NULL
;
568 pmap_teardown_last_valid_compact_indx
= compact_target_indx
;
569 compact_target_indx
++;
571 pmap_teardown_last_valid_compact_indx
= i
;
574 *unneeded_start
= (addr64_t
)&pv_head_table
[pmap_teardown_last_valid_compact_indx
+1];
575 *unneeded_end
= (addr64_t
)&pv_head_table
[pmap_npages
-1];
577 HIBLOG("hibernate_teardown_pmap_structs done: last_valid_compact_indx %d\n", pmap_teardown_last_valid_compact_indx
);
582 hibernate_rebuild_pmap_structs(void)
584 int32_t cindx
, eindx
, rindx
;
585 pv_rooted_entry_t pv_h
;
587 eindx
= (int32_t)pmap_npages
;
589 for (cindx
= pmap_teardown_last_valid_compact_indx
; cindx
>= 0; cindx
--) {
591 pv_h
= &pv_head_table
[cindx
];
593 rindx
= pmap_unpack_index(pv_h
);
594 assert(rindx
< pmap_npages
);
596 if (rindx
!= cindx
) {
598 * this pv_rooted_entry_t was moved by hibernate_teardown_pmap_structs,
599 * so move it back to its real location
601 pv_head_table
[rindx
] = pv_head_table
[cindx
];
603 if (rindx
+1 != eindx
) {
605 * the 'hole' between this vm_rooted_entry_t and the previous
606 * vm_rooted_entry_t we moved needs to be initialized as
607 * a range of zero'd vm_rooted_entry_t's
609 bzero((char *)&pv_head_table
[rindx
+1], (eindx
- rindx
- 1) * sizeof (struct pv_rooted_entry
));
614 bzero ((char *)&pv_head_table
[0], rindx
* sizeof (struct pv_rooted_entry
));
616 HIBLOG("hibernate_rebuild_pmap_structs done: last_valid_compact_indx %d\n", pmap_teardown_last_valid_compact_indx
);
622 * Initialize the pmap module.
623 * Called by vm_init, to initialize any structures that the pmap
624 * system needs to map virtual memory.
632 vm_map_offset_t vaddr
;
636 kernel_pmap
->pm_obj_pml4
= &kpml4obj_object_store
;
637 _vm_object_allocate((vm_object_size_t
)NPML4PGS
* PAGE_SIZE
, &kpml4obj_object_store
);
639 kernel_pmap
->pm_obj_pdpt
= &kpdptobj_object_store
;
640 _vm_object_allocate((vm_object_size_t
)NPDPTPGS
* PAGE_SIZE
, &kpdptobj_object_store
);
642 kernel_pmap
->pm_obj
= &kptobj_object_store
;
643 _vm_object_allocate((vm_object_size_t
)NPDEPGS
* PAGE_SIZE
, &kptobj_object_store
);
646 * Allocate memory for the pv_head_table and its lock bits,
647 * the modify bit array, and the pte_page table.
651 * zero bias all these arrays now instead of off avail_start
652 * so we cover all memory
655 npages
= i386_btop(avail_end
);
657 pmap_npages
= (uint32_t)npages
;
659 s
= (vm_size_t
) (sizeof(struct pv_rooted_entry
) * npages
660 + (sizeof (struct pv_hashed_entry_t
*) * (npvhash
+1))
661 + pv_lock_table_size(npages
)
662 + pv_hash_lock_table_size((npvhash
+1))
666 if (kernel_memory_allocate(kernel_map
, &addr
, s
, 0,
667 KMA_KOBJECT
| KMA_PERMANENT
)
671 memset((char *)addr
, 0, s
);
677 if (0 == npvhash
) panic("npvhash not initialized");
681 * Allocate the structures first to preserve word-alignment.
683 pv_head_table
= (pv_rooted_entry_t
) addr
;
684 addr
= (vm_offset_t
) (pv_head_table
+ npages
);
686 pv_hash_table
= (pv_hashed_entry_t
*)addr
;
687 addr
= (vm_offset_t
) (pv_hash_table
+ (npvhash
+ 1));
689 pv_lock_table
= (char *) addr
;
690 addr
= (vm_offset_t
) (pv_lock_table
+ pv_lock_table_size(npages
));
692 pv_hash_lock_table
= (char *) addr
;
693 addr
= (vm_offset_t
) (pv_hash_lock_table
+ pv_hash_lock_table_size((npvhash
+1)));
695 pmap_phys_attributes
= (char *) addr
;
697 ppnum_t last_pn
= i386_btop(avail_end
);
699 pmap_memory_region_t
*pmptr
= pmap_memory_regions
;
700 for (i
= 0; i
< pmap_memory_region_count
; i
++, pmptr
++) {
701 if (pmptr
->type
!= kEfiConventionalMemory
)
704 for (pn
= pmptr
->base
; pn
<= pmptr
->end
; pn
++) {
706 pmap_phys_attributes
[pn
] |= PHYS_MANAGED
;
708 if (pn
> last_managed_page
)
709 last_managed_page
= pn
;
711 if (pn
>= lowest_hi
&& pn
<= highest_hi
)
712 pmap_phys_attributes
[pn
] |= PHYS_NOENCRYPT
;
717 ppn
= pmap_find_phys(kernel_pmap
, vaddr
);
719 pmap_phys_attributes
[ppn
] |= PHYS_NOENCRYPT
;
725 * Create the zone of physical maps,
726 * and of the physical-to-virtual entries.
728 s
= (vm_size_t
) sizeof(struct pmap
);
729 pmap_zone
= zinit(s
, 400*s
, 4096, "pmap"); /* XXX */
730 zone_change(pmap_zone
, Z_NOENCRYPT
, TRUE
);
732 pmap_anchor_zone
= zinit(PAGE_SIZE
, task_max
, PAGE_SIZE
, "pagetable anchors");
733 zone_change(pmap_anchor_zone
, Z_NOENCRYPT
, TRUE
);
735 /* The anchor is required to be page aligned. Zone debugging adds
736 * padding which may violate that requirement. Tell the zone
737 * subsystem that alignment is required.
740 zone_change(pmap_anchor_zone
, Z_ALIGNMENT_REQUIRED
, TRUE
);
742 s
= (vm_size_t
) sizeof(struct pv_hashed_entry
);
743 pv_hashed_list_zone
= zinit(s
, 10000*s
/* Expandable zone */,
744 4096 * 3 /* LCM x86_64*/, "pv_list");
745 zone_change(pv_hashed_list_zone
, Z_NOENCRYPT
, TRUE
);
747 /* create pv entries for kernel pages mapped by low level
748 startup code. these have to exist so we can pmap_remove()
749 e.g. kext pages from the middle of our addr space */
751 vaddr
= (vm_map_offset_t
) VM_MIN_KERNEL_ADDRESS
;
752 for (ppn
= VM_MIN_KERNEL_PAGE
; ppn
< i386_btop(avail_start
); ppn
++) {
753 pv_rooted_entry_t pv_e
;
755 pv_e
= pai_to_pvh(ppn
);
758 pv_e
->pmap
= kernel_pmap
;
759 queue_init(&pv_e
->qlink
);
761 pmap_initialized
= TRUE
;
763 max_preemption_latency_tsc
= tmrCvt((uint64_t)MAX_PREEMPTION_LATENCY_NS
, tscFCvtn2t
);
766 * Ensure the kernel's PML4 entry exists for the basement
767 * before this is shared with any user.
