]> git.saurik.com Git - apple/xnu.git/blob - osfmk/vm/vm_fault.c
xnu-2422.90.20.tar.gz
[apple/xnu.git] / osfmk / vm / vm_fault.c
1 /*
2 * Copyright (c) 2000-2009 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*
29 * @OSF_COPYRIGHT@
30 */
31 /*
32 * Mach Operating System
33 * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University
34 * All Rights Reserved.
35 *
36 * Permission to use, copy, modify and distribute this software and its
37 * documentation is hereby granted, provided that both the copyright
38 * notice and this permission notice appear in all copies of the
39 * software, derivative works or modified versions, and any portions
40 * thereof, and that both notices appear in supporting documentation.
41 *
42 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
43 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
44 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
45 *
46 * Carnegie Mellon requests users of this software to return to
47 *
48 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
49 * School of Computer Science
50 * Carnegie Mellon University
51 * Pittsburgh PA 15213-3890
52 *
53 * any improvements or extensions that they make and grant Carnegie Mellon
54 * the rights to redistribute these changes.
55 */
56 /*
57 */
58 /*
59 * File: vm_fault.c
60 * Author: Avadis Tevanian, Jr., Michael Wayne Young
61 *
62 * Page fault handling module.
63 */
64
65 #include <mach_cluster_stats.h>
66 #include <mach_pagemap.h>
67 #include <libkern/OSAtomic.h>
68
69 #include <mach/mach_types.h>
70 #include <mach/kern_return.h>
71 #include <mach/message.h> /* for error codes */
72 #include <mach/vm_param.h>
73 #include <mach/vm_behavior.h>
74 #include <mach/memory_object.h>
75 /* For memory_object_data_{request,unlock} */
76 #include <mach/sdt.h>
77
78 #include <kern/kern_types.h>
79 #include <kern/host_statistics.h>
80 #include <kern/counters.h>
81 #include <kern/task.h>
82 #include <kern/thread.h>
83 #include <kern/sched_prim.h>
84 #include <kern/host.h>
85 #include <kern/xpr.h>
86 #include <kern/mach_param.h>
87 #include <kern/macro_help.h>
88 #include <kern/zalloc.h>
89 #include <kern/misc_protos.h>
90
91 #include <vm/vm_compressor.h>
92 #include <vm/vm_compressor_pager.h>
93 #include <vm/vm_fault.h>
94 #include <vm/vm_map.h>
95 #include <vm/vm_object.h>
96 #include <vm/vm_page.h>
97 #include <vm/vm_kern.h>
98 #include <vm/pmap.h>
99 #include <vm/vm_pageout.h>
100 #include <vm/vm_protos.h>
101 #include <vm/vm_external.h>
102 #include <vm/memory_object.h>
103 #include <vm/vm_purgeable_internal.h> /* Needed by some vm_page.h macros */
104 #include <vm/vm_shared_region.h>
105
106 #include <sys/codesign.h>
107
108 #include <libsa/sys/timers.h> /* for struct timespec */
109
110 #define VM_FAULT_CLASSIFY 0
111
112 #define TRACEFAULTPAGE 0 /* (TEST/DEBUG) */
113
114 int vm_object_pagein_throttle = 16;
115
116 /*
117 * We apply a hard throttle to the demand zero rate of tasks that we believe are running out of control which
118 * kicks in when swap space runs out. 64-bit programs have massive address spaces and can leak enormous amounts
119 * of memory if they're buggy and can run the system completely out of swap space. If this happens, we
120 * impose a hard throttle on them to prevent them from taking the last bit of memory left. This helps
121 * keep the UI active so that the user has a chance to kill the offending task before the system
122 * completely hangs.
123 *
124 * The hard throttle is only applied when the system is nearly completely out of swap space and is only applied
125 * to tasks that appear to be bloated. When swap runs out, any task using more than vm_hard_throttle_threshold
126 * will be throttled. The throttling is done by giving the thread that's trying to demand zero a page a
127 * delay of HARD_THROTTLE_DELAY microseconds before being allowed to try the page fault again.
128 */
129
130 extern void throttle_lowpri_io(int);
131
132 uint64_t vm_hard_throttle_threshold;
133
134
135
136 #define NEED_TO_HARD_THROTTLE_THIS_TASK() ((current_task() != kernel_task && \
137 get_task_resident_size(current_task()) > (((AVAILABLE_NON_COMPRESSED_MEMORY) * PAGE_SIZE) / 5)) && \
138 (vm_low_on_space() || (vm_page_free_count < vm_page_throttle_limit && \
139 proc_get_effective_thread_policy(current_thread(), TASK_POLICY_IO) >= THROTTLE_LEVEL_THROTTLED )))
140
141
142
143 #define HARD_THROTTLE_DELAY 20000 /* 20000 us == 20 ms */
144 #define SOFT_THROTTLE_DELAY 2000 /* 2000 us == 2 ms */
145
146 boolean_t current_thread_aborted(void);
147
148 /* Forward declarations of internal routines. */
149 extern kern_return_t vm_fault_wire_fast(
150 vm_map_t map,
151 vm_map_offset_t va,
152 vm_map_entry_t entry,
153 pmap_t pmap,
154 vm_map_offset_t pmap_addr);
155
156 extern void vm_fault_continue(void);
157
158 extern void vm_fault_copy_cleanup(
159 vm_page_t page,
160 vm_page_t top_page);
161
162 extern void vm_fault_copy_dst_cleanup(
163 vm_page_t page);
164
165 #if VM_FAULT_CLASSIFY
166 extern void vm_fault_classify(vm_object_t object,
167 vm_object_offset_t offset,
168 vm_prot_t fault_type);
169
170 extern void vm_fault_classify_init(void);
171 #endif
172
173 unsigned long vm_pmap_enter_blocked = 0;
174 unsigned long vm_pmap_enter_retried = 0;
175
176 unsigned long vm_cs_validates = 0;
177 unsigned long vm_cs_revalidates = 0;
178 unsigned long vm_cs_query_modified = 0;
179 unsigned long vm_cs_validated_dirtied = 0;
180 unsigned long vm_cs_bitmap_validated = 0;
181
182 /*
183 * Routine: vm_fault_init
184 * Purpose:
185 * Initialize our private data structures.
186 */
187 void
188 vm_fault_init(void)
189 {
190 int i, vm_compressor_temp;
191 boolean_t need_default_val = TRUE;
192 /*
193 * Choose a value for the hard throttle threshold based on the amount of ram. The threshold is
194 * computed as a percentage of available memory, and the percentage used is scaled inversely with
195 * the amount of memory. The percentage runs between 10% and 35%. We use 35% for small memory systems
196 * and reduce the value down to 10% for very large memory configurations. This helps give us a
197 * definition of a memory hog that makes more sense relative to the amount of ram in the machine.
198 * The formula here simply uses the number of gigabytes of ram to adjust the percentage.
199 */
200
201 vm_hard_throttle_threshold = sane_size * (35 - MIN((int)(sane_size / (1024*1024*1024)), 25)) / 100;
202
203 /*
204 * Configure compressed pager behavior. A boot arg takes precedence over a device tree entry.
205 */
206
207 if (PE_parse_boot_argn("vm_compressor", &vm_compressor_temp, sizeof (vm_compressor_temp))) {
208 for ( i = 0; i < VM_PAGER_MAX_MODES; i++) {
209 if (vm_compressor_temp > 0 &&
210 ((vm_compressor_temp & ( 1 << i)) == vm_compressor_temp)) {
211 need_default_val = FALSE;
212 vm_compressor_mode = vm_compressor_temp;
213 break;
214 }
215 }
216 if (need_default_val)
217 printf("Ignoring \"vm_compressor\" boot arg %d\n", vm_compressor_temp);
218 }
219 if (need_default_val) {
220 /* If no boot arg or incorrect boot arg, try device tree. */
221 PE_get_default("kern.vm_compressor", &vm_compressor_mode, sizeof(vm_compressor_mode));
222 }
223 PE_parse_boot_argn("vm_compressor_threads", &vm_compressor_thread_count, sizeof (vm_compressor_thread_count));
224 printf("\"vm_compressor_mode\" is %d\n", vm_compressor_mode);
225 }
226
227 /*
228 * Routine: vm_fault_cleanup
229 * Purpose:
230 * Clean up the result of vm_fault_page.
231 * Results:
232 * The paging reference for "object" is released.
233 * "object" is unlocked.
234 * If "top_page" is not null, "top_page" is
235 * freed and the paging reference for the object
236 * containing it is released.
237 *
238 * In/out conditions:
239 * "object" must be locked.
240 */
241 void
242 vm_fault_cleanup(
243 register vm_object_t object,
244 register vm_page_t top_page)
245 {
246 vm_object_paging_end(object);
247 vm_object_unlock(object);
248
249 if (top_page != VM_PAGE_NULL) {
250 object = top_page->object;
251
252 vm_object_lock(object);
253 VM_PAGE_FREE(top_page);
254 vm_object_paging_end(object);
255 vm_object_unlock(object);
256 }
257 }
258
259 #if MACH_CLUSTER_STATS
260 #define MAXCLUSTERPAGES 16
261 struct {
262 unsigned long pages_in_cluster;
263 unsigned long pages_at_higher_offsets;
264 unsigned long pages_at_lower_offsets;
265 } cluster_stats_in[MAXCLUSTERPAGES];
266 #define CLUSTER_STAT(clause) clause
267 #define CLUSTER_STAT_HIGHER(x) \
268 ((cluster_stats_in[(x)].pages_at_higher_offsets)++)
269 #define CLUSTER_STAT_LOWER(x) \
270 ((cluster_stats_in[(x)].pages_at_lower_offsets)++)
271 #define CLUSTER_STAT_CLUSTER(x) \
272 ((cluster_stats_in[(x)].pages_in_cluster)++)
273 #else /* MACH_CLUSTER_STATS */
274 #define CLUSTER_STAT(clause)
275 #endif /* MACH_CLUSTER_STATS */
276
277 #define ALIGNED(x) (((x) & (PAGE_SIZE_64 - 1)) == 0)
278
279
280 boolean_t vm_page_deactivate_behind = TRUE;
281 /*
282 * default sizes given VM_BEHAVIOR_DEFAULT reference behavior
283 */
284 #define VM_DEFAULT_DEACTIVATE_BEHIND_WINDOW 128
285 #define VM_DEFAULT_DEACTIVATE_BEHIND_CLUSTER 16 /* don't make this too big... */
286 /* we use it to size an array on the stack */
287
288 int vm_default_behind = VM_DEFAULT_DEACTIVATE_BEHIND_WINDOW;
289
290 #define MAX_SEQUENTIAL_RUN (1024 * 1024 * 1024)
291
292 /*
293 * vm_page_is_sequential
294 *
295 * Determine if sequential access is in progress
296 * in accordance with the behavior specified.
297 * Update state to indicate current access pattern.
298 *
299 * object must have at least the shared lock held
300 */
301 static
302 void
303 vm_fault_is_sequential(
304 vm_object_t object,
305 vm_object_offset_t offset,
306 vm_behavior_t behavior)
307 {
308 vm_object_offset_t last_alloc;
309 int sequential;
310 int orig_sequential;
311
312 last_alloc = object->last_alloc;
313 sequential = object->sequential;
314 orig_sequential = sequential;
315
316 switch (behavior) {
317 case VM_BEHAVIOR_RANDOM:
318 /*
319 * reset indicator of sequential behavior
320 */
321 sequential = 0;
322 break;
323
324 case VM_BEHAVIOR_SEQUENTIAL:
325 if (offset && last_alloc == offset - PAGE_SIZE_64) {
326 /*
327 * advance indicator of sequential behavior
328 */
329 if (sequential < MAX_SEQUENTIAL_RUN)
330 sequential += PAGE_SIZE;
331 } else {
332 /*
333 * reset indicator of sequential behavior
334 */
335 sequential = 0;
336 }
337 break;
338
339 case VM_BEHAVIOR_RSEQNTL:
340 if (last_alloc && last_alloc == offset + PAGE_SIZE_64) {
341 /*
342 * advance indicator of sequential behavior
343 */
344 if (sequential > -MAX_SEQUENTIAL_RUN)
345 sequential -= PAGE_SIZE;
346 } else {
347 /*
348 * reset indicator of sequential behavior
349 */
350 sequential = 0;
351 }
352 break;
353
354 case VM_BEHAVIOR_DEFAULT:
355 default:
356 if (offset && last_alloc == (offset - PAGE_SIZE_64)) {
357 /*
358 * advance indicator of sequential behavior
359 */
360 if (sequential < 0)
361 sequential = 0;
362 if (sequential < MAX_SEQUENTIAL_RUN)
363 sequential += PAGE_SIZE;
364
365 } else if (last_alloc && last_alloc == (offset + PAGE_SIZE_64)) {
366 /*
367 * advance indicator of sequential behavior
368 */
369 if (sequential > 0)
370 sequential = 0;
371 if (sequential > -MAX_SEQUENTIAL_RUN)
372 sequential -= PAGE_SIZE;
373 } else {
374 /*
375 * reset indicator of sequential behavior
376 */
377 sequential = 0;
378 }
379 break;
380 }
381 if (sequential != orig_sequential) {
382 if (!OSCompareAndSwap(orig_sequential, sequential, (UInt32 *)&object->sequential)) {
383 /*
384 * if someone else has already updated object->sequential
385 * don't bother trying to update it or object->last_alloc
386 */
387 return;
388 }
389 }
390 /*
391 * I'd like to do this with a OSCompareAndSwap64, but that
392 * doesn't exist for PPC... however, it shouldn't matter
393 * that much... last_alloc is maintained so that we can determine
394 * if a sequential access pattern is taking place... if only
395 * one thread is banging on this object, no problem with the unprotected
396 * update... if 2 or more threads are banging away, we run the risk of
397 * someone seeing a mangled update... however, in the face of multiple
398 * accesses, no sequential access pattern can develop anyway, so we
399 * haven't lost any real info.
400 */
401 object->last_alloc = offset;
402 }
403
404
405 int vm_page_deactivate_behind_count = 0;
406
407 /*
408 * vm_page_deactivate_behind
409 *
410 * Determine if sequential access is in progress
411 * in accordance with the behavior specified. If
412 * so, compute a potential page to deactivate and
413 * deactivate it.
414 *
415 * object must be locked.
416 *
417 * return TRUE if we actually deactivate a page
418 */
419 static
420 boolean_t
421 vm_fault_deactivate_behind(
422 vm_object_t object,
423 vm_object_offset_t offset,
424 vm_behavior_t behavior)
425 {
426 int n;
427 int pages_in_run = 0;
428 int max_pages_in_run = 0;
429 int sequential_run;
430 int sequential_behavior = VM_BEHAVIOR_SEQUENTIAL;
431 vm_object_offset_t run_offset = 0;
432 vm_object_offset_t pg_offset = 0;
433 vm_page_t m;
434 vm_page_t page_run[VM_DEFAULT_DEACTIVATE_BEHIND_CLUSTER];
435
436 pages_in_run = 0;
437 #if TRACEFAULTPAGE
438 dbgTrace(0xBEEF0018, (unsigned int) object, (unsigned int) vm_fault_deactivate_behind); /* (TEST/DEBUG) */
439 #endif
440
441 if (object == kernel_object || vm_page_deactivate_behind == FALSE) {
442 /*
443 * Do not deactivate pages from the kernel object: they
444 * are not intended to become pageable.
445 * or we've disabled the deactivate behind mechanism
446 */
447 return FALSE;
448 }
449 if ((sequential_run = object->sequential)) {
450 if (sequential_run < 0) {
451 sequential_behavior = VM_BEHAVIOR_RSEQNTL;
452 sequential_run = 0 - sequential_run;
453 } else {
454 sequential_behavior = VM_BEHAVIOR_SEQUENTIAL;
455 }
456 }
457 switch (behavior) {
458 case VM_BEHAVIOR_RANDOM:
459 break;
460 case VM_BEHAVIOR_SEQUENTIAL:
461 if (sequential_run >= (int)PAGE_SIZE) {
462 run_offset = 0 - PAGE_SIZE_64;
463 max_pages_in_run = 1;
464 }
465 break;
466 case VM_BEHAVIOR_RSEQNTL:
467 if (sequential_run >= (int)PAGE_SIZE) {
468 run_offset = PAGE_SIZE_64;
469 max_pages_in_run = 1;
470 }
471 break;
472 case VM_BEHAVIOR_DEFAULT:
473 default:
474 { vm_object_offset_t behind = vm_default_behind * PAGE_SIZE_64;
475
476 /*
477 * determine if the run of sequential accesss has been
478 * long enough on an object with default access behavior
479 * to consider it for deactivation
480 */
481 if ((uint64_t)sequential_run >= behind && (sequential_run % (VM_DEFAULT_DEACTIVATE_BEHIND_CLUSTER * PAGE_SIZE)) == 0) {
482 /*
483 * the comparisons between offset and behind are done
484 * in this kind of odd fashion in order to prevent wrap around
485 * at the end points
486 */
487 if (sequential_behavior == VM_BEHAVIOR_SEQUENTIAL) {
488 if (offset >= behind) {
489 run_offset = 0 - behind;
490 pg_offset = PAGE_SIZE_64;
491 max_pages_in_run = VM_DEFAULT_DEACTIVATE_BEHIND_CLUSTER;
492 }
493 } else {
494 if (offset < -behind) {
495 run_offset = behind;
496 pg_offset = 0 - PAGE_SIZE_64;
497 max_pages_in_run = VM_DEFAULT_DEACTIVATE_BEHIND_CLUSTER;
498 }
499 }
500 }
501 break;
502 }
503 }
504 for (n = 0; n < max_pages_in_run; n++) {
505 m = vm_page_lookup(object, offset + run_offset + (n * pg_offset));
506
507 if (m && !m->laundry && !m->busy && !m->no_cache && !m->throttled && !m->fictitious && !m->absent) {
508 page_run[pages_in_run++] = m;
509
510 /*
511 * by not passing in a pmap_flush_context we will forgo any TLB flushing, local or otherwise...
512 *
513 * a TLB flush isn't really needed here since at worst we'll miss the reference bit being
514 * updated in the PTE if a remote processor still has this mapping cached in its TLB when the
515 * new reference happens. If no futher references happen on the page after that remote TLB flushes
516 * we'll see a clean, non-referenced page when it eventually gets pulled out of the inactive queue
517 * by pageout_scan, which is just fine since the last reference would have happened quite far
518 * in the past (TLB caches don't hang around for very long), and of course could just as easily
519 * have happened before we did the deactivate_behind.
520 */
521 pmap_clear_refmod_options(m->phys_page, VM_MEM_REFERENCED, PMAP_OPTIONS_NOFLUSH, (void *)NULL);
522 }
523 }
524 if (pages_in_run) {
525 vm_page_lockspin_queues();
526
527 for (n = 0; n < pages_in_run; n++) {
528
529 m = page_run[n];
530
531 vm_page_deactivate_internal(m, FALSE);
532
533 vm_page_deactivate_behind_count++;
534 #if TRACEFAULTPAGE
535 dbgTrace(0xBEEF0019, (unsigned int) object, (unsigned int) m); /* (TEST/DEBUG) */
536 #endif
537 }
538 vm_page_unlock_queues();
539
540 return TRUE;
541 }
542 return FALSE;
543 }
544
545
546 static int
547 vm_page_throttled(void)
548 {
549 clock_sec_t elapsed_sec;
550 clock_sec_t tv_sec;
551 clock_usec_t tv_usec;
552
553 thread_t thread = current_thread();
554
555 if (thread->options & TH_OPT_VMPRIV)
556 return (0);
557
558 thread->t_page_creation_count++;
559
560 if (NEED_TO_HARD_THROTTLE_THIS_TASK())
561 return (HARD_THROTTLE_DELAY);
562
563 if ((vm_page_free_count < vm_page_throttle_limit || ((COMPRESSED_PAGER_IS_ACTIVE || DEFAULT_FREEZER_COMPRESSED_PAGER_IS_ACTIVE) && SWAPPER_NEEDS_TO_UNTHROTTLE())) &&
564 thread->t_page_creation_count > vm_page_creation_throttle) {
565
566 clock_get_system_microtime(&tv_sec, &tv_usec);
567
568 elapsed_sec = tv_sec - thread->t_page_creation_time;
569
570 if (elapsed_sec <= 6 || (thread->t_page_creation_count / elapsed_sec) >= (vm_page_creation_throttle / 6)) {
571
572 if (elapsed_sec >= 60) {
573 /*
574 * we'll reset our stats to give a well behaved app
575 * that was unlucky enough to accumulate a bunch of pages
576 * over a long period of time a chance to get out of
577 * the throttled state... we reset the counter and timestamp
578 * so that if it stays under the rate limit for the next second
579 * it will be back in our good graces... if it exceeds it, it
580 * will remain in the throttled state
581 */
582 thread->t_page_creation_time = tv_sec;
583 thread->t_page_creation_count = (vm_page_creation_throttle / 6) * 5;
584 }
585 ++vm_page_throttle_count;
586
587 if ((COMPRESSED_PAGER_IS_ACTIVE || DEFAULT_FREEZER_COMPRESSED_PAGER_IS_ACTIVE) && HARD_THROTTLE_LIMIT_REACHED())
588 return (HARD_THROTTLE_DELAY);
589 else
590 return (SOFT_THROTTLE_DELAY);
591 }
592 thread->t_page_creation_time = tv_sec;
593 thread->t_page_creation_count = 0;
594 }
595 return (0);
596 }
597
598
599 /*
600 * check for various conditions that would
601 * prevent us from creating a ZF page...
602 * cleanup is based on being called from vm_fault_page
603 *
604 * object must be locked
605 * object == m->object
606 */
607 static vm_fault_return_t
608 vm_fault_check(vm_object_t object, vm_page_t m, vm_page_t first_m, boolean_t interruptible_state)
609 {
610 int throttle_delay;
611
612 if (object->shadow_severed ||
613 VM_OBJECT_PURGEABLE_FAULT_ERROR(object)) {
614 /*
615 * Either:
616 * 1. the shadow chain was severed,
617 * 2. the purgeable object is volatile or empty and is marked
618 * to fault on access while volatile.
619 * Just have to return an error at this point
620 */
621 if (m != VM_PAGE_NULL)
622 VM_PAGE_FREE(m);
623 vm_fault_cleanup(object, first_m);
624
625 thread_interrupt_level(interruptible_state);
626
627 return (VM_FAULT_MEMORY_ERROR);
628 }
629 if (vm_backing_store_low) {
630 /*
631 * are we protecting the system from
632 * backing store exhaustion. If so
633 * sleep unless we are privileged.
634 */
635 if (!(current_task()->priv_flags & VM_BACKING_STORE_PRIV)) {
636
637 if (m != VM_PAGE_NULL)
638 VM_PAGE_FREE(m);
639 vm_fault_cleanup(object, first_m);
640
641 assert_wait((event_t)&vm_backing_store_low, THREAD_UNINT);
642
643 thread_block(THREAD_CONTINUE_NULL);
644 thread_interrupt_level(interruptible_state);
645
646 return (VM_FAULT_RETRY);
647 }
648 }
649 if ((throttle_delay = vm_page_throttled())) {
650 /*
651 * we're throttling zero-fills...
652 * treat this as if we couldn't grab a page
653 */
654 if (m != VM_PAGE_NULL)
655 VM_PAGE_FREE(m);
656 vm_fault_cleanup(object, first_m);
657
658 VM_DEBUG_EVENT(vmf_check_zfdelay, VMF_CHECK_ZFDELAY, DBG_FUNC_NONE, throttle_delay, 0, 0, 0);
659
660 delay(throttle_delay);
661
662 if (current_thread_aborted()) {
663 thread_interrupt_level(interruptible_state);
664 return VM_FAULT_INTERRUPTED;
665 }
666 thread_interrupt_level(interruptible_state);
667
668 return (VM_FAULT_MEMORY_SHORTAGE);
669 }
670 return (VM_FAULT_SUCCESS);
671 }
672
673
674 /*
675 * do the work to zero fill a page and
676 * inject it into the correct paging queue
677 *
678 * m->object must be locked
679 * page queue lock must NOT be held
680 */
681 static int
682 vm_fault_zero_page(vm_page_t m, boolean_t no_zero_fill)
683 {
684 int my_fault = DBG_ZERO_FILL_FAULT;
685
686 /*
687 * This is is a zero-fill page fault...
688 *
689 * Checking the page lock is a waste of
690 * time; this page was absent, so
691 * it can't be page locked by a pager.
