]> git.saurik.com Git - apple/xnu.git/blob - bsd/netinet6/mld6.c
xnu-2422.90.20.tar.gz
[apple/xnu.git] / bsd / netinet6 / mld6.c
1 /*
2 * Copyright (c) 2000-2013 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*-
29 * Copyright (c) 2009 Bruce Simpson.
30 *
31 * Redistribution and use in source and binary forms, with or without
32 * modification, are permitted provided that the following conditions
33 * are met:
34 * 1. Redistributions of source code must retain the above copyright
35 * notice, this list of conditions and the following disclaimer.
36 * 2. Redistributions in binary form must reproduce the above copyright
37 * notice, this list of conditions and the following disclaimer in the
38 * documentation and/or other materials provided with the distribution.
39 * 3. The name of the author may not be used to endorse or promote
40 * products derived from this software without specific prior written
41 * permission.
42 *
43 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
44 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
45 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
46 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
47 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
48 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
49 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
50 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
51 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
52 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
53 * SUCH DAMAGE.
54 */
55
56 /*
57 * Copyright (c) 1988 Stephen Deering.
58 * Copyright (c) 1992, 1993
59 * The Regents of the University of California. All rights reserved.
60 *
61 * This code is derived from software contributed to Berkeley by
62 * Stephen Deering of Stanford University.
63 *
64 * Redistribution and use in source and binary forms, with or without
65 * modification, are permitted provided that the following conditions
66 * are met:
67 * 1. Redistributions of source code must retain the above copyright
68 * notice, this list of conditions and the following disclaimer.
69 * 2. Redistributions in binary form must reproduce the above copyright
70 * notice, this list of conditions and the following disclaimer in the
71 * documentation and/or other materials provided with the distribution.
72 * 3. All advertising materials mentioning features or use of this software
73 * must display the following acknowledgement:
74 * This product includes software developed by the University of
75 * California, Berkeley and its contributors.
76 * 4. Neither the name of the University nor the names of its contributors
77 * may be used to endorse or promote products derived from this software
78 * without specific prior written permission.
79 *
80 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
81 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
82 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
83 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
84 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
85 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
86 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
87 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
88 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
89 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
90 * SUCH DAMAGE.
91 *
92 * @(#)igmp.c 8.1 (Berkeley) 7/19/93
93 */
94 /*
95 * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
96 * support for mandatory and extensible security protections. This notice
97 * is included in support of clause 2.2 (b) of the Apple Public License,
98 * Version 2.0.
99 */
100
101 #include <sys/cdefs.h>
102
103 #include <sys/param.h>
104 #include <sys/systm.h>
105 #include <sys/mbuf.h>
106 #include <sys/socket.h>
107 #include <sys/protosw.h>
108 #include <sys/sysctl.h>
109 #include <sys/kernel.h>
110 #include <sys/malloc.h>
111 #include <sys/mcache.h>
112
113 #include <dev/random/randomdev.h>
114
115 #include <kern/zalloc.h>
116
117 #include <net/if.h>
118 #include <net/route.h>
119
120 #include <netinet/in.h>
121 #include <netinet/in_var.h>
122 #include <netinet6/in6_var.h>
123 #include <netinet/ip6.h>
124 #include <netinet6/ip6_var.h>
125 #include <netinet6/scope6_var.h>
126 #include <netinet/icmp6.h>
127 #include <netinet6/mld6.h>
128 #include <netinet6/mld6_var.h>
129
130 /* Lock group and attribute for mld_mtx */
131 static lck_attr_t *mld_mtx_attr;
132 static lck_grp_t *mld_mtx_grp;
133 static lck_grp_attr_t *mld_mtx_grp_attr;
134
135 /*
136 * Locking and reference counting:
137 *
138 * mld_mtx mainly protects mli_head. In cases where both mld_mtx and
139 * in6_multihead_lock must be held, the former must be acquired first in order
140 * to maintain lock ordering. It is not a requirement that mld_mtx be
141 * acquired first before in6_multihead_lock, but in case both must be acquired
142 * in succession, the correct lock ordering must be followed.
143 *
144 * Instead of walking the if_multiaddrs list at the interface and returning
145 * the ifma_protospec value of a matching entry, we search the global list
146 * of in6_multi records and find it that way; this is done with in6_multihead
147 * lock held. Doing so avoids the race condition issues that many other BSDs
148 * suffer from (therefore in our implementation, ifma_protospec will never be
149 * NULL for as long as the in6_multi is valid.)
150 *
151 * The above creates a requirement for the in6_multi to stay in in6_multihead
152 * list even after the final MLD leave (in MLDv2 mode) until no longer needs
153 * be retransmitted (this is not required for MLDv1.) In order to handle
154 * this, the request and reference counts of the in6_multi are bumped up when
155 * the state changes to MLD_LEAVING_MEMBER, and later dropped in the timeout
156 * handler. Each in6_multi holds a reference to the underlying mld_ifinfo.
157 *
158 * Thus, the permitted lock order is:
159 *
160 * mld_mtx, in6_multihead_lock, inm6_lock, mli_lock
161 *
162 * Any may be taken independently, but if any are held at the same time,
163 * the above lock order must be followed.
164 */
165 static decl_lck_mtx_data(, mld_mtx);
166
167 SLIST_HEAD(mld_in6m_relhead, in6_multi);
168
169 static void mli_initvar(struct mld_ifinfo *, struct ifnet *, int);
170 static struct mld_ifinfo *mli_alloc(int);
171 static void mli_free(struct mld_ifinfo *);
172 static void mli_delete(const struct ifnet *, struct mld_in6m_relhead *);
173 static void mld_dispatch_packet(struct mbuf *);
174 static void mld_final_leave(struct in6_multi *, struct mld_ifinfo *,
175 struct mld_tparams *);
176 static int mld_handle_state_change(struct in6_multi *, struct mld_ifinfo *,
177 struct mld_tparams *);
178 static int mld_initial_join(struct in6_multi *, struct mld_ifinfo *,
179 struct mld_tparams *, const int);
180 #ifdef MLD_DEBUG
181 static const char * mld_rec_type_to_str(const int);
182 #endif
183 static uint32_t mld_set_version(struct mld_ifinfo *, const int);
184 static void mld_flush_relq(struct mld_ifinfo *, struct mld_in6m_relhead *);
185 static void mld_dispatch_queue(struct mld_ifinfo *, struct ifqueue *, int);
186 static int mld_v1_input_query(struct ifnet *, const struct ip6_hdr *,
187 /*const*/ struct mld_hdr *);
188 static int mld_v1_input_report(struct ifnet *, struct mbuf *,
189 const struct ip6_hdr *, /*const*/ struct mld_hdr *);
190 static void mld_v1_process_group_timer(struct in6_multi *, const int);
191 static void mld_v1_process_querier_timers(struct mld_ifinfo *);
192 static int mld_v1_transmit_report(struct in6_multi *, const int);
193 static uint32_t mld_v1_update_group(struct in6_multi *, const int);
194 static void mld_v2_cancel_link_timers(struct mld_ifinfo *);
195 static uint32_t mld_v2_dispatch_general_query(struct mld_ifinfo *);
196 static struct mbuf *
197 mld_v2_encap_report(struct ifnet *, struct mbuf *);
198 static int mld_v2_enqueue_filter_change(struct ifqueue *,
199 struct in6_multi *);
200 static int mld_v2_enqueue_group_record(struct ifqueue *,
201 struct in6_multi *, const int, const int, const int,
202 const int);
203 static int mld_v2_input_query(struct ifnet *, const struct ip6_hdr *,
204 struct mbuf *, const int, const int);
205 static int mld_v2_merge_state_changes(struct in6_multi *,
206 struct ifqueue *);
207 static void mld_v2_process_group_timers(struct mld_ifinfo *,
208 struct ifqueue *, struct ifqueue *,
209 struct in6_multi *, const int);
210 static int mld_v2_process_group_query(struct in6_multi *,
211 int, struct mbuf *, const int);
212 static int sysctl_mld_gsr SYSCTL_HANDLER_ARGS;
213 static int sysctl_mld_ifinfo SYSCTL_HANDLER_ARGS;
214 static int sysctl_mld_v2enable SYSCTL_HANDLER_ARGS;
215
216 static int mld_timeout_run; /* MLD timer is scheduled to run */
217 static void mld_timeout(void *);
218 static void mld_sched_timeout(void);
219
220 /*
221 * Normative references: RFC 2710, RFC 3590, RFC 3810.