769 pmap_expand_pml4(kernel_pmap
, KERNEL_BASEMENT
, PMAP_EXPAND_OPTIONS_NONE
);
773 void pmap_mark_range(pmap_t npmap
, uint64_t sv
, uint64_t nxrosz
, boolean_t NX
, boolean_t ro
) {
774 uint64_t ev
= sv
+ nxrosz
, cv
= sv
;
776 pt_entry_t
*ptep
= NULL
;
778 assert(((sv
& 0xFFFULL
) | (nxrosz
& 0xFFFULL
)) == 0);
780 for (pdep
= pmap_pde(npmap
, cv
); pdep
!= NULL
&& (cv
< ev
);) {
781 uint64_t pdev
= (cv
& ~((uint64_t)PDEMASK
));
783 if (*pdep
& INTEL_PTE_PS
) {
785 *pdep
|= INTEL_PTE_NX
;
787 *pdep
&= ~INTEL_PTE_WRITE
;
789 cv
&= ~((uint64_t) PDEMASK
);
790 pdep
= pmap_pde(npmap
, cv
);
794 for (ptep
= pmap_pte(npmap
, cv
); ptep
!= NULL
&& (cv
< (pdev
+ NBPD
)) && (cv
< ev
);) {
796 *ptep
|= INTEL_PTE_NX
;
798 *ptep
&= ~INTEL_PTE_WRITE
;
800 ptep
= pmap_pte(npmap
, cv
);
803 DPRINTF("%s(0x%llx, 0x%llx, %u, %u): 0x%llx, 0x%llx\n", __FUNCTION__
, sv
, nxrosz
, NX
, ro
, cv
, ptep
? *ptep
: 0);
807 * Called once VM is fully initialized so that we can release unused
808 * sections of low memory to the general pool.
809 * Also complete the set-up of identity-mapped sections of the kernel:
810 * 1) write-protect kernel text
811 * 2) map kernel text using large pages if possible
812 * 3) read and write-protect page zero (for K32)
813 * 4) map the global page at the appropriate virtual address.
817 * To effectively map and write-protect all kernel text pages, the text
818 * must be 2M-aligned at the base, and the data section above must also be
819 * 2M-aligned. That is, there's padding below and above. This is achieved
820 * through linker directives. Large pages are used only if this alignment
821 * exists (and not overriden by the -kernel_text_page_4K boot-arg). The
826 * sdata: ================== 2Meg
830 * etext: ------------------
838 * stext: ================== 2Meg
842 * eHIB: ------------------
846 * Prior to changing the mapping from 4K to 2M, the zero-padding pages
847 * [eHIB,stext] and [etext,sdata] are ml_static_mfree()'d. Then all the
848 * 4K pages covering [stext,etext] are coalesced as 2M large pages.
849 * The now unused level-1 PTE pages are also freed.
851 extern ppnum_t vm_kernel_base_page
;
853 pmap_lowmem_finalize(void)
859 * Update wired memory statistics for early boot pages
861 PMAP_ZINFO_PALLOC(kernel_pmap
, bootstrap_wired_pages
* PAGE_SIZE
);
864 * Free pages in pmap regions below the base:
866 * We can't free all the pages to VM that EFI reports available.
867 * Pages in the range 0xc0000-0xff000 aren't safe over sleep/wake.
868 * There's also a size miscalculation here: pend is one page less
869 * than it should be but this is not fixed to be backwards
871 * This is important for KASLR because up to 256*2MB = 512MB of space
872 * needs has to be released to VM.
875 pmap_memory_regions
[i
].end
< vm_kernel_base_page
;
877 vm_offset_t pbase
= i386_ptob(pmap_memory_regions
[i
].base
);
878 vm_offset_t pend
= i386_ptob(pmap_memory_regions
[i
].end
+1);
880 DBG("pmap region %d [%p..[%p\n",
881 i
, (void *) pbase
, (void *) pend
);
883 if (pmap_memory_regions
[i
].attribute
& EFI_MEMORY_KERN_RESERVED
)
887 * Adjust limits not to free pages in range 0xc0000-0xff000.
889 if (pbase
>= 0xc0000 && pend
<= 0x100000)
891 if (pbase
< 0xc0000 && pend
> 0x100000) {
892 /* page range entirely within region, free lower part */
893 DBG("- ml_static_mfree(%p,%p)\n",
894 (void *) ml_static_ptovirt(pbase
),
895 (void *) (0xc0000-pbase
));
896 ml_static_mfree(ml_static_ptovirt(pbase
),0xc0000-pbase
);
900 pend
= MIN(pend
, 0xc0000);
902 pbase
= MAX(pbase
, 0x100000);
903 DBG("- ml_static_mfree(%p,%p)\n",
904 (void *) ml_static_ptovirt(pbase
),
905 (void *) (pend
- pbase
));
906 ml_static_mfree(ml_static_ptovirt(pbase
), pend
- pbase
);
909 /* A final pass to get rid of all initial identity mappings to
912 DPRINTF("%s: Removing mappings from 0->0x%lx\n", __FUNCTION__
, vm_kernel_base
);
914 /* Remove all mappings past the descriptor aliases and low globals */
915 pmap_remove(kernel_pmap
, LOWGLOBAL_ALIAS
+ PAGE_SIZE
, vm_kernel_base
);
918 * If text and data are both 2MB-aligned,
919 * we can map text with large-pages,
920 * unless the -kernel_text_ps_4K boot-arg overrides.
922 if ((stext
& I386_LPGMASK
) == 0 && (sdata
& I386_LPGMASK
) == 0) {
923 kprintf("Kernel text is 2MB aligned");
924 kernel_text_ps_4K
= FALSE
;
925 if (PE_parse_boot_argn("-kernel_text_ps_4K",
927 sizeof (kernel_text_ps_4K
)))
928 kprintf(" but will be mapped with 4K pages\n");
930 kprintf(" and will be mapped with 2M pages\n");
933 (void) PE_parse_boot_argn("wpkernel", &wpkernel
, sizeof (wpkernel
));
935 kprintf("Kernel text %p-%p to be write-protected\n",
936 (void *) stext
, (void *) etext
);
941 * Scan over text if mappings are to be changed:
942 * - Remap kernel text readonly unless the "wpkernel" boot-arg is 0
943 * - Change to large-pages if possible and not overriden.
945 if (kernel_text_ps_4K
&& wpkernel
) {
947 for (myva
= stext
; myva
< etext
; myva
+= PAGE_SIZE
) {
950 ptep
= pmap_pte(kernel_pmap
, (vm_map_offset_t
)myva
);
952 pmap_store_pte(ptep
, *ptep
& ~INTEL_PTE_WRITE
);
956 if (!kernel_text_ps_4K
) {
960 * Release zero-filled page padding used for 2M-alignment.
962 DBG("ml_static_mfree(%p,%p) for padding below text\n",
963 (void *) eHIB
, (void *) (stext
- eHIB
));
964 ml_static_mfree(eHIB
, stext
- eHIB
);
965 DBG("ml_static_mfree(%p,%p) for padding above text\n",
966 (void *) etext
, (void *) (sdata
- etext
));
967 ml_static_mfree(etext
, sdata
- etext
);
970 * Coalesce text pages into large pages.
972 for (myva
= stext
; myva
< sdata
; myva
+= I386_LPGBYTES
) {
974 vm_offset_t pte_phys
;
978 pdep
= pmap_pde(kernel_pmap
, (vm_map_offset_t
)myva
);
979 ptep
= pmap_pte(kernel_pmap
, (vm_map_offset_t
)myva
);
980 DBG("myva: %p pdep: %p ptep: %p\n",
981 (void *) myva
, (void *) pdep
, (void *) ptep
);
982 if ((*ptep
& INTEL_PTE_VALID
) == 0)
984 pte_phys
= (vm_offset_t
)(*ptep
& PG_FRAME
);
985 pde
= *pdep
& PTMASK
; /* page attributes from pde */
986 pde
|= INTEL_PTE_PS
; /* make it a 2M entry */
987 pde
|= pte_phys
; /* take page frame from pte */
990 pde
&= ~INTEL_PTE_WRITE
;
991 DBG("pmap_store_pte(%p,0x%llx)\n",
993 pmap_store_pte(pdep
, pde
);
996 * Free the now-unused level-1 pte.
997 * Note: ptep is a virtual address to the pte in the
998 * recursive map. We can't use this address to free
999 * the page. Instead we need to compute its address
1000 * in the Idle PTEs in "low memory".