692 *
693 * we also consider it undefined
694 * with respect to instruction
695 * execution. i.e. it is the responsibility
696 * of higher layers to call for an instruction
697 * sync after changing the contents and before
698 * sending a program into this area. We
699 * choose this approach for performance
700 */
701 m->pmapped = TRUE;
702
703 m->cs_validated = FALSE;
704 m->cs_tainted = FALSE;
705
706 if (no_zero_fill == TRUE) {
707 my_fault = DBG_NZF_PAGE_FAULT;
708 } else {
709 vm_page_zero_fill(m);
710
711 VM_STAT_INCR(zero_fill_count);
712 DTRACE_VM2(zfod, int, 1, (uint64_t *), NULL);
713 }
714 assert(!m->laundry);
715 assert(m->object != kernel_object);
716 //assert(m->pageq.next == NULL && m->pageq.prev == NULL);
717
718 if (!VM_DYNAMIC_PAGING_ENABLED(memory_manager_default) &&
719 (m->object->purgable == VM_PURGABLE_DENY ||
720 m->object->purgable == VM_PURGABLE_NONVOLATILE ||
721 m->object->purgable == VM_PURGABLE_VOLATILE )) {
722
723 vm_page_lockspin_queues();
724
725 if (!VM_DYNAMIC_PAGING_ENABLED(memory_manager_default)) {
726 assert(!VM_PAGE_WIRED(m));
727
728 /*
729 * can't be on the pageout queue since we don't
730 * have a pager to try and clean to
731 */
732 assert(!m->pageout_queue);
733
734 VM_PAGE_QUEUES_REMOVE(m);
735
736 queue_enter(&vm_page_queue_throttled, m, vm_page_t, pageq);
737 m->throttled = TRUE;
738 vm_page_throttled_count++;
739 }
740 vm_page_unlock_queues();
741 }
742 return (my_fault);
743 }
744
745
746 /*
747 * Routine: vm_fault_page
748 * Purpose:
749 * Find the resident page for the virtual memory
750 * specified by the given virtual memory object
751 * and offset.
752 * Additional arguments:
753 * The required permissions for the page is given
754 * in "fault_type". Desired permissions are included
755 * in "protection".
756 * fault_info is passed along to determine pagein cluster
757 * limits... it contains the expected reference pattern,
758 * cluster size if available, etc...
759 *
760 * If the desired page is known to be resident (for
761 * example, because it was previously wired down), asserting
762 * the "unwiring" parameter will speed the search.
763 *
764 * If the operation can be interrupted (by thread_abort
765 * or thread_terminate), then the "interruptible"
766 * parameter should be asserted.
767 *
768 * Results:
769 * The page containing the proper data is returned
770 * in "result_page".
771 *
772 * In/out conditions:
773 * The source object must be locked and referenced,
774 * and must donate one paging reference. The reference
775 * is not affected. The paging reference and lock are
776 * consumed.
777 *
778 * If the call succeeds, the object in which "result_page"
779 * resides is left locked and holding a paging reference.
780 * If this is not the original object, a busy page in the
781 * original object is returned in "top_page", to prevent other
782 * callers from pursuing this same data, along with a paging
783 * reference for the original object. The "top_page" should
784 * be destroyed when this guarantee is no longer required.
785 * The "result_page" is also left busy. It is not removed
786 * from the pageout queues.
787 * Special Case:
788 * A return value of VM_FAULT_SUCCESS_NO_PAGE means that the
789 * fault succeeded but there's no VM page (i.e. the VM object
790 * does not actually hold VM pages, but device memory or
791 * large pages). The object is still locked and we still hold a
792 * paging_in_progress reference.
793 */
794 unsigned int vm_fault_page_blocked_access = 0;
795 unsigned int vm_fault_page_forced_retry = 0;
796
797 vm_fault_return_t
798 vm_fault_page(
799 /* Arguments: */
800 vm_object_t first_object, /* Object to begin search */
801 vm_object_offset_t first_offset, /* Offset into object */
802 vm_prot_t fault_type, /* What access is requested */
803 boolean_t must_be_resident,/* Must page be resident? */
804 boolean_t caller_lookup, /* caller looked up page */
805 /* Modifies in place: */
806 vm_prot_t *protection, /* Protection for mapping */
807 vm_page_t *result_page, /* Page found, if successful */
808 /* Returns: */
809 vm_page_t *top_page, /* Page in top object, if
810 * not result_page. */
811 int *type_of_fault, /* if non-null, fill in with type of fault
812 * COW, zero-fill, etc... returned in trace point */
813 /* More arguments: */
814 kern_return_t *error_code, /* code if page is in error */
815 boolean_t no_zero_fill, /* don't zero fill absent pages */
816 boolean_t data_supply, /* treat as data_supply if
817 * it is a write fault and a full
818 * page is provided */
819 vm_object_fault_info_t fault_info)
820 {
821 vm_page_t m;
822 vm_object_t object;
823 vm_object_offset_t offset;
824 vm_page_t first_m;
825 vm_object_t next_object;
826 vm_object_t copy_object;
827 boolean_t look_for_page;
828 boolean_t force_fault_retry = FALSE;
829 vm_prot_t access_required = fault_type;
830 vm_prot_t wants_copy_flag;
831 CLUSTER_STAT(int pages_at_higher_offsets;)
832 CLUSTER_STAT(int pages_at_lower_offsets;)
833 kern_return_t wait_result;
834 boolean_t interruptible_state;
835 boolean_t data_already_requested = FALSE;
836 vm_behavior_t orig_behavior;
837 vm_size_t orig_cluster_size;
838 vm_fault_return_t error;
839 int my_fault;
840 uint32_t try_failed_count;
841 int interruptible; /* how may fault be interrupted? */
842 int external_state = VM_EXTERNAL_STATE_UNKNOWN;
843 memory_object_t pager;
844 vm_fault_return_t retval;
845
846 /*
847 * MACH page map - an optional optimization where a bit map is maintained
848 * by the VM subsystem for internal objects to indicate which pages of
849 * the object currently reside on backing store. This existence map
850 * duplicates information maintained by the vnode pager. It is
851 * created at the time of the first pageout against the object, i.e.
852 * at the same time pager for the object is created. The optimization
853 * is designed to eliminate pager interaction overhead, if it is
854 * 'known' that the page does not exist on backing store.
855 *
856 * MUST_ASK_PAGER() evaluates to TRUE if the page specified by object/offset is
857 * either marked as paged out in the existence map for the object or no
858 * existence map exists for the object. MUST_ASK_PAGER() is one of the
859 * criteria in the decision to invoke the pager. It is also used as one
860 * of the criteria to terminate the scan for adjacent pages in a clustered
861 * pagein operation. Note that MUST_ASK_PAGER() always evaluates to TRUE for
862 * permanent objects. Note also that if the pager for an internal object
863 * has not been created, the pager is not invoked regardless of the value
864 * of MUST_ASK_PAGER() and that clustered pagein scans are only done on an object
865 * for which a pager has been created.
866 *
867 * PAGED_OUT() evaluates to TRUE if the page specified by the object/offset
868 * is marked as paged out in the existence map for the object. PAGED_OUT()
869 * PAGED_OUT() is used to determine if a page has already been pushed
870 * into a copy object in order to avoid a redundant page out operation.
871 */
872 #if MACH_PAGEMAP
873 #define MUST_ASK_PAGER(o, f, s) \
874 ((vm_external_state_get((o)->existence_map, (f)) \
875 != VM_EXTERNAL_STATE_ABSENT) && \
876 (s = (VM_COMPRESSOR_PAGER_STATE_GET((o), (f)))) \
877 != VM_EXTERNAL_STATE_ABSENT)
878 #define PAGED_OUT(o, f) \
879 ((vm_external_state_get((o)->existence_map, (f)) \
880 == VM_EXTERNAL_STATE_EXISTS) || \
881 (VM_COMPRESSOR_PAGER_STATE_GET((o), (f)) \
882 == VM_EXTERNAL_STATE_EXISTS))
883 #else /* MACH_PAGEMAP */
884 #define MUST_ASK_PAGER(o, f, s) \
885 ((s = VM_COMPRESSOR_PAGER_STATE_GET((o), (f))) != VM_EXTERNAL_STATE_ABSENT)
886 #define PAGED_OUT(o, f) \
887 (VM_COMPRESSOR_PAGER_STATE_GET((o), (f)) == VM_EXTERNAL_STATE_EXISTS)
888 #endif /* MACH_PAGEMAP */
889
890 /*
891 * Recovery actions
892 */
893 #define RELEASE_PAGE(m) \
894 MACRO_BEGIN \
895 PAGE_WAKEUP_DONE(m); \
896 if (!m->active && !m->inactive && !m->throttled) { \
897 vm_page_lockspin_queues(); \
898 if (!m->active && !m->inactive && !m->throttled) { \
899 if (COMPRESSED_PAGER_IS_ACTIVE || DEFAULT_FREEZER_COMPRESSED_PAGER_IS_ACTIVE) \
900 vm_page_deactivate(m); \
901 else \
902 vm_page_activate(m); \
903 } \
904 vm_page_unlock_queues(); \
905 } \
906 MACRO_END
907
908 #if TRACEFAULTPAGE
909 dbgTrace(0xBEEF0002, (unsigned int) first_object, (unsigned int) first_offset); /* (TEST/DEBUG) */
910 #endif
911
912 interruptible = fault_info->interruptible;
913 interruptible_state = thread_interrupt_level(interruptible);
914
915 /*
916 * INVARIANTS (through entire routine):
917 *
918 * 1) At all times, we must either have the object
919 * lock or a busy page in some object to prevent
920 * some other thread from trying to bring in
921 * the same page.
922 *
923 * Note that we cannot hold any locks during the
924 * pager access or when waiting for memory, so
925 * we use a busy page then.
926 *
927 * 2) To prevent another thread from racing us down the
928 * shadow chain and entering a new page in the top
929 * object before we do, we must keep a busy page in
930 * the top object while following the shadow chain.
931 *
932 * 3) We must increment paging_in_progress on any object
933 * for which we have a busy page before dropping
934 * the object lock
935 *
936 * 4) We leave busy pages on the pageout queues.
937 * If the pageout daemon comes across a busy page,
938 * it will remove the page from the pageout queues.
939 */
940
941 object = first_object;
942 offset = first_offset;
943 first_m = VM_PAGE_NULL;
944 access_required = fault_type;
945
946
947 XPR(XPR_VM_FAULT,
948 "vm_f_page: obj 0x%X, offset 0x%X, type %d, prot %d\n",
949 object, offset, fault_type, *protection, 0);
950
951 /*
952 * default type of fault
953 */
954 my_fault = DBG_CACHE_HIT_FAULT;
955
956 while (TRUE) {
957 #if TRACEFAULTPAGE
958 dbgTrace(0xBEEF0003, (unsigned int) 0, (unsigned int) 0); /* (TEST/DEBUG) */
959 #endif
960 if (!object->alive) {
961 /*
962 * object is no longer valid
963 * clean up and return error
964 */
965 vm_fault_cleanup(object, first_m);
966 thread_interrupt_level(interruptible_state);
967
968 return (VM_FAULT_MEMORY_ERROR);
969 }
970
971 if (!object->pager_created && object->phys_contiguous) {
972 /*
973 * A physically-contiguous object without a pager:
974 * must be a "large page" object. We do not deal
975 * with VM pages for this object.
976 */
977 caller_lookup = FALSE;
978 m = VM_PAGE_NULL;
979 goto phys_contig_object;
980 }
981
982 if (object->blocked_access) {
983 /*
984 * Access to this VM object has been blocked.
985 * Replace our "paging_in_progress" reference with
986 * a "activity_in_progress" reference and wait for
987 * access to be unblocked.
988 */
989 caller_lookup = FALSE; /* no longer valid after sleep */
990 vm_object_activity_begin(object);
991 vm_object_paging_end(object);
992 while (object->blocked_access) {
993 vm_object_sleep(object,
994 VM_OBJECT_EVENT_UNBLOCKED,
995 THREAD_UNINT);
996 }
997 vm_fault_page_blocked_access++;
998 vm_object_paging_begin(object);
999 vm_object_activity_end(object);
1000 }
1001
1002 /*
1003 * See whether the page at 'offset' is resident
1004 */
1005 if (caller_lookup == TRUE) {
1006 /*
1007 * The caller has already looked up the page
1008 * and gave us the result in "result_page".
1009 * We can use this for the first lookup but
1010 * it loses its validity as soon as we unlock
1011 * the object.
1012 */
1013 m = *result_page;
1014 caller_lookup = FALSE; /* no longer valid after that */
1015 } else {
1016 m = vm_page_lookup(object, offset);
1017 }
1018 #if TRACEFAULTPAGE
1019 dbgTrace(0xBEEF0004, (unsigned int) m, (unsigned int) object); /* (TEST/DEBUG) */
1020 #endif
1021 if (m != VM_PAGE_NULL) {
1022
1023 if (m->busy) {
1024 /*
1025 * The page is being brought in,
1026 * wait for it and then retry.
1027 */
1028 #if TRACEFAULTPAGE
1029 dbgTrace(0xBEEF0005, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */
1030 #endif
1031 wait_result = PAGE_SLEEP(object, m, interruptible);
1032
1033 XPR(XPR_VM_FAULT,
1034 "vm_f_page: block busy obj 0x%X, offset 0x%X, page 0x%X\n",
1035 object, offset,
1036 m, 0, 0);
1037 counter(c_vm_fault_page_block_busy_kernel++);
1038
1039 if (wait_result != THREAD_AWAKENED) {
1040 vm_fault_cleanup(object, first_m);
1041 thread_interrupt_level(interruptible_state);
1042
1043 if (wait_result == THREAD_RESTART)
1044 return (VM_FAULT_RETRY);
1045 else
1046 return (VM_FAULT_INTERRUPTED);
1047 }
1048 continue;
1049 }
1050 if (m->laundry) {
1051 m->pageout = FALSE;
1052
1053 if (!m->cleaning)
1054 vm_pageout_steal_laundry(m, FALSE);
1055 }
1056 if (m->phys_page == vm_page_guard_addr) {
1057 /*
1058 * Guard page: off limits !
1059 */
1060 if (fault_type == VM_PROT_NONE) {
1061 /*
1062 * The fault is not requesting any
1063 * access to the guard page, so it must
1064 * be just to wire or unwire it.
1065 * Let's pretend it succeeded...
1066 */
1067 m->busy = TRUE;
1068 *result_page = m;
1069 assert(first_m == VM_PAGE_NULL);
1070 *top_page = first_m;
1071 if (type_of_fault)
1072 *type_of_fault = DBG_GUARD_FAULT;
1073 thread_interrupt_level(interruptible_state);
1074 return VM_FAULT_SUCCESS;
1075 } else {
1076 /*
1077 * The fault requests access to the
1078 * guard page: let's deny that !
1079 */
1080 vm_fault_cleanup(object, first_m);
1081 thread_interrupt_level(interruptible_state);
1082 return VM_FAULT_MEMORY_ERROR;
1083 }
1084 }
1085
1086 if (m->error) {
1087 /*
1088 * The page is in error, give up now.
1089 */
1090 #if TRACEFAULTPAGE
1091 dbgTrace(0xBEEF0006, (unsigned int) m, (unsigned int) error_code); /* (TEST/DEBUG) */
1092 #endif
1093 if (error_code)
1094 *error_code = KERN_MEMORY_ERROR;
1095 VM_PAGE_FREE(m);
1096
1097 vm_fault_cleanup(object, first_m);
1098 thread_interrupt_level(interruptible_state);
1099
1100 return (VM_FAULT_MEMORY_ERROR);
1101 }
1102 if (m->restart) {
1103 /*
1104 * The pager wants us to restart
1105 * at the top of the chain,
1106 * typically because it has moved the
1107 * page to another pager, then do so.
1108 */
1109 #if TRACEFAULTPAGE
1110 dbgTrace(0xBEEF0007, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */
1111 #endif
1112 VM_PAGE_FREE(m);
1113
1114 vm_fault_cleanup(object, first_m);
1115 thread_interrupt_level(interruptible_state);
1116
1117 return (VM_FAULT_RETRY);
1118 }
1119 if (m->absent) {
1120 /*
1121 * The page isn't busy, but is absent,
1122 * therefore it's deemed "unavailable".
1123 *
1124 * Remove the non-existent page (unless it's
1125 * in the top object) and move on down to the
1126 * next object (if there is one).
1127 */
1128 #if TRACEFAULTPAGE
1129 dbgTrace(0xBEEF0008, (unsigned int) m, (unsigned int) object->shadow); /* (TEST/DEBUG) */
1130 #endif
1131 next_object = object->shadow;
1132
1133 if (next_object == VM_OBJECT_NULL) {
1134 /*
1135 * Absent page at bottom of shadow
1136 * chain; zero fill the page we left
1137 * busy in the first object, and free
1138 * the absent page.
1139 */
1140 assert(!must_be_resident);
1141
1142 /*
1143 * check for any conditions that prevent
1144 * us from creating a new zero-fill page
1145 * vm_fault_check will do all of the
1146 * fault cleanup in the case of an error condition
1147 * including resetting the thread_interrupt_level
1148 */
1149 error = vm_fault_check(object, m, first_m, interruptible_state);
1150
1151 if (error != VM_FAULT_SUCCESS)
1152 return (error);
1153
1154 XPR(XPR_VM_FAULT,
1155 "vm_f_page: zero obj 0x%X, off 0x%X, page 0x%X, first_obj 0x%X\n",
1156 object, offset,
1157 m,
1158 first_object, 0);
1159
1160 if (object != first_object) {
1161 /*
1162 * free the absent page we just found
1163 */
1164 VM_PAGE_FREE(m);
1165
1166 /*
1167 * drop reference and lock on current object
1168 */
1169 vm_object_paging_end(object);
1170 vm_object_unlock(object);
1171
1172 /*
1173 * grab the original page we
1174 * 'soldered' in place and
1175 * retake lock on 'first_object'
1176 */
1177 m = first_m;
1178 first_m = VM_PAGE_NULL;
1179
1180 object = first_object;
1181 offset = first_offset;
1182
1183 vm_object_lock(object);
1184 } else {
1185 /*
1186 * we're going to use the absent page we just found
1187 * so convert it to a 'busy' page
1188 */
1189 m->absent = FALSE;
1190 m->busy = TRUE;
1191 }
1192 /*
1193 * zero-fill the page and put it on
1194 * the correct paging queue
1195 */
1196 my_fault = vm_fault_zero_page(m, no_zero_fill);
1197
1198 if (fault_info->mark_zf_absent && no_zero_fill == TRUE)
1199 m->absent = TRUE;
1200
1201 break;
1202 } else {
1203 if (must_be_resident)
1204 vm_object_paging_end(object);
1205 else if (object != first_object) {
1206 vm_object_paging_end(object);
1207 VM_PAGE_FREE(m);
1208 } else {
1209 first_m = m;
1210 m->absent = FALSE;
1211 m->busy = TRUE;
1212
1213 vm_page_lockspin_queues();
1214
1215 assert(!m->pageout_queue);
1216 VM_PAGE_QUEUES_REMOVE(m);
1217
1218 vm_page_unlock_queues();
1219 }
1220 XPR(XPR_VM_FAULT,
1221 "vm_f_page: unavail obj 0x%X, off 0x%X, next_obj 0x%X, newoff 0x%X\n",
1222 object, offset,
1223 next_object,
1224 offset+object->vo_shadow_offset,0);
1225
1226 offset += object->vo_shadow_offset;
1227 fault_info->lo_offset += object->vo_shadow_offset;
1228 fault_info->hi_offset += object->vo_shadow_offset;
1229 access_required = VM_PROT_READ;
1230
1231 vm_object_lock(next_object);
1232 vm_object_unlock(object);
1233 object = next_object;
1234 vm_object_paging_begin(object);
1235
1236 /*
1237 * reset to default type of fault
1238 */
1239 my_fault = DBG_CACHE_HIT_FAULT;
1240
1241 continue;
1242 }
1243 }
1244 if ((m->cleaning)
1245 && ((object != first_object) || (object->copy != VM_OBJECT_NULL))
1246 && (fault_type & VM_PROT_WRITE)) {
1247 /*
1248 * This is a copy-on-write fault that will
1249 * cause us to revoke access to this page, but
1250 * this page is in the process of being cleaned
1251 * in a clustered pageout. We must wait until
1252 * the cleaning operation completes before
1253 * revoking access to the original page,
1254 * otherwise we might attempt to remove a
1255 * wired mapping.
1256 */
1257 #if TRACEFAULTPAGE
1258 dbgTrace(0xBEEF0009, (unsigned int) m, (unsigned int) offset); /* (TEST/DEBUG) */
1259 #endif
1260 XPR(XPR_VM_FAULT,
1261 "vm_f_page: cleaning obj 0x%X, offset 0x%X, page 0x%X\n",
1262 object, offset,
1263 m, 0, 0);
1264 /*
1265 * take an extra ref so that object won't die
1266 */
1267 vm_object_reference_locked(object);
1268
1269 vm_fault_cleanup(object, first_m);
1270
1271 counter(c_vm_fault_page_block_backoff_kernel++);
1272 vm_object_lock(object);
1273 assert(object->ref_count > 0);
1274
1275 m = vm_page_lookup(object, offset);
1276
1277 if (m != VM_PAGE_NULL && m->cleaning) {
1278 PAGE_ASSERT_WAIT(m, interruptible);
1279
1280 vm_object_unlock(object);
1281 wait_result = thread_block(THREAD_CONTINUE_NULL);
1282 vm_object_deallocate(object);
1283
1284 goto backoff;
1285 } else {
1286 vm_object_unlock(object);
1287
1288 vm_object_deallocate(object);
1289 thread_interrupt_level(interruptible_state);
1290
1291 return (VM_FAULT_RETRY);
1292 }
1293 }
1294 if (type_of_fault == NULL && m->speculative &&
1295 !(fault_info != NULL && fault_info->stealth)) {
1296 /*
1297 * If we were passed a non-NULL pointer for
1298 * "type_of_fault", than we came from
1299 * vm_fault... we'll let it deal with
1300 * this condition, since it
1301 * needs to see m->speculative to correctly
1302 * account the pageins, otherwise...
1303 * take it off the speculative queue, we'll
1304 * let the caller of vm_fault_page deal
1305 * with getting it onto the correct queue
1306 *
1307 * If the caller specified in fault_info that
1308 * it wants a "stealth" fault, we also leave
1309 * the page in the speculative queue.
1310 */
1311 vm_page_lockspin_queues();
1312 if (m->speculative)
1313 VM_PAGE_QUEUES_REMOVE(m);
1314 vm_page_unlock_queues();
1315 }
1316
1317 if (m->encrypted) {
1318 /*
1319 * ENCRYPTED SWAP:
1320 * the user needs access to a page that we
1321 * encrypted before paging it out.
1322 * Decrypt the page now.
1323 * Keep it busy to prevent anyone from
1324 * accessing it during the decryption.
1325 */
1326 m->busy = TRUE;
1327 vm_page_decrypt(m, 0);
1328 assert(object == m->object);
1329 assert(m->busy);
1330 PAGE_WAKEUP_DONE(m);
1331
1332 /*
1333 * Retry from the top, in case
1334 * something changed while we were
1335 * decrypting.
1336 */
1337 continue;
1338 }
1339 ASSERT_PAGE_DECRYPTED(m);
1340
1341 if (m->object->code_signed) {
1342 /*
1343 * CODE SIGNING:
1344 * We just paged in a page from a signed
1345 * memory object but we don't need to
1346 * validate it now. We'll validate it if
1347 * when it gets mapped into a user address
1348 * space for the first time or when the page
1349 * gets copied to another object as a result
1350 * of a copy-on-write.
1351 */
1352 }
1353
1354 /*
1355 * We mark the page busy and leave it on
1356 * the pageout queues. If the pageout
1357 * deamon comes across it, then it will
1358 * remove the page from the queue, but not the object
1359 */
1360 #if TRACEFAULTPAGE
1361 dbgTrace(0xBEEF000B, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */
1362 #endif
1363 XPR(XPR_VM_FAULT,
1364 "vm_f_page: found page obj 0x%X, offset 0x%X, page 0x%X\n",
1365 object, offset, m, 0, 0);
1366 assert(!m->busy);
1367 assert(!m->absent);
1368
1369 m->busy = TRUE;
1370 break;
1371 }
1372
1373
1374 /*
1375 * we get here when there is no page present in the object at
1376 * the offset we're interested in... we'll allocate a page
1377 * at this point if the pager associated with
1378 * this object can provide the data or we're the top object...
1379 * object is locked; m == NULL
1380 */
1381 if (must_be_resident) {
1382 if (fault_type == VM_PROT_NONE &&
1383 object == kernel_object) {
1384 /*
1385 * We've been called from vm_fault_unwire()
1386 * while removing a map entry that was allocated
1387 * with KMA_KOBJECT and KMA_VAONLY. This page
1388 * is not present and there's nothing more to
1389 * do here (nothing to unwire).