222 */
223 static struct timeval mld_gsrdelay = {10, 0};
224 static LIST_HEAD(, mld_ifinfo) mli_head;
225
226 static int querier_present_timers_running6;
227 static int interface_timers_running6;
228 static int state_change_timers_running6;
229 static int current_state_timers_running6;
230
231 /*
232 * Subsystem lock macros.
233 */
234 #define MLD_LOCK() \
235 lck_mtx_lock(&mld_mtx)
236 #define MLD_LOCK_ASSERT_HELD() \
237 lck_mtx_assert(&mld_mtx, LCK_MTX_ASSERT_OWNED)
238 #define MLD_LOCK_ASSERT_NOTHELD() \
239 lck_mtx_assert(&mld_mtx, LCK_MTX_ASSERT_NOTOWNED)
240 #define MLD_UNLOCK() \
241 lck_mtx_unlock(&mld_mtx)
242
243 #define MLD_ADD_DETACHED_IN6M(_head, _in6m) { \
244 SLIST_INSERT_HEAD(_head, _in6m, in6m_dtle); \
245 }
246
247 #define MLD_REMOVE_DETACHED_IN6M(_head) { \
248 struct in6_multi *_in6m, *_inm_tmp; \
249 SLIST_FOREACH_SAFE(_in6m, _head, in6m_dtle, _inm_tmp) { \
250 SLIST_REMOVE(_head, _in6m, in6_multi, in6m_dtle); \
251 IN6M_REMREF(_in6m); \
252 } \
253 VERIFY(SLIST_EMPTY(_head)); \
254 }
255
256 #define MLI_ZONE_MAX 64 /* maximum elements in zone */
257 #define MLI_ZONE_NAME "mld_ifinfo" /* zone name */
258
259 static unsigned int mli_size; /* size of zone element */
260 static struct zone *mli_zone; /* zone for mld_ifinfo */
261
262 SYSCTL_DECL(_net_inet6); /* Note: Not in any common header. */
263
264 SYSCTL_NODE(_net_inet6, OID_AUTO, mld, CTLFLAG_RW | CTLFLAG_LOCKED, 0,
265 "IPv6 Multicast Listener Discovery");
266 SYSCTL_PROC(_net_inet6_mld, OID_AUTO, gsrdelay,
267 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
268 &mld_gsrdelay.tv_sec, 0, sysctl_mld_gsr, "I",
269 "Rate limit for MLDv2 Group-and-Source queries in seconds");
270
271 SYSCTL_NODE(_net_inet6_mld, OID_AUTO, ifinfo, CTLFLAG_RD | CTLFLAG_LOCKED,
272 sysctl_mld_ifinfo, "Per-interface MLDv2 state");
273
274 static int mld_v1enable = 1;
275 SYSCTL_INT(_net_inet6_mld, OID_AUTO, v1enable, CTLFLAG_RW | CTLFLAG_LOCKED,
276 &mld_v1enable, 0, "Enable fallback to MLDv1");
277
278 static int mld_v2enable = 1;
279 SYSCTL_PROC(_net_inet6_mld, OID_AUTO, v2enable,
280 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
281 &mld_v2enable, 0, sysctl_mld_v2enable, "I",
282 "Enable MLDv2 (debug purposes only)");
283
284 static int mld_use_allow = 1;
285 SYSCTL_INT(_net_inet6_mld, OID_AUTO, use_allow, CTLFLAG_RW | CTLFLAG_LOCKED,
286 &mld_use_allow, 0, "Use ALLOW/BLOCK for RFC 4604 SSM joins/leaves");
287
288 #ifdef MLD_DEBUG
289 int mld_debug = 0;
290 SYSCTL_INT(_net_inet6_mld, OID_AUTO,
291 debug, CTLFLAG_RW | CTLFLAG_LOCKED, &mld_debug, 0, "");
292 #endif
293 /*
294 * Packed Router Alert option structure declaration.
295 */
296 struct mld_raopt {
297 struct ip6_hbh hbh;
298 struct ip6_opt pad;
299 struct ip6_opt_router ra;
300 } __packed;
301
302 /*
303 * Router Alert hop-by-hop option header.
304 */
305 static struct mld_raopt mld_ra = {
306 .hbh = { 0, 0 },
307 .pad = { .ip6o_type = IP6OPT_PADN, 0 },
308 .ra = {
309 .ip6or_type = (u_int8_t)IP6OPT_ROUTER_ALERT,
310 .ip6or_len = (u_int8_t)(IP6OPT_RTALERT_LEN - 2),
311 .ip6or_value = {((IP6OPT_RTALERT_MLD >> 8) & 0xFF),
312 (IP6OPT_RTALERT_MLD & 0xFF) }
313 }
314 };
315 static struct ip6_pktopts mld_po;
316
317 /* Store MLDv2 record count in the module private scratch space */
318 #define vt_nrecs pkt_mpriv.__mpriv_u.__mpriv32[0].__mpriv32_u.__val16[0]
319
320 static __inline void
321 mld_save_context(struct mbuf *m, struct ifnet *ifp)
322 {
323 m->m_pkthdr.rcvif = ifp;
324 }
325
326 static __inline void
327 mld_scrub_context(struct mbuf *m)
328 {
329 m->m_pkthdr.rcvif = NULL;
330 }
331
332 /*
333 * Restore context from a queued output chain.
334 * Return saved ifp.
335 */
336 static __inline struct ifnet *
337 mld_restore_context(struct mbuf *m)
338 {
339 return (m->m_pkthdr.rcvif);
340 }
341
342 /*
343 * Retrieve or set threshold between group-source queries in seconds.
344 */
345 static int
346 sysctl_mld_gsr SYSCTL_HANDLER_ARGS
347 {
348 #pragma unused(arg1, arg2)
349 int error;
350 int i;
351
352 MLD_LOCK();
353
354 i = mld_gsrdelay.tv_sec;
355
356 error = sysctl_handle_int(oidp, &i, 0, req);
357 if (error || !req->newptr)
358 goto out_locked;
359
360 if (i < -1 || i >= 60) {
361 error = EINVAL;
362 goto out_locked;
363 }
364
365 mld_gsrdelay.tv_sec = i;
366
367 out_locked:
368 MLD_UNLOCK();
369 return (error);
370 }
371 /*
372 * Expose struct mld_ifinfo to userland, keyed by ifindex.