1002 vm_offset_t vm_ptep
= (vm_offset_t
) KPTphys
1003 + (pte_phys
>> PTPGSHIFT
);
1004 DBG("ml_static_mfree(%p,0x%x) for pte\n",
1005 (void *) vm_ptep
, PAGE_SIZE
);
1006 ml_static_mfree(vm_ptep
, PAGE_SIZE
);
1009 /* Change variable read by sysctl machdep.pmap */
1010 pmap_kernel_text_ps
= I386_LPGBYTES
;
1013 boolean_t doconstro
= TRUE
;
1015 (void) PE_parse_boot_argn("dataconstro", &doconstro
, sizeof(doconstro
));
1017 if ((sconstdata
| econstdata
) & PAGE_MASK
) {
1018 kprintf("Const DATA misaligned 0x%lx 0x%lx\n", sconstdata
, econstdata
);
1019 if ((sconstdata
& PAGE_MASK
) || (doconstro_override
== FALSE
))
1023 if ((sconstdata
> edata
) || (sconstdata
< sdata
) || ((econstdata
- sconstdata
) >= (edata
- sdata
))) {
1024 kprintf("Const DATA incorrect size 0x%lx 0x%lx 0x%lx 0x%lx\n", sconstdata
, econstdata
, sdata
, edata
);
1029 kprintf("Marking const DATA read-only\n");
1033 for (dva
= sdata
; dva
< edata
; dva
+= I386_PGBYTES
) {
1034 assert(((sdata
| edata
) & PAGE_MASK
) == 0);
1035 if ( (sdata
| edata
) & PAGE_MASK
) {
1036 kprintf("DATA misaligned, 0x%lx, 0x%lx\n", sdata
, edata
);
1040 pt_entry_t dpte
, *dptep
= pmap_pte(kernel_pmap
, dva
);
1044 assert((dpte
& INTEL_PTE_VALID
));
1045 if ((dpte
& INTEL_PTE_VALID
) == 0) {
1046 kprintf("Missing data mapping 0x%lx 0x%lx 0x%lx\n", dva
, sdata
, edata
);
1050 dpte
|= INTEL_PTE_NX
;
1051 if (doconstro
&& (dva
>= sconstdata
) && (dva
< econstdata
)) {
1052 dpte
&= ~INTEL_PTE_WRITE
;
1054 pmap_store_pte(dptep
, dpte
);
1056 kernel_segment_command_t
* seg
;
1057 kernel_section_t
* sec
;
1059 for (seg
= firstseg(); seg
!= NULL
; seg
= nextsegfromheader(&_mh_execute_header
, seg
)) {
1060 if (!strcmp(seg
->segname
, "__TEXT") ||
1061 !strcmp(seg
->segname
, "__DATA")) {
1065 if (!strcmp(seg
->segname
, "__KLD")) {
1068 if (!strcmp(seg
->segname
, "__HIB")) {
1069 for (sec
= firstsect(seg
); sec
!= NULL
; sec
= nextsect(seg
, sec
)) {
1070 if (sec
->addr
& PAGE_MASK
)
1071 panic("__HIB segment's sections misaligned");
1072 if (!strcmp(sec
->sectname
, "__text")) {
1073 pmap_mark_range(kernel_pmap
, sec
->addr
, round_page(sec
->size
), FALSE
, TRUE
);
1075 pmap_mark_range(kernel_pmap
, sec
->addr
, round_page(sec
->size
), TRUE
, FALSE
);
1079 pmap_mark_range(kernel_pmap
, seg
->vmaddr
, round_page_64(seg
->vmsize
), TRUE
, FALSE
);
1084 * If we're debugging, map the low global vector page at the fixed
1085 * virtual address. Otherwise, remove the mapping for this.
1087 if (debug_boot_arg
) {
1088 pt_entry_t
*pte
= NULL
;
1089 if (0 == (pte
= pmap_pte(kernel_pmap
, LOWGLOBAL_ALIAS
)))
1090 panic("lowmem pte");
1091 /* make sure it is defined on page boundary */
1092 assert(0 == ((vm_offset_t
) &lowGlo
& PAGE_MASK
));
1093 pmap_store_pte(pte
, kvtophys((vm_offset_t
)&lowGlo
)
1101 pmap_remove(kernel_pmap
,
1102 LOWGLOBAL_ALIAS
, LOWGLOBAL_ALIAS
+ PAGE_SIZE
);
1106 if (pmap_pcid_ncpus
)
1113 * this function is only used for debugging fron the vm layer
1119 pv_rooted_entry_t pv_h
;
1123 assert(pn
!= vm_page_fictitious_addr
);
1125 if (!pmap_initialized
)
1128 if (pn
== vm_page_guard_addr
)
1131 pai
= ppn_to_pai(pn
);
1132 if (!IS_MANAGED_PAGE(pai
))
1134 pv_h
= pai_to_pvh(pn
);
1135 result
= (pv_h
->pmap
== PMAP_NULL
);
1142 vm_map_offset_t va_start
,
1143 vm_map_offset_t va_end
)
1145 vm_map_offset_t offset
;
1148 if (pmap
== PMAP_NULL
) {
1153 * Check the resident page count
1154 * - if it's zero, the pmap is completely empty.
1155 * This short-circuit test prevents a virtual address scan which is
1156 * painfully slow for 64-bit spaces.
1157 * This assumes the count is correct
1158 * .. the debug kernel ought to be checking perhaps by page table walk.
1160 if (pmap
->stats
.resident_count
== 0)
1163 for (offset
= va_start
;
1165 offset
+= PAGE_SIZE_64
) {
1166 phys_page
= pmap_find_phys(pmap
, offset
);
1168 kprintf("pmap_is_empty(%p,0x%llx,0x%llx): "
1169 "page %d at 0x%llx\n",
1170 pmap
, va_start
, va_end
, phys_page
, offset
);
1180 * Create and return a physical map.
1182 * If the size specified for the map
1183 * is zero, the map is an actual physical
1184 * map, and may be referenced by the
1187 * If the size specified is non-zero,
1188 * the map will be used in software only, and
1189 * is bounded by that size.
1200 pml4_entry_t
*kpml4
;
1202 PMAP_TRACE(PMAP_CODE(PMAP__CREATE
) | DBG_FUNC_START
,
1203 (uint32_t) (sz
>>32), (uint32_t) sz
, is_64bit
, 0, 0);
1205 size
= (vm_size_t
) sz
;
1208 * A software use-only map doesn't even need a map.
1215 p
= (pmap_t
) zalloc(pmap_zone
);
1217 panic("pmap_create zalloc");
1218 /* Zero all fields */
1219 bzero(p
, sizeof(*p
));
1220 /* init counts now since we'll be bumping some */
1221 simple_lock_init(&p
->lock
, 0);
1223 p
->stats
.resident_count
= 0;
1224 p
->stats
.resident_max
= 0;
1225 p
->stats
.wired_count
= 0;
1227 bzero(&p
->stats
, sizeof (p
->stats
));
1231 p
->pm_shared
= FALSE
;
1232 ledger_reference(ledger
);
1235 p
->pm_task_map
= is_64bit
? TASK_MAP_64BIT
: TASK_MAP_32BIT
;;
1236 if (pmap_pcid_ncpus
)
1237 pmap_pcid_initialize(p
);
1239 p
->pm_pml4
= zalloc(pmap_anchor_zone
);
1241 pmap_assert((((uintptr_t)p
->pm_pml4
) & PAGE_MASK
) == 0);
1243 memset((char *)p
->pm_pml4
, 0, PAGE_SIZE
);
1245 p
->pm_cr3
= (pmap_paddr_t
)kvtophys((vm_offset_t
)p
->pm_pml4
);
1247 /* allocate the vm_objs to hold the pdpt, pde and pte pages */
1249 p
->pm_obj_pml4
= vm_object_allocate((vm_object_size_t
)(NPML4PGS
) * PAGE_SIZE
);
1250 if (NULL
== p
->pm_obj_pml4
)
1251 panic("pmap_create pdpt obj");
1253 p
->pm_obj_pdpt
= vm_object_allocate((vm_object_size_t
)(NPDPTPGS
) * PAGE_SIZE
);
1254 if (NULL
== p
->pm_obj_pdpt
)
1255 panic("pmap_create pdpt obj");
1257 p
->pm_obj
= vm_object_allocate((vm_object_size_t
)(NPDEPGS
) * PAGE_SIZE
);
1258 if (NULL
== p
->pm_obj
)
1259 panic("pmap_create pte obj");
1261 /* All pmaps share the kernel's pml4 */
1262 pml4
= pmap64_pml4(p
, 0ULL);
1263 kpml4
= kernel_pmap
->pm_pml4
;
1264 pml4
[KERNEL_PML4_INDEX
] = kpml4
[KERNEL_PML4_INDEX
];
1265 pml4
[KERNEL_KEXTS_INDEX
] = kpml4
[KERNEL_KEXTS_INDEX
];
1266 pml4
[KERNEL_PHYSMAP_PML4_INDEX
] = kpml4
[KERNEL_PHYSMAP_PML4_INDEX
];
1268 PMAP_TRACE(PMAP_CODE(PMAP__CREATE
) | DBG_FUNC_START
,
1269 p
, is_64bit
, 0, 0, 0);
1275 * Retire the given physical map from service.