1390 */
1391 vm_fault_cleanup(object, first_m);
1392 thread_interrupt_level(interruptible_state);
1393
1394 return VM_FAULT_MEMORY_ERROR;
1395 }
1396
1397 goto dont_look_for_page;
1398 }
1399
1400 #if !MACH_PAGEMAP
1401 data_supply = FALSE;
1402 #endif /* !MACH_PAGEMAP */
1403
1404 look_for_page = (object->pager_created && (MUST_ASK_PAGER(object, offset, external_state) == TRUE) && !data_supply);
1405
1406 #if TRACEFAULTPAGE
1407 dbgTrace(0xBEEF000C, (unsigned int) look_for_page, (unsigned int) object); /* (TEST/DEBUG) */
1408 #endif
1409 if (!look_for_page && object == first_object && !object->phys_contiguous) {
1410 /*
1411 * Allocate a new page for this object/offset pair as a placeholder
1412 */
1413 m = vm_page_grab();
1414 #if TRACEFAULTPAGE
1415 dbgTrace(0xBEEF000D, (unsigned int) m, (unsigned int) object); /* (TEST/DEBUG) */
1416 #endif
1417 if (m == VM_PAGE_NULL) {
1418
1419 vm_fault_cleanup(object, first_m);
1420 thread_interrupt_level(interruptible_state);
1421
1422 return (VM_FAULT_MEMORY_SHORTAGE);
1423 }
1424
1425 if (fault_info && fault_info->batch_pmap_op == TRUE) {
1426 vm_page_insert_internal(m, object, offset, FALSE, TRUE, TRUE);
1427 } else {
1428 vm_page_insert(m, object, offset);
1429 }
1430 }
1431 if (look_for_page) {
1432 kern_return_t rc;
1433 int my_fault_type;
1434
1435 /*
1436 * If the memory manager is not ready, we
1437 * cannot make requests.
1438 */
1439 if (!object->pager_ready) {
1440 #if TRACEFAULTPAGE
1441 dbgTrace(0xBEEF000E, (unsigned int) 0, (unsigned int) 0); /* (TEST/DEBUG) */
1442 #endif
1443 if (m != VM_PAGE_NULL)
1444 VM_PAGE_FREE(m);
1445
1446 XPR(XPR_VM_FAULT,
1447 "vm_f_page: ready wait obj 0x%X, offset 0x%X\n",
1448 object, offset, 0, 0, 0);
1449
1450 /*
1451 * take an extra ref so object won't die
1452 */
1453 vm_object_reference_locked(object);
1454 vm_fault_cleanup(object, first_m);
1455 counter(c_vm_fault_page_block_backoff_kernel++);
1456
1457 vm_object_lock(object);
1458 assert(object->ref_count > 0);
1459
1460 if (!object->pager_ready) {
1461 wait_result = vm_object_assert_wait(object, VM_OBJECT_EVENT_PAGER_READY, interruptible);
1462
1463 vm_object_unlock(object);
1464 if (wait_result == THREAD_WAITING)
1465 wait_result = thread_block(THREAD_CONTINUE_NULL);
1466 vm_object_deallocate(object);
1467
1468 goto backoff;
1469 } else {
1470 vm_object_unlock(object);
1471 vm_object_deallocate(object);
1472 thread_interrupt_level(interruptible_state);
1473
1474 return (VM_FAULT_RETRY);
1475 }
1476 }
1477 if (!object->internal && !object->phys_contiguous && object->paging_in_progress > vm_object_pagein_throttle) {
1478 /*
1479 * If there are too many outstanding page
1480 * requests pending on this external object, we
1481 * wait for them to be resolved now.
1482 */
1483 #if TRACEFAULTPAGE
1484 dbgTrace(0xBEEF0010, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */
1485 #endif
1486 if (m != VM_PAGE_NULL)
1487 VM_PAGE_FREE(m);
1488 /*
1489 * take an extra ref so object won't die
1490 */
1491 vm_object_reference_locked(object);
1492
1493 vm_fault_cleanup(object, first_m);
1494
1495 counter(c_vm_fault_page_block_backoff_kernel++);
1496
1497 vm_object_lock(object);
1498 assert(object->ref_count > 0);
1499
1500 if (object->paging_in_progress >= vm_object_pagein_throttle) {
1501 vm_object_assert_wait(object, VM_OBJECT_EVENT_PAGING_ONLY_IN_PROGRESS, interruptible);
1502
1503 vm_object_unlock(object);
1504 wait_result = thread_block(THREAD_CONTINUE_NULL);
1505 vm_object_deallocate(object);
1506
1507 goto backoff;
1508 } else {
1509 vm_object_unlock(object);
1510 vm_object_deallocate(object);
1511 thread_interrupt_level(interruptible_state);
1512
1513 return (VM_FAULT_RETRY);
1514 }
1515 }
1516 if ((COMPRESSED_PAGER_IS_ACTIVE || DEFAULT_FREEZER_COMPRESSED_PAGER_IS_ACTIVE) && object->internal) {
1517
1518 if (m == VM_PAGE_NULL) {
1519 /*
1520 * Allocate a new page for this object/offset pair as a placeholder
1521 */
1522 m = vm_page_grab();
1523 #if TRACEFAULTPAGE
1524 dbgTrace(0xBEEF000D, (unsigned int) m, (unsigned int) object); /* (TEST/DEBUG) */
1525 #endif
1526 if (m == VM_PAGE_NULL) {
1527
1528 vm_fault_cleanup(object, first_m);
1529 thread_interrupt_level(interruptible_state);
1530
1531 return (VM_FAULT_MEMORY_SHORTAGE);
1532 }
1533
1534 m->absent = TRUE;
1535 if (fault_info && fault_info->batch_pmap_op == TRUE) {
1536 vm_page_insert_internal(m, object, offset, FALSE, TRUE, TRUE);
1537 } else {
1538 vm_page_insert(m, object, offset);
1539 }
1540 }
1541 assert(m->busy);
1542
1543 m->absent = TRUE;
1544 pager = object->pager;
1545
1546 vm_object_unlock(object);
1547
1548 rc = vm_compressor_pager_get(pager, offset + object->paging_offset, m->phys_page, &my_fault_type, 0);
1549
1550 vm_object_lock(object);
1551
1552 switch (rc) {
1553 case KERN_SUCCESS:
1554 m->absent = FALSE;
1555 m->dirty = TRUE;
1556 if ((m->object->wimg_bits &
1557 VM_WIMG_MASK) !=
1558 VM_WIMG_USE_DEFAULT) {
1559 /*
1560 * If the page is not cacheable,
1561 * we can't let its contents
1562 * linger in the data cache
1563 * after the decompression.
1564 */
1565 pmap_sync_page_attributes_phys(
1566 m->phys_page);
1567 } else
1568 m->written_by_kernel = TRUE;
1569 break;
1570 case KERN_MEMORY_FAILURE:
1571 m->unusual = TRUE;
1572 m->error = TRUE;
1573 m->absent = FALSE;
1574 break;
1575 case KERN_MEMORY_ERROR:
1576 assert(m->absent);
1577 break;
1578 default:
1579 panic("?");
1580 }
1581 PAGE_WAKEUP_DONE(m);
1582
1583 rc = KERN_SUCCESS;
1584 goto data_requested;
1585 }
1586 my_fault_type = DBG_PAGEIN_FAULT;
1587
1588 if (m != VM_PAGE_NULL) {
1589 VM_PAGE_FREE(m);
1590 m = VM_PAGE_NULL;
1591 }
1592
1593 #if TRACEFAULTPAGE
1594 dbgTrace(0xBEEF0012, (unsigned int) object, (unsigned int) 0); /* (TEST/DEBUG) */
1595 #endif
1596
1597 /*
1598 * It's possible someone called vm_object_destroy while we weren't
1599 * holding the object lock. If that has happened, then bail out
1600 * here.
1601 */
1602
1603 pager = object->pager;
1604
1605 if (pager == MEMORY_OBJECT_NULL) {
1606 vm_fault_cleanup(object, first_m);
1607 thread_interrupt_level(interruptible_state);
1608 return VM_FAULT_MEMORY_ERROR;
1609 }
1610
1611 /*
1612 * We have an absent page in place for the faulting offset,
1613 * so we can release the object lock.
1614 */
1615
1616 vm_object_unlock(object);
1617
1618 /*
1619 * If this object uses a copy_call strategy,
1620 * and we are interested in a copy of this object
1621 * (having gotten here only by following a
1622 * shadow chain), then tell the memory manager
1623 * via a flag added to the desired_access
1624 * parameter, so that it can detect a race
1625 * between our walking down the shadow chain
1626 * and its pushing pages up into a copy of
1627 * the object that it manages.
1628 */
1629 if (object->copy_strategy == MEMORY_OBJECT_COPY_CALL && object != first_object)
1630 wants_copy_flag = VM_PROT_WANTS_COPY;
1631 else
1632 wants_copy_flag = VM_PROT_NONE;
1633
1634 XPR(XPR_VM_FAULT,
1635 "vm_f_page: data_req obj 0x%X, offset 0x%X, page 0x%X, acc %d\n",
1636 object, offset, m,
1637 access_required | wants_copy_flag, 0);
1638
1639 if (object->copy == first_object) {
1640 /*
1641 * if we issue the memory_object_data_request in
1642 * this state, we are subject to a deadlock with
1643 * the underlying filesystem if it is trying to
1644 * shrink the file resulting in a push of pages
1645 * into the copy object... that push will stall
1646 * on the placeholder page, and if the pushing thread
1647 * is holding a lock that is required on the pagein
1648 * path (such as a truncate lock), we'll deadlock...
1649 * to avoid this potential deadlock, we throw away
1650 * our placeholder page before calling memory_object_data_request
1651 * and force this thread to retry the vm_fault_page after
1652 * we have issued the I/O. the second time through this path
1653 * we will find the page already in the cache (presumably still
1654 * busy waiting for the I/O to complete) and then complete
1655 * the fault w/o having to go through memory_object_data_request again
1656 */
1657 assert(first_m != VM_PAGE_NULL);
1658 assert(first_m->object == first_object);
1659
1660 vm_object_lock(first_object);
1661 VM_PAGE_FREE(first_m);
1662 vm_object_paging_end(first_object);
1663 vm_object_unlock(first_object);
1664
1665 first_m = VM_PAGE_NULL;
1666 force_fault_retry = TRUE;
1667
1668 vm_fault_page_forced_retry++;
1669 }
1670
1671 if (data_already_requested == TRUE) {
1672 orig_behavior = fault_info->behavior;
1673 orig_cluster_size = fault_info->cluster_size;
1674
1675 fault_info->behavior = VM_BEHAVIOR_RANDOM;
1676 fault_info->cluster_size = PAGE_SIZE;
1677 }
1678 /*
1679 * Call the memory manager to retrieve the data.
1680 */
1681 rc = memory_object_data_request(
1682 pager,
1683 offset + object->paging_offset,
1684 PAGE_SIZE,
1685 access_required | wants_copy_flag,
1686 (memory_object_fault_info_t)fault_info);
1687
1688 if (data_already_requested == TRUE) {
1689 fault_info->behavior = orig_behavior;
1690 fault_info->cluster_size = orig_cluster_size;
1691 } else
1692 data_already_requested = TRUE;
1693
1694 #if TRACEFAULTPAGE
1695 dbgTrace(0xBEEF0013, (unsigned int) object, (unsigned int) rc); /* (TEST/DEBUG) */
1696 #endif
1697 vm_object_lock(object);
1698
1699 data_requested:
1700 if (rc != KERN_SUCCESS) {
1701
1702 vm_fault_cleanup(object, first_m);
1703 thread_interrupt_level(interruptible_state);
1704
1705 return ((rc == MACH_SEND_INTERRUPTED) ?
1706 VM_FAULT_INTERRUPTED :
1707 VM_FAULT_MEMORY_ERROR);
1708 } else {
1709 clock_sec_t tv_sec;
1710 clock_usec_t tv_usec;
1711
1712 if (my_fault_type == DBG_PAGEIN_FAULT) {
1713 clock_get_system_microtime(&tv_sec, &tv_usec);
1714 current_thread()->t_page_creation_time = tv_sec;
1715 current_thread()->t_page_creation_count = 0;
1716 }
1717 }
1718 if ((interruptible != THREAD_UNINT) && (current_thread()->sched_flags & TH_SFLAG_ABORT)) {
1719
1720 vm_fault_cleanup(object, first_m);
1721 thread_interrupt_level(interruptible_state);
1722
1723 return (VM_FAULT_INTERRUPTED);
1724 }
1725 if (force_fault_retry == TRUE) {
1726
1727 vm_fault_cleanup(object, first_m);
1728 thread_interrupt_level(interruptible_state);
1729
1730 return (VM_FAULT_RETRY);
1731 }
1732 if (m == VM_PAGE_NULL && object->phys_contiguous) {
1733 /*
1734 * No page here means that the object we
1735 * initially looked up was "physically
1736 * contiguous" (i.e. device memory). However,
1737 * with Virtual VRAM, the object might not
1738 * be backed by that device memory anymore,
1739 * so we're done here only if the object is
1740 * still "phys_contiguous".
1741 * Otherwise, if the object is no longer
1742 * "phys_contiguous", we need to retry the
1743 * page fault against the object's new backing
1744 * store (different memory object).
1745 */
1746 phys_contig_object:
1747 goto done;
1748 }
1749 /*
1750 * potentially a pagein fault
1751 * if we make it through the state checks
1752 * above, than we'll count it as such
1753 */
1754 my_fault = my_fault_type;
1755
1756 /*
1757 * Retry with same object/offset, since new data may
1758 * be in a different page (i.e., m is meaningless at
1759 * this point).
1760 */
1761 continue;
1762 }
1763 dont_look_for_page:
1764 /*
1765 * We get here if the object has no pager, or an existence map
1766 * exists and indicates the page isn't present on the pager
1767 * or we're unwiring a page. If a pager exists, but there
1768 * is no existence map, then the m->absent case above handles
1769 * the ZF case when the pager can't provide the page
1770 */
1771 #if TRACEFAULTPAGE
1772 dbgTrace(0xBEEF0014, (unsigned int) object, (unsigned int) m); /* (TEST/DEBUG) */
1773 #endif
1774 if (object == first_object)
1775 first_m = m;
1776 else
1777 assert(m == VM_PAGE_NULL);
1778
1779 XPR(XPR_VM_FAULT,
1780 "vm_f_page: no pager obj 0x%X, offset 0x%X, page 0x%X, next_obj 0x%X\n",
1781 object, offset, m,
1782 object->shadow, 0);
1783
1784 next_object = object->shadow;
1785
1786 if (next_object == VM_OBJECT_NULL) {
1787 /*
1788 * we've hit the bottom of the shadown chain,
1789 * fill the page in the top object with zeros.
1790 */
1791 assert(!must_be_resident);
1792
1793 if (object != first_object) {
1794 vm_object_paging_end(object);
1795 vm_object_unlock(object);
1796
1797 object = first_object;
1798 offset = first_offset;
1799 vm_object_lock(object);
1800 }
1801 m = first_m;
1802 assert(m->object == object);
1803 first_m = VM_PAGE_NULL;
1804
1805 /*
1806 * check for any conditions that prevent
1807 * us from creating a new zero-fill page
1808 * vm_fault_check will do all of the
1809 * fault cleanup in the case of an error condition
1810 * including resetting the thread_interrupt_level
1811 */
1812 error = vm_fault_check(object, m, first_m, interruptible_state);
1813
1814 if (error != VM_FAULT_SUCCESS)
1815 return (error);
1816
1817 if (m == VM_PAGE_NULL) {
1818 m = vm_page_grab();
1819
1820 if (m == VM_PAGE_NULL) {
1821 vm_fault_cleanup(object, VM_PAGE_NULL);
1822 thread_interrupt_level(interruptible_state);
1823
1824 return (VM_FAULT_MEMORY_SHORTAGE);
1825 }
1826 vm_page_insert(m, object, offset);
1827 }
1828 my_fault = vm_fault_zero_page(m, no_zero_fill);
1829
1830 if (fault_info->mark_zf_absent && no_zero_fill == TRUE)
1831 m->absent = TRUE;
1832 break;
1833
1834 } else {
1835 /*
1836 * Move on to the next object. Lock the next
1837 * object before unlocking the current one.
1838 */
1839 if ((object != first_object) || must_be_resident)
1840 vm_object_paging_end(object);
1841
1842 offset += object->vo_shadow_offset;
1843 fault_info->lo_offset += object->vo_shadow_offset;
1844 fault_info->hi_offset += object->vo_shadow_offset;
1845 access_required = VM_PROT_READ;
1846
1847 vm_object_lock(next_object);
1848 vm_object_unlock(object);
1849
1850 object = next_object;
1851 vm_object_paging_begin(object);
1852 }
1853 }
1854
1855 /*
1856 * PAGE HAS BEEN FOUND.
1857 *
1858 * This page (m) is:
1859 * busy, so that we can play with it;
1860 * not absent, so that nobody else will fill it;
1861 * possibly eligible for pageout;
1862 *
1863 * The top-level page (first_m) is:
1864 * VM_PAGE_NULL if the page was found in the
1865 * top-level object;
1866 * busy, not absent, and ineligible for pageout.
1867 *
1868 * The current object (object) is locked. A paging
1869 * reference is held for the current and top-level
1870 * objects.
1871 */
1872
1873 #if TRACEFAULTPAGE
1874 dbgTrace(0xBEEF0015, (unsigned int) object, (unsigned int) m); /* (TEST/DEBUG) */
1875 #endif
1876 #if EXTRA_ASSERTIONS
1877 assert(m->busy && !m->absent);
1878 assert((first_m == VM_PAGE_NULL) ||
1879 (first_m->busy && !first_m->absent &&
1880 !first_m->active && !first_m->inactive));
1881 #endif /* EXTRA_ASSERTIONS */
1882
1883 /*
1884 * ENCRYPTED SWAP:
1885 * If we found a page, we must have decrypted it before we
1886 * get here...
1887 */
1888 ASSERT_PAGE_DECRYPTED(m);
1889
1890 XPR(XPR_VM_FAULT,
1891 "vm_f_page: FOUND obj 0x%X, off 0x%X, page 0x%X, 1_obj 0x%X, 1_m 0x%X\n",
1892 object, offset, m,
1893 first_object, first_m);
1894
1895 /*
1896 * If the page is being written, but isn't
1897 * already owned by the top-level object,
1898 * we have to copy it into a new page owned
1899 * by the top-level object.
1900 */
1901 if (object != first_object) {
1902
1903 #if TRACEFAULTPAGE
1904 dbgTrace(0xBEEF0016, (unsigned int) object, (unsigned int) fault_type); /* (TEST/DEBUG) */
1905 #endif
1906 if (fault_type & VM_PROT_WRITE) {
1907 vm_page_t copy_m;
1908
1909 /*
1910 * We only really need to copy if we
1911 * want to write it.
1912 */
1913 assert(!must_be_resident);
1914
1915 /*
1916 * are we protecting the system from
1917 * backing store exhaustion. If so
1918 * sleep unless we are privileged.
1919 */
1920 if (vm_backing_store_low) {
1921 if (!(current_task()->priv_flags & VM_BACKING_STORE_PRIV)) {
1922
1923 RELEASE_PAGE(m);
1924 vm_fault_cleanup(object, first_m);
1925
1926 assert_wait((event_t)&vm_backing_store_low, THREAD_UNINT);
1927
1928 thread_block(THREAD_CONTINUE_NULL);
1929 thread_interrupt_level(interruptible_state);
1930
1931 return (VM_FAULT_RETRY);
1932 }
1933 }
1934 /*
1935 * If we try to collapse first_object at this
1936 * point, we may deadlock when we try to get
1937 * the lock on an intermediate object (since we
1938 * have the bottom object locked). We can't
1939 * unlock the bottom object, because the page
1940 * we found may move (by collapse) if we do.
1941 *
1942 * Instead, we first copy the page. Then, when
1943 * we have no more use for the bottom object,
1944 * we unlock it and try to collapse.
1945 *
1946 * Note that we copy the page even if we didn't
1947 * need to... that's the breaks.
1948 */
1949
1950 /*
1951 * Allocate a page for the copy
1952 */
1953 copy_m = vm_page_grab();
1954
1955 if (copy_m == VM_PAGE_NULL) {
1956 RELEASE_PAGE(m);
1957
1958 vm_fault_cleanup(object, first_m);
1959 thread_interrupt_level(interruptible_state);
1960
1961 return (VM_FAULT_MEMORY_SHORTAGE);
1962 }
1963 XPR(XPR_VM_FAULT,
1964 "vm_f_page: page_copy obj 0x%X, offset 0x%X, m 0x%X, copy_m 0x%X\n",
1965 object, offset,
1966 m, copy_m, 0);
1967
1968 vm_page_copy(m, copy_m);
1969
1970 /*
1971 * If another map is truly sharing this
1972 * page with us, we have to flush all
1973 * uses of the original page, since we
1974 * can't distinguish those which want the
1975 * original from those which need the
1976 * new copy.
1977 *
1978 * XXXO If we know that only one map has
1979 * access to this page, then we could
1980 * avoid the pmap_disconnect() call.
1981 */
1982 if (m->pmapped)
1983 pmap_disconnect(m->phys_page);
1984
1985 assert(!m->cleaning);
1986
1987 /*
1988 * We no longer need the old page or object.
1989 */
1990 RELEASE_PAGE(m);
1991
1992 vm_object_paging_end(object);
1993 vm_object_unlock(object);
1994
1995 my_fault = DBG_COW_FAULT;
1996 VM_STAT_INCR(cow_faults);
1997 DTRACE_VM2(cow_fault, int, 1, (uint64_t *), NULL);
1998 current_task()->cow_faults++;
1999
2000 object = first_object;
2001 offset = first_offset;
2002
2003 vm_object_lock(object);
2004 /*
2005 * get rid of the place holder
2006 * page that we soldered in earlier
2007 */
2008 VM_PAGE_FREE(first_m);
2009 first_m = VM_PAGE_NULL;
2010
2011 /*
2012 * and replace it with the
2013 * page we just copied into
2014 */
2015 assert(copy_m->busy);
2016 vm_page_insert(copy_m, object, offset);
2017 SET_PAGE_DIRTY(copy_m, TRUE);
2018
2019 m = copy_m;
2020 /*
2021 * Now that we've gotten the copy out of the
2022 * way, let's try to collapse the top object.
2023 * But we have to play ugly games with
2024 * paging_in_progress to do that...
2025 */
2026 vm_object_paging_end(object);
2027 vm_object_collapse(object, offset, TRUE);
2028 vm_object_paging_begin(object);
2029
2030 } else
2031 *protection &= (~VM_PROT_WRITE);
2032 }
2033 /*
2034 * Now check whether the page needs to be pushed into the
2035 * copy object. The use of asymmetric copy on write for
2036 * shared temporary objects means that we may do two copies to
2037 * satisfy the fault; one above to get the page from a
2038 * shadowed object, and one here to push it into the copy.
2039 */
2040 try_failed_count = 0;
2041
2042 while ((copy_object = first_object->copy) != VM_OBJECT_NULL) {
2043 vm_object_offset_t copy_offset;
2044 vm_page_t copy_m;
2045
2046 #if TRACEFAULTPAGE
2047 dbgTrace(0xBEEF0017, (unsigned int) copy_object, (unsigned int) fault_type); /* (TEST/DEBUG) */
2048 #endif
2049 /*
2050 * If the page is being written, but hasn't been
2051 * copied to the copy-object, we have to copy it there.
2052 */
2053 if ((fault_type & VM_PROT_WRITE) == 0) {
2054 *protection &= ~VM_PROT_WRITE;
2055 break;
2056 }
2057
2058 /*
2059 * If the page was guaranteed to be resident,
2060 * we must have already performed the copy.
2061 */
2062 if (must_be_resident)
2063 break;
2064
2065 /*
2066 * Try to get the lock on the copy_object.
2067 */
2068 if (!vm_object_lock_try(copy_object)) {
2069
2070 vm_object_unlock(object);
2071 try_failed_count++;
2072
2073 mutex_pause(try_failed_count); /* wait a bit */
2074 vm_object_lock(object);
2075
2076 continue;
2077 }
2078 try_failed_count = 0;
2079
2080 /*
2081 * Make another reference to the copy-object,
2082 * to keep it from disappearing during the
2083 * copy.
2084 */
2085 vm_object_reference_locked(copy_object);
2086
2087 /*
2088 * Does the page exist in the copy?
2089 */
2090 copy_offset = first_offset - copy_object->vo_shadow_offset;
2091
2092 if (copy_object->vo_size <= copy_offset)
2093 /*
2094 * Copy object doesn't cover this page -- do nothing.
2095 */
2096 ;
2097 else if ((copy_m = vm_page_lookup(copy_object, copy_offset)) != VM_PAGE_NULL) {
2098 /*
2099 * Page currently exists in the copy object
2100 */
2101 if (copy_m->busy) {
2102 /*
2103 * If the page is being brought
2104 * in, wait for it and then retry.