373 * For use by ifmcstat(8).
374 *
375 */
376 static int
377 sysctl_mld_ifinfo SYSCTL_HANDLER_ARGS
378 {
379 #pragma unused(oidp)
380 int *name;
381 int error;
382 u_int namelen;
383 struct ifnet *ifp;
384 struct mld_ifinfo *mli;
385 struct mld_ifinfo_u mli_u;
386
387 name = (int *)arg1;
388 namelen = arg2;
389
390 if (req->newptr != USER_ADDR_NULL)
391 return (EPERM);
392
393 if (namelen != 1)
394 return (EINVAL);
395
396 MLD_LOCK();
397
398 if (name[0] <= 0 || name[0] > (u_int)if_index) {
399 error = ENOENT;
400 goto out_locked;
401 }
402
403 error = ENOENT;
404
405 ifnet_head_lock_shared();
406 ifp = ifindex2ifnet[name[0]];
407 ifnet_head_done();
408 if (ifp == NULL)
409 goto out_locked;
410
411 bzero(&mli_u, sizeof (mli_u));
412
413 LIST_FOREACH(mli, &mli_head, mli_link) {
414 MLI_LOCK(mli);
415 if (ifp != mli->mli_ifp) {
416 MLI_UNLOCK(mli);
417 continue;
418 }
419
420 mli_u.mli_ifindex = mli->mli_ifp->if_index;
421 mli_u.mli_version = mli->mli_version;
422 mli_u.mli_v1_timer = mli->mli_v1_timer;
423 mli_u.mli_v2_timer = mli->mli_v2_timer;
424 mli_u.mli_flags = mli->mli_flags;
425 mli_u.mli_rv = mli->mli_rv;
426 mli_u.mli_qi = mli->mli_qi;
427 mli_u.mli_qri = mli->mli_qri;
428 mli_u.mli_uri = mli->mli_uri;
429 MLI_UNLOCK(mli);
430
431 error = SYSCTL_OUT(req, &mli_u, sizeof (mli_u));
432 break;
433 }
434
435 out_locked:
436 MLD_UNLOCK();
437 return (error);
438 }
439
440 static int
441 sysctl_mld_v2enable SYSCTL_HANDLER_ARGS
442 {
443 #pragma unused(arg1, arg2)
444 int error;
445 int i;
446 struct mld_ifinfo *mli;
447 struct mld_tparams mtp = { 0, 0, 0, 0 };
448
449 MLD_LOCK();
450
451 i = mld_v2enable;
452
453 error = sysctl_handle_int(oidp, &i, 0, req);
454 if (error || !req->newptr)
455 goto out_locked;
456
457 if (i < 0 || i > 1) {
458 error = EINVAL;
459 goto out_locked;
460 }
461
462 mld_v2enable = i;
463 /*
464 * If we enabled v2, the state transition will take care of upgrading
465 * the MLD version back to v2. Otherwise, we have to explicitly
466 * downgrade. Note that this functionality is to be used for debugging.
467 */
468 if (mld_v2enable == 1)
469 goto out_locked;
470
471 LIST_FOREACH(mli, &mli_head, mli_link) {
472 MLI_LOCK(mli);
473 if (mld_set_version(mli, MLD_VERSION_1) > 0)
474 mtp.qpt = 1;
475 MLI_UNLOCK(mli);
476 }
477
478 out_locked:
479 MLD_UNLOCK();
480
481 mld_set_timeout(&mtp);
482
483 return (error);
484 }
485
486 /*
487 * Dispatch an entire queue of pending packet chains.
488 *
489 * Must not be called with in6m_lock held.
490 */
491 static void
492 mld_dispatch_queue(struct mld_ifinfo *mli, struct ifqueue *ifq, int limit)
493 {
494 struct mbuf *m;
495
496 if (mli != NULL)
497 MLI_LOCK_ASSERT_HELD(mli);
498
499 for (;;) {
500 IF_DEQUEUE(ifq, m);
501 if (m == NULL)
502 break;
503 MLD_PRINTF(("%s: dispatch 0x%llx from 0x%llx\n", __func__,
504 (uint64_t)VM_KERNEL_ADDRPERM(ifq),
505 (uint64_t)VM_KERNEL_ADDRPERM(m)));
506 if (mli != NULL)
507 MLI_UNLOCK(mli);
508 mld_dispatch_packet(m);
509 if (mli != NULL)
510 MLI_LOCK(mli);
511 if (--limit == 0)
512 break;
513 }
514
515 if (mli != NULL)
516 MLI_LOCK_ASSERT_HELD(mli);
517 }
518
519 /*
520 * Filter outgoing MLD report state by group.
521 *
522 * Reports are ALWAYS suppressed for ALL-HOSTS (ff02::1)
523 * and node-local addresses. However, kernel and socket consumers
524 * always embed the KAME scope ID in the address provided, so strip it
525 * when performing comparison.
526 * Note: This is not the same as the *multicast* scope.
527 *
528 * Return zero if the given group is one for which MLD reports
529 * should be suppressed, or non-zero if reports should be issued.
530 */
531 static __inline__ int
532 mld_is_addr_reported(const struct in6_addr *addr)
533 {
534
535 VERIFY(IN6_IS_ADDR_MULTICAST(addr));
536
537 if (IPV6_ADDR_MC_SCOPE(addr) == IPV6_ADDR_SCOPE_NODELOCAL)
538 return (0);
539
540 if (IPV6_ADDR_MC_SCOPE(addr) == IPV6_ADDR_SCOPE_LINKLOCAL) {
541 struct in6_addr tmp = *addr;
542 in6_clearscope(&tmp);
543 if (IN6_ARE_ADDR_EQUAL(&tmp, &in6addr_linklocal_allnodes))
544 return (0);
545 }
546
547 return (1);
548 }
549
550 /*
551 * Attach MLD when PF_INET6 is attached to an interface.
552 */
553 struct mld_ifinfo *
554 mld_domifattach(struct ifnet *ifp, int how)
555 {
556 struct mld_ifinfo *mli;
557
558 MLD_PRINTF(("%s: called for ifp 0x%llx(%s)\n", __func__,
559 (uint64_t)VM_KERNEL_ADDRPERM(ifp), if_name(ifp)));
560
561 mli = mli_alloc(how);
562 if (mli == NULL)
563 return (NULL);
564
565 MLD_LOCK();
566
567 MLI_LOCK(mli);
568 mli_initvar(mli, ifp, 0);
569 mli->mli_debug |= IFD_ATTACHED;
570 MLI_ADDREF_LOCKED(mli); /* hold a reference for mli_head */
571 MLI_ADDREF_LOCKED(mli); /* hold a reference for caller */
572 MLI_UNLOCK(mli);
573 ifnet_lock_shared(ifp);
574 mld6_initsilent(ifp, mli);
575 ifnet_lock_done(ifp);
576
577 LIST_INSERT_HEAD(&mli_head, mli, mli_link);
578
579 MLD_UNLOCK();
580
581 MLD_PRINTF(("%s: allocate mld_ifinfo for ifp 0x%llx(%s)\n",
582 __func__, (uint64_t)VM_KERNEL_ADDRPERM(ifp), if_name(ifp)));
583
584 return (mli);
585 }
586
587 /*
588 * Attach MLD when PF_INET6 is reattached to an interface. Caller is
589 * expected to have an outstanding reference to the mli.