1276 * Should only be called if the map contains
1277 * no valid mappings.
1281 pmap_destroy(pmap_t p
)
1288 PMAP_TRACE(PMAP_CODE(PMAP__DESTROY
) | DBG_FUNC_START
,
1295 pmap_assert((current_thread() && (current_thread()->map
)) ? (current_thread()->map
->pmap
!= p
) : TRUE
);
1299 * If some cpu is not using the physical pmap pointer that it
1300 * is supposed to be (see set_dirbase), we might be using the
1301 * pmap that is being destroyed! Make sure we are
1302 * physically on the right pmap:
1304 PMAP_UPDATE_TLBS(p
, 0x0ULL
, 0xFFFFFFFFFFFFF000ULL
);
1305 if (pmap_pcid_ncpus
)
1306 pmap_destroy_pcid_sync(p
);
1312 PMAP_TRACE(PMAP_CODE(PMAP__DESTROY
) | DBG_FUNC_END
,
1314 pmap_assert(p
== kernel_pmap
);
1315 return; /* still in use */
1319 * Free the memory maps, then the
1322 int inuse_ptepages
= 0;
1324 zfree(pmap_anchor_zone
, p
->pm_pml4
);
1326 inuse_ptepages
+= p
->pm_obj_pml4
->resident_page_count
;
1327 vm_object_deallocate(p
->pm_obj_pml4
);
1329 inuse_ptepages
+= p
->pm_obj_pdpt
->resident_page_count
;
1330 vm_object_deallocate(p
->pm_obj_pdpt
);
1332 inuse_ptepages
+= p
->pm_obj
->resident_page_count
;
1333 vm_object_deallocate(p
->pm_obj
);
1335 OSAddAtomic(-inuse_ptepages
, &inuse_ptepages_count
);
1336 PMAP_ZINFO_PFREE(p
, inuse_ptepages
* PAGE_SIZE
);
1337 ledger_dereference(p
->ledger
);
1338 zfree(pmap_zone
, p
);
1340 PMAP_TRACE(PMAP_CODE(PMAP__DESTROY
) | DBG_FUNC_END
,
1345 * Add a reference to the specified pmap.
1349 pmap_reference(pmap_t p
)
1351 if (p
!= PMAP_NULL
) {
1359 * Remove phys addr if mapped in specified map
1363 pmap_remove_some_phys(
1364 __unused pmap_t map
,
1365 __unused ppnum_t pn
)
1368 /* Implement to support working set code */
1376 vm_map_offset_t sva
,
1377 vm_map_offset_t eva
,
1380 pmap_protect_options(map
, sva
, eva
, prot
, 0, NULL
);
1385 * Set the physical protection on the
1386 * specified range of this map as requested.
1387 * Will not increase permissions.
1390 pmap_protect_options(
1392 vm_map_offset_t sva
,
1393 vm_map_offset_t eva
,
1395 unsigned int options
,
1399 pt_entry_t
*spte
, *epte
;
1400 vm_map_offset_t lva
;
1401 vm_map_offset_t orig_sva
;
1407 if (map
== PMAP_NULL
)
1410 if (prot
== VM_PROT_NONE
) {
1411 pmap_remove_options(map
, sva
, eva
, options
);
1414 PMAP_TRACE(PMAP_CODE(PMAP__PROTECT
) | DBG_FUNC_START
,
1416 (uint32_t) (sva
>> 32), (uint32_t) sva
,
1417 (uint32_t) (eva
>> 32), (uint32_t) eva
);
1419 if ((prot
& VM_PROT_EXECUTE
) || !nx_enabled
|| !map
->nx_enabled
)
1428 lva
= (sva
+ pde_mapped_size
) & ~(pde_mapped_size
- 1);
1431 pde
= pmap_pde(map
, sva
);
1432 if (pde
&& (*pde
& INTEL_PTE_VALID
)) {
1433 if (*pde
& INTEL_PTE_PS
) {
1436 epte
= spte
+1; /* excluded */
1438 spte
= pmap_pte(map
, (sva
& ~(pde_mapped_size
- 1)));
1439 spte
= &spte
[ptenum(sva
)];
1440 epte
= &spte
[intel_btop(lva
- sva
)];
1443 for (; spte
< epte
; spte
++) {
1444 if (!(*spte
& INTEL_PTE_VALID
))
1447 if (prot
& VM_PROT_WRITE
)
1448 pmap_update_pte(spte
, 0, INTEL_PTE_WRITE
);
1450 pmap_update_pte(spte
, INTEL_PTE_WRITE
, 0);
1453 pmap_update_pte(spte
, 0, INTEL_PTE_NX
);
1455 pmap_update_pte(spte
, INTEL_PTE_NX
, 0);
1462 if (options
& PMAP_OPTIONS_NOFLUSH
)
1463 PMAP_UPDATE_TLBS_DELAYED(map
, orig_sva
, eva
, (pmap_flush_context
*)arg
);
1465 PMAP_UPDATE_TLBS(map
, orig_sva
, eva
);
1469 PMAP_TRACE(PMAP_CODE(PMAP__PROTECT
) | DBG_FUNC_END
,
1474 /* Map a (possibly) autogenned block */
1483 __unused
unsigned int flags
)
1488 if (attr
& VM_MEM_SUPERPAGE
)
1489 cur_page_size
= SUPERPAGE_SIZE
;
1491 cur_page_size
= PAGE_SIZE
;
1493 for (page
= 0; page
< size
; page
+=cur_page_size
/PAGE_SIZE
) {
1494 pmap_enter(pmap
, va
, pa
, prot
, VM_PROT_NONE
, attr
, TRUE
);
1495 va
+= cur_page_size
;
1496 pa
+=cur_page_size
/PAGE_SIZE
;
1503 vm_map_offset_t vaddr
,
1504 unsigned int options
)
1510 pml4_entry_t
*pml4p
;
1512 DBG("pmap_expand_pml4(%p,%p)\n", map
, (void *)vaddr
);
1515 * Allocate a VM page for the pml4 page
1517 while ((m
= vm_page_grab()) == VM_PAGE_NULL
) {
1518 if (options
& PMAP_EXPAND_OPTIONS_NOWAIT
)
1519 return KERN_RESOURCE_SHORTAGE
;
1523 * put the page into the pmap's obj list so it
1524 * can be found later.