2105 */
2106 RELEASE_PAGE(m);
2107
2108 /*
2109 * take an extra ref so object won't die
2110 */
2111 vm_object_reference_locked(copy_object);
2112 vm_object_unlock(copy_object);
2113 vm_fault_cleanup(object, first_m);
2114 counter(c_vm_fault_page_block_backoff_kernel++);
2115
2116 vm_object_lock(copy_object);
2117 assert(copy_object->ref_count > 0);
2118 VM_OBJ_RES_DECR(copy_object);
2119 vm_object_lock_assert_exclusive(copy_object);
2120 copy_object->ref_count--;
2121 assert(copy_object->ref_count > 0);
2122 copy_m = vm_page_lookup(copy_object, copy_offset);
2123 /*
2124 * ENCRYPTED SWAP:
2125 * it's OK if the "copy_m" page is encrypted,
2126 * because we're not moving it nor handling its
2127 * contents.
2128 */
2129 if (copy_m != VM_PAGE_NULL && copy_m->busy) {
2130 PAGE_ASSERT_WAIT(copy_m, interruptible);
2131
2132 vm_object_unlock(copy_object);
2133 wait_result = thread_block(THREAD_CONTINUE_NULL);
2134 vm_object_deallocate(copy_object);
2135
2136 goto backoff;
2137 } else {
2138 vm_object_unlock(copy_object);
2139 vm_object_deallocate(copy_object);
2140 thread_interrupt_level(interruptible_state);
2141
2142 return (VM_FAULT_RETRY);
2143 }
2144 }
2145 }
2146 else if (!PAGED_OUT(copy_object, copy_offset)) {
2147 /*
2148 * If PAGED_OUT is TRUE, then the page used to exist
2149 * in the copy-object, and has already been paged out.
2150 * We don't need to repeat this. If PAGED_OUT is
2151 * FALSE, then either we don't know (!pager_created,
2152 * for example) or it hasn't been paged out.
2153 * (VM_EXTERNAL_STATE_UNKNOWN||VM_EXTERNAL_STATE_ABSENT)
2154 * We must copy the page to the copy object.
2155 */
2156
2157 if (vm_backing_store_low) {
2158 /*
2159 * we are protecting the system from
2160 * backing store exhaustion. If so
2161 * sleep unless we are privileged.
2162 */
2163 if (!(current_task()->priv_flags & VM_BACKING_STORE_PRIV)) {
2164 assert_wait((event_t)&vm_backing_store_low, THREAD_UNINT);
2165
2166 RELEASE_PAGE(m);
2167 VM_OBJ_RES_DECR(copy_object);
2168 vm_object_lock_assert_exclusive(copy_object);
2169 copy_object->ref_count--;
2170 assert(copy_object->ref_count > 0);
2171
2172 vm_object_unlock(copy_object);
2173 vm_fault_cleanup(object, first_m);
2174 thread_block(THREAD_CONTINUE_NULL);
2175 thread_interrupt_level(interruptible_state);
2176
2177 return (VM_FAULT_RETRY);
2178 }
2179 }
2180 /*
2181 * Allocate a page for the copy
2182 */
2183 copy_m = vm_page_alloc(copy_object, copy_offset);
2184
2185 if (copy_m == VM_PAGE_NULL) {
2186 RELEASE_PAGE(m);
2187
2188 VM_OBJ_RES_DECR(copy_object);
2189 vm_object_lock_assert_exclusive(copy_object);
2190 copy_object->ref_count--;
2191 assert(copy_object->ref_count > 0);
2192
2193 vm_object_unlock(copy_object);
2194 vm_fault_cleanup(object, first_m);
2195 thread_interrupt_level(interruptible_state);
2196
2197 return (VM_FAULT_MEMORY_SHORTAGE);
2198 }
2199 /*
2200 * Must copy page into copy-object.
2201 */
2202 vm_page_copy(m, copy_m);
2203
2204 /*
2205 * If the old page was in use by any users
2206 * of the copy-object, it must be removed
2207 * from all pmaps. (We can't know which
2208 * pmaps use it.)
2209 */
2210 if (m->pmapped)
2211 pmap_disconnect(m->phys_page);
2212
2213 /*
2214 * If there's a pager, then immediately
2215 * page out this page, using the "initialize"
2216 * option. Else, we use the copy.
2217 */
2218 if ((!copy_object->pager_created)
2219 #if MACH_PAGEMAP
2220 || vm_external_state_get(copy_object->existence_map, copy_offset) == VM_EXTERNAL_STATE_ABSENT
2221 #endif
2222 || VM_COMPRESSOR_PAGER_STATE_GET(copy_object, copy_offset) == VM_EXTERNAL_STATE_ABSENT
2223 ) {
2224
2225 vm_page_lockspin_queues();
2226 assert(!m->cleaning);
2227 vm_page_activate(copy_m);
2228 vm_page_unlock_queues();
2229
2230 SET_PAGE_DIRTY(copy_m, TRUE);
2231 PAGE_WAKEUP_DONE(copy_m);
2232
2233 } else if (copy_object->internal &&
2234 (DEFAULT_PAGER_IS_ACTIVE || DEFAULT_FREEZER_IS_ACTIVE)) {
2235 /*
2236 * For internal objects check with the pager to see
2237 * if the page already exists in the backing store.
2238 * If yes, then we can drop the copy page. If not,
2239 * then we'll activate it, mark it dirty and keep it
2240 * around.
2241 */
2242
2243 kern_return_t kr = KERN_SUCCESS;
2244
2245 memory_object_t copy_pager = copy_object->pager;
2246 assert(copy_pager != MEMORY_OBJECT_NULL);
2247 vm_object_paging_begin(copy_object);
2248
2249 vm_object_unlock(copy_object);
2250
2251 kr = memory_object_data_request(
2252 copy_pager,
2253 copy_offset + copy_object->paging_offset,
2254 0, /* Only query the pager. */
2255 VM_PROT_READ,
2256 NULL);
2257
2258 vm_object_lock(copy_object);
2259
2260 vm_object_paging_end(copy_object);
2261
2262 /*
2263 * Since we dropped the copy_object's lock,
2264 * check whether we'll have to deallocate
2265 * the hard way.
2266 */
2267 if ((copy_object->shadow != object) || (copy_object->ref_count == 1)) {
2268 vm_object_unlock(copy_object);
2269 vm_object_deallocate(copy_object);
2270 vm_object_lock(object);
2271
2272 continue;
2273 }
2274 if (kr == KERN_SUCCESS) {
2275 /*
2276 * The pager has the page. We don't want to overwrite
2277 * that page by sending this one out to the backing store.
2278 * So we drop the copy page.
2279 */
2280 VM_PAGE_FREE(copy_m);
2281
2282 } else {
2283 /*
2284 * The pager doesn't have the page. We'll keep this one
2285 * around in the copy object. It might get sent out to
2286 * the backing store under memory pressure.
2287 */
2288 vm_page_lockspin_queues();
2289 assert(!m->cleaning);
2290 vm_page_activate(copy_m);
2291 vm_page_unlock_queues();
2292
2293 SET_PAGE_DIRTY(copy_m, TRUE);
2294 PAGE_WAKEUP_DONE(copy_m);
2295 }
2296 } else {
2297
2298 assert(copy_m->busy == TRUE);
2299 assert(!m->cleaning);
2300
2301 /*
2302 * dirty is protected by the object lock
2303 */
2304 SET_PAGE_DIRTY(copy_m, TRUE);
2305
2306 /*
2307 * The page is already ready for pageout:
2308 * not on pageout queues and busy.
2309 * Unlock everything except the
2310 * copy_object itself.
2311 */
2312 vm_object_unlock(object);
2313
2314 /*
2315 * Write the page to the copy-object,
2316 * flushing it from the kernel.
2317 */
2318 vm_pageout_initialize_page(copy_m);
2319
2320 /*
2321 * Since the pageout may have
2322 * temporarily dropped the
2323 * copy_object's lock, we
2324 * check whether we'll have
2325 * to deallocate the hard way.
2326 */
2327 if ((copy_object->shadow != object) || (copy_object->ref_count == 1)) {
2328 vm_object_unlock(copy_object);
2329 vm_object_deallocate(copy_object);
2330 vm_object_lock(object);
2331
2332 continue;
2333 }
2334 /*
2335 * Pick back up the old object's
2336 * lock. [It is safe to do so,
2337 * since it must be deeper in the
2338 * object tree.]
2339 */
2340 vm_object_lock(object);
2341 }
2342
2343 /*
2344 * Because we're pushing a page upward
2345 * in the object tree, we must restart
2346 * any faults that are waiting here.
2347 * [Note that this is an expansion of
2348 * PAGE_WAKEUP that uses the THREAD_RESTART
2349 * wait result]. Can't turn off the page's
2350 * busy bit because we're not done with it.
2351 */
2352 if (m->wanted) {
2353 m->wanted = FALSE;
2354 thread_wakeup_with_result((event_t) m, THREAD_RESTART);
2355 }
2356 }
2357 /*
2358 * The reference count on copy_object must be
2359 * at least 2: one for our extra reference,
2360 * and at least one from the outside world
2361 * (we checked that when we last locked
2362 * copy_object).
2363 */
2364 vm_object_lock_assert_exclusive(copy_object);
2365 copy_object->ref_count--;
2366 assert(copy_object->ref_count > 0);
2367
2368 VM_OBJ_RES_DECR(copy_object);
2369 vm_object_unlock(copy_object);
2370
2371 break;
2372 }
2373
2374 done:
2375 *result_page = m;
2376 *top_page = first_m;
2377
2378 XPR(XPR_VM_FAULT,
2379 "vm_f_page: DONE obj 0x%X, offset 0x%X, m 0x%X, first_m 0x%X\n",
2380 object, offset, m, first_m, 0);
2381
2382 if (m != VM_PAGE_NULL) {
2383 retval = VM_FAULT_SUCCESS;
2384 if (my_fault == DBG_PAGEIN_FAULT) {
2385
2386 if (!m->object->internal || (DEFAULT_PAGER_IS_ACTIVE || DEFAULT_FREEZER_IS_ACTIVE))
2387 VM_STAT_INCR(pageins);
2388 DTRACE_VM2(pgin, int, 1, (uint64_t *), NULL);
2389 DTRACE_VM2(maj_fault, int, 1, (uint64_t *), NULL);
2390 current_task()->pageins++;
2391
2392 if (m->object->internal) {
2393 DTRACE_VM2(anonpgin, int, 1, (uint64_t *), NULL);
2394 my_fault = DBG_PAGEIND_FAULT;
2395 } else {
2396 DTRACE_VM2(fspgin, int, 1, (uint64_t *), NULL);
2397 my_fault = DBG_PAGEINV_FAULT;
2398 }
2399
2400 /*
2401 * evaluate access pattern and update state
2402 * vm_fault_deactivate_behind depends on the
2403 * state being up to date
2404 */
2405 vm_fault_is_sequential(object, offset, fault_info->behavior);
2406
2407 vm_fault_deactivate_behind(object, offset, fault_info->behavior);
2408 } else if (my_fault == DBG_COMPRESSOR_FAULT || my_fault == DBG_COMPRESSOR_SWAPIN_FAULT) {
2409
2410 VM_STAT_INCR(decompressions);
2411 }
2412 if (type_of_fault)
2413 *type_of_fault = my_fault;
2414 } else {
2415 retval = VM_FAULT_SUCCESS_NO_VM_PAGE;
2416 assert(first_m == VM_PAGE_NULL);
2417 assert(object == first_object);
2418 }
2419
2420 thread_interrupt_level(interruptible_state);
2421
2422 #if TRACEFAULTPAGE
2423 dbgTrace(0xBEEF001A, (unsigned int) VM_FAULT_SUCCESS, 0); /* (TEST/DEBUG) */
2424 #endif
2425 return retval;
2426
2427 backoff:
2428 thread_interrupt_level(interruptible_state);
2429
2430 if (wait_result == THREAD_INTERRUPTED)
2431 return (VM_FAULT_INTERRUPTED);
2432 return (VM_FAULT_RETRY);
2433
2434 #undef RELEASE_PAGE
2435 }
2436
2437
2438
2439 /*
2440 * CODE SIGNING:
2441 * When soft faulting a page, we have to validate the page if:
2442 * 1. the page is being mapped in user space
2443 * 2. the page hasn't already been found to be "tainted"
2444 * 3. the page belongs to a code-signed object
2445 * 4. the page has not been validated yet or has been mapped for write.
2446 */
2447 #define VM_FAULT_NEED_CS_VALIDATION(pmap, page) \
2448 ((pmap) != kernel_pmap /*1*/ && \
2449 !(page)->cs_tainted /*2*/ && \
2450 (page)->object->code_signed /*3*/ && \
2451 (!(page)->cs_validated || (page)->wpmapped /*4*/))
2452
2453
2454 /*
2455 * page queue lock must NOT be held
2456 * m->object must be locked
2457 *
2458 * NOTE: m->object could be locked "shared" only if we are called
2459 * from vm_fault() as part of a soft fault. If so, we must be
2460 * careful not to modify the VM object in any way that is not
2461 * legal under a shared lock...
2462 */
2463 extern int proc_selfpid(void);
2464 extern char *proc_name_address(void *p);
2465 unsigned long cs_enter_tainted_rejected = 0;
2466 unsigned long cs_enter_tainted_accepted = 0;
2467 kern_return_t
2468 vm_fault_enter(vm_page_t m,
2469 pmap_t pmap,
2470 vm_map_offset_t vaddr,
2471 vm_prot_t prot,
2472 vm_prot_t fault_type,
2473 boolean_t wired,
2474 boolean_t change_wiring,
2475 boolean_t no_cache,
2476 boolean_t cs_bypass,
2477 boolean_t *need_retry,
2478 int *type_of_fault)
2479 {
2480 kern_return_t kr, pe_result;
2481 boolean_t previously_pmapped = m->pmapped;
2482 boolean_t must_disconnect = 0;
2483 boolean_t map_is_switched, map_is_switch_protected;
2484 int cs_enforcement_enabled;
2485
2486 vm_object_lock_assert_held(m->object);
2487 #if DEBUG
2488 lck_mtx_assert(&vm_page_queue_lock, LCK_MTX_ASSERT_NOTOWNED);
2489 #endif /* DEBUG */
2490
2491 if (m->phys_page == vm_page_guard_addr) {
2492 assert(m->fictitious);
2493 return KERN_SUCCESS;
2494 }
2495
2496 if (*type_of_fault == DBG_ZERO_FILL_FAULT) {
2497
2498 vm_object_lock_assert_exclusive(m->object);
2499
2500 } else if ((fault_type & VM_PROT_WRITE) == 0) {
2501 /*
2502 * This is not a "write" fault, so we
2503 * might not have taken the object lock
2504 * exclusively and we might not be able
2505 * to update the "wpmapped" bit in
2506 * vm_fault_enter().
2507 * Let's just grant read access to
2508 * the page for now and we'll
2509 * soft-fault again if we need write
2510 * access later...
2511 */
2512 prot &= ~VM_PROT_WRITE;
2513 }
2514 if (m->pmapped == FALSE) {
2515
2516 if ((*type_of_fault == DBG_CACHE_HIT_FAULT) && m->clustered) {
2517 /*
2518 * found it in the cache, but this
2519 * is the first fault-in of the page (m->pmapped == FALSE)
2520 * so it must have come in as part of
2521 * a cluster... account 1 pagein against it
2522 */
2523 VM_STAT_INCR(pageins);
2524 DTRACE_VM2(pgin, int, 1, (uint64_t *), NULL);
2525
2526 if (m->object->internal) {
2527 DTRACE_VM2(anonpgin, int, 1, (uint64_t *), NULL);
2528 *type_of_fault = DBG_PAGEIND_FAULT;
2529 } else {
2530 DTRACE_VM2(fspgin, int, 1, (uint64_t *), NULL);
2531 *type_of_fault = DBG_PAGEINV_FAULT;
2532 }
2533
2534 current_task()->pageins++;
2535 }
2536 VM_PAGE_CONSUME_CLUSTERED(m);
2537
2538 }
2539
2540 if (*type_of_fault != DBG_COW_FAULT) {
2541 DTRACE_VM2(as_fault, int, 1, (uint64_t *), NULL);
2542
2543 if (pmap == kernel_pmap) {
2544 DTRACE_VM2(kernel_asflt, int, 1, (uint64_t *), NULL);
2545 }
2546 }
2547
2548 /* Validate code signature if necessary. */
2549 if (VM_FAULT_NEED_CS_VALIDATION(pmap, m)) {
2550 vm_object_lock_assert_exclusive(m->object);
2551
2552 if (m->cs_validated) {
2553 vm_cs_revalidates++;
2554 }
2555
2556 /* VM map is locked, so 1 ref will remain on VM object -
2557 * so no harm if vm_page_validate_cs drops the object lock */
2558 vm_page_validate_cs(m);
2559 }
2560
2561 #define page_immutable(m,prot) ((m)->cs_validated /*&& ((prot) & VM_PROT_EXECUTE)*/)
2562
2563 map_is_switched = ((pmap != vm_map_pmap(current_task()->map)) &&
2564 (pmap == vm_map_pmap(current_thread()->map)));
2565 map_is_switch_protected = current_thread()->map->switch_protect;
2566
2567 /* If the map is switched, and is switch-protected, we must protect
2568 * some pages from being write-faulted: immutable pages because by
2569 * definition they may not be written, and executable pages because that
2570 * would provide a way to inject unsigned code.
2571 * If the page is immutable, we can simply return. However, we can't
2572 * immediately determine whether a page is executable anywhere. But,
2573 * we can disconnect it everywhere and remove the executable protection
2574 * from the current map. We do that below right before we do the
2575 * PMAP_ENTER.
2576 */
2577 cs_enforcement_enabled = cs_enforcement(NULL);
2578
2579 if(cs_enforcement_enabled && map_is_switched &&
2580 map_is_switch_protected && page_immutable(m, prot) &&
2581 (prot & VM_PROT_WRITE))
2582 {
2583 return KERN_CODESIGN_ERROR;
2584 }
2585
2586 /* A page could be tainted, or pose a risk of being tainted later.
2587 * Check whether the receiving process wants it, and make it feel
2588 * the consequences (that hapens in cs_invalid_page()).
2589 * For CS Enforcement, two other conditions will
2590 * cause that page to be tainted as well:
2591 * - pmapping an unsigned page executable - this means unsigned code;
2592 * - writeable mapping of a validated page - the content of that page
2593 * can be changed without the kernel noticing, therefore unsigned
2594 * code can be created
2595 */
2596 if (m->cs_tainted ||
2597 ((cs_enforcement_enabled && !cs_bypass ) &&
2598 (/* The page is unsigned and wants to be executable */
2599 (!m->cs_validated && (prot & VM_PROT_EXECUTE)) ||
2600 /* The page should be immutable, but is in danger of being modified
2601 * This is the case where we want policy from the code directory -
2602 * is the page immutable or not? For now we have to assume that
2603 * code pages will be immutable, data pages not.
2604 * We'll assume a page is a code page if it has a code directory
2605 * and we fault for execution.
2606 * That is good enough since if we faulted the code page for
2607 * writing in another map before, it is wpmapped; if we fault
2608 * it for writing in this map later it will also be faulted for executing
2609 * at the same time; and if we fault for writing in another map
2610 * later, we will disconnect it from this pmap so we'll notice
2611 * the change.
2612 */
2613 (page_immutable(m, prot) && ((prot & VM_PROT_WRITE) || m->wpmapped))
2614 ))
2615 )
2616 {
2617 /* We will have a tainted page. Have to handle the special case
2618 * of a switched map now. If the map is not switched, standard
2619 * procedure applies - call cs_invalid_page().
2620 * If the map is switched, the real owner is invalid already.
2621 * There is no point in invalidating the switching process since
2622 * it will not be executing from the map. So we don't call
2623 * cs_invalid_page() in that case. */
2624 boolean_t reject_page;
2625 if(map_is_switched) {
2626 assert(pmap==vm_map_pmap(current_thread()->map));
2627 assert(!(prot & VM_PROT_WRITE) || (map_is_switch_protected == FALSE));
2628 reject_page = FALSE;
2629 } else {
2630 if (cs_debug > 5)
2631 printf("vm_fault: signed: %s validate: %s tainted: %s wpmapped: %s slid: %s prot: 0x%x\n",
2632 m->object->code_signed ? "yes" : "no",
2633 m->cs_validated ? "yes" : "no",
2634 m->cs_tainted ? "yes" : "no",
2635 m->wpmapped ? "yes" : "no",
2636 m->slid ? "yes" : "no",
2637 (int)prot);
2638 reject_page = cs_invalid_page((addr64_t) vaddr);
2639 }
2640
2641 if (reject_page) {
2642 /* reject the tainted page: abort the page fault */
2643 int pid;
2644 const char *procname;
2645 task_t task;
2646 vm_object_t file_object, shadow;
2647 vm_object_offset_t file_offset;
2648 char *pathname, *filename;
2649 vm_size_t pathname_len, filename_len;
2650 boolean_t truncated_path;
2651 #define __PATH_MAX 1024
2652 struct timespec mtime, cs_mtime;
2653
2654 kr = KERN_CODESIGN_ERROR;
2655 cs_enter_tainted_rejected++;
2656
2657 /* get process name and pid */
2658 procname = "?";
2659 task = current_task();
2660 pid = proc_selfpid();
2661 if (task->bsd_info != NULL)
2662 procname = proc_name_address(task->bsd_info);
2663
2664 /* get file's VM object */
2665 file_object = m->object;
2666 file_offset = m->offset;
2667 for (shadow = file_object->shadow;
2668 shadow != VM_OBJECT_NULL;
2669 shadow = file_object->shadow) {
2670 vm_object_lock_shared(shadow);
2671 if (file_object != m->object) {
2672 vm_object_unlock(file_object);
2673 }
2674 file_offset += file_object->vo_shadow_offset;
2675 file_object = shadow;
2676 }
2677
2678 mtime.tv_sec = 0;
2679 mtime.tv_nsec = 0;
2680 cs_mtime.tv_sec = 0;
2681 cs_mtime.tv_nsec = 0;
2682
2683 /* get file's pathname and/or filename */
2684 pathname = NULL;
2685 filename = NULL;
2686 pathname_len = 0;
2687 filename_len = 0;
2688 truncated_path = FALSE;
2689 if (file_object->pager == NULL) {
2690 /* no pager -> no file -> no pathname */
2691 pathname = (char *) "<nil>";
2692 } else {
2693 pathname = (char *)kalloc(__PATH_MAX * 2);
2694 if (pathname) {
2695 pathname_len = __PATH_MAX;
2696 filename = pathname + pathname_len;
2697 filename_len = __PATH_MAX;
2698 }
2699 vnode_pager_get_object_name(file_object->pager,
2700 pathname,
2701 pathname_len,
2702 filename,
2703 filename_len,
2704 &truncated_path);
2705 vnode_pager_get_object_mtime(file_object->pager,
2706 &mtime,
2707 &cs_mtime);
2708 }
2709 printf("CODE SIGNING: process %d[%s]: "
2710 "rejecting invalid page at address 0x%llx "
2711 "from offset 0x%llx in file \"%s%s%s\" "
2712 "(cs_mtime:%lu.%ld %s mtime:%lu.%ld) "
2713 "(signed:%d validated:%d tainted:%d "
2714 "wpmapped:%d slid:%d)\n",
2715 pid, procname, (addr64_t) vaddr,
2716 file_offset,
2717 pathname,
2718 (truncated_path ? "/.../" : ""),
2719 (truncated_path ? filename : ""),
2720 cs_mtime.tv_sec, cs_mtime.tv_nsec,
2721 ((cs_mtime.tv_sec == mtime.tv_sec &&
2722 cs_mtime.tv_nsec == mtime.tv_nsec)
2723 ? "=="
2724 : "!="),
2725 mtime.tv_sec, mtime.tv_nsec,
2726 m->object->code_signed,
2727 m->cs_validated,
2728 m->cs_tainted,
2729 m->wpmapped,
2730 m->slid);
2731 if (file_object != m->object) {
2732 vm_object_unlock(file_object);
2733 }
2734 if (pathname_len != 0) {
2735 kfree(pathname, __PATH_MAX * 2);
2736 pathname = NULL;
2737 filename = NULL;
2738 }
2739 } else {
2740 /* proceed with the tainted page */
2741 kr = KERN_SUCCESS;
2742 /* Page might have been tainted before or not; now it
2743 * definitively is. If the page wasn't tainted, we must
2744 * disconnect it from all pmaps later. */
2745 must_disconnect = !m->cs_tainted;
2746 m->cs_tainted = TRUE;
2747 cs_enter_tainted_accepted++;
2748 }
2749 if (kr != KERN_SUCCESS) {
2750 if (cs_debug) {
2751 printf("CODESIGNING: vm_fault_enter(0x%llx): "
2752 "page %p obj %p off 0x%llx *** INVALID PAGE ***\n",
2753 (long long)vaddr, m, m->object, m->offset);
2754 }
2755 #if !SECURE_KERNEL
2756 if (cs_enforcement_panic) {
2757 panic("CODESIGNING: panicking on invalid page\n");
2758 }
2759 #endif
2760 }
2761
2762 } else {
2763 /* proceed with the valid page */
2764 kr = KERN_SUCCESS;
2765 }
2766
2767 boolean_t page_queues_locked = FALSE;
2768 #define __VM_PAGE_LOCKSPIN_QUEUES_IF_NEEDED() \
2769 MACRO_BEGIN \
2770 if (! page_queues_locked) { \
2771 page_queues_locked = TRUE; \
2772 vm_page_lockspin_queues(); \
2773 } \
2774 MACRO_END
2775 #define __VM_PAGE_UNLOCK_QUEUES_IF_NEEDED() \
2776 MACRO_BEGIN \
2777 if (page_queues_locked) { \
2778 page_queues_locked = FALSE; \
2779 vm_page_unlock_queues(); \
2780 } \
2781 MACRO_END
2782
2783 /*
2784 * Hold queues lock to manipulate
2785 * the page queues. Change wiring
2786 * case is obvious.