590 */
591 void
592 mld_domifreattach(struct mld_ifinfo *mli)
593 {
594 struct ifnet *ifp;
595
596 MLD_LOCK();
597
598 MLI_LOCK(mli);
599 VERIFY(!(mli->mli_debug & IFD_ATTACHED));
600 ifp = mli->mli_ifp;
601 VERIFY(ifp != NULL);
602 mli_initvar(mli, ifp, 1);
603 mli->mli_debug |= IFD_ATTACHED;
604 MLI_ADDREF_LOCKED(mli); /* hold a reference for mli_head */
605 MLI_UNLOCK(mli);
606 ifnet_lock_shared(ifp);
607 mld6_initsilent(ifp, mli);
608 ifnet_lock_done(ifp);
609
610 LIST_INSERT_HEAD(&mli_head, mli, mli_link);
611
612 MLD_UNLOCK();
613
614 MLD_PRINTF(("%s: reattached mld_ifinfo for ifp 0x%llx(%s)\n",
615 __func__, (uint64_t)VM_KERNEL_ADDRPERM(ifp), if_name(ifp)));
616 }
617
618 /*
619 * Hook for domifdetach.
620 */
621 void
622 mld_domifdetach(struct ifnet *ifp)
623 {
624 SLIST_HEAD(, in6_multi) in6m_dthead;
625
626 SLIST_INIT(&in6m_dthead);
627
628 MLD_PRINTF(("%s: called for ifp 0x%llx(%s)\n", __func__,
629 (uint64_t)VM_KERNEL_ADDRPERM(ifp), if_name(ifp)));
630
631 MLD_LOCK();
632 mli_delete(ifp, (struct mld_in6m_relhead *)&in6m_dthead);
633 MLD_UNLOCK();
634
635 /* Now that we're dropped all locks, release detached records */
636 MLD_REMOVE_DETACHED_IN6M(&in6m_dthead);
637 }
638
639 /*
640 * Called at interface detach time. Note that we only flush all deferred
641 * responses and record releases; all remaining inm records and their source
642 * entries related to this interface are left intact, in order to handle
643 * the reattach case.
644 */
645 static void
646 mli_delete(const struct ifnet *ifp, struct mld_in6m_relhead *in6m_dthead)
647 {
648 struct mld_ifinfo *mli, *tmli;
649
650 MLD_LOCK_ASSERT_HELD();
651
652 LIST_FOREACH_SAFE(mli, &mli_head, mli_link, tmli) {
653 MLI_LOCK(mli);
654 if (mli->mli_ifp == ifp) {
655 /*
656 * Free deferred General Query responses.
657 */
658 IF_DRAIN(&mli->mli_gq);
659 IF_DRAIN(&mli->mli_v1q);
660 mld_flush_relq(mli, in6m_dthead);
661 VERIFY(SLIST_EMPTY(&mli->mli_relinmhead));
662 mli->mli_debug &= ~IFD_ATTACHED;
663 MLI_UNLOCK(mli);
664
665 LIST_REMOVE(mli, mli_link);
666 MLI_REMREF(mli); /* release mli_head reference */
667 return;
668 }
669 MLI_UNLOCK(mli);
670 }
671 panic("%s: mld_ifinfo not found for ifp %p(%s)\n", __func__,
672 ifp, ifp->if_xname);
673 }
674
675 __private_extern__ void
676 mld6_initsilent(struct ifnet *ifp, struct mld_ifinfo *mli)
677 {
678 ifnet_lock_assert(ifp, IFNET_LCK_ASSERT_OWNED);
679
680 MLI_LOCK_ASSERT_NOTHELD(mli);
681 MLI_LOCK(mli);
682 if (!(ifp->if_flags & IFF_MULTICAST) &&
683 (ifp->if_eflags & (IFEF_IPV6_ND6ALT|IFEF_LOCALNET_PRIVATE)))
684 mli->mli_flags |= MLIF_SILENT;
685 else
686 mli->mli_flags &= ~MLIF_SILENT;
687 MLI_UNLOCK(mli);
688 }
689
690 static void
691 mli_initvar(struct mld_ifinfo *mli, struct ifnet *ifp, int reattach)
692 {
693 MLI_LOCK_ASSERT_HELD(mli);
694
695 mli->mli_ifp = ifp;
696 if (mld_v2enable)
697 mli->mli_version = MLD_VERSION_2;
698 else
699 mli->mli_version = MLD_VERSION_1;
700 mli->mli_flags = 0;
701 mli->mli_rv = MLD_RV_INIT;
702 mli->mli_qi = MLD_QI_INIT;
703 mli->mli_qri = MLD_QRI_INIT;
704 mli->mli_uri = MLD_URI_INIT;
705
706 if (mld_use_allow)
707 mli->mli_flags |= MLIF_USEALLOW;
708 if (!reattach)
709 SLIST_INIT(&mli->mli_relinmhead);
710
711 /*
712 * Responses to general queries are subject to bounds.