1528 i
= pml4idx(map
, vaddr
);
1535 vm_page_lockspin_queues();
1537 vm_page_unlock_queues();
1539 OSAddAtomic(1, &inuse_ptepages_count
);
1540 OSAddAtomic64(1, &alloc_ptepages_count
);
1541 PMAP_ZINFO_PALLOC(map
, PAGE_SIZE
);
1543 /* Take the oject lock (mutex) before the PMAP_LOCK (spinlock) */
1544 vm_object_lock(map
->pm_obj_pml4
);
1548 * See if someone else expanded us first
1550 if (pmap64_pdpt(map
, vaddr
) != PDPT_ENTRY_NULL
) {
1552 vm_object_unlock(map
->pm_obj_pml4
);
1556 OSAddAtomic(-1, &inuse_ptepages_count
);
1557 PMAP_ZINFO_PFREE(map
, PAGE_SIZE
);
1558 return KERN_SUCCESS
;
1562 if (0 != vm_page_lookup(map
->pm_obj_pml4
, (vm_object_offset_t
)i
* PAGE_SIZE
)) {
1563 panic("pmap_expand_pml4: obj not empty, pmap %p pm_obj %p vaddr 0x%llx i 0x%llx\n",
1564 map
, map
->pm_obj_pml4
, vaddr
, i
);
1567 vm_page_insert(m
, map
->pm_obj_pml4
, (vm_object_offset_t
)i
* PAGE_SIZE
);
1568 vm_object_unlock(map
->pm_obj_pml4
);
1571 * Set the page directory entry for this page table.
1573 pml4p
= pmap64_pml4(map
, vaddr
); /* refetch under lock */
1575 pmap_store_pte(pml4p
, pa_to_pte(pa
)
1582 return KERN_SUCCESS
;
1586 pmap_expand_pdpt(pmap_t map
, vm_map_offset_t vaddr
, unsigned int options
)
1592 pdpt_entry_t
*pdptp
;
1594 DBG("pmap_expand_pdpt(%p,%p)\n", map
, (void *)vaddr
);
1596 while ((pdptp
= pmap64_pdpt(map
, vaddr
)) == PDPT_ENTRY_NULL
) {
1597 kern_return_t pep4kr
= pmap_expand_pml4(map
, vaddr
, options
);
1598 if (pep4kr
!= KERN_SUCCESS
)
1603 * Allocate a VM page for the pdpt page
1605 while ((m
= vm_page_grab()) == VM_PAGE_NULL
) {
1606 if (options
& PMAP_EXPAND_OPTIONS_NOWAIT
)
1607 return KERN_RESOURCE_SHORTAGE
;
1612 * put the page into the pmap's obj list so it
1613 * can be found later.
1617 i
= pdptidx(map
, vaddr
);
1624 vm_page_lockspin_queues();
1626 vm_page_unlock_queues();
1628 OSAddAtomic(1, &inuse_ptepages_count
);
1629 OSAddAtomic64(1, &alloc_ptepages_count
);
1630 PMAP_ZINFO_PALLOC(map
, PAGE_SIZE
);
1632 /* Take the oject lock (mutex) before the PMAP_LOCK (spinlock) */
1633 vm_object_lock(map
->pm_obj_pdpt
);
1637 * See if someone else expanded us first
1639 if (pmap64_pde(map
, vaddr
) != PD_ENTRY_NULL
) {
1641 vm_object_unlock(map
->pm_obj_pdpt
);
1645 OSAddAtomic(-1, &inuse_ptepages_count
);
1646 PMAP_ZINFO_PFREE(map
, PAGE_SIZE
);
1647 return KERN_SUCCESS
;
1651 if (0 != vm_page_lookup(map
->pm_obj_pdpt
, (vm_object_offset_t
)i
* PAGE_SIZE
)) {
1652 panic("pmap_expand_pdpt: obj not empty, pmap %p pm_obj %p vaddr 0x%llx i 0x%llx\n",
1653 map
, map
->pm_obj_pdpt
, vaddr
, i
);
1656 vm_page_insert(m
, map
->pm_obj_pdpt
, (vm_object_offset_t
)i
* PAGE_SIZE
);
1657 vm_object_unlock(map
->pm_obj_pdpt
);
1660 * Set the page directory entry for this page table.
1662 pdptp
= pmap64_pdpt(map
, vaddr
); /* refetch under lock */
1664 pmap_store_pte(pdptp
, pa_to_pte(pa
)
1671 return KERN_SUCCESS
;
1678 * Routine: pmap_expand
1680 * Expands a pmap to be able to map the specified virtual address.
1682 * Allocates new virtual memory for the P0 or P1 portion of the
1683 * pmap, then re-maps the physical pages that were in the old
1684 * pmap to be in the new pmap.
1686 * Must be called with the pmap system and the pmap unlocked,
1687 * since these must be unlocked to use vm_allocate or vm_deallocate.
1688 * Thus it must be called in a loop that checks whether the map
1689 * has been expanded enough.
1690 * (We won't loop forever, since page tables aren't shrunk.)
1695 vm_map_offset_t vaddr
,
1696 unsigned int options
)
1699 register vm_page_t m
;
1700 register pmap_paddr_t pa
;
1706 * For the kernel, the virtual address must be in or above the basement
1707 * which is for kexts and is in the 512GB immediately below the kernel..
1708 * XXX - should use VM_MIN_KERNEL_AND_KEXT_ADDRESS not KERNEL_BASEMENT
1710 if (map
== kernel_pmap
&&
1711 !(vaddr
>= KERNEL_BASEMENT
&& vaddr
<= VM_MAX_KERNEL_ADDRESS
))
1712 panic("pmap_expand: bad vaddr 0x%llx for kernel pmap", vaddr
);
1715 while ((pdp
= pmap64_pde(map
, vaddr
)) == PD_ENTRY_NULL
) {
1716 kern_return_t pepkr
= pmap_expand_pdpt(map
, vaddr
, options
);
1717 if (pepkr
!= KERN_SUCCESS
)
1722 * Allocate a VM page for the pde entries.
1724 while ((m
= vm_page_grab()) == VM_PAGE_NULL
) {
1725 if (options
& PMAP_EXPAND_OPTIONS_NOWAIT
)
1726 return KERN_RESOURCE_SHORTAGE
;
1731 * put the page into the pmap's obj list so it
1732 * can be found later.
1736 i
= pdeidx(map
, vaddr
);
1743 vm_page_lockspin_queues();
1745 vm_page_unlock_queues();
1747 OSAddAtomic(1, &inuse_ptepages_count
);
1748 OSAddAtomic64(1, &alloc_ptepages_count
);
1749 PMAP_ZINFO_PALLOC(map
, PAGE_SIZE
);
1751 /* Take the oject lock (mutex) before the PMAP_LOCK (spinlock) */
1752 vm_object_lock(map
->pm_obj
);
1757 * See if someone else expanded us first
1759 if (pmap_pte(map
, vaddr
) != PT_ENTRY_NULL
) {
1761 vm_object_unlock(map
->pm_obj
);
1765 OSAddAtomic(-1, &inuse_ptepages_count
);
1766 PMAP_ZINFO_PFREE(map
, PAGE_SIZE
);
1767 return KERN_SUCCESS
;
1771 if (0 != vm_page_lookup(map
->pm_obj
, (vm_object_offset_t
)i
* PAGE_SIZE
)) {
1772 panic("pmap_expand: obj not empty, pmap 0x%x pm_obj 0x%x vaddr 0x%llx i 0x%llx\n",
1773 map
, map
->pm_obj
, vaddr
, i
);
1776 vm_page_insert(m
, map
->pm_obj
, (vm_object_offset_t
)i
* PAGE_SIZE
);
1777 vm_object_unlock(map
->pm_obj
);
1780 * Set the page directory entry for this page table.
1782 pdp
= pmap_pde(map
, vaddr
);
1783 pmap_store_pte(pdp
, pa_to_pte(pa
)
1790 return KERN_SUCCESS
;
1793 /* On K64 machines with more than 32GB of memory, pmap_steal_memory
1794 * will allocate past the 1GB of pre-expanded virtual kernel area. This
1795 * function allocates all the page tables using memory from the same pool
1796 * that pmap_steal_memory uses, rather than calling vm_page_grab (which
1797 * isn't available yet). */
1799 pmap_pre_expand(pmap_t pmap
, vm_map_offset_t vaddr
)
1806 if(pmap64_pdpt(pmap
, vaddr
) == PDPT_ENTRY_NULL
) {
1807 if (!pmap_next_page_hi(&pn
))
1808 panic("pmap_pre_expand");
1812 pte
= pmap64_pml4(pmap
, vaddr
);
1814 pmap_store_pte(pte
, pa_to_pte(i386_ptob(pn
))
1820 if(pmap64_pde(pmap
, vaddr
) == PD_ENTRY_NULL
) {
1821 if (!pmap_next_page_hi(&pn
))
1822 panic("pmap_pre_expand");
1826 pte
= pmap64_pdpt(pmap
, vaddr
);
1828 pmap_store_pte(pte
, pa_to_pte(i386_ptob(pn
))
1834 if(pmap_pte(pmap
, vaddr
) == PT_ENTRY_NULL
) {
1835 if (!pmap_next_page_hi(&pn
))
1836 panic("pmap_pre_expand");
1840 pte
= pmap64_pde(pmap
, vaddr
);
1842 pmap_store_pte(pte
, pa_to_pte(i386_ptob(pn
))
1852 * pmap_sync_page_data_phys(ppnum_t pa)
1854 * Invalidates all of the instruction cache on a physical page and
1855 * pushes any dirty data from the data cache for the same physical page
1856 * Not required in i386.