2787 */
2788 assert(m->compressor || m->object != compressor_object);
2789 if (m->compressor) {
2790 /*
2791 * Compressor pages are neither wired
2792 * nor pageable and should never change.
2793 */
2794 assert(m->object == compressor_object);
2795 } else if (change_wiring) {
2796 __VM_PAGE_LOCKSPIN_QUEUES_IF_NEEDED();
2797
2798 if (wired) {
2799 if (kr == KERN_SUCCESS) {
2800 vm_page_wire(m);
2801 }
2802 } else {
2803 vm_page_unwire(m, TRUE);
2804 }
2805 /* we keep the page queues lock, if we need it later */
2806
2807 } else {
2808 if (kr != KERN_SUCCESS) {
2809 __VM_PAGE_LOCKSPIN_QUEUES_IF_NEEDED();
2810 vm_page_deactivate(m);
2811 /* we keep the page queues lock, if we need it later */
2812 } else if (((!m->active && !m->inactive) ||
2813 m->clean_queue ||
2814 no_cache) &&
2815 !VM_PAGE_WIRED(m) && !m->throttled) {
2816
2817 if (vm_page_local_q &&
2818 !no_cache &&
2819 (*type_of_fault == DBG_COW_FAULT ||
2820 *type_of_fault == DBG_ZERO_FILL_FAULT) ) {
2821 struct vpl *lq;
2822 uint32_t lid;
2823
2824 __VM_PAGE_UNLOCK_QUEUES_IF_NEEDED();
2825 vm_object_lock_assert_exclusive(m->object);
2826
2827 /*
2828 * we got a local queue to stuff this
2829 * new page on...
2830 * its safe to manipulate local and
2831 * local_id at this point since we're
2832 * behind an exclusive object lock and
2833 * the page is not on any global queue.
2834 *
2835 * we'll use the current cpu number to
2836 * select the queue note that we don't
2837 * need to disable preemption... we're
2838 * going to behind the local queue's
2839 * lock to do the real work
2840 */
2841 lid = cpu_number();
2842
2843 lq = &vm_page_local_q[lid].vpl_un.vpl;
2844
2845 VPL_LOCK(&lq->vpl_lock);
2846
2847 queue_enter(&lq->vpl_queue, m,
2848 vm_page_t, pageq);
2849 m->local = TRUE;
2850 m->local_id = lid;
2851 lq->vpl_count++;
2852
2853 if (m->object->internal)
2854 lq->vpl_internal_count++;
2855 else
2856 lq->vpl_external_count++;
2857
2858 VPL_UNLOCK(&lq->vpl_lock);
2859
2860 if (lq->vpl_count > vm_page_local_q_soft_limit)
2861 {
2862 /*
2863 * we're beyond the soft limit
2864 * for the local queue
2865 * vm_page_reactivate_local will
2866 * 'try' to take the global page
2867 * queue lock... if it can't
2868 * that's ok... we'll let the
2869 * queue continue to grow up
2870 * to the hard limit... at that
2871 * point we'll wait for the
2872 * lock... once we've got the
2873 * lock, we'll transfer all of
2874 * the pages from the local
2875 * queue to the global active
2876 * queue
2877 */
2878 vm_page_reactivate_local(lid, FALSE, FALSE);
2879 }
2880 } else {
2881
2882 __VM_PAGE_LOCKSPIN_QUEUES_IF_NEEDED();
2883
2884 /*
2885 * test again now that we hold the
2886 * page queue lock
2887 */
2888 if (!VM_PAGE_WIRED(m)) {
2889 if (m->clean_queue) {
2890 VM_PAGE_QUEUES_REMOVE(m);
2891
2892 vm_pageout_cleaned_reactivated++;
2893 vm_pageout_cleaned_fault_reactivated++;
2894 }
2895
2896 if ((!m->active &&
2897 !m->inactive) ||
2898 no_cache) {
2899 /*
2900 * If this is a no_cache mapping
2901 * and the page has never been
2902 * mapped before or was
2903 * previously a no_cache page,
2904 * then we want to leave pages
2905 * in the speculative state so
2906 * that they can be readily
2907 * recycled if free memory runs
2908 * low. Otherwise the page is
2909 * activated as normal.
2910 */
2911
2912 if (no_cache &&
2913 (!previously_pmapped ||
2914 m->no_cache)) {
2915 m->no_cache = TRUE;
2916
2917 if (!m->speculative)
2918 vm_page_speculate(m, FALSE);
2919
2920 } else if (!m->active &&
2921 !m->inactive) {
2922
2923 vm_page_activate(m);
2924 }
2925 }
2926 }
2927 /* we keep the page queues lock, if we need it later */
2928 }
2929 }
2930 }
2931
2932 if ((prot & VM_PROT_EXECUTE) &&
2933 ! m->xpmapped) {
2934
2935 __VM_PAGE_LOCKSPIN_QUEUES_IF_NEEDED();
2936
2937 /*
2938 * xpmapped is protected by the page queues lock
2939 * so it matters not that we might only hold the
2940 * object lock in the shared state
2941 */
2942
2943 if (! m->xpmapped) {
2944
2945 m->xpmapped = TRUE;
2946 __VM_PAGE_UNLOCK_QUEUES_IF_NEEDED();
2947
2948 if ((COMPRESSED_PAGER_IS_ACTIVE || DEFAULT_FREEZER_COMPRESSED_PAGER_IS_ACTIVE) &&
2949 m->object->internal &&
2950 m->object->pager != NULL) {
2951 /*
2952 * This page could have been
2953 * uncompressed by the
2954 * compressor pager and its
2955 * contents might be only in
2956 * the data cache.
2957 * Since it's being mapped for
2958 * "execute" for the fist time,
2959 * make sure the icache is in
2960 * sync.
2961 */
2962 pmap_sync_page_data_phys(m->phys_page);
2963 }
2964
2965 }
2966 }
2967 /* we're done with the page queues lock, if we ever took it */
2968 __VM_PAGE_UNLOCK_QUEUES_IF_NEEDED();
2969
2970
2971 /* If we have a KERN_SUCCESS from the previous checks, we either have
2972 * a good page, or a tainted page that has been accepted by the process.
2973 * In both cases the page will be entered into the pmap.
2974 * If the page is writeable, we need to disconnect it from other pmaps
2975 * now so those processes can take note.
2976 */
2977 if (kr == KERN_SUCCESS) {
2978 /*
2979 * NOTE: we may only hold the vm_object lock SHARED
2980 * at this point, but the update of pmapped is ok
2981 * since this is the ONLY bit updated behind the SHARED
2982 * lock... however, we need to figure out how to do an atomic
2983 * update on a bit field to make this less fragile... right
2984 * now I don't know how to coerce 'C' to give me the offset info
2985 * that's needed for an AtomicCompareAndSwap
2986 */
2987 m->pmapped = TRUE;
2988 if(vm_page_is_slideable(m)) {
2989 boolean_t was_busy = m->busy;
2990
2991 vm_object_lock_assert_exclusive(m->object);
2992
2993 m->busy = TRUE;
2994 kr = vm_page_slide(m, 0);
2995 assert(m->busy);
2996 if(!was_busy) {
2997 PAGE_WAKEUP_DONE(m);
2998 }
2999 if (kr != KERN_SUCCESS) {
3000 /*
3001 * This page has not been slid correctly,
3002 * do not do the pmap_enter() !
3003 * Let vm_fault_enter() return the error
3004 * so the caller can fail the fault.
3005 */
3006 goto after_the_pmap_enter;
3007 }
3008 }
3009
3010 if (fault_type & VM_PROT_WRITE) {
3011
3012 if (m->wpmapped == FALSE) {
3013 vm_object_lock_assert_exclusive(m->object);
3014
3015 m->wpmapped = TRUE;
3016 }
3017 if (must_disconnect) {
3018 /*
3019 * We can only get here
3020 * because of the CSE logic
3021 */
3022 assert(cs_enforcement_enabled);
3023 pmap_disconnect(m->phys_page);
3024 /*
3025 * If we are faulting for a write, we can clear
3026 * the execute bit - that will ensure the page is
3027 * checked again before being executable, which
3028 * protects against a map switch.
3029 * This only happens the first time the page
3030 * gets tainted, so we won't get stuck here
3031 * to make an already writeable page executable.
3032 */
3033 if (!cs_bypass){
3034 prot &= ~VM_PROT_EXECUTE;
3035 }
3036 }
3037 }
3038
3039 /* Prevent a deadlock by not
3040 * holding the object lock if we need to wait for a page in
3041 * pmap_enter() - <rdar://problem/7138958> */
3042 PMAP_ENTER_OPTIONS(pmap, vaddr, m, prot, fault_type, 0,
3043 wired, PMAP_OPTIONS_NOWAIT, pe_result);
3044
3045 if(pe_result == KERN_RESOURCE_SHORTAGE) {
3046
3047 if (need_retry) {
3048 /*
3049 * this will be non-null in the case where we hold the lock
3050 * on the top-object in this chain... we can't just drop
3051 * the lock on the object we're inserting the page into
3052 * and recall the PMAP_ENTER since we can still cause
3053 * a deadlock if one of the critical paths tries to
3054 * acquire the lock on the top-object and we're blocked
3055 * in PMAP_ENTER waiting for memory... our only recourse
3056 * is to deal with it at a higher level where we can
3057 * drop both locks.
3058 */
3059 *need_retry = TRUE;
3060 vm_pmap_enter_retried++;
3061 goto after_the_pmap_enter;
3062 }
3063 /* The nonblocking version of pmap_enter did not succeed.
3064 * and we don't need to drop other locks and retry
3065 * at the level above us, so
3066 * use the blocking version instead. Requires marking
3067 * the page busy and unlocking the object */
3068 boolean_t was_busy = m->busy;
3069
3070 vm_object_lock_assert_exclusive(m->object);
3071
3072 m->busy = TRUE;
3073 vm_object_unlock(m->object);
3074
3075 PMAP_ENTER(pmap, vaddr, m, prot, fault_type, 0, wired);
3076
3077 /* Take the object lock again. */
3078 vm_object_lock(m->object);
3079
3080 /* If the page was busy, someone else will wake it up.
3081 * Otherwise, we have to do it now. */
3082 assert(m->busy);
3083 if(!was_busy) {
3084 PAGE_WAKEUP_DONE(m);
3085 }
3086 vm_pmap_enter_blocked++;
3087 }
3088 }
3089
3090 after_the_pmap_enter:
3091 return kr;
3092 }
3093
3094
3095 /*
3096 * Routine: vm_fault
3097 * Purpose:
3098 * Handle page faults, including pseudo-faults
3099 * used to change the wiring status of pages.
3100 * Returns:
3101 * Explicit continuations have been removed.
3102 * Implementation:
3103 * vm_fault and vm_fault_page save mucho state
3104 * in the moral equivalent of a closure. The state
3105 * structure is allocated when first entering vm_fault
3106 * and deallocated when leaving vm_fault.
3107 */
3108
3109 extern int _map_enter_debug;
3110
3111 unsigned long vm_fault_collapse_total = 0;
3112 unsigned long vm_fault_collapse_skipped = 0;
3113
3114
3115 kern_return_t
3116 vm_fault(
3117 vm_map_t map,
3118 vm_map_offset_t vaddr,
3119 vm_prot_t fault_type,
3120 boolean_t change_wiring,
3121 int interruptible,
3122 pmap_t caller_pmap,
3123 vm_map_offset_t caller_pmap_addr)
3124 {
3125 vm_map_version_t version; /* Map version for verificiation */
3126 boolean_t wired; /* Should mapping be wired down? */
3127 vm_object_t object; /* Top-level object */
3128 vm_object_offset_t offset; /* Top-level offset */
3129 vm_prot_t prot; /* Protection for mapping */
3130 vm_object_t old_copy_object; /* Saved copy object */
3131 vm_page_t result_page; /* Result of vm_fault_page */
3132 vm_page_t top_page; /* Placeholder page */
3133 kern_return_t kr;
3134
3135 vm_page_t m; /* Fast access to result_page */
3136 kern_return_t error_code;
3137 vm_object_t cur_object;
3138 vm_object_offset_t cur_offset;
3139 vm_page_t cur_m;
3140 vm_object_t new_object;
3141 int type_of_fault;
3142 pmap_t pmap;
3143 boolean_t interruptible_state;
3144 vm_map_t real_map = map;
3145 vm_map_t original_map = map;
3146 vm_prot_t original_fault_type;
3147 struct vm_object_fault_info fault_info;
3148 boolean_t need_collapse = FALSE;
3149 boolean_t need_retry = FALSE;
3150 boolean_t *need_retry_ptr = NULL;
3151 int object_lock_type = 0;
3152 int cur_object_lock_type;
3153 vm_object_t top_object = VM_OBJECT_NULL;
3154 int throttle_delay;
3155
3156
3157 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
3158 (MACHDBG_CODE(DBG_MACH_VM, 2)) | DBG_FUNC_START,
3159 ((uint64_t)vaddr >> 32),
3160 vaddr,
3161 (map == kernel_map),
3162 0,
3163 0);
3164
3165 if (get_preemption_level() != 0) {
3166 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
3167 (MACHDBG_CODE(DBG_MACH_VM, 2)) | DBG_FUNC_END,
3168 ((uint64_t)vaddr >> 32),
3169 vaddr,
3170 KERN_FAILURE,
3171 0,
3172 0);
3173
3174 return (KERN_FAILURE);
3175 }
3176
3177 interruptible_state = thread_interrupt_level(interruptible);
3178
3179 VM_STAT_INCR(faults);
3180 current_task()->faults++;
3181 original_fault_type = fault_type;
3182
3183 if (fault_type & VM_PROT_WRITE)
3184 object_lock_type = OBJECT_LOCK_EXCLUSIVE;
3185 else
3186 object_lock_type = OBJECT_LOCK_SHARED;
3187
3188 cur_object_lock_type = OBJECT_LOCK_SHARED;
3189
3190 RetryFault:
3191 /*
3192 * assume we will hit a page in the cache
3193 * otherwise, explicitly override with
3194 * the real fault type once we determine it
3195 */
3196 type_of_fault = DBG_CACHE_HIT_FAULT;
3197
3198 /*
3199 * Find the backing store object and offset into
3200 * it to begin the search.
3201 */
3202 fault_type = original_fault_type;
3203 map = original_map;
3204 vm_map_lock_read(map);
3205
3206 kr = vm_map_lookup_locked(&map, vaddr, fault_type,
3207 object_lock_type, &version,
3208 &object, &offset, &prot, &wired,
3209 &fault_info,
3210 &real_map);
3211
3212 if (kr != KERN_SUCCESS) {
3213 vm_map_unlock_read(map);
3214 goto done;
3215 }
3216 pmap = real_map->pmap;
3217 fault_info.interruptible = interruptible;
3218 fault_info.stealth = FALSE;
3219 fault_info.io_sync = FALSE;
3220 fault_info.mark_zf_absent = FALSE;
3221 fault_info.batch_pmap_op = FALSE;
3222
3223 /*
3224 * If the page is wired, we must fault for the current protection
3225 * value, to avoid further faults.
3226 */
3227 if (wired) {
3228 fault_type = prot | VM_PROT_WRITE;
3229 /*
3230 * since we're treating this fault as a 'write'
3231 * we must hold the top object lock exclusively
3232 */
3233 if (object_lock_type == OBJECT_LOCK_SHARED) {
3234
3235 object_lock_type = OBJECT_LOCK_EXCLUSIVE;
3236
3237 if (vm_object_lock_upgrade(object) == FALSE) {
3238 /*
3239 * couldn't upgrade, so explictly
3240 * take the lock exclusively
3241 */
3242 vm_object_lock(object);
3243 }
3244 }
3245 }
3246
3247 #if VM_FAULT_CLASSIFY
3248 /*
3249 * Temporary data gathering code
3250 */
3251 vm_fault_classify(object, offset, fault_type);
3252 #endif
3253 /*
3254 * Fast fault code. The basic idea is to do as much as
3255 * possible while holding the map lock and object locks.
3256 * Busy pages are not used until the object lock has to
3257 * be dropped to do something (copy, zero fill, pmap enter).
3258 * Similarly, paging references aren't acquired until that
3259 * point, and object references aren't used.
3260 *
3261 * If we can figure out what to do
3262 * (zero fill, copy on write, pmap enter) while holding
3263 * the locks, then it gets done. Otherwise, we give up,
3264 * and use the original fault path (which doesn't hold
3265 * the map lock, and relies on busy pages).
3266 * The give up cases include:
3267 * - Have to talk to pager.
3268 * - Page is busy, absent or in error.
3269 * - Pager has locked out desired access.
3270 * - Fault needs to be restarted.
3271 * - Have to push page into copy object.
3272 *
3273 * The code is an infinite loop that moves one level down
3274 * the shadow chain each time. cur_object and cur_offset
3275 * refer to the current object being examined. object and offset
3276 * are the original object from the map. The loop is at the
3277 * top level if and only if object and cur_object are the same.
3278 *
3279 * Invariants: Map lock is held throughout. Lock is held on
3280 * original object and cur_object (if different) when
3281 * continuing or exiting loop.
3282 *
3283 */
3284
3285
3286 /*
3287 * If this page is to be inserted in a copy delay object
3288 * for writing, and if the object has a copy, then the
3289 * copy delay strategy is implemented in the slow fault page.
3290 */
3291 if (object->copy_strategy == MEMORY_OBJECT_COPY_DELAY &&
3292 object->copy != VM_OBJECT_NULL && (fault_type & VM_PROT_WRITE))
3293 goto handle_copy_delay;
3294
3295 cur_object = object;
3296 cur_offset = offset;
3297
3298 while (TRUE) {
3299 if (!cur_object->pager_created &&
3300 cur_object->phys_contiguous) /* superpage */
3301 break;
3302
3303 if (cur_object->blocked_access) {
3304 /*
3305 * Access to this VM object has been blocked.
3306 * Let the slow path handle it.
3307 */
3308 break;
3309 }
3310
3311 m = vm_page_lookup(cur_object, cur_offset);
3312
3313 if (m != VM_PAGE_NULL) {
3314 if (m->busy) {
3315 wait_result_t result;
3316
3317 /*
3318 * in order to do the PAGE_ASSERT_WAIT, we must
3319 * have object that 'm' belongs to locked exclusively
3320 */
3321 if (object != cur_object) {
3322
3323 if (cur_object_lock_type == OBJECT_LOCK_SHARED) {
3324
3325 cur_object_lock_type = OBJECT_LOCK_EXCLUSIVE;
3326
3327 if (vm_object_lock_upgrade(cur_object) == FALSE) {
3328 /*
3329 * couldn't upgrade so go do a full retry
3330 * immediately since we can no longer be
3331 * certain about cur_object (since we
3332 * don't hold a reference on it)...
3333 * first drop the top object lock
3334 */
3335 vm_object_unlock(object);
3336
3337 vm_map_unlock_read(map);
3338 if (real_map != map)
3339 vm_map_unlock(real_map);
3340
3341 goto RetryFault;
3342 }
3343 }
3344 } else if (object_lock_type == OBJECT_LOCK_SHARED) {
3345
3346 object_lock_type = OBJECT_LOCK_EXCLUSIVE;
3347
3348 if (vm_object_lock_upgrade(object) == FALSE) {
3349 /*
3350 * couldn't upgrade, so explictly take the lock
3351 * exclusively and go relookup the page since we
3352 * will have dropped the object lock and
3353 * a different thread could have inserted
3354 * a page at this offset
3355 * no need for a full retry since we're
3356 * at the top level of the object chain
3357 */
3358 vm_object_lock(object);
3359
3360 continue;
3361 }
3362 }
3363 if (m->pageout_queue && m->object->internal && COMPRESSED_PAGER_IS_ACTIVE) {
3364 /*
3365 * m->busy == TRUE and the object is locked exclusively
3366 * if m->pageout_queue == TRUE after we acquire the
3367 * queues lock, we are guaranteed that it is stable on
3368 * the pageout queue and therefore reclaimable
3369 *
3370 * NOTE: this is only true for the internal pageout queue
3371 * in the compressor world
3372 */
3373 vm_page_lock_queues();
3374
3375 if (m->pageout_queue) {
3376 vm_pageout_throttle_up(m);
3377 vm_page_unlock_queues();
3378
3379 PAGE_WAKEUP_DONE(m);
3380 goto reclaimed_from_pageout;
3381 }
3382 vm_page_unlock_queues();
3383 }
3384 if (object != cur_object)
3385 vm_object_unlock(object);
3386
3387 vm_map_unlock_read(map);
3388 if (real_map != map)
3389 vm_map_unlock(real_map);
3390
3391 result = PAGE_ASSERT_WAIT(m, interruptible);
3392
3393 vm_object_unlock(cur_object);
3394
3395 if (result == THREAD_WAITING) {
3396 result = thread_block(THREAD_CONTINUE_NULL);
3397
3398 counter(c_vm_fault_page_block_busy_kernel++);
3399 }
3400 if (result == THREAD_AWAKENED || result == THREAD_RESTART)
3401 goto RetryFault;
3402
3403 kr = KERN_ABORTED;
3404 goto done;
3405 }
3406 reclaimed_from_pageout:
3407 if (m->laundry) {
3408 if (object != cur_object) {
3409 if (cur_object_lock_type == OBJECT_LOCK_SHARED) {
3410 cur_object_lock_type = OBJECT_LOCK_EXCLUSIVE;
3411
3412 vm_object_unlock(object);
3413 vm_object_unlock(cur_object);
3414
3415 vm_map_unlock_read(map);
3416 if (real_map != map)
3417 vm_map_unlock(real_map);
3418
3419 goto RetryFault;
3420 }
3421
3422 } else if (object_lock_type == OBJECT_LOCK_SHARED) {
3423
3424 object_lock_type = OBJECT_LOCK_EXCLUSIVE;
3425
3426 if (vm_object_lock_upgrade(object) == FALSE) {
3427 /*
3428 * couldn't upgrade, so explictly take the lock
3429 * exclusively and go relookup the page since we
3430 * will have dropped the object lock and
3431 * a different thread could have inserted
3432 * a page at this offset
3433 * no need for a full retry since we're
3434 * at the top level of the object chain
3435 */
3436 vm_object_lock(object);
3437
3438 continue;
3439 }
3440 }
3441 m->pageout = FALSE;
3442
3443 vm_pageout_steal_laundry(m, FALSE);
3444 }
3445
3446 if (m->phys_page == vm_page_guard_addr) {
3447 /*
3448 * Guard page: let the slow path deal with it
3449 */
3450 break;
3451 }
3452 if (m->unusual && (m->error || m->restart || m->private || m->absent)) {
3453 /*
3454 * Unusual case... let the slow path deal with it
3455 */
3456 break;
3457 }
3458 if (VM_OBJECT_PURGEABLE_FAULT_ERROR(m->object)) {
3459 if (object != cur_object)
3460 vm_object_unlock(object);
3461 vm_map_unlock_read(map);
3462 if (real_map != map)
3463 vm_map_unlock(real_map);
3464 vm_object_unlock(cur_object);
3465 kr = KERN_MEMORY_ERROR;
3466 goto done;
3467 }
3468
3469 if (m->encrypted) {
3470 /*
3471 * ENCRYPTED SWAP:
3472 * We've soft-faulted (because it's not in the page
3473 * table) on an encrypted page.
3474 * Keep the page "busy" so that no one messes with
3475 * it during the decryption.
3476 * Release the extra locks we're holding, keep only
3477 * the page's VM object lock.