713 */
714 mli->mli_gq.ifq_maxlen = MLD_MAX_RESPONSE_PACKETS;
715 mli->mli_v1q.ifq_maxlen = MLD_MAX_RESPONSE_PACKETS;
716 }
717
718 static struct mld_ifinfo *
719 mli_alloc(int how)
720 {
721 struct mld_ifinfo *mli;
722
723 mli = (how == M_WAITOK) ? zalloc(mli_zone) : zalloc_noblock(mli_zone);
724 if (mli != NULL) {
725 bzero(mli, mli_size);
726 lck_mtx_init(&mli->mli_lock, mld_mtx_grp, mld_mtx_attr);
727 mli->mli_debug |= IFD_ALLOC;
728 }
729 return (mli);
730 }
731
732 static void
733 mli_free(struct mld_ifinfo *mli)
734 {
735 MLI_LOCK(mli);
736 if (mli->mli_debug & IFD_ATTACHED) {
737 panic("%s: attached mli=%p is being freed", __func__, mli);
738 /* NOTREACHED */
739 } else if (mli->mli_ifp != NULL) {
740 panic("%s: ifp not NULL for mli=%p", __func__, mli);
741 /* NOTREACHED */
742 } else if (!(mli->mli_debug & IFD_ALLOC)) {
743 panic("%s: mli %p cannot be freed", __func__, mli);
744 /* NOTREACHED */
745 } else if (mli->mli_refcnt != 0) {
746 panic("%s: non-zero refcnt mli=%p", __func__, mli);
747 /* NOTREACHED */
748 }
749 mli->mli_debug &= ~IFD_ALLOC;
750 MLI_UNLOCK(mli);
751
752 lck_mtx_destroy(&mli->mli_lock, mld_mtx_grp);
753 zfree(mli_zone, mli);
754 }
755
756 void
757 mli_addref(struct mld_ifinfo *mli, int locked)
758 {
759 if (!locked)
760 MLI_LOCK_SPIN(mli);
761 else
762 MLI_LOCK_ASSERT_HELD(mli);
763
764 if (++mli->mli_refcnt == 0) {
765 panic("%s: mli=%p wraparound refcnt", __func__, mli);
766 /* NOTREACHED */
767 }
768 if (!locked)
769 MLI_UNLOCK(mli);
770 }
771
772 void
773 mli_remref(struct mld_ifinfo *mli)
774 {
775 SLIST_HEAD(, in6_multi) in6m_dthead;
776 struct ifnet *ifp;
777
778 MLI_LOCK_SPIN(mli);
779
780 if (mli->mli_refcnt == 0) {
781 panic("%s: mli=%p negative refcnt", __func__, mli);
782 /* NOTREACHED */
783 }
784
785 --mli->mli_refcnt;
786 if (mli->mli_refcnt > 0) {
787 MLI_UNLOCK(mli);
788 return;
789 }
790
791 ifp = mli->mli_ifp;
792 mli->mli_ifp = NULL;
793 IF_DRAIN(&mli->mli_gq);
794 IF_DRAIN(&mli->mli_v1q);
795 SLIST_INIT(&in6m_dthead);
796 mld_flush_relq(mli, (struct mld_in6m_relhead *)&in6m_dthead);
797 VERIFY(SLIST_EMPTY(&mli->mli_relinmhead));
798 MLI_UNLOCK(mli);
799
800 /* Now that we're dropped all locks, release detached records */
801 MLD_REMOVE_DETACHED_IN6M(&in6m_dthead);
802
803 MLD_PRINTF(("%s: freeing mld_ifinfo for ifp 0x%llx(%s)\n",
804 __func__, (uint64_t)VM_KERNEL_ADDRPERM(ifp), if_name(ifp)));
805
806 mli_free(mli);
807 }
808
809 /*
810 * Process a received MLDv1 general or address-specific query.
811 * Assumes that the query header has been pulled up to sizeof(mld_hdr).
812 *
813 * NOTE: Can't be fully const correct as we temporarily embed scope ID in
814 * mld_addr. This is OK as we own the mbuf chain.
815 */
816 static int
817 mld_v1_input_query(struct ifnet *ifp, const struct ip6_hdr *ip6,
818 /*const*/ struct mld_hdr *mld)
819 {
820 struct mld_ifinfo *mli;
821 struct in6_multi *inm;
822 int err = 0, is_general_query;
823 uint16_t timer;
824 struct mld_tparams mtp = { 0, 0, 0, 0 };
825
826 MLD_LOCK_ASSERT_NOTHELD();
827
828 is_general_query = 0;
829
830 if (!mld_v1enable) {
831 MLD_PRINTF(("%s: ignore v1 query %s on ifp 0x%llx(%s)\n",
832 __func__, ip6_sprintf(&mld->mld_addr),
833 (uint64_t)VM_KERNEL_ADDRPERM(ifp), if_name(ifp)));
834 goto done;
835 }
836
837 /*
838 * RFC3810 Section 6.2: MLD queries must originate from
839 * a router's link-local address.
840 */
841 if (!IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) {
842 MLD_PRINTF(("%s: ignore v1 query src %s on ifp 0x%llx(%s)\n",
843 __func__, ip6_sprintf(&ip6->ip6_src),
844 (uint64_t)VM_KERNEL_ADDRPERM(ifp), if_name(ifp)));
845 goto done;
846 }
847
848 /*
849 * Do address field validation upfront before we accept
850 * the query.
851 */
852 if (IN6_IS_ADDR_UNSPECIFIED(&mld->mld_addr)) {
853 /*
854 * MLDv1 General Query.
855 * If this was not sent to the all-nodes group, ignore it.
856 */
857 struct in6_addr dst;
858
859 dst = ip6->ip6_dst;
860 in6_clearscope(&dst);
861 if (!IN6_ARE_ADDR_EQUAL(&dst, &in6addr_linklocal_allnodes)) {
862 err = EINVAL;
863 goto done;
864 }
865 is_general_query = 1;
866 } else {
867 /*
868 * Embed scope ID of receiving interface in MLD query for
869 * lookup whilst we don't hold other locks.
870 */
871 in6_setscope(&mld->mld_addr, ifp, NULL);
872 }
873
874 /*
875 * Switch to MLDv1 host compatibility mode.
876 */
877 mli = MLD_IFINFO(ifp);
878 VERIFY(mli != NULL);
879
880 MLI_LOCK(mli);
881 mtp.qpt = mld_set_version(mli, MLD_VERSION_1);
882 MLI_UNLOCK(mli);
883
884 timer = ntohs(mld->mld_maxdelay) / MLD_TIMER_SCALE;
885 if (timer == 0)
886 timer = 1;
887
888 if (is_general_query) {
889 struct in6_multistep step;
890
891 MLD_PRINTF(("%s: process v1 general query on ifp 0x%llx(%s)\n",
892 __func__, (uint64_t)VM_KERNEL_ADDRPERM(ifp), if_name(ifp)));
893 /*
894 * For each reporting group joined on this
895 * interface, kick the report timer.
896 */
897 in6_multihead_lock_shared();
898 IN6_FIRST_MULTI(step, inm);
899 while (inm != NULL) {
900 IN6M_LOCK(inm);
901 if (inm->in6m_ifp == ifp)
902 mtp.cst += mld_v1_update_group(inm, timer);
903 IN6M_UNLOCK(inm);
904 IN6_NEXT_MULTI(step, inm);
905 }
906 in6_multihead_lock_done();
907 } else {
908 /*
909 * MLDv1 Group-Specific Query.
910 * If this is a group-specific MLDv1 query, we need only
911 * look up the single group to process it.
912 */
913 in6_multihead_lock_shared();
914 IN6_LOOKUP_MULTI(&mld->mld_addr, ifp, inm);
915 in6_multihead_lock_done();
916
917 if (inm != NULL) {
918 IN6M_LOCK(inm);
919 MLD_PRINTF(("%s: process v1 query %s on "
920 "ifp 0x%llx(%s)\n", __func__,
921 ip6_sprintf(&mld->mld_addr),
922 (uint64_t)VM_KERNEL_ADDRPERM(ifp), if_name(ifp)));
923 mtp.cst = mld_v1_update_group(inm, timer);
924 IN6M_UNLOCK(inm);
925 IN6M_REMREF(inm); /* from IN6_LOOKUP_MULTI */
926 }
927 /* XXX Clear embedded scope ID as userland won't expect it. */
928 in6_clearscope(&mld->mld_addr);
929 }
930 done:
931 mld_set_timeout(&mtp);
932
933 return (err);
934 }
935
936 /*
937 * Update the report timer on a group in response to an MLDv1 query.
938 *
939 * If we are becoming the reporting member for this group, start the timer.
940 * If we already are the reporting member for this group, and timer is
941 * below the threshold, reset it.
942 *
943 * We may be updating the group for the first time since we switched
944 * to MLDv2. If we are, then we must clear any recorded source lists,
945 * and transition to REPORTING state; the group timer is overloaded
946 * for group and group-source query responses.
947 *
948 * Unlike MLDv2, the delay per group should be jittered
949 * to avoid bursts of MLDv1 reports.