1859 pmap_sync_page_data_phys(__unused ppnum_t pa
)
1865 * pmap_sync_page_attributes_phys(ppnum_t pa)
1867 * Write back and invalidate all cachelines on a physical page.
1870 pmap_sync_page_attributes_phys(ppnum_t pa
)
1872 cache_flush_page_phys(pa
);
1877 #ifdef CURRENTLY_UNUSED_AND_UNTESTED
1883 * Routine: pmap_collect
1885 * Garbage collects the physical map system for
1886 * pages which are no longer used.
1887 * Success need not be guaranteed -- that is, there
1888 * may well be pages which are not referenced, but
1889 * others may be collected.
1891 * Called by the pageout daemon when pages are scarce.
1897 register pt_entry_t
*pdp
, *ptp
;
1904 if (p
== kernel_pmap
)
1908 * Garbage collect map.
1912 for (pdp
= (pt_entry_t
*)p
->dirbase
;
1913 pdp
< (pt_entry_t
*)&p
->dirbase
[(UMAXPTDI
+1)];
1916 if (*pdp
& INTEL_PTE_VALID
) {
1917 if(*pdp
& INTEL_PTE_REF
) {
1918 pmap_store_pte(pdp
, *pdp
& ~INTEL_PTE_REF
);
1922 ptp
= pmap_pte(p
, pdetova(pdp
- (pt_entry_t
*)p
->dirbase
));
1923 eptp
= ptp
+ NPTEPG
;
1926 * If the pte page has any wired mappings, we cannot
1931 register pt_entry_t
*ptep
;
1932 for (ptep
= ptp
; ptep
< eptp
; ptep
++) {
1933 if (iswired(*ptep
)) {
1941 * Remove the virtual addresses mapped by this pte page.
1943 pmap_remove_range(p
,
1944 pdetova(pdp
- (pt_entry_t
*)p
->dirbase
),
1949 * Invalidate the page directory pointer.
1951 pmap_store_pte(pdp
, 0x0);
1956 * And free the pte page itself.
1959 register vm_page_t m
;
1961 vm_object_lock(p
->pm_obj
);
1963 m
= vm_page_lookup(p
->pm_obj
,(vm_object_offset_t
)(pdp
- (pt_entry_t
*)&p
->dirbase
[0]) * PAGE_SIZE
);
1964 if (m
== VM_PAGE_NULL
)
1965 panic("pmap_collect: pte page not in object");
1967 vm_object_unlock(p
->pm_obj
);
1971 OSAddAtomic(-1, &inuse_ptepages_count
);
1972 PMAP_ZINFO_PFREE(p
, PAGE_SIZE
);
1981 PMAP_UPDATE_TLBS(p
, 0x0, 0xFFFFFFFFFFFFF000ULL
);
1990 pmap_copy_page(ppnum_t src
, ppnum_t dst
)
1992 bcopy_phys((addr64_t
)i386_ptob(src
),
1993 (addr64_t
)i386_ptob(dst
),
1999 * Routine: pmap_pageable
2001 * Make the specified pages (by pmap, offset)
2002 * pageable (or not) as requested.
2004 * A page which is not pageable may not take
2005 * a fault; therefore, its page table entry
2006 * must remain valid for the duration.
2008 * This routine is merely advisory; pmap_enter
2009 * will specify that these pages are to be wired
2010 * down (or not) as appropriate.
2014 __unused pmap_t pmap
,
2015 __unused vm_map_offset_t start_addr
,
2016 __unused vm_map_offset_t end_addr
,
2017 __unused boolean_t pageable
)
2020 pmap
++; start_addr
++; end_addr
++; pageable
++;
2025 invalidate_icache(__unused vm_offset_t addr
,
2026 __unused
unsigned cnt
,
2033 flush_dcache(__unused vm_offset_t addr
,
2034 __unused
unsigned count
,
2042 * Constrain DTrace copyin/copyout actions
2044 extern kern_return_t
dtrace_copyio_preflight(addr64_t
);
2045 extern kern_return_t
dtrace_copyio_postflight(addr64_t
);
2047 kern_return_t
dtrace_copyio_preflight(__unused addr64_t va
)
2049 thread_t thread
= current_thread();
2051 if (current_map() == kernel_map
)
2052 return KERN_FAILURE
;
2053 else if (((ccr3
= get_cr3_base()) != thread
->map
->pmap
->pm_cr3
) && (no_shared_cr3
== FALSE
))
2054 return KERN_FAILURE
;
2055 else if (no_shared_cr3
&& (ccr3
!= kernel_pmap
->pm_cr3
))
2056 return KERN_FAILURE
;
2058 return KERN_SUCCESS
;
2061 kern_return_t
dtrace_copyio_postflight(__unused addr64_t va
)
2063 return KERN_SUCCESS
;
2065 #endif /* CONFIG_DTRACE */
2067 #include <mach_vm_debug.h>
2069 #include <vm/vm_debug.h>
2072 pmap_list_resident_pages(
2073 __unused pmap_t pmap
,
2074 __unused vm_offset_t
*listp
,
2079 #endif /* MACH_VM_DEBUG */
2083 /* temporary workaround */
2085 coredumpok(__unused vm_map_t map
, __unused vm_offset_t va
)
2090 ptep
= pmap_pte(map
->pmap
, va
);
2093 return ((*ptep
& (INTEL_PTE_NCACHE
| INTEL_PTE_WIRED
)) != (INTEL_PTE_NCACHE
| INTEL_PTE_WIRED
));
2101 phys_page_exists(ppnum_t pn
)
2103 assert(pn
!= vm_page_fictitious_addr
);
2105 if (!pmap_initialized
)
2108 if (pn
== vm_page_guard_addr
)
2111 if (!IS_MANAGED_PAGE(ppn_to_pai(pn
)))
2120 pmap_switch(pmap_t tpmap
)
2124 s
= splhigh(); /* Make sure interruptions are disabled */
2125 set_dirbase(tpmap
, current_thread());
2131 * disable no-execute capability on
2132 * the specified pmap
2135 pmap_disable_NX(pmap_t pmap
)
2137 pmap
->nx_enabled
= 0;
2141 pt_fake_zone_init(int zone_index
)
2143 pt_fake_zone_index
= zone_index
;
2149 vm_size_t
*cur_size
,
2150 vm_size_t
*max_size
,
2151 vm_size_t
*elem_size
,
2152 vm_size_t
*alloc_size
,
2158 *count
= inuse_ptepages_count
;
2159 *cur_size
= PAGE_SIZE
* inuse_ptepages_count
;
2160 *max_size
= PAGE_SIZE
* (inuse_ptepages_count
+
2161 vm_page_inactive_count
+
2162 vm_page_active_count
+
2163 vm_page_free_count
);
2164 *elem_size
= PAGE_SIZE
;
2165 *alloc_size
= PAGE_SIZE
;
2166 *sum_size
= alloc_ptepages_count
* PAGE_SIZE
;
2174 pmap_cpuset_NMIPI(cpu_set cpu_mask
) {
2175 unsigned int cpu
, cpu_bit
;
2178 for (cpu
= 0, cpu_bit
= 1; cpu
< real_ncpus
; cpu
++, cpu_bit
<<= 1) {
2179 if (cpu_mask
& cpu_bit
)
2180 cpu_NMI_interrupt(cpu
);
2182 deadline
= mach_absolute_time() + (LockTimeOut
);
2183 while (mach_absolute_time() < deadline
)
2189 pmap_flush_context_init(pmap_flush_context
*pfc
)
2192 pfc
->pfc_invalid_global
= 0;
2197 pmap_flush_context
*pfc
)
2199 unsigned int my_cpu
;
2201 unsigned int cpu_bit
;
2202 cpu_set cpus_to_respond
= 0;
2203 cpu_set cpus_to_signal
= 0;
2204 cpu_set cpus_signaled
= 0;
2205 boolean_t flush_self
= FALSE
;
2208 mp_disable_preemption();
2210 my_cpu
= cpu_number();
2211 cpus_to_signal
= pfc
->pfc_cpus
;
2213 PMAP_TRACE_CONSTANT(PMAP_CODE(PMAP__FLUSH_DELAYED_TLBS
) | DBG_FUNC_START
,
2214 NULL
, cpus_to_signal
, 0, 0, 0);
2216 for (cpu
= 0, cpu_bit
= 1; cpu
< real_ncpus
&& cpus_to_signal
; cpu
++, cpu_bit
<<= 1) {
2218 if (cpus_to_signal
& cpu_bit
) {
2220 cpus_to_signal
&= ~cpu_bit
;
2222 if (!cpu_datap(cpu
)->cpu_running
)
2225 if (pfc
->pfc_invalid_global
& cpu_bit
)
2226 cpu_datap(cpu
)->cpu_tlb_invalid_global
= TRUE
;
2228 cpu_datap(cpu
)->cpu_tlb_invalid_local
= TRUE
;
2231 if (cpu
== my_cpu
) {
2235 if (CPU_CR3_IS_ACTIVE(cpu
)) {
2236 cpus_to_respond
|= cpu_bit
;
2237 i386_signal_cpu(cpu
, MP_TLB_FLUSH
, ASYNC
);
2241 cpus_signaled
= cpus_to_respond
;
2244 * Flush local tlb if required.