3478 *
3479 * in order to set 'busy' on 'm', we must
3480 * have object that 'm' belongs to locked exclusively
3481 */
3482 if (object != cur_object) {
3483 vm_object_unlock(object);
3484
3485 if (cur_object_lock_type == OBJECT_LOCK_SHARED) {
3486
3487 cur_object_lock_type = OBJECT_LOCK_EXCLUSIVE;
3488
3489 if (vm_object_lock_upgrade(cur_object) == FALSE) {
3490 /*
3491 * couldn't upgrade so go do a full retry
3492 * immediately since we've already dropped
3493 * the top object lock associated with this page
3494 * and the current one got dropped due to the
3495 * failed upgrade... the state is no longer valid
3496 */
3497 vm_map_unlock_read(map);
3498 if (real_map != map)
3499 vm_map_unlock(real_map);
3500
3501 goto RetryFault;
3502 }
3503 }
3504 } else if (object_lock_type == OBJECT_LOCK_SHARED) {
3505
3506 object_lock_type = OBJECT_LOCK_EXCLUSIVE;
3507
3508 if (vm_object_lock_upgrade(object) == FALSE) {
3509 /*
3510 * couldn't upgrade, so explictly take the lock
3511 * exclusively and go relookup the page since we
3512 * will have dropped the object lock and
3513 * a different thread could have inserted
3514 * a page at this offset
3515 * no need for a full retry since we're
3516 * at the top level of the object chain
3517 */
3518 vm_object_lock(object);
3519
3520 continue;
3521 }
3522 }
3523 m->busy = TRUE;
3524
3525 vm_map_unlock_read(map);
3526 if (real_map != map)
3527 vm_map_unlock(real_map);
3528
3529 vm_page_decrypt(m, 0);
3530
3531 assert(m->busy);
3532 PAGE_WAKEUP_DONE(m);
3533
3534 vm_object_unlock(cur_object);
3535 /*
3536 * Retry from the top, in case anything
3537 * changed while we were decrypting...
3538 */
3539 goto RetryFault;
3540 }
3541 ASSERT_PAGE_DECRYPTED(m);
3542
3543 if(vm_page_is_slideable(m)) {
3544 /*
3545 * We might need to slide this page, and so,
3546 * we want to hold the VM object exclusively.
3547 */
3548 if (object != cur_object) {
3549 if (cur_object_lock_type == OBJECT_LOCK_SHARED) {
3550 vm_object_unlock(object);
3551 vm_object_unlock(cur_object);
3552
3553 cur_object_lock_type = OBJECT_LOCK_EXCLUSIVE;
3554
3555 vm_map_unlock_read(map);
3556 if (real_map != map)
3557 vm_map_unlock(real_map);
3558
3559 goto RetryFault;
3560 }
3561 } else if (object_lock_type == OBJECT_LOCK_SHARED) {
3562
3563 vm_object_unlock(object);
3564 object_lock_type = OBJECT_LOCK_EXCLUSIVE;
3565 vm_map_unlock_read(map);
3566 goto RetryFault;
3567 }
3568 }
3569
3570 if (VM_FAULT_NEED_CS_VALIDATION(map->pmap, m)) {
3571 upgrade_for_validation:
3572 /*
3573 * We might need to validate this page
3574 * against its code signature, so we
3575 * want to hold the VM object exclusively.
3576 */
3577 if (object != cur_object) {
3578 if (cur_object_lock_type == OBJECT_LOCK_SHARED) {
3579 vm_object_unlock(object);
3580 vm_object_unlock(cur_object);
3581
3582 cur_object_lock_type = OBJECT_LOCK_EXCLUSIVE;
3583
3584 vm_map_unlock_read(map);
3585 if (real_map != map)
3586 vm_map_unlock(real_map);
3587
3588 goto RetryFault;
3589 }
3590
3591 } else if (object_lock_type == OBJECT_LOCK_SHARED) {
3592
3593 object_lock_type = OBJECT_LOCK_EXCLUSIVE;
3594
3595 if (vm_object_lock_upgrade(object) == FALSE) {
3596 /*
3597 * couldn't upgrade, so explictly take the lock
3598 * exclusively and go relookup the page since we
3599 * will have dropped the object lock and
3600 * a different thread could have inserted
3601 * a page at this offset
3602 * no need for a full retry since we're
3603 * at the top level of the object chain
3604 */
3605 vm_object_lock(object);
3606
3607 continue;
3608 }
3609 }
3610 }
3611 /*
3612 * Two cases of map in faults:
3613 * - At top level w/o copy object.
3614 * - Read fault anywhere.
3615 * --> must disallow write.
3616 */
3617
3618 if (object == cur_object && object->copy == VM_OBJECT_NULL) {
3619
3620 goto FastPmapEnter;
3621 }
3622
3623 if ((fault_type & VM_PROT_WRITE) == 0) {
3624
3625 if (object != cur_object) {
3626 /*
3627 * We still need to hold the top object
3628 * lock here to prevent a race between
3629 * a read fault (taking only "shared"
3630 * locks) and a write fault (taking
3631 * an "exclusive" lock on the top
3632 * object.
3633 * Otherwise, as soon as we release the
3634 * top lock, the write fault could
3635 * proceed and actually complete before
3636 * the read fault, and the copied page's
3637 * translation could then be overwritten
3638 * by the read fault's translation for
3639 * the original page.
3640 *
3641 * Let's just record what the top object
3642 * is and we'll release it later.
3643 */
3644 top_object = object;
3645
3646 /*
3647 * switch to the object that has the new page
3648 */
3649 object = cur_object;
3650 object_lock_type = cur_object_lock_type;
3651 }
3652 FastPmapEnter:
3653 /*
3654 * prepare for the pmap_enter...
3655 * object and map are both locked
3656 * m contains valid data
3657 * object == m->object
3658 * cur_object == NULL or it's been unlocked
3659 * no paging references on either object or cur_object
3660 */
3661 if (top_object != VM_OBJECT_NULL || object_lock_type != OBJECT_LOCK_EXCLUSIVE)
3662 need_retry_ptr = &need_retry;
3663 else
3664 need_retry_ptr = NULL;
3665
3666 if (caller_pmap) {
3667 kr = vm_fault_enter(m,
3668 caller_pmap,
3669 caller_pmap_addr,
3670 prot,
3671 fault_type,
3672 wired,
3673 change_wiring,
3674 fault_info.no_cache,
3675 fault_info.cs_bypass,
3676 need_retry_ptr,
3677 &type_of_fault);
3678 } else {
3679 kr = vm_fault_enter(m,
3680 pmap,
3681 vaddr,
3682 prot,
3683 fault_type,
3684 wired,
3685 change_wiring,
3686 fault_info.no_cache,
3687 fault_info.cs_bypass,
3688 need_retry_ptr,
3689 &type_of_fault);
3690 }
3691
3692 if (top_object != VM_OBJECT_NULL) {
3693 /*
3694 * It's safe to drop the top object
3695 * now that we've done our
3696 * vm_fault_enter(). Any other fault
3697 * in progress for that virtual
3698 * address will either find our page
3699 * and translation or put in a new page
3700 * and translation.
3701 */
3702 vm_object_unlock(top_object);
3703 top_object = VM_OBJECT_NULL;
3704 }
3705
3706 if (need_collapse == TRUE)
3707 vm_object_collapse(object, offset, TRUE);
3708
3709 if (need_retry == FALSE &&
3710 (type_of_fault == DBG_PAGEIND_FAULT || type_of_fault == DBG_PAGEINV_FAULT || type_of_fault == DBG_CACHE_HIT_FAULT)) {
3711 /*
3712 * evaluate access pattern and update state
3713 * vm_fault_deactivate_behind depends on the
3714 * state being up to date
3715 */
3716 vm_fault_is_sequential(object, cur_offset, fault_info.behavior);
3717
3718 vm_fault_deactivate_behind(object, cur_offset, fault_info.behavior);
3719 }
3720 /*
3721 * That's it, clean up and return.
3722 */
3723 if (m->busy)
3724 PAGE_WAKEUP_DONE(m);
3725
3726 vm_object_unlock(object);
3727
3728 vm_map_unlock_read(map);
3729 if (real_map != map)
3730 vm_map_unlock(real_map);
3731
3732 if (need_retry == TRUE) {
3733 /*
3734 * vm_fault_enter couldn't complete the PMAP_ENTER...
3735 * at this point we don't hold any locks so it's safe
3736 * to ask the pmap layer to expand the page table to
3737 * accommodate this mapping... once expanded, we'll
3738 * re-drive the fault which should result in vm_fault_enter
3739 * being able to successfully enter the mapping this time around
3740 */
3741 (void)pmap_enter_options(pmap, vaddr, 0, 0, 0, 0, 0, PMAP_OPTIONS_NOENTER, NULL);
3742
3743 need_retry = FALSE;
3744 goto RetryFault;
3745 }
3746 goto done;
3747 }
3748 /*
3749 * COPY ON WRITE FAULT
3750 */
3751 assert(object_lock_type == OBJECT_LOCK_EXCLUSIVE);
3752
3753 if ((throttle_delay = vm_page_throttled())) {
3754 /*
3755 * drop all of our locks...
3756 * wait until the free queue is
3757 * pumped back up and then
3758 * redrive the fault
3759 */
3760 if (object != cur_object)
3761 vm_object_unlock(cur_object);
3762 vm_object_unlock(object);
3763 vm_map_unlock_read(map);
3764 if (real_map != map)
3765 vm_map_unlock(real_map);
3766
3767 VM_DEBUG_EVENT(vmf_cowdelay, VMF_COWDELAY, DBG_FUNC_NONE, throttle_delay, 0, 0, 0);
3768
3769 delay(throttle_delay);
3770
3771 if (!current_thread_aborted() && vm_page_wait((change_wiring) ?
3772 THREAD_UNINT :
3773 THREAD_ABORTSAFE))
3774 goto RetryFault;
3775 kr = KERN_ABORTED;
3776 goto done;
3777 }
3778 /*
3779 * If objects match, then
3780 * object->copy must not be NULL (else control
3781 * would be in previous code block), and we
3782 * have a potential push into the copy object
3783 * with which we can't cope with here.
3784 */
3785 if (cur_object == object) {
3786 /*
3787 * must take the slow path to
3788 * deal with the copy push
3789 */
3790 break;
3791 }
3792
3793 /*
3794 * This is now a shadow based copy on write
3795 * fault -- it requires a copy up the shadow
3796 * chain.
3797 */
3798
3799 if ((cur_object_lock_type == OBJECT_LOCK_SHARED) &&
3800 VM_FAULT_NEED_CS_VALIDATION(NULL, m)) {
3801 goto upgrade_for_validation;
3802 }
3803
3804 /*
3805 * Allocate a page in the original top level
3806 * object. Give up if allocate fails. Also
3807 * need to remember current page, as it's the
3808 * source of the copy.
3809 *
3810 * at this point we hold locks on both
3811 * object and cur_object... no need to take
3812 * paging refs or mark pages BUSY since
3813 * we don't drop either object lock until
3814 * the page has been copied and inserted
3815 */
3816 cur_m = m;
3817 m = vm_page_grab();
3818
3819 if (m == VM_PAGE_NULL) {
3820 /*
3821 * no free page currently available...
3822 * must take the slow path
3823 */
3824 break;
3825 }
3826 /*
3827 * Now do the copy. Mark the source page busy...
3828 *
3829 * NOTE: This code holds the map lock across
3830 * the page copy.
3831 */
3832 vm_page_copy(cur_m, m);
3833 vm_page_insert(m, object, offset);
3834 SET_PAGE_DIRTY(m, FALSE);
3835
3836 /*
3837 * Now cope with the source page and object
3838 */
3839 if (object->ref_count > 1 && cur_m->pmapped)
3840 pmap_disconnect(cur_m->phys_page);
3841
3842 need_collapse = TRUE;
3843
3844 if (!cur_object->internal &&
3845 cur_object->copy_strategy == MEMORY_OBJECT_COPY_DELAY) {
3846 /*
3847 * The object from which we've just
3848 * copied a page is most probably backed
3849 * by a vnode. We don't want to waste too
3850 * much time trying to collapse the VM objects
3851 * and create a bottleneck when several tasks
3852 * map the same file.
3853 */
3854 if (cur_object->copy == object) {
3855 /*
3856 * Shared mapping or no COW yet.
3857 * We can never collapse a copy
3858 * object into its backing object.
3859 */
3860 need_collapse = FALSE;
3861 } else if (cur_object->copy == object->shadow &&
3862 object->shadow->resident_page_count == 0) {
3863 /*
3864 * Shared mapping after a COW occurred.
3865 */
3866 need_collapse = FALSE;
3867 }
3868 }
3869 vm_object_unlock(cur_object);
3870
3871 if (need_collapse == FALSE)
3872 vm_fault_collapse_skipped++;
3873 vm_fault_collapse_total++;
3874
3875 type_of_fault = DBG_COW_FAULT;
3876 VM_STAT_INCR(cow_faults);
3877 DTRACE_VM2(cow_fault, int, 1, (uint64_t *), NULL);
3878 current_task()->cow_faults++;
3879
3880 goto FastPmapEnter;
3881
3882 } else {
3883 /*
3884 * No page at cur_object, cur_offset... m == NULL
3885 */
3886 if (cur_object->pager_created) {
3887 int compressor_external_state = VM_EXTERNAL_STATE_UNKNOWN;
3888
3889 if (MUST_ASK_PAGER(cur_object, cur_offset, compressor_external_state) == TRUE) {
3890 int my_fault_type;
3891 int c_flags = C_DONT_BLOCK;
3892 boolean_t insert_cur_object = FALSE;
3893
3894 /*
3895 * May have to talk to a pager...
3896 * if so, take the slow path by
3897 * doing a 'break' from the while (TRUE) loop
3898 *
3899 * external_state will only be set to VM_EXTERNAL_STATE_EXISTS
3900 * if the compressor is active and the page exists there
3901 */
3902 if (compressor_external_state != VM_EXTERNAL_STATE_EXISTS)
3903 break;
3904
3905 if (map == kernel_map || real_map == kernel_map) {
3906 /*
3907 * can't call into the compressor with the kernel_map
3908 * lock held, since the compressor may try to operate
3909 * on the kernel map in order to return an empty c_segment
3910 */
3911 break;
3912 }
3913 if (object != cur_object) {
3914 if (fault_type & VM_PROT_WRITE)
3915 c_flags |= C_KEEP;
3916 else
3917 insert_cur_object = TRUE;
3918 }
3919 if (insert_cur_object == TRUE) {
3920
3921 if (cur_object_lock_type == OBJECT_LOCK_SHARED) {
3922
3923 cur_object_lock_type = OBJECT_LOCK_EXCLUSIVE;
3924
3925 if (vm_object_lock_upgrade(cur_object) == FALSE) {
3926 /*
3927 * couldn't upgrade so go do a full retry
3928 * immediately since we can no longer be
3929 * certain about cur_object (since we
3930 * don't hold a reference on it)...
3931 * first drop the top object lock
3932 */
3933 vm_object_unlock(object);
3934
3935 vm_map_unlock_read(map);
3936 if (real_map != map)
3937 vm_map_unlock(real_map);
3938
3939 goto RetryFault;
3940 }
3941 }
3942 } else if (object_lock_type == OBJECT_LOCK_SHARED) {
3943
3944 object_lock_type = OBJECT_LOCK_EXCLUSIVE;
3945
3946 if (object != cur_object) {
3947 /*
3948 * we can't go for the upgrade on the top
3949 * lock since the upgrade may block waiting
3950 * for readers to drain... since we hold
3951 * cur_object locked at this point, waiting
3952 * for the readers to drain would represent
3953 * a lock order inversion since the lock order
3954 * for objects is the reference order in the
3955 * shadown chain
3956 */
3957 vm_object_unlock(object);
3958 vm_object_unlock(cur_object);
3959
3960 vm_map_unlock_read(map);
3961 if (real_map != map)
3962 vm_map_unlock(real_map);
3963
3964 goto RetryFault;
3965 }
3966 if (vm_object_lock_upgrade(object) == FALSE) {
3967 /*
3968 * couldn't upgrade, so explictly take the lock
3969 * exclusively and go relookup the page since we
3970 * will have dropped the object lock and
3971 * a different thread could have inserted
3972 * a page at this offset
3973 * no need for a full retry since we're
3974 * at the top level of the object chain
3975 */
3976 vm_object_lock(object);
3977
3978 continue;
3979 }
3980 }
3981 m = vm_page_grab();
3982
3983 if (m == VM_PAGE_NULL) {
3984 /*
3985 * no free page currently available...
3986 * must take the slow path
3987 */
3988 break;
3989 }
3990 if (vm_compressor_pager_get(cur_object->pager, cur_offset + cur_object->paging_offset,
3991 m->phys_page, &my_fault_type, c_flags) != KERN_SUCCESS) {
3992 vm_page_release(m);
3993 break;
3994 }
3995 m->dirty = TRUE;
3996
3997 if (insert_cur_object)
3998 vm_page_insert(m, cur_object, cur_offset);
3999 else
4000 vm_page_insert(m, object, offset);
4001
4002 if ((m->object->wimg_bits & VM_WIMG_MASK) != VM_WIMG_USE_DEFAULT) {
4003 /*
4004 * If the page is not cacheable,
4005 * we can't let its contents
4006 * linger in the data cache
4007 * after the decompression.
4008 */
4009 pmap_sync_page_attributes_phys(m->phys_page);
4010 }
4011 type_of_fault = my_fault_type;
4012
4013 VM_STAT_INCR(decompressions);
4014
4015 if (cur_object != object) {
4016 if (insert_cur_object) {
4017 top_object = object;
4018 /*
4019 * switch to the object that has the new page
4020 */
4021 object = cur_object;
4022 object_lock_type = cur_object_lock_type;
4023 } else {
4024 vm_object_unlock(cur_object);
4025 cur_object = object;
4026 }
4027 }
4028 goto FastPmapEnter;
4029 }
4030 /*
4031 * existence map present and indicates
4032 * that the pager doesn't have this page
4033 */
4034 }
4035 if (cur_object->shadow == VM_OBJECT_NULL) {
4036 /*
4037 * Zero fill fault. Page gets
4038 * inserted into the original object.
4039 */
4040 if (cur_object->shadow_severed ||
4041 VM_OBJECT_PURGEABLE_FAULT_ERROR(cur_object))
4042 {
4043 if (object != cur_object)
4044 vm_object_unlock(cur_object);
4045 vm_object_unlock(object);
4046
4047 vm_map_unlock_read(map);
4048 if (real_map != map)
4049 vm_map_unlock(real_map);
4050
4051 kr = KERN_MEMORY_ERROR;
4052 goto done;
4053 }
4054 if ((throttle_delay = vm_page_throttled())) {
4055 /*
4056 * drop all of our locks...
4057 * wait until the free queue is
4058 * pumped back up and then
4059 * redrive the fault
4060 */
4061 if (object != cur_object)
4062 vm_object_unlock(cur_object);
4063 vm_object_unlock(object);
4064 vm_map_unlock_read(map);
4065 if (real_map != map)
4066 vm_map_unlock(real_map);
4067
4068 VM_DEBUG_EVENT(vmf_zfdelay, VMF_ZFDELAY, DBG_FUNC_NONE, throttle_delay, 0, 0, 0);
4069
4070 delay(throttle_delay);
4071
4072 if (!current_thread_aborted() && vm_page_wait((change_wiring) ?
4073 THREAD_UNINT :
4074 THREAD_ABORTSAFE))
4075 goto RetryFault;
4076 kr = KERN_ABORTED;
4077 goto done;
4078 }
4079 if (vm_backing_store_low) {
4080 /*
4081 * we are protecting the system from
4082 * backing store exhaustion...
4083 * must take the slow path if we're
4084 * not privileged
4085 */
4086 if (!(current_task()->priv_flags & VM_BACKING_STORE_PRIV))
4087 break;
4088 }
4089 if (cur_object != object) {
4090 vm_object_unlock(cur_object);
4091
4092 cur_object = object;
4093 }
4094 if (object_lock_type == OBJECT_LOCK_SHARED) {
4095
4096 object_lock_type = OBJECT_LOCK_EXCLUSIVE;
4097
4098 if (vm_object_lock_upgrade(object) == FALSE) {
4099 /*
4100 * couldn't upgrade so do a full retry on the fault
4101 * since we dropped the object lock which
4102 * could allow another thread to insert
4103 * a page at this offset
4104 */
4105 vm_map_unlock_read(map);
4106 if (real_map != map)
4107 vm_map_unlock(real_map);
4108
4109 goto RetryFault;
4110 }
4111 }
4112 m = vm_page_alloc(object, offset);
4113
4114 if (m == VM_PAGE_NULL) {
4115 /*
4116 * no free page currently available...
4117 * must take the slow path
4118 */
4119 break;
4120 }
4121
4122 /*
4123 * Now zero fill page...
4124 * the page is probably going to
4125 * be written soon, so don't bother
4126 * to clear the modified bit
4127 *
4128 * NOTE: This code holds the map
4129 * lock across the zero fill.
4130 */
4131 type_of_fault = vm_fault_zero_page(m, map->no_zero_fill);
4132
4133 goto FastPmapEnter;
4134 }
4135 /*
4136 * On to the next level in the shadow chain
4137 */
4138 cur_offset += cur_object->vo_shadow_offset;
4139 new_object = cur_object->shadow;
4140
4141 /*
4142 * take the new_object's lock with the indicated state
4143 */
4144 if (cur_object_lock_type == OBJECT_LOCK_SHARED)
4145 vm_object_lock_shared(new_object);
4146 else
4147 vm_object_lock(new_object);
4148
4149 if (cur_object != object)
4150 vm_object_unlock(cur_object);
4151
4152 cur_object = new_object;
4153
4154 continue;
4155 }
4156 }
4157 /*
4158 * Cleanup from fast fault failure. Drop any object
4159 * lock other than original and drop map lock.
4160 */
4161 if (object != cur_object)
4162 vm_object_unlock(cur_object);
4163
4164 /*
4165 * must own the object lock exclusively at this point
4166 */
4167 if (object_lock_type == OBJECT_LOCK_SHARED) {
4168 object_lock_type = OBJECT_LOCK_EXCLUSIVE;
4169
4170 if (vm_object_lock_upgrade(object) == FALSE) {
4171 /*
4172 * couldn't upgrade, so explictly
4173 * take the lock exclusively
4174 * no need to retry the fault at this
4175 * point since "vm_fault_page" will
4176 * completely re-evaluate the state
4177 */
4178 vm_object_lock(object);
4179 }
4180 }
4181
4182 handle_copy_delay:
4183 vm_map_unlock_read(map);
4184 if (real_map != map)
4185 vm_map_unlock(real_map);
4186
4187 /*
4188 * Make a reference to this object to
4189 * prevent its disposal while we are messing with
4190 * it. Once we have the reference, the map is free
4191 * to be diddled. Since objects reference their
4192 * shadows (and copies), they will stay around as well.
4193 */
4194 vm_object_reference_locked(object);
4195 vm_object_paging_begin(object);
4196
4197 XPR(XPR_VM_FAULT,"vm_fault -> vm_fault_page\n",0,0,0,0,0);
4198
4199 error_code = 0;
4200
4201 result_page = VM_PAGE_NULL;
4202 kr = vm_fault_page(object, offset, fault_type,
4203 (change_wiring && !wired),
4204 FALSE, /* page not looked up */
4205 &prot, &result_page, &top_page,
4206 &type_of_fault,
4207 &error_code, map->no_zero_fill,
4208 FALSE, &fault_info);
4209
4210 /*
4211 * if kr != VM_FAULT_SUCCESS, then the paging reference
4212 * has been dropped and the object unlocked... the ref_count
4213 * is still held
4214 *
4215 * if kr == VM_FAULT_SUCCESS, then the paging reference
4216 * is still held along with the ref_count on the original object
4217 *
4218 * the object is returned locked with a paging reference
4219 *
4220 * if top_page != NULL, then it's BUSY and the
4221 * object it belongs to has a paging reference
4222 * but is returned unlocked
4223 */
4224 if (kr != VM_FAULT_SUCCESS &&
4225 kr != VM_FAULT_SUCCESS_NO_VM_PAGE) {
4226 /*
4227 * we didn't succeed, lose the object reference immediately.
4228 */
4229 vm_object_deallocate(object);
4230
4231 /*
4232 * See why we failed, and take corrective action.
4233 */
4234 switch (kr) {
4235 case VM_FAULT_MEMORY_SHORTAGE:
4236 if (vm_page_wait((change_wiring) ?
4237 THREAD_UNINT :
4238 THREAD_ABORTSAFE))
4239 goto RetryFault;
4240 /*
4241 * fall thru
4242 */
4243 case VM_FAULT_INTERRUPTED:
4244 kr = KERN_ABORTED;
4245 goto done;
4246 case VM_FAULT_RETRY:
4247 goto RetryFault;
4248 case VM_FAULT_MEMORY_ERROR:
4249 if (error_code)
4250 kr = error_code;
4251 else
4252 kr = KERN_MEMORY_ERROR;
4253 goto done;
4254 default:
4255 panic("vm_fault: unexpected error 0x%x from "
4256 "vm_fault_page()\n", kr);
4257 }
4258 }
4259 m = result_page;
4260
4261 if (m != VM_PAGE_NULL) {
4262 assert((change_wiring && !wired) ?