950 */
951 static uint32_t
952 mld_v1_update_group(struct in6_multi *inm, const int timer)
953 {
954 IN6M_LOCK_ASSERT_HELD(inm);
955
956 MLD_PRINTF(("%s: %s/%s timer=%d\n", __func__,
957 ip6_sprintf(&inm->in6m_addr),
958 if_name(inm->in6m_ifp), timer));
959
960 switch (inm->in6m_state) {
961 case MLD_NOT_MEMBER:
962 case MLD_SILENT_MEMBER:
963 break;
964 case MLD_REPORTING_MEMBER:
965 if (inm->in6m_timer != 0 &&
966 inm->in6m_timer <= timer) {
967 MLD_PRINTF(("%s: REPORTING and timer running, "
968 "skipping.\n", __func__));
969 break;
970 }
971 /* FALLTHROUGH */
972 case MLD_SG_QUERY_PENDING_MEMBER:
973 case MLD_G_QUERY_PENDING_MEMBER:
974 case MLD_IDLE_MEMBER:
975 case MLD_LAZY_MEMBER:
976 case MLD_AWAKENING_MEMBER:
977 MLD_PRINTF(("%s: ->REPORTING\n", __func__));
978 inm->in6m_state = MLD_REPORTING_MEMBER;
979 inm->in6m_timer = MLD_RANDOM_DELAY(timer);
980 break;
981 case MLD_SLEEPING_MEMBER:
982 MLD_PRINTF(("%s: ->AWAKENING\n", __func__));
983 inm->in6m_state = MLD_AWAKENING_MEMBER;
984 break;
985 case MLD_LEAVING_MEMBER:
986 break;
987 }
988
989 return (inm->in6m_timer);
990 }
991
992 /*
993 * Process a received MLDv2 general, group-specific or
994 * group-and-source-specific query.
995 *
996 * Assumes that the query header has been pulled up to sizeof(mldv2_query).
997 *
998 * Return 0 if successful, otherwise an appropriate error code is returned.
999 */
1000 static int
1001 mld_v2_input_query(struct ifnet *ifp, const struct ip6_hdr *ip6,
1002 struct mbuf *m, const int off, const int icmp6len)
1003 {
1004 struct mld_ifinfo *mli;
1005 struct mldv2_query *mld;
1006 struct in6_multi *inm;
1007 uint32_t maxdelay, nsrc, qqi;
1008 int err = 0, is_general_query;
1009 uint16_t timer;
1010 uint8_t qrv;
1011 struct mld_tparams mtp = { 0, 0, 0, 0 };
1012
1013 MLD_LOCK_ASSERT_NOTHELD();
1014
1015 is_general_query = 0;
1016
1017 if (!mld_v2enable) {
1018 MLD_PRINTF(("%s: ignore v2 query %s on ifp 0x%llx(%s)\n",
1019 __func__, ip6_sprintf(&ip6->ip6_src),
1020 (uint64_t)VM_KERNEL_ADDRPERM(ifp), if_name(ifp)));
1021 goto done;
1022 }
1023
1024 /*
1025 * RFC3810 Section 6.2: MLD queries must originate from
1026 * a router's link-local address.
1027 */
1028 if (!IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) {
1029 MLD_PRINTF(("%s: ignore v1 query src %s on ifp 0x%llx(%s)\n",
1030 __func__, ip6_sprintf(&ip6->ip6_src),
1031 (uint64_t)VM_KERNEL_ADDRPERM(ifp), if_name(ifp)));
1032 goto done;
1033 }
1034
1035 MLD_PRINTF(("%s: input v2 query on ifp 0x%llx(%s)\n", __func__,
1036 (uint64_t)VM_KERNEL_ADDRPERM(ifp), if_name(ifp)));
1037
1038 mld = (struct mldv2_query *)(mtod(m, uint8_t *) + off);
1039
1040 maxdelay = ntohs(mld->mld_maxdelay); /* in 1/10ths of a second */
1041 if (maxdelay >= 32768) {
1042 maxdelay = (MLD_MRC_MANT(maxdelay) | 0x1000) <<
1043 (MLD_MRC_EXP(maxdelay) + 3);
1044 }
1045 timer = maxdelay / MLD_TIMER_SCALE;
1046 if (timer == 0)
1047 timer = 1;
1048
1049 qrv = MLD_QRV(mld->mld_misc);
1050 if (qrv < 2) {
1051 MLD_PRINTF(("%s: clamping qrv %d to %d\n", __func__,
1052 qrv, MLD_RV_INIT));
1053 qrv = MLD_RV_INIT;
1054 }
1055
1056 qqi = mld->mld_qqi;
1057 if (qqi >= 128) {
1058 qqi = MLD_QQIC_MANT(mld->mld_qqi) <<
1059 (MLD_QQIC_EXP(mld->mld_qqi) + 3);
1060 }
1061
1062 nsrc = ntohs(mld->mld_numsrc);
1063 if (nsrc > MLD_MAX_GS_SOURCES) {
1064 err = EMSGSIZE;
1065 goto done;
1066 }
1067 if (icmp6len < sizeof(struct mldv2_query) +
1068 (nsrc * sizeof(struct in6_addr))) {
1069 err = EMSGSIZE;
1070 goto done;
1071 }
1072
1073 /*
1074 * Do further input validation upfront to avoid resetting timers
1075 * should we need to discard this query.
1076 */
1077 if (IN6_IS_ADDR_UNSPECIFIED(&mld->mld_addr)) {
1078 /*
1079 * A general query with a source list has undefined
1080 * behaviour; discard it.
1081 */
1082 if (nsrc > 0) {
1083 err = EINVAL;
1084 goto done;
1085 }
1086 is_general_query = 1;
1087 } else {
1088 /*
1089 * Embed scope ID of receiving interface in MLD query for
1090 * lookup whilst we don't hold other locks (due to KAME
1091 * locking lameness). We own this mbuf chain just now.
1092 */
1093 in6_setscope(&mld->mld_addr, ifp, NULL);
1094 }
1095
1096 mli = MLD_IFINFO(ifp);
1097 VERIFY(mli != NULL);
1098
1099 MLI_LOCK(mli);
1100 /*
1101 * Discard the v2 query if we're in Compatibility Mode.
1102 * The RFC is pretty clear that hosts need to stay in MLDv1 mode
1103 * until the Old Version Querier Present timer expires.
1104 */
1105 if (mli->mli_version != MLD_VERSION_2) {
1106 MLI_UNLOCK(mli);
1107 goto done;
1108 }
1109
1110 mtp.qpt = mld_set_version(mli, MLD_VERSION_2);
1111 mli->mli_rv = qrv;
1112 mli->mli_qi = qqi;
1113 mli->mli_qri = MAX(timer, MLD_QRI_MIN);
1114
1115 MLD_PRINTF(("%s: qrv %d qi %d qri %d\n", __func__, mli->mli_rv,
1116 mli->mli_qi, mli->mli_qri));
1117
1118 if (is_general_query) {
1119 /*
1120 * MLDv2 General Query.
1121 *
1122 * Schedule a current-state report on this ifp for
1123 * all groups, possibly containing source lists.
1124 *
1125 * If there is a pending General Query response
1126 * scheduled earlier than the selected delay, do
1127 * not schedule any other reports.