2245 * Do this now to overlap with other processors responding.
2247 if (flush_self
&& cpu_datap(my_cpu
)->cpu_tlb_invalid
!= FALSE
)
2248 process_pmap_updates();
2250 if (cpus_to_respond
) {
2252 deadline
= mach_absolute_time() + LockTimeOut
;
2254 * Wait for those other cpus to acknowledge
2256 while (cpus_to_respond
!= 0) {
2259 for (cpu
= 0, cpu_bit
= 1; cpu
< real_ncpus
; cpu
++, cpu_bit
<<= 1) {
2260 /* Consider checking local/global invalidity
2261 * as appropriate in the PCID case.
2263 if ((cpus_to_respond
& cpu_bit
) != 0) {
2264 if (!cpu_datap(cpu
)->cpu_running
||
2265 cpu_datap(cpu
)->cpu_tlb_invalid
== FALSE
||
2266 !CPU_CR3_IS_ACTIVE(cpu
)) {
2267 cpus_to_respond
&= ~cpu_bit
;
2271 if (cpus_to_respond
== 0)
2274 if (cpus_to_respond
&& (mach_absolute_time() > deadline
)) {
2275 if (machine_timeout_suspended())
2277 pmap_tlb_flush_timeout
= TRUE
;
2278 orig_acks
= NMIPI_acks
;
2279 pmap_cpuset_NMIPI(cpus_to_respond
);
2281 panic("TLB invalidation IPI timeout: "
2282 "CPU(s) failed to respond to interrupts, unresponsive CPU bitmap: 0x%lx, NMIPI acks: orig: 0x%lx, now: 0x%lx",
2283 cpus_to_respond
, orig_acks
, NMIPI_acks
);
2287 PMAP_TRACE_CONSTANT(PMAP_CODE(PMAP__FLUSH_DELAYED_TLBS
) | DBG_FUNC_END
,
2288 NULL
, cpus_signaled
, flush_self
, 0, 0);
2290 mp_enable_preemption();
2295 * Called with pmap locked, we:
2296 * - scan through per-cpu data to see which other cpus need to flush
2297 * - send an IPI to each non-idle cpu to be flushed
2298 * - wait for all to signal back that they are inactive or we see that
2299 * they are at a safe point (idle).
2300 * - flush the local tlb if active for this pmap
2301 * - return ... the caller will unlock the pmap
2305 pmap_flush_tlbs(pmap_t pmap
, vm_map_offset_t startv
, vm_map_offset_t endv
, int options
, pmap_flush_context
*pfc
)
2308 unsigned int cpu_bit
;
2309 cpu_set cpus_to_signal
;
2310 unsigned int my_cpu
= cpu_number();
2311 pmap_paddr_t pmap_cr3
= pmap
->pm_cr3
;
2312 boolean_t flush_self
= FALSE
;
2314 boolean_t pmap_is_shared
= (pmap
->pm_shared
|| (pmap
== kernel_pmap
));
2315 boolean_t need_global_flush
= FALSE
;
2317 assert((processor_avail_count
< 2) ||
2318 (ml_get_interrupts_enabled() && get_preemption_level() != 0));
2321 * Scan other cpus for matching active or task CR3.
2322 * For idle cpus (with no active map) we mark them invalid but
2323 * don't signal -- they'll check as they go busy.
2327 if (pmap_pcid_ncpus
) {
2329 need_global_flush
= TRUE
;
2330 pmap_pcid_invalidate_all_cpus(pmap
);
2333 for (cpu
= 0, cpu_bit
= 1; cpu
< real_ncpus
; cpu
++, cpu_bit
<<= 1) {
2334 if (!cpu_datap(cpu
)->cpu_running
)
2336 uint64_t cpu_active_cr3
= CPU_GET_ACTIVE_CR3(cpu
);
2337 uint64_t cpu_task_cr3
= CPU_GET_TASK_CR3(cpu
);
2339 if ((pmap_cr3
== cpu_task_cr3
) ||
2340 (pmap_cr3
== cpu_active_cr3
) ||
2343 if (options
& PMAP_DELAY_TLB_FLUSH
) {
2344 if (need_global_flush
== TRUE
)
2345 pfc
->pfc_invalid_global
|= cpu_bit
;
2346 pfc
->pfc_cpus
|= cpu_bit
;
2350 if (cpu
== my_cpu
) {
2354 if (need_global_flush
== TRUE
)
2355 cpu_datap(cpu
)->cpu_tlb_invalid_global
= TRUE
;
2357 cpu_datap(cpu
)->cpu_tlb_invalid_local
= TRUE
;
2361 * We don't need to signal processors which will flush
2362 * lazily at the idle state or kernel boundary.
2363 * For example, if we're invalidating the kernel pmap,
2364 * processors currently in userspace don't need to flush
2365 * their TLBs until the next time they enter the kernel.
2366 * Alterations to the address space of a task active
2367 * on a remote processor result in a signal, to
2368 * account for copy operations. (There may be room
2369 * for optimization in such cases).
2370 * The order of the loads below with respect
2371 * to the store to the "cpu_tlb_invalid" field above
2372 * is important--hence the barrier.
2374 if (CPU_CR3_IS_ACTIVE(cpu
) &&
2375 (pmap_cr3
== CPU_GET_ACTIVE_CR3(cpu
) ||
2377 (pmap_cr3
== CPU_GET_TASK_CR3(cpu
)))) {
2378 cpus_to_signal
|= cpu_bit
;
2379 i386_signal_cpu(cpu
, MP_TLB_FLUSH
, ASYNC
);
2383 if ((options
& PMAP_DELAY_TLB_FLUSH
))
2386 if (pmap
== kernel_pmap
) {
2387 PMAP_TRACE_CONSTANT(PMAP_CODE(PMAP__FLUSH_KERN_TLBS
) | DBG_FUNC_START
,
2388 pmap
, cpus_to_signal
, flush_self
, startv
, endv
);
2390 PMAP_TRACE_CONSTANT(PMAP_CODE(PMAP__FLUSH_TLBS
) | DBG_FUNC_START
,
2391 pmap
, cpus_to_signal
, flush_self
, startv
, endv
);
2394 * Flush local tlb if required.