4263 (top_page == VM_PAGE_NULL) :
4264 ((top_page == VM_PAGE_NULL) == (m->object == object)));
4265 }
4266
4267 /*
4268 * What to do with the resulting page from vm_fault_page
4269 * if it doesn't get entered into the physical map:
4270 */
4271 #define RELEASE_PAGE(m) \
4272 MACRO_BEGIN \
4273 PAGE_WAKEUP_DONE(m); \
4274 if (!m->active && !m->inactive && !m->throttled) { \
4275 vm_page_lockspin_queues(); \
4276 if (!m->active && !m->inactive && !m->throttled) \
4277 vm_page_activate(m); \
4278 vm_page_unlock_queues(); \
4279 } \
4280 MACRO_END
4281
4282 /*
4283 * We must verify that the maps have not changed
4284 * since our last lookup.
4285 */
4286 if (m != VM_PAGE_NULL) {
4287 old_copy_object = m->object->copy;
4288 vm_object_unlock(m->object);
4289 } else {
4290 old_copy_object = VM_OBJECT_NULL;
4291 vm_object_unlock(object);
4292 }
4293
4294 /*
4295 * no object locks are held at this point
4296 */
4297 if ((map != original_map) || !vm_map_verify(map, &version)) {
4298 vm_object_t retry_object;
4299 vm_object_offset_t retry_offset;
4300 vm_prot_t retry_prot;
4301
4302 /*
4303 * To avoid trying to write_lock the map while another
4304 * thread has it read_locked (in vm_map_pageable), we
4305 * do not try for write permission. If the page is
4306 * still writable, we will get write permission. If it
4307 * is not, or has been marked needs_copy, we enter the
4308 * mapping without write permission, and will merely
4309 * take another fault.
4310 */
4311 map = original_map;
4312 vm_map_lock_read(map);
4313
4314 kr = vm_map_lookup_locked(&map, vaddr,
4315 fault_type & ~VM_PROT_WRITE,
4316 OBJECT_LOCK_EXCLUSIVE, &version,
4317 &retry_object, &retry_offset, &retry_prot,
4318 &wired,
4319 &fault_info,
4320 &real_map);
4321 pmap = real_map->pmap;
4322
4323 if (kr != KERN_SUCCESS) {
4324 vm_map_unlock_read(map);
4325
4326 if (m != VM_PAGE_NULL) {
4327 /*
4328 * retake the lock so that
4329 * we can drop the paging reference
4330 * in vm_fault_cleanup and do the
4331 * PAGE_WAKEUP_DONE in RELEASE_PAGE
4332 */
4333 vm_object_lock(m->object);
4334
4335 RELEASE_PAGE(m);
4336
4337 vm_fault_cleanup(m->object, top_page);
4338 } else {
4339 /*
4340 * retake the lock so that
4341 * we can drop the paging reference
4342 * in vm_fault_cleanup
4343 */
4344 vm_object_lock(object);
4345
4346 vm_fault_cleanup(object, top_page);
4347 }
4348 vm_object_deallocate(object);
4349
4350 goto done;
4351 }
4352 vm_object_unlock(retry_object);
4353
4354 if ((retry_object != object) || (retry_offset != offset)) {
4355
4356 vm_map_unlock_read(map);
4357 if (real_map != map)
4358 vm_map_unlock(real_map);
4359
4360 if (m != VM_PAGE_NULL) {
4361 /*
4362 * retake the lock so that
4363 * we can drop the paging reference
4364 * in vm_fault_cleanup and do the
4365 * PAGE_WAKEUP_DONE in RELEASE_PAGE
4366 */
4367 vm_object_lock(m->object);
4368
4369 RELEASE_PAGE(m);
4370
4371 vm_fault_cleanup(m->object, top_page);
4372 } else {
4373 /*
4374 * retake the lock so that
4375 * we can drop the paging reference
4376 * in vm_fault_cleanup
4377 */
4378 vm_object_lock(object);
4379
4380 vm_fault_cleanup(object, top_page);
4381 }
4382 vm_object_deallocate(object);
4383
4384 goto RetryFault;
4385 }
4386 /*
4387 * Check whether the protection has changed or the object
4388 * has been copied while we left the map unlocked.
4389 */
4390 prot &= retry_prot;
4391 }
4392 if (m != VM_PAGE_NULL) {
4393 vm_object_lock(m->object);
4394
4395 if (m->object->copy != old_copy_object) {
4396 /*
4397 * The copy object changed while the top-level object
4398 * was unlocked, so take away write permission.
4399 */
4400 prot &= ~VM_PROT_WRITE;
4401 }
4402 } else
4403 vm_object_lock(object);
4404
4405 /*
4406 * If we want to wire down this page, but no longer have
4407 * adequate permissions, we must start all over.
4408 */
4409 if (wired && (fault_type != (prot | VM_PROT_WRITE))) {
4410
4411 vm_map_verify_done(map, &version);
4412 if (real_map != map)
4413 vm_map_unlock(real_map);
4414
4415 if (m != VM_PAGE_NULL) {
4416 RELEASE_PAGE(m);
4417
4418 vm_fault_cleanup(m->object, top_page);
4419 } else
4420 vm_fault_cleanup(object, top_page);
4421
4422 vm_object_deallocate(object);
4423
4424 goto RetryFault;
4425 }
4426 if (m != VM_PAGE_NULL) {
4427 /*
4428 * Put this page into the physical map.
4429 * We had to do the unlock above because pmap_enter
4430 * may cause other faults. The page may be on
4431 * the pageout queues. If the pageout daemon comes
4432 * across the page, it will remove it from the queues.
4433 */
4434 if (caller_pmap) {
4435 kr = vm_fault_enter(m,
4436 caller_pmap,
4437 caller_pmap_addr,
4438 prot,
4439 fault_type,
4440 wired,
4441 change_wiring,
4442 fault_info.no_cache,
4443 fault_info.cs_bypass,
4444 NULL,
4445 &type_of_fault);
4446 } else {
4447 kr = vm_fault_enter(m,
4448 pmap,
4449 vaddr,
4450 prot,
4451 fault_type,
4452 wired,
4453 change_wiring,
4454 fault_info.no_cache,
4455 fault_info.cs_bypass,
4456 NULL,
4457 &type_of_fault);
4458 }
4459 if (kr != KERN_SUCCESS) {
4460 /* abort this page fault */
4461 vm_map_verify_done(map, &version);
4462 if (real_map != map)
4463 vm_map_unlock(real_map);
4464 PAGE_WAKEUP_DONE(m);
4465 vm_fault_cleanup(m->object, top_page);
4466 vm_object_deallocate(object);
4467 goto done;
4468 }
4469 } else {
4470
4471 vm_map_entry_t entry;
4472 vm_map_offset_t laddr;
4473 vm_map_offset_t ldelta, hdelta;
4474
4475 /*
4476 * do a pmap block mapping from the physical address
4477 * in the object
4478 */
4479
4480 #ifdef ppc
4481 /* While we do not worry about execution protection in */
4482 /* general, certian pages may have instruction execution */
4483 /* disallowed. We will check here, and if not allowed */
4484 /* to execute, we return with a protection failure. */
4485
4486 if ((fault_type & VM_PROT_EXECUTE) &&
4487 (!pmap_eligible_for_execute((ppnum_t)(object->vo_shadow_offset >> 12)))) {
4488
4489 vm_map_verify_done(map, &version);
4490
4491 if (real_map != map)
4492 vm_map_unlock(real_map);
4493
4494 vm_fault_cleanup(object, top_page);
4495 vm_object_deallocate(object);
4496
4497 kr = KERN_PROTECTION_FAILURE;
4498 goto done;
4499 }
4500 #endif /* ppc */
4501
4502 if (real_map != map)
4503 vm_map_unlock(real_map);
4504
4505 if (original_map != map) {
4506 vm_map_unlock_read(map);
4507 vm_map_lock_read(original_map);
4508 map = original_map;
4509 }
4510 real_map = map;
4511
4512 laddr = vaddr;
4513 hdelta = 0xFFFFF000;
4514 ldelta = 0xFFFFF000;
4515
4516 while (vm_map_lookup_entry(map, laddr, &entry)) {
4517 if (ldelta > (laddr - entry->vme_start))
4518 ldelta = laddr - entry->vme_start;
4519 if (hdelta > (entry->vme_end - laddr))
4520 hdelta = entry->vme_end - laddr;
4521 if (entry->is_sub_map) {
4522
4523 laddr = (laddr - entry->vme_start)
4524 + entry->offset;
4525 vm_map_lock_read(entry->object.sub_map);
4526
4527 if (map != real_map)
4528 vm_map_unlock_read(map);
4529 if (entry->use_pmap) {
4530 vm_map_unlock_read(real_map);
4531 real_map = entry->object.sub_map;
4532 }
4533 map = entry->object.sub_map;
4534
4535 } else {
4536 break;
4537 }
4538 }
4539
4540 if (vm_map_lookup_entry(map, laddr, &entry) &&
4541 (entry->object.vm_object != NULL) &&
4542 (entry->object.vm_object == object)) {
4543
4544 int superpage = (!object->pager_created && object->phys_contiguous)? VM_MEM_SUPERPAGE : 0;
4545 if (caller_pmap) {
4546 /*
4547 * Set up a block mapped area
4548 */
4549 assert((uint32_t)((ldelta + hdelta) >> 12) == ((ldelta + hdelta) >> 12));
4550 pmap_map_block(caller_pmap,
4551 (addr64_t)(caller_pmap_addr - ldelta),
4552 (ppnum_t)((((vm_map_offset_t) (entry->object.vm_object->vo_shadow_offset)) +
4553 entry->offset + (laddr - entry->vme_start) - ldelta) >> 12),
4554 (uint32_t)((ldelta + hdelta) >> 12), prot,
4555 (VM_WIMG_MASK & (int)object->wimg_bits) | superpage, 0);
4556 } else {
4557 /*
4558 * Set up a block mapped area
4559 */
4560 assert((uint32_t)((ldelta + hdelta) >> 12) == ((ldelta + hdelta) >> 12));
4561 pmap_map_block(real_map->pmap,
4562 (addr64_t)(vaddr - ldelta),
4563 (ppnum_t)((((vm_map_offset_t)(entry->object.vm_object->vo_shadow_offset)) +
4564 entry->offset + (laddr - entry->vme_start) - ldelta) >> 12),
4565 (uint32_t)((ldelta + hdelta) >> 12), prot,
4566 (VM_WIMG_MASK & (int)object->wimg_bits) | superpage, 0);
4567 }
4568 }
4569 }
4570
4571 /*
4572 * Unlock everything, and return
4573 */
4574 vm_map_verify_done(map, &version);
4575 if (real_map != map)
4576 vm_map_unlock(real_map);
4577
4578 if (m != VM_PAGE_NULL) {
4579 PAGE_WAKEUP_DONE(m);
4580
4581 vm_fault_cleanup(m->object, top_page);
4582 } else
4583 vm_fault_cleanup(object, top_page);
4584
4585 vm_object_deallocate(object);
4586
4587 #undef RELEASE_PAGE
4588
4589 kr = KERN_SUCCESS;
4590 done:
4591 thread_interrupt_level(interruptible_state);
4592
4593 /*
4594 * Only throttle on faults which cause a pagein.
4595 */
4596 if ((type_of_fault == DBG_PAGEIND_FAULT) || (type_of_fault == DBG_PAGEINV_FAULT) || (type_of_fault == DBG_COMPRESSOR_SWAPIN_FAULT)) {
4597 throttle_lowpri_io(1);
4598 }
4599
4600 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
4601 (MACHDBG_CODE(DBG_MACH_VM, 2)) | DBG_FUNC_END,
4602 ((uint64_t)vaddr >> 32),
4603 vaddr,
4604 kr,
4605 type_of_fault,
4606 0);
4607
4608 return (kr);
4609 }
4610
4611 /*
4612 * vm_fault_wire:
4613 *
4614 * Wire down a range of virtual addresses in a map.
4615 */
4616 kern_return_t
4617 vm_fault_wire(
4618 vm_map_t map,
4619 vm_map_entry_t entry,
4620 pmap_t pmap,
4621 vm_map_offset_t pmap_addr)
4622 {
4623
4624 register vm_map_offset_t va;
4625 register vm_map_offset_t end_addr = entry->vme_end;
4626 register kern_return_t rc;
4627
4628 assert(entry->in_transition);
4629
4630 if ((entry->object.vm_object != NULL) &&
4631 !entry->is_sub_map &&
4632 entry->object.vm_object->phys_contiguous) {
4633 return KERN_SUCCESS;
4634 }
4635
4636 /*
4637 * Inform the physical mapping system that the
4638 * range of addresses may not fault, so that
4639 * page tables and such can be locked down as well.
4640 */
4641
4642 pmap_pageable(pmap, pmap_addr,
4643 pmap_addr + (end_addr - entry->vme_start), FALSE);
4644
4645 /*
4646 * We simulate a fault to get the page and enter it
4647 * in the physical map.
4648 */
4649
4650 for (va = entry->vme_start; va < end_addr; va += PAGE_SIZE) {
4651 if ((rc = vm_fault_wire_fast(
4652 map, va, entry, pmap,
4653 pmap_addr + (va - entry->vme_start)
4654 )) != KERN_SUCCESS) {
4655 rc = vm_fault(map, va, VM_PROT_NONE, TRUE,
4656 (pmap == kernel_pmap) ?
4657 THREAD_UNINT : THREAD_ABORTSAFE,
4658 pmap, pmap_addr + (va - entry->vme_start));
4659 DTRACE_VM2(softlock, int, 1, (uint64_t *), NULL);
4660 }
4661
4662 if (rc != KERN_SUCCESS) {
4663 struct vm_map_entry tmp_entry = *entry;
4664
4665 /* unwire wired pages */
4666 tmp_entry.vme_end = va;
4667 vm_fault_unwire(map,
4668 &tmp_entry, FALSE, pmap, pmap_addr);
4669
4670 return rc;
4671 }
4672 }
4673 return KERN_SUCCESS;
4674 }
4675
4676 /*
4677 * vm_fault_unwire:
4678 *
4679 * Unwire a range of virtual addresses in a map.
4680 */
4681 void
4682 vm_fault_unwire(
4683 vm_map_t map,
4684 vm_map_entry_t entry,
4685 boolean_t deallocate,
4686 pmap_t pmap,
4687 vm_map_offset_t pmap_addr)
4688 {
4689 register vm_map_offset_t va;
4690 register vm_map_offset_t end_addr = entry->vme_end;
4691 vm_object_t object;
4692 struct vm_object_fault_info fault_info;
4693
4694 object = (entry->is_sub_map)
4695 ? VM_OBJECT_NULL : entry->object.vm_object;
4696
4697 /*
4698 * If it's marked phys_contiguous, then vm_fault_wire() didn't actually
4699 * do anything since such memory is wired by default. So we don't have
4700 * anything to undo here.
4701 */
4702
4703 if (object != VM_OBJECT_NULL && object->phys_contiguous)
4704 return;
4705
4706 fault_info.interruptible = THREAD_UNINT;
4707 fault_info.behavior = entry->behavior;
4708 fault_info.user_tag = entry->alias;
4709 fault_info.lo_offset = entry->offset;
4710 fault_info.hi_offset = (entry->vme_end - entry->vme_start) + entry->offset;
4711 fault_info.no_cache = entry->no_cache;
4712 fault_info.stealth = TRUE;
4713 fault_info.io_sync = FALSE;
4714 fault_info.cs_bypass = FALSE;
4715 fault_info.mark_zf_absent = FALSE;
4716 fault_info.batch_pmap_op = FALSE;
4717
4718 /*
4719 * Since the pages are wired down, we must be able to
4720 * get their mappings from the physical map system.
4721 */
4722
4723 for (va = entry->vme_start; va < end_addr; va += PAGE_SIZE) {
4724
4725 if (object == VM_OBJECT_NULL) {
4726 if (pmap) {
4727 pmap_change_wiring(pmap,
4728 pmap_addr + (va - entry->vme_start), FALSE);
4729 }
4730 (void) vm_fault(map, va, VM_PROT_NONE,
4731 TRUE, THREAD_UNINT, pmap, pmap_addr);
4732 } else {
4733 vm_prot_t prot;
4734 vm_page_t result_page;
4735 vm_page_t top_page;
4736 vm_object_t result_object;
4737 vm_fault_return_t result;
4738
4739 if (end_addr - va > (vm_size_t) -1) {
4740 /* 32-bit overflow */
4741 fault_info.cluster_size = (vm_size_t) (0 - PAGE_SIZE);
4742 } else {
4743 fault_info.cluster_size = (vm_size_t) (end_addr - va);
4744 assert(fault_info.cluster_size == end_addr - va);
4745 }
4746
4747 do {
4748 prot = VM_PROT_NONE;
4749
4750 vm_object_lock(object);
4751 vm_object_paging_begin(object);
4752 XPR(XPR_VM_FAULT,
4753 "vm_fault_unwire -> vm_fault_page\n",
4754 0,0,0,0,0);
4755 result_page = VM_PAGE_NULL;
4756 result = vm_fault_page(
4757 object,
4758 entry->offset + (va - entry->vme_start),
4759 VM_PROT_NONE, TRUE,
4760 FALSE, /* page not looked up */
4761 &prot, &result_page, &top_page,
4762 (int *)0,
4763 NULL, map->no_zero_fill,
4764 FALSE, &fault_info);
4765 } while (result == VM_FAULT_RETRY);
4766
4767 /*
4768 * If this was a mapping to a file on a device that has been forcibly
4769 * unmounted, then we won't get a page back from vm_fault_page(). Just
4770 * move on to the next one in case the remaining pages are mapped from
4771 * different objects. During a forced unmount, the object is terminated
4772 * so the alive flag will be false if this happens. A forced unmount will
4773 * will occur when an external disk is unplugged before the user does an
4774 * eject, so we don't want to panic in that situation.
4775 */
4776
4777 if (result == VM_FAULT_MEMORY_ERROR && !object->alive)
4778 continue;
4779
4780 if (result == VM_FAULT_MEMORY_ERROR &&
4781 object == kernel_object) {
4782 /*
4783 * This must have been allocated with
4784 * KMA_KOBJECT and KMA_VAONLY and there's
4785 * no physical page at this offset.
4786 * We're done (no page to free).
4787 */
4788 assert(deallocate);
4789 continue;
4790 }
4791
4792 if (result != VM_FAULT_SUCCESS)
4793 panic("vm_fault_unwire: failure");
4794
4795 result_object = result_page->object;
4796
4797 if (deallocate) {
4798 assert(result_page->phys_page !=
4799 vm_page_fictitious_addr);
4800 pmap_disconnect(result_page->phys_page);
4801 VM_PAGE_FREE(result_page);
4802 } else {
4803 if ((pmap) && (result_page->phys_page != vm_page_guard_addr))
4804 pmap_change_wiring(pmap,
4805 pmap_addr + (va - entry->vme_start), FALSE);
4806
4807
4808 if (VM_PAGE_WIRED(result_page)) {
4809 vm_page_lockspin_queues();
4810 vm_page_unwire(result_page, TRUE);
4811 vm_page_unlock_queues();
4812 }
4813 if(entry->zero_wired_pages) {
4814 pmap_zero_page(result_page->phys_page);
4815 entry->zero_wired_pages = FALSE;
4816 }
4817
4818 PAGE_WAKEUP_DONE(result_page);
4819 }
4820 vm_fault_cleanup(result_object, top_page);
4821 }
4822 }
4823
4824 /*
4825 * Inform the physical mapping system that the range
4826 * of addresses may fault, so that page tables and
4827 * such may be unwired themselves.
4828 */
4829
4830 pmap_pageable(pmap, pmap_addr,
4831 pmap_addr + (end_addr - entry->vme_start), TRUE);
4832
4833 }
4834
4835 /*
4836 * vm_fault_wire_fast:
4837 *
4838 * Handle common case of a wire down page fault at the given address.
4839 * If successful, the page is inserted into the associated physical map.
4840 * The map entry is passed in to avoid the overhead of a map lookup.
4841 *
4842 * NOTE: the given address should be truncated to the
4843 * proper page address.
4844 *
4845 * KERN_SUCCESS is returned if the page fault is handled; otherwise,
4846 * a standard error specifying why the fault is fatal is returned.
4847 *
4848 * The map in question must be referenced, and remains so.
4849 * Caller has a read lock on the map.
4850 *
4851 * This is a stripped version of vm_fault() for wiring pages. Anything
4852 * other than the common case will return KERN_FAILURE, and the caller
4853 * is expected to call vm_fault().
4854 */
4855 kern_return_t
4856 vm_fault_wire_fast(
4857 __unused vm_map_t map,
4858 vm_map_offset_t va,
4859 vm_map_entry_t entry,
4860 pmap_t pmap,
4861 vm_map_offset_t pmap_addr)
4862 {
4863 vm_object_t object;
4864 vm_object_offset_t offset;
4865 register vm_page_t m;
4866 vm_prot_t prot;
4867 thread_t thread = current_thread();
4868 int type_of_fault;
4869 kern_return_t kr;
4870
4871 VM_STAT_INCR(faults);
4872
4873 if (thread != THREAD_NULL && thread->task != TASK_NULL)
4874 thread->task->faults++;
4875
4876 /*
4877 * Recovery actions
4878 */
4879
4880 #undef RELEASE_PAGE
4881 #define RELEASE_PAGE(m) { \
4882 PAGE_WAKEUP_DONE(m); \
4883 vm_page_lockspin_queues(); \
4884 vm_page_unwire(m, TRUE); \
4885 vm_page_unlock_queues(); \
4886 }
4887
4888
4889 #undef UNLOCK_THINGS
4890 #define UNLOCK_THINGS { \
4891 vm_object_paging_end(object); \
4892 vm_object_unlock(object); \
4893 }
4894
4895 #undef UNLOCK_AND_DEALLOCATE
4896 #define UNLOCK_AND_DEALLOCATE { \
4897 UNLOCK_THINGS; \
4898 vm_object_deallocate(object); \
4899 }
4900 /*
4901 * Give up and have caller do things the hard way.
4902 */
4903
4904 #define GIVE_UP { \
4905 UNLOCK_AND_DEALLOCATE; \
4906 return(KERN_FAILURE); \
4907 }
4908
4909
4910 /*
4911 * If this entry is not directly to a vm_object, bail out.
4912 */
4913 if (entry->is_sub_map)
4914 return(KERN_FAILURE);
4915
4916 /*
4917 * Find the backing store object and offset into it.
4918 */
4919
4920 object = entry->object.vm_object;
4921 offset = (va - entry->vme_start) + entry->offset;
4922 prot = entry->protection;
4923
4924 /*
4925 * Make a reference to this object to prevent its
4926 * disposal while we are messing with it.
4927 */
4928
4929 vm_object_lock(object);
4930 vm_object_reference_locked(object);
4931 vm_object_paging_begin(object);
4932
4933 /*
4934 * INVARIANTS (through entire routine):
4935 *
4936 * 1) At all times, we must either have the object
4937 * lock or a busy page in some object to prevent
4938 * some other thread from trying to bring in
4939 * the same page.
4940 *
4941 * 2) Once we have a busy page, we must remove it from
4942 * the pageout queues, so that the pageout daemon
4943 * will not grab it away.
4944 *
4945 */
4946
4947 /*
4948 * Look for page in top-level object. If it's not there or
4949 * there's something going on, give up.
4950 * ENCRYPTED SWAP: use the slow fault path, since we'll need to
4951 * decrypt the page before wiring it down.
4952 */
4953 m = vm_page_lookup(object, offset);
4954 if ((m == VM_PAGE_NULL) || (m->busy) || (m->encrypted) ||
4955 (m->unusual && ( m->error || m->restart || m->absent))) {
4956
4957 GIVE_UP;
4958 }
4959 ASSERT_PAGE_DECRYPTED(m);
4960
4961 if (m->fictitious &&
4962 m->phys_page == vm_page_guard_addr) {
4963 /*
4964 * Guard pages are fictitious pages and are never
4965 * entered into a pmap, so let's say it's been wired...
4966 */
4967 kr = KERN_SUCCESS;
4968 goto done;
4969 }
4970
4971 /*
4972 * Wire the page down now. All bail outs beyond this
4973 * point must unwire the page.
4974 */
4975
4976 vm_page_lockspin_queues();
4977 vm_page_wire(m);
4978 vm_page_unlock_queues();
4979
4980 /*
4981 * Mark page busy for other threads.
4982 */
4983 assert(!m->busy);
4984 m->busy = TRUE;
4985 assert(!m->absent);
4986
4987 /*
4988 * Give up if the page is being written and there's a copy object
4989 */
4990 if ((object->copy != VM_OBJECT_NULL) && (prot & VM_PROT_WRITE)) {
4991 RELEASE_PAGE(m);
4992 GIVE_UP;
4993 }
4994
4995 /*
4996 * Put this page into the physical map.