1128 * Otherwise, reset the interface timer.
1129 */
1130 MLD_PRINTF(("%s: process v2 general query on ifp 0x%llx(%s)\n",
1131 __func__, (uint64_t)VM_KERNEL_ADDRPERM(ifp), if_name(ifp)));
1132 if (mli->mli_v2_timer == 0 || mli->mli_v2_timer >= timer) {
1133 mtp.it = mli->mli_v2_timer = MLD_RANDOM_DELAY(timer);
1134 }
1135 MLI_UNLOCK(mli);
1136 } else {
1137 MLI_UNLOCK(mli);
1138 /*
1139 * MLDv2 Group-specific or Group-and-source-specific Query.
1140 *
1141 * Group-source-specific queries are throttled on
1142 * a per-group basis to defeat denial-of-service attempts.
1143 * Queries for groups we are not a member of on this
1144 * link are simply ignored.
1145 */
1146 in6_multihead_lock_shared();
1147 IN6_LOOKUP_MULTI(&mld->mld_addr, ifp, inm);
1148 in6_multihead_lock_done();
1149 if (inm == NULL)
1150 goto done;
1151
1152 IN6M_LOCK(inm);
1153 if (nsrc > 0) {
1154 if (!ratecheck(&inm->in6m_lastgsrtv,
1155 &mld_gsrdelay)) {
1156 MLD_PRINTF(("%s: GS query throttled.\n",
1157 __func__));
1158 IN6M_UNLOCK(inm);
1159 IN6M_REMREF(inm); /* from IN6_LOOKUP_MULTI */
1160 goto done;
1161 }
1162 }
1163 MLD_PRINTF(("%s: process v2 group query on ifp 0x%llx(%s)\n",
1164 __func__, (uint64_t)VM_KERNEL_ADDRPERM(ifp), if_name(ifp)));
1165 /*
1166 * If there is a pending General Query response
1167 * scheduled sooner than the selected delay, no
1168 * further report need be scheduled.
1169 * Otherwise, prepare to respond to the
1170 * group-specific or group-and-source query.
1171 */
1172 MLI_LOCK(mli);
1173 mtp.it = mli->mli_v2_timer;
1174 MLI_UNLOCK(mli);
1175 if (mtp.it == 0 || mtp.it >= timer) {
1176 (void) mld_v2_process_group_query(inm, timer, m, off);
1177 mtp.cst = inm->in6m_timer;
1178 }
1179 IN6M_UNLOCK(inm);
1180 IN6M_REMREF(inm); /* from IN6_LOOKUP_MULTI */
1181 /* XXX Clear embedded scope ID as userland won't expect it. */
1182 in6_clearscope(&mld->mld_addr);
1183 }
1184 done:
1185 if (mtp.it > 0) {
1186 MLD_PRINTF(("%s: v2 general query response scheduled in "
1187 "T+%d seconds on ifp 0x%llx(%s)\n", __func__, mtp.it,
1188 (uint64_t)VM_KERNEL_ADDRPERM(ifp), if_name(ifp)));
1189 }
1190 mld_set_timeout(&mtp);
1191
1192 return (err);
1193 }
1194
1195 /*
1196 * Process a recieved MLDv2 group-specific or group-and-source-specific
1197 * query.
1198 * Return <0 if any error occured. Currently this is ignored.
1199 */
1200 static int
1201 mld_v2_process_group_query(struct in6_multi *inm, int timer, struct mbuf *m0,
1202 const int off)
1203 {
1204 struct mldv2_query *mld;
1205 int retval;
1206 uint16_t nsrc;
1207
1208 IN6M_LOCK_ASSERT_HELD(inm);
1209
1210 retval = 0;
1211 mld = (struct mldv2_query *)(mtod(m0, uint8_t *) + off);
1212
1213 switch (inm->in6m_state) {
1214 case MLD_NOT_MEMBER:
1215 case MLD_SILENT_MEMBER:
1216 case MLD_SLEEPING_MEMBER:
1217 case MLD_LAZY_MEMBER:
1218 case MLD_AWAKENING_MEMBER:
1219 case MLD_IDLE_MEMBER:
1220 case MLD_LEAVING_MEMBER:
1221 return (retval);
1222 break;
1223 case MLD_REPORTING_MEMBER:
1224 case MLD_G_QUERY_PENDING_MEMBER:
1225 case MLD_SG_QUERY_PENDING_MEMBER:
1226 break;
1227 }
1228
1229 nsrc = ntohs(mld->mld_numsrc);
1230
1231 /*
1232 * Deal with group-specific queries upfront.
1233 * If any group query is already pending, purge any recorded
1234 * source-list state if it exists, and schedule a query response
1235 * for this group-specific query.
1236 */
1237 if (nsrc == 0) {
1238 if (inm->in6m_state == MLD_G_QUERY_PENDING_MEMBER ||
1239 inm->in6m_state == MLD_SG_QUERY_PENDING_MEMBER) {
1240 in6m_clear_recorded(inm);
1241 timer = min(inm->in6m_timer, timer);
1242 }
1243 inm->in6m_state = MLD_G_QUERY_PENDING_MEMBER;
1244 inm->in6m_timer = MLD_RANDOM_DELAY(timer);
1245 return (retval);
1246 }
1247
1248 /*
1249 * Deal with the case where a group-and-source-specific query has
1250 * been received but a group-specific query is already pending.
1251 */
1252 if (inm->in6m_state == MLD_G_QUERY_PENDING_MEMBER) {
1253 timer = min(inm->in6m_timer, timer);
1254 inm->in6m_timer = MLD_RANDOM_DELAY(timer);
1255 return (retval);
1256 }
1257
1258 /*
1259 * Finally, deal with the case where a group-and-source-specific
1260 * query has been received, where a response to a previous g-s-r
1261 * query exists, or none exists.
1262 * In this case, we need to parse the source-list which the Querier
1263 * has provided us with and check if we have any source list filter
1264 * entries at T1 for these sources. If we do not, there is no need
1265 * schedule a report and the query may be dropped.
1266 * If we do, we must record them and schedule a current-state
1267 * report for those sources.
1268 */
1269 if (inm->in6m_nsrc > 0) {
1270 struct mbuf *m;
1271 uint8_t *sp;
1272 int i, nrecorded;
1273 int soff;
1274
1275 m = m0;
1276 soff = off + sizeof(struct mldv2_query);
1277 nrecorded = 0;
1278 for (i = 0; i < nsrc; i++) {
1279 sp = mtod(m, uint8_t *) + soff;
1280 retval = in6m_record_source(inm,
1281 (const struct in6_addr *)(void *)sp);
1282 if (retval < 0)
1283 break;
1284 nrecorded += retval;
1285 soff += sizeof(struct in6_addr);
1286 if (soff >= m->m_len) {
1287 soff = soff - m->m_len;
1288 m = m->m_next;
1289 if (m == NULL)
1290 break;
1291 }
1292 }
1293 if (nrecorded > 0) {
1294 MLD_PRINTF(( "%s: schedule response to SG query\n",
1295 __func__));
1296 inm->in6m_state = MLD_SG_QUERY_PENDING_MEMBER;
1297 inm->in6m_timer = MLD_RANDOM_DELAY(timer);
1298 }
1299 }
1300
1301 return (retval);
1302 }
1303
1304 /*
1305 * Process a received MLDv1 host membership report.