2395 * Do this now to overlap with other processors responding.
2398 if (pmap_pcid_ncpus
) {
2399 pmap_pcid_validate_cpu(pmap
, my_cpu
);
2409 if (cpus_to_signal
) {
2410 cpu_set cpus_to_respond
= cpus_to_signal
;
2412 deadline
= mach_absolute_time() + LockTimeOut
;
2414 * Wait for those other cpus to acknowledge
2416 while (cpus_to_respond
!= 0) {
2419 for (cpu
= 0, cpu_bit
= 1; cpu
< real_ncpus
; cpu
++, cpu_bit
<<= 1) {
2420 /* Consider checking local/global invalidity
2421 * as appropriate in the PCID case.
2423 if ((cpus_to_respond
& cpu_bit
) != 0) {
2424 if (!cpu_datap(cpu
)->cpu_running
||
2425 cpu_datap(cpu
)->cpu_tlb_invalid
== FALSE
||
2426 !CPU_CR3_IS_ACTIVE(cpu
)) {
2427 cpus_to_respond
&= ~cpu_bit
;
2431 if (cpus_to_respond
== 0)
2434 if (cpus_to_respond
&& (mach_absolute_time() > deadline
)) {
2435 if (machine_timeout_suspended())
2437 pmap_tlb_flush_timeout
= TRUE
;
2438 orig_acks
= NMIPI_acks
;
2439 pmap_cpuset_NMIPI(cpus_to_respond
);
2441 panic("TLB invalidation IPI timeout: "
2442 "CPU(s) failed to respond to interrupts, unresponsive CPU bitmap: 0x%lx, NMIPI acks: orig: 0x%lx, now: 0x%lx",
2443 cpus_to_respond
, orig_acks
, NMIPI_acks
);
2448 if (__improbable((pmap
== kernel_pmap
) && (flush_self
!= TRUE
))) {
2449 panic("pmap_flush_tlbs: pmap == kernel_pmap && flush_self != TRUE; kernel CR3: 0x%llX, pmap_cr3: 0x%llx, CPU active CR3: 0x%llX, CPU Task Map: %d", kernel_pmap
->pm_cr3
, pmap_cr3
, current_cpu_datap()->cpu_active_cr3
, current_cpu_datap()->cpu_task_map
);
2452 if (pmap
== kernel_pmap
) {
2453 PMAP_TRACE_CONSTANT(PMAP_CODE(PMAP__FLUSH_KERN_TLBS
) | DBG_FUNC_END
,
2454 pmap
, cpus_to_signal
, startv
, endv
, 0);
2456 PMAP_TRACE_CONSTANT(PMAP_CODE(PMAP__FLUSH_TLBS
) | DBG_FUNC_END
,
2457 pmap
, cpus_to_signal
, startv
, endv
, 0);
2463 process_pmap_updates(void)
2465 int ccpu
= cpu_number();
2466 pmap_assert(ml_get_interrupts_enabled() == 0 || get_preemption_level() != 0);
2467 if (pmap_pcid_ncpus
) {
2468 pmap_pcid_validate_current();
2469 if (cpu_datap(ccpu
)->cpu_tlb_invalid_global
) {
2470 cpu_datap(ccpu
)->cpu_tlb_invalid
= FALSE
;
2474 cpu_datap(ccpu
)->cpu_tlb_invalid_local
= FALSE
;
2479 current_cpu_datap()->cpu_tlb_invalid
= FALSE
;
2487 pmap_update_interrupt(void)
2489 PMAP_TRACE(PMAP_CODE(PMAP__UPDATE_INTERRUPT
) | DBG_FUNC_START
,
2492 if (current_cpu_datap()->cpu_tlb_invalid
)
2493 process_pmap_updates();
2495 PMAP_TRACE(PMAP_CODE(PMAP__UPDATE_INTERRUPT
) | DBG_FUNC_END
,
2499 #include <mach/mach_vm.h> /* mach_vm_region_recurse() */
2500 /* Scan kernel pmap for W+X PTEs, scan kernel VM map for W+X map entries
2501 * and identify ranges with mismatched VM permissions and PTE permissions
2504 pmap_permissions_verify(pmap_t ipmap
, vm_map_t ivmmap
, vm_offset_t sv
, vm_offset_t ev
) {
2505 vm_offset_t cv
= sv
;
2506 kern_return_t rv
= KERN_SUCCESS
;
2507 uint64_t skip4
= 0, skip2
= 0;
2509 sv
&= ~PAGE_MASK_64
;
2510 ev
&= ~PAGE_MASK_64
;
2512 if (__improbable((cv
> 0x00007FFFFFFFFFFFULL
) &&
2513 (cv
< 0xFFFF800000000000ULL
))) {
2514 cv
= 0xFFFF800000000000ULL
;
2516 /* Potential inconsistencies from not holding pmap lock
2517 * but harmless for the moment.
2519 if (((cv
& PML4MASK
) == 0) && (pmap64_pml4(ipmap
, cv
) == 0)) {
2520 if ((cv
+ NBPML4
) > cv
)
2527 if (((cv
& PDMASK
) == 0) && (pmap_pde(ipmap
, cv
) == 0)) {
2528 if ((cv
+ NBPD
) > cv
)
2536 pt_entry_t
*ptep
= pmap_pte(ipmap
, cv
);
2537 if (ptep
&& (*ptep
& INTEL_PTE_VALID
)) {
2538 if (*ptep
& INTEL_PTE_WRITE
) {
2539 if (!(*ptep
& INTEL_PTE_NX
)) {
2540 kprintf("W+X PTE at 0x%lx, P4: 0x%llx, P3: 0x%llx, P2: 0x%llx, PT: 0x%llx, VP: %u\n", cv
, *pmap64_pml4(ipmap
, cv
), *pmap64_pdpt(ipmap
, cv
), *pmap64_pde(ipmap
, cv
), *ptep
, pmap_valid_page((ppnum_t
)(i386_btop(pte_to_pa(*ptep
)))));
2547 kprintf("Completed pmap scan\n");
2550 struct vm_region_submap_info_64 vbr
;
2551 mach_msg_type_number_t vbrcount
= 0;
2552 mach_vm_size_t vmsize
;
2554 uint32_t nesting_depth
= 0;
2560 vbrcount
= VM_REGION_SUBMAP_INFO_COUNT_64
;
2561 if((kret
= mach_vm_region_recurse(ivmmap
,
2562 (mach_vm_address_t
*) &cv
, &vmsize
, &nesting_depth
,
2563 (vm_region_recurse_info_t
)&vbr
,
2564 &vbrcount
)) != KERN_SUCCESS
) {
2576 if(kret
!= KERN_SUCCESS
)
2579 prot
= vbr
.protection
;
2581 if ((prot
& (VM_PROT_WRITE
| VM_PROT_EXECUTE
)) == (VM_PROT_WRITE
| VM_PROT_EXECUTE
)) {
2582 kprintf("W+X map entry at address 0x%lx\n", cv
);
2588 for (pcv
= cv
; pcv
< cv
+ vmsize
; pcv
+= PAGE_SIZE
) {
2589 pt_entry_t
*ptep
= pmap_pte(ipmap
, pcv
);
2592 if ((ptep
== NULL
) || !(*ptep
& INTEL_PTE_VALID
))
2594 tprot
= VM_PROT_READ
;
2595 if (*ptep
& INTEL_PTE_WRITE
)
2596 tprot
|= VM_PROT_WRITE
;
2597 if ((*ptep
& INTEL_PTE_NX
) == 0)
2598 tprot
|= VM_PROT_EXECUTE
;
2599 if (tprot
!= prot
) {
2600 kprintf("PTE/map entry permissions mismatch at address 0x%lx, pte: 0x%llx, protection: 0x%x\n", pcv
, *ptep
, prot
);