4997 */
4998 type_of_fault = DBG_CACHE_HIT_FAULT;
4999 kr = vm_fault_enter(m,
5000 pmap,
5001 pmap_addr,
5002 prot,
5003 prot,
5004 TRUE,
5005 FALSE,
5006 FALSE,
5007 FALSE,
5008 NULL,
5009 &type_of_fault);
5010
5011 done:
5012 /*
5013 * Unlock everything, and return
5014 */
5015
5016 PAGE_WAKEUP_DONE(m);
5017 UNLOCK_AND_DEALLOCATE;
5018
5019 return kr;
5020
5021 }
5022
5023 /*
5024 * Routine: vm_fault_copy_cleanup
5025 * Purpose:
5026 * Release a page used by vm_fault_copy.
5027 */
5028
5029 void
5030 vm_fault_copy_cleanup(
5031 vm_page_t page,
5032 vm_page_t top_page)
5033 {
5034 vm_object_t object = page->object;
5035
5036 vm_object_lock(object);
5037 PAGE_WAKEUP_DONE(page);
5038 if (!page->active && !page->inactive && !page->throttled) {
5039 vm_page_lockspin_queues();
5040 if (!page->active && !page->inactive && !page->throttled)
5041 vm_page_activate(page);
5042 vm_page_unlock_queues();
5043 }
5044 vm_fault_cleanup(object, top_page);
5045 }
5046
5047 void
5048 vm_fault_copy_dst_cleanup(
5049 vm_page_t page)
5050 {
5051 vm_object_t object;
5052
5053 if (page != VM_PAGE_NULL) {
5054 object = page->object;
5055 vm_object_lock(object);
5056 vm_page_lockspin_queues();
5057 vm_page_unwire(page, TRUE);
5058 vm_page_unlock_queues();
5059 vm_object_paging_end(object);
5060 vm_object_unlock(object);
5061 }
5062 }
5063
5064 /*
5065 * Routine: vm_fault_copy
5066 *
5067 * Purpose:
5068 * Copy pages from one virtual memory object to another --
5069 * neither the source nor destination pages need be resident.
5070 *
5071 * Before actually copying a page, the version associated with
5072 * the destination address map wil be verified.
5073 *
5074 * In/out conditions:
5075 * The caller must hold a reference, but not a lock, to
5076 * each of the source and destination objects and to the
5077 * destination map.
5078 *
5079 * Results:
5080 * Returns KERN_SUCCESS if no errors were encountered in
5081 * reading or writing the data. Returns KERN_INTERRUPTED if
5082 * the operation was interrupted (only possible if the
5083 * "interruptible" argument is asserted). Other return values
5084 * indicate a permanent error in copying the data.
5085 *
5086 * The actual amount of data copied will be returned in the
5087 * "copy_size" argument. In the event that the destination map
5088 * verification failed, this amount may be less than the amount
5089 * requested.
5090 */
5091 kern_return_t
5092 vm_fault_copy(
5093 vm_object_t src_object,
5094 vm_object_offset_t src_offset,
5095 vm_map_size_t *copy_size, /* INOUT */
5096 vm_object_t dst_object,
5097 vm_object_offset_t dst_offset,
5098 vm_map_t dst_map,
5099 vm_map_version_t *dst_version,
5100 int interruptible)
5101 {
5102 vm_page_t result_page;
5103
5104 vm_page_t src_page;
5105 vm_page_t src_top_page;
5106 vm_prot_t src_prot;
5107
5108 vm_page_t dst_page;
5109 vm_page_t dst_top_page;
5110 vm_prot_t dst_prot;
5111
5112 vm_map_size_t amount_left;
5113 vm_object_t old_copy_object;
5114 kern_return_t error = 0;
5115 vm_fault_return_t result;
5116
5117 vm_map_size_t part_size;
5118 struct vm_object_fault_info fault_info_src;
5119 struct vm_object_fault_info fault_info_dst;
5120
5121 /*
5122 * In order not to confuse the clustered pageins, align
5123 * the different offsets on a page boundary.
5124 */
5125
5126 #define RETURN(x) \
5127 MACRO_BEGIN \
5128 *copy_size -= amount_left; \
5129 MACRO_RETURN(x); \
5130 MACRO_END
5131
5132 amount_left = *copy_size;
5133
5134 fault_info_src.interruptible = interruptible;
5135 fault_info_src.behavior = VM_BEHAVIOR_SEQUENTIAL;
5136 fault_info_src.user_tag = 0;
5137 fault_info_src.lo_offset = vm_object_trunc_page(src_offset);
5138 fault_info_src.hi_offset = fault_info_src.lo_offset + amount_left;
5139 fault_info_src.no_cache = FALSE;
5140 fault_info_src.stealth = TRUE;
5141 fault_info_src.io_sync = FALSE;
5142 fault_info_src.cs_bypass = FALSE;
5143 fault_info_src.mark_zf_absent = FALSE;
5144 fault_info_src.batch_pmap_op = FALSE;
5145
5146 fault_info_dst.interruptible = interruptible;
5147 fault_info_dst.behavior = VM_BEHAVIOR_SEQUENTIAL;
5148 fault_info_dst.user_tag = 0;
5149 fault_info_dst.lo_offset = vm_object_trunc_page(dst_offset);
5150 fault_info_dst.hi_offset = fault_info_dst.lo_offset + amount_left;
5151 fault_info_dst.no_cache = FALSE;
5152 fault_info_dst.stealth = TRUE;
5153 fault_info_dst.io_sync = FALSE;
5154 fault_info_dst.cs_bypass = FALSE;
5155 fault_info_dst.mark_zf_absent = FALSE;
5156 fault_info_dst.batch_pmap_op = FALSE;
5157
5158 do { /* while (amount_left > 0) */
5159 /*
5160 * There may be a deadlock if both source and destination
5161 * pages are the same. To avoid this deadlock, the copy must
5162 * start by getting the destination page in order to apply
5163 * COW semantics if any.
5164 */
5165
5166 RetryDestinationFault: ;
5167
5168 dst_prot = VM_PROT_WRITE|VM_PROT_READ;
5169
5170 vm_object_lock(dst_object);
5171 vm_object_paging_begin(dst_object);
5172
5173 if (amount_left > (vm_size_t) -1) {
5174 /* 32-bit overflow */
5175 fault_info_dst.cluster_size = (vm_size_t) (0 - PAGE_SIZE);
5176 } else {
5177 fault_info_dst.cluster_size = (vm_size_t) amount_left;
5178 assert(fault_info_dst.cluster_size == amount_left);
5179 }
5180
5181 XPR(XPR_VM_FAULT,"vm_fault_copy -> vm_fault_page\n",0,0,0,0,0);
5182 dst_page = VM_PAGE_NULL;
5183 result = vm_fault_page(dst_object,
5184 vm_object_trunc_page(dst_offset),
5185 VM_PROT_WRITE|VM_PROT_READ,
5186 FALSE,
5187 FALSE, /* page not looked up */
5188 &dst_prot, &dst_page, &dst_top_page,
5189 (int *)0,
5190 &error,
5191 dst_map->no_zero_fill,
5192 FALSE, &fault_info_dst);
5193 switch (result) {
5194 case VM_FAULT_SUCCESS:
5195 break;
5196 case VM_FAULT_RETRY:
5197 goto RetryDestinationFault;
5198 case VM_FAULT_MEMORY_SHORTAGE:
5199 if (vm_page_wait(interruptible))
5200 goto RetryDestinationFault;
5201 /* fall thru */
5202 case VM_FAULT_INTERRUPTED:
5203 RETURN(MACH_SEND_INTERRUPTED);
5204 case VM_FAULT_SUCCESS_NO_VM_PAGE:
5205 /* success but no VM page: fail the copy */
5206 vm_object_paging_end(dst_object);
5207 vm_object_unlock(dst_object);
5208 /*FALLTHROUGH*/
5209 case VM_FAULT_MEMORY_ERROR:
5210 if (error)
5211 return (error);
5212 else
5213 return(KERN_MEMORY_ERROR);
5214 default:
5215 panic("vm_fault_copy: unexpected error 0x%x from "
5216 "vm_fault_page()\n", result);
5217 }
5218 assert ((dst_prot & VM_PROT_WRITE) != VM_PROT_NONE);
5219
5220 old_copy_object = dst_page->object->copy;
5221
5222 /*
5223 * There exists the possiblity that the source and
5224 * destination page are the same. But we can't
5225 * easily determine that now. If they are the
5226 * same, the call to vm_fault_page() for the
5227 * destination page will deadlock. To prevent this we
5228 * wire the page so we can drop busy without having
5229 * the page daemon steal the page. We clean up the
5230 * top page but keep the paging reference on the object
5231 * holding the dest page so it doesn't go away.
5232 */
5233
5234 vm_page_lockspin_queues();
5235 vm_page_wire(dst_page);
5236 vm_page_unlock_queues();
5237 PAGE_WAKEUP_DONE(dst_page);
5238 vm_object_unlock(dst_page->object);
5239
5240 if (dst_top_page != VM_PAGE_NULL) {
5241 vm_object_lock(dst_object);
5242 VM_PAGE_FREE(dst_top_page);
5243 vm_object_paging_end(dst_object);
5244 vm_object_unlock(dst_object);
5245 }
5246
5247 RetrySourceFault: ;
5248
5249 if (src_object == VM_OBJECT_NULL) {
5250 /*
5251 * No source object. We will just
5252 * zero-fill the page in dst_object.
5253 */
5254 src_page = VM_PAGE_NULL;
5255 result_page = VM_PAGE_NULL;
5256 } else {
5257 vm_object_lock(src_object);
5258 src_page = vm_page_lookup(src_object,
5259 vm_object_trunc_page(src_offset));
5260 if (src_page == dst_page) {
5261 src_prot = dst_prot;
5262 result_page = VM_PAGE_NULL;
5263 } else {
5264 src_prot = VM_PROT_READ;
5265 vm_object_paging_begin(src_object);
5266
5267 if (amount_left > (vm_size_t) -1) {
5268 /* 32-bit overflow */
5269 fault_info_src.cluster_size = (vm_size_t) (0 - PAGE_SIZE);
5270 } else {
5271 fault_info_src.cluster_size = (vm_size_t) amount_left;
5272 assert(fault_info_src.cluster_size == amount_left);
5273 }
5274
5275 XPR(XPR_VM_FAULT,
5276 "vm_fault_copy(2) -> vm_fault_page\n",
5277 0,0,0,0,0);
5278 result_page = VM_PAGE_NULL;
5279 result = vm_fault_page(
5280 src_object,
5281 vm_object_trunc_page(src_offset),
5282 VM_PROT_READ, FALSE,
5283 FALSE, /* page not looked up */
5284 &src_prot,
5285 &result_page, &src_top_page,
5286 (int *)0, &error, FALSE,
5287 FALSE, &fault_info_src);
5288
5289 switch (result) {
5290 case VM_FAULT_SUCCESS:
5291 break;
5292 case VM_FAULT_RETRY:
5293 goto RetrySourceFault;
5294 case VM_FAULT_MEMORY_SHORTAGE:
5295 if (vm_page_wait(interruptible))
5296 goto RetrySourceFault;
5297 /* fall thru */
5298 case VM_FAULT_INTERRUPTED:
5299 vm_fault_copy_dst_cleanup(dst_page);
5300 RETURN(MACH_SEND_INTERRUPTED);
5301 case VM_FAULT_SUCCESS_NO_VM_PAGE:
5302 /* success but no VM page: fail */
5303 vm_object_paging_end(src_object);
5304 vm_object_unlock(src_object);
5305 /*FALLTHROUGH*/
5306 case VM_FAULT_MEMORY_ERROR:
5307 vm_fault_copy_dst_cleanup(dst_page);
5308 if (error)
5309 return (error);
5310 else
5311 return(KERN_MEMORY_ERROR);
5312 default:
5313 panic("vm_fault_copy(2): unexpected "
5314 "error 0x%x from "
5315 "vm_fault_page()\n", result);
5316 }
5317
5318
5319 assert((src_top_page == VM_PAGE_NULL) ==
5320 (result_page->object == src_object));
5321 }
5322 assert ((src_prot & VM_PROT_READ) != VM_PROT_NONE);
5323 vm_object_unlock(result_page->object);
5324 }
5325
5326 if (!vm_map_verify(dst_map, dst_version)) {
5327 if (result_page != VM_PAGE_NULL && src_page != dst_page)
5328 vm_fault_copy_cleanup(result_page, src_top_page);
5329 vm_fault_copy_dst_cleanup(dst_page);
5330 break;
5331 }
5332
5333 vm_object_lock(dst_page->object);
5334
5335 if (dst_page->object->copy != old_copy_object) {
5336 vm_object_unlock(dst_page->object);
5337 vm_map_verify_done(dst_map, dst_version);
5338 if (result_page != VM_PAGE_NULL && src_page != dst_page)
5339 vm_fault_copy_cleanup(result_page, src_top_page);
5340 vm_fault_copy_dst_cleanup(dst_page);
5341 break;
5342 }
5343 vm_object_unlock(dst_page->object);
5344
5345 /*
5346 * Copy the page, and note that it is dirty
5347 * immediately.
5348 */
5349
5350 if (!page_aligned(src_offset) ||
5351 !page_aligned(dst_offset) ||
5352 !page_aligned(amount_left)) {
5353
5354 vm_object_offset_t src_po,
5355 dst_po;
5356
5357 src_po = src_offset - vm_object_trunc_page(src_offset);
5358 dst_po = dst_offset - vm_object_trunc_page(dst_offset);
5359
5360 if (dst_po > src_po) {
5361 part_size = PAGE_SIZE - dst_po;
5362 } else {
5363 part_size = PAGE_SIZE - src_po;
5364 }
5365 if (part_size > (amount_left)){
5366 part_size = amount_left;
5367 }
5368
5369 if (result_page == VM_PAGE_NULL) {
5370 assert((vm_offset_t) dst_po == dst_po);
5371 assert((vm_size_t) part_size == part_size);
5372 vm_page_part_zero_fill(dst_page,
5373 (vm_offset_t) dst_po,
5374 (vm_size_t) part_size);
5375 } else {
5376 assert((vm_offset_t) src_po == src_po);
5377 assert((vm_offset_t) dst_po == dst_po);
5378 assert((vm_size_t) part_size == part_size);
5379 vm_page_part_copy(result_page,
5380 (vm_offset_t) src_po,
5381 dst_page,
5382 (vm_offset_t) dst_po,
5383 (vm_size_t)part_size);
5384 if(!dst_page->dirty){
5385 vm_object_lock(dst_object);
5386 SET_PAGE_DIRTY(dst_page, TRUE);
5387 vm_object_unlock(dst_page->object);
5388 }
5389
5390 }
5391 } else {
5392 part_size = PAGE_SIZE;
5393
5394 if (result_page == VM_PAGE_NULL)
5395 vm_page_zero_fill(dst_page);
5396 else{
5397 vm_object_lock(result_page->object);
5398 vm_page_copy(result_page, dst_page);
5399 vm_object_unlock(result_page->object);
5400
5401 if(!dst_page->dirty){
5402 vm_object_lock(dst_object);
5403 SET_PAGE_DIRTY(dst_page, TRUE);
5404 vm_object_unlock(dst_page->object);
5405 }
5406 }
5407
5408 }
5409
5410 /*
5411 * Unlock everything, and return
5412 */
5413
5414 vm_map_verify_done(dst_map, dst_version);
5415
5416 if (result_page != VM_PAGE_NULL && src_page != dst_page)
5417 vm_fault_copy_cleanup(result_page, src_top_page);
5418 vm_fault_copy_dst_cleanup(dst_page);
5419
5420 amount_left -= part_size;
5421 src_offset += part_size;
5422 dst_offset += part_size;
5423 } while (amount_left > 0);
5424
5425 RETURN(KERN_SUCCESS);
5426 #undef RETURN
5427
5428 /*NOTREACHED*/
5429 }
5430
5431 #if VM_FAULT_CLASSIFY
5432 /*
5433 * Temporary statistics gathering support.
5434 */
5435
5436 /*
5437 * Statistics arrays:
5438 */
5439 #define VM_FAULT_TYPES_MAX 5
5440 #define VM_FAULT_LEVEL_MAX 8
5441
5442 int vm_fault_stats[VM_FAULT_TYPES_MAX][VM_FAULT_LEVEL_MAX];
5443
5444 #define VM_FAULT_TYPE_ZERO_FILL 0
5445 #define VM_FAULT_TYPE_MAP_IN 1
5446 #define VM_FAULT_TYPE_PAGER 2
5447 #define VM_FAULT_TYPE_COPY 3
5448 #define VM_FAULT_TYPE_OTHER 4
5449
5450
5451 void
5452 vm_fault_classify(vm_object_t object,
5453 vm_object_offset_t offset,
5454 vm_prot_t fault_type)
5455 {
5456 int type, level = 0;
5457 vm_page_t m;
5458
5459 while (TRUE) {
5460 m = vm_page_lookup(object, offset);
5461 if (m != VM_PAGE_NULL) {
5462 if (m->busy || m->error || m->restart || m->absent) {
5463 type = VM_FAULT_TYPE_OTHER;
5464 break;
5465 }
5466 if (((fault_type & VM_PROT_WRITE) == 0) ||
5467 ((level == 0) && object->copy == VM_OBJECT_NULL)) {
5468 type = VM_FAULT_TYPE_MAP_IN;
5469 break;
5470 }
5471 type = VM_FAULT_TYPE_COPY;
5472 break;
5473 }
5474 else {
5475 if (object->pager_created) {
5476 type = VM_FAULT_TYPE_PAGER;
5477 break;
5478 }
5479 if (object->shadow == VM_OBJECT_NULL) {
5480 type = VM_FAULT_TYPE_ZERO_FILL;
5481 break;
5482 }
5483
5484 offset += object->vo_shadow_offset;
5485 object = object->shadow;
5486 level++;
5487 continue;
5488 }
5489 }
5490
5491 if (level > VM_FAULT_LEVEL_MAX)
5492 level = VM_FAULT_LEVEL_MAX;
5493
5494 vm_fault_stats[type][level] += 1;
5495
5496 return;
5497 }
5498
5499 /* cleanup routine to call from debugger */
5500
5501 void
5502 vm_fault_classify_init(void)
5503 {
5504 int type, level;
5505
5506 for (type = 0; type < VM_FAULT_TYPES_MAX; type++) {
5507 for (level = 0; level < VM_FAULT_LEVEL_MAX; level++) {
5508 vm_fault_stats[type][level] = 0;
5509 }
5510 }
5511
5512 return;
5513 }
5514 #endif /* VM_FAULT_CLASSIFY */
5515
5516
5517 void
5518 vm_page_validate_cs_mapped(
5519 vm_page_t page,
5520 const void *kaddr)
5521 {
5522 vm_object_t object;
5523 vm_object_offset_t offset;
5524 kern_return_t kr;
5525 memory_object_t pager;
5526 void *blobs;
5527 boolean_t validated, tainted;
5528
5529 assert(page->busy);
5530 vm_object_lock_assert_exclusive(page->object);
5531
5532 if (!cs_validation) {
5533 return;
5534 }
5535
5536 if (page->wpmapped && !page->cs_tainted) {
5537 /*
5538 * This page was mapped for "write" access sometime in the
5539 * past and could still be modifiable in the future.
5540 * Consider it tainted.
5541 * [ If the page was already found to be "tainted", no
5542 * need to re-validate. ]
5543 */
5544 page->cs_validated = TRUE;
5545 page->cs_tainted = TRUE;
5546 if (cs_debug) {
5547 printf("CODESIGNING: vm_page_validate_cs: "
5548 "page %p obj %p off 0x%llx "
5549 "was modified\n",
5550 page, page->object, page->offset);
5551 }
5552 vm_cs_validated_dirtied++;
5553 }
5554
5555 if (page->cs_validated) {
5556 return;
5557 }
5558
5559 vm_cs_validates++;
5560
5561 object = page->object;
5562 assert(object->code_signed);
5563 offset = page->offset;
5564
5565 if (!object->alive || object->terminating || object->pager == NULL) {
5566 /*
5567 * The object is terminating and we don't have its pager
5568 * so we can't validate the data...
5569 */
5570 return;
5571 }
5572 /*
5573 * Since we get here to validate a page that was brought in by
5574 * the pager, we know that this pager is all setup and ready
5575 * by now.
5576 */
5577 assert(!object->internal);
5578 assert(object->pager != NULL);
5579 assert(object->pager_ready);
5580
5581 pager = object->pager;
5582 assert(object->paging_in_progress);
5583 kr = vnode_pager_get_object_cs_blobs(pager, &blobs);
5584 if (kr != KERN_SUCCESS) {
5585 blobs = NULL;
5586 }
5587
5588 /* verify the SHA1 hash for this page */
5589 validated = cs_validate_page(blobs,
5590 pager,
5591 offset + object->paging_offset,
5592 (const void *)kaddr,
5593 &tainted);
5594
5595 page->cs_validated = validated;
5596 if (validated) {
5597 page->cs_tainted = tainted;
5598 }
5599 }
5600
5601 extern int panic_on_cs_killed;
5602 void
5603 vm_page_validate_cs(
5604 vm_page_t page)
5605 {
5606 vm_object_t object;
5607 vm_object_offset_t offset;
5608 vm_map_offset_t koffset;
5609 vm_map_size_t ksize;
5610 vm_offset_t kaddr;
5611 kern_return_t kr;
5612 boolean_t busy_page;
5613 boolean_t need_unmap;
5614
5615 vm_object_lock_assert_held(page->object);
5616
5617 if (!cs_validation) {
5618 return;
5619 }
5620
5621 if (page->wpmapped && !page->cs_tainted) {
5622 vm_object_lock_assert_exclusive(page->object);
5623
5624 /*
5625 * This page was mapped for "write" access sometime in the
5626 * past and could still be modifiable in the future.
5627 * Consider it tainted.
5628 * [ If the page was already found to be "tainted", no
5629 * need to re-validate. ]
5630 */
5631 page->cs_validated = TRUE;
5632 page->cs_tainted = TRUE;
5633 if (cs_debug) {
5634 printf("CODESIGNING: vm_page_validate_cs: "
5635 "page %p obj %p off 0x%llx "
5636 "was modified\n",
5637 page, page->object, page->offset);
5638 }
5639 vm_cs_validated_dirtied++;
5640 }
5641
5642 if (page->cs_validated) {
5643 return;
5644 }
5645
5646 if (panic_on_cs_killed &&
5647 page->slid) {
5648 panic("vm_page_validate_cs(%p): page is slid\n", page);
5649 }
5650 assert(!page->slid);
5651
5652 #if CHECK_CS_VALIDATION_BITMAP
5653 if ( vnode_pager_cs_check_validation_bitmap( page->object->pager, trunc_page(page->offset + page->object->paging_offset), CS_BITMAP_CHECK ) == KERN_SUCCESS) {
5654 page->cs_validated = TRUE;
5655 page->cs_tainted = FALSE;
5656 vm_cs_bitmap_validated++;
5657 return;
5658 }
5659 #endif
5660 vm_object_lock_assert_exclusive(page->object);
5661
5662 object = page->object;
5663 assert(object->code_signed);
5664 offset = page->offset;
5665
5666 busy_page = page->busy;
5667 if (!busy_page) {
5668 /* keep page busy while we map (and unlock) the VM object */
5669 page->busy = TRUE;
5670 }
5671
5672 /*
5673 * Take a paging reference on the VM object
5674 * to protect it from collapse or bypass,
5675 * and keep it from disappearing too.
5676 */
5677 vm_object_paging_begin(object);
5678
5679 /* map the page in the kernel address space */
5680 ksize = PAGE_SIZE_64;
5681 koffset = 0;
5682 need_unmap = FALSE;
5683 kr = vm_paging_map_object(page,
5684 object,
5685 offset,
5686 VM_PROT_READ,
5687 FALSE, /* can't unlock object ! */
5688 &ksize,
5689 &koffset,
5690 &need_unmap);
5691 if (kr != KERN_SUCCESS) {
5692 panic("vm_page_validate_cs: could not map page: 0x%x\n", kr);
5693 }
5694 kaddr = CAST_DOWN(vm_offset_t, koffset);
5695
5696 /* validate the mapped page */
5697 vm_page_validate_cs_mapped(page, (const void *) kaddr);
5698
5699 #if CHECK_CS_VALIDATION_BITMAP
5700 if ( page->cs_validated == TRUE && page->cs_tainted == FALSE ) {
5701 vnode_pager_cs_check_validation_bitmap( object->pager, trunc_page( offset + object->paging_offset), CS_BITMAP_SET );
5702 }
5703 #endif
5704 assert(page->busy);
5705 assert(object == page->object);
5706 vm_object_lock_assert_exclusive(object);
5707
5708 if (!busy_page) {
5709 PAGE_WAKEUP_DONE(page);
5710 }
5711 if (need_unmap) {
5712 /* unmap the map from the kernel address space */
5713 vm_paging_unmap_object(object, koffset, koffset + ksize);
5714 koffset = 0;
5715 ksize = 0;
5716 kaddr = 0;
5717 }
5718 vm_object_paging_end(object);
5719 }