1306 * Assumes mld points to mld_hdr in pulled up mbuf chain.
1307 *
1308 * NOTE: Can't be fully const correct as we temporarily embed scope ID in
1309 * mld_addr. This is OK as we own the mbuf chain.
1310 */
1311 static int
1312 mld_v1_input_report(struct ifnet *ifp, struct mbuf *m,
1313 const struct ip6_hdr *ip6, /*const*/ struct mld_hdr *mld)
1314 {
1315 struct in6_addr src, dst;
1316 struct in6_ifaddr *ia;
1317 struct in6_multi *inm;
1318
1319 if (!mld_v1enable) {
1320 MLD_PRINTF(("%s: ignore v1 report %s on ifp 0x%llx(%s)\n",
1321 __func__, ip6_sprintf(&mld->mld_addr),
1322 (uint64_t)VM_KERNEL_ADDRPERM(ifp), if_name(ifp)));
1323 return (0);
1324 }
1325
1326 if ((ifp->if_flags & IFF_LOOPBACK) ||
1327 (m->m_pkthdr.pkt_flags & PKTF_LOOP))
1328 return (0);
1329
1330 /*
1331 * MLDv1 reports must originate from a host's link-local address,
1332 * or the unspecified address (when booting).
1333 */
1334 src = ip6->ip6_src;
1335 in6_clearscope(&src);
1336 if (!IN6_IS_SCOPE_LINKLOCAL(&src) && !IN6_IS_ADDR_UNSPECIFIED(&src)) {
1337 MLD_PRINTF(("%s: ignore v1 query src %s on ifp 0x%llx(%s)\n",
1338 __func__, ip6_sprintf(&ip6->ip6_src),
1339 (uint64_t)VM_KERNEL_ADDRPERM(ifp), if_name(ifp)));
1340 return (EINVAL);
1341 }
1342
1343 /*
1344 * RFC2710 Section 4: MLDv1 reports must pertain to a multicast
1345 * group, and must be directed to the group itself.
1346 */
1347 dst = ip6->ip6_dst;
1348 in6_clearscope(&dst);
1349 if (!IN6_IS_ADDR_MULTICAST(&mld->mld_addr) ||
1350 !IN6_ARE_ADDR_EQUAL(&mld->mld_addr, &dst)) {
1351 MLD_PRINTF(("%s: ignore v1 query dst %s on ifp 0x%llx(%s)\n",
1352 __func__, ip6_sprintf(&ip6->ip6_dst),
1353 (uint64_t)VM_KERNEL_ADDRPERM(ifp), if_name(ifp)));
1354 return (EINVAL);
1355 }
1356
1357 /*
1358 * Make sure we don't hear our own membership report, as fast
1359 * leave requires knowing that we are the only member of a
1360 * group. Assume we used the link-local address if available,
1361 * otherwise look for ::.
1362 *
1363 * XXX Note that scope ID comparison is needed for the address
1364 * returned by in6ifa_ifpforlinklocal(), but SHOULD NOT be
1365 * performed for the on-wire address.
1366 */
1367 ia = in6ifa_ifpforlinklocal(ifp, IN6_IFF_NOTREADY|IN6_IFF_ANYCAST);
1368 if (ia != NULL) {
1369 IFA_LOCK(&ia->ia_ifa);
1370 if ((IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, IA6_IN6(ia)))){
1371 IFA_UNLOCK(&ia->ia_ifa);
1372 IFA_REMREF(&ia->ia_ifa);
1373 return (0);
1374 }
1375 IFA_UNLOCK(&ia->ia_ifa);
1376 IFA_REMREF(&ia->ia_ifa);
1377 } else if (IN6_IS_ADDR_UNSPECIFIED(&src)) {
1378 return (0);
1379 }
1380
1381 MLD_PRINTF(("%s: process v1 report %s on ifp 0x%llx(%s)\n",
1382 __func__, ip6_sprintf(&mld->mld_addr),
1383 (uint64_t)VM_KERNEL_ADDRPERM(ifp), if_name(ifp)));
1384
1385 /*
1386 * Embed scope ID of receiving interface in MLD query for lookup
1387 * whilst we don't hold other locks (due to KAME locking lameness).
1388 */
1389 if (!IN6_IS_ADDR_UNSPECIFIED(&mld->mld_addr))
1390 in6_setscope(&mld->mld_addr, ifp, NULL);
1391
1392 /*
1393 * MLDv1 report suppression.
1394 * If we are a member of this group, and our membership should be
1395 * reported, and our group timer is pending or about to be reset,
1396 * stop our group timer by transitioning to the 'lazy' state.
1397 */
1398 in6_multihead_lock_shared();
1399 IN6_LOOKUP_MULTI(&mld->mld_addr, ifp, inm);
1400 in6_multihead_lock_done();
1401
1402 if (inm != NULL) {
1403 struct mld_ifinfo *mli;
1404
1405 IN6M_LOCK(inm);
1406 mli = inm->in6m_mli;
1407 VERIFY(mli != NULL);
1408
1409 MLI_LOCK(mli);
1410 /*
1411 * If we are in MLDv2 host mode, do not allow the
1412 * other host's MLDv1 report to suppress our reports.
1413 */
1414 if (mli->mli_version == MLD_VERSION_2) {
1415 MLI_UNLOCK(mli);
1416 IN6M_UNLOCK(inm);
1417 IN6M_REMREF(inm); /* from IN6_LOOKUP_MULTI */
1418 goto out;
1419 }
1420 MLI_UNLOCK(mli);
1421
1422 inm->in6m_timer = 0;
1423
1424 switch (inm->in6m_state) {
1425 case MLD_NOT_MEMBER:
1426 case MLD_SILENT_MEMBER:
1427 case MLD_SLEEPING_MEMBER:
1428 break;
1429 case MLD_REPORTING_MEMBER:
1430 case MLD_IDLE_MEMBER:
1431 case MLD_AWAKENING_MEMBER:
1432 MLD_PRINTF(("%s: report suppressed for %s on "
1433 "ifp 0x%llx(%s)\n", __func__,
1434 ip6_sprintf(&mld->mld_addr),
1435 (uint64_t)VM_KERNEL_ADDRPERM(ifp), if_name(ifp)));
1436 case MLD_LAZY_MEMBER:
1437 inm->in6m_state = MLD_LAZY_MEMBER;
1438 break;
1439 case MLD_G_QUERY_PENDING_MEMBER:
1440 case MLD_SG_QUERY_PENDING_MEMBER:
1441 case MLD_LEAVING_MEMBER:
1442 break;
1443 }
1444 IN6M_UNLOCK(inm);
1445 IN6M_REMREF(inm); /* from IN6_LOOKUP_MULTI */
1446 }
1447
1448 out:
1449 /* XXX Clear embedded scope ID as userland won't expect it. */
1450 in6_clearscope(&mld->mld_addr);
1451
1452 return (0);
1453 }
1454
1455 /*
1456 * MLD input path.
1457 *
1458 * Assume query messages which fit in a single ICMPv6 message header
1459 * have been pulled up.
1460 * Assume that userland will want to see the message, even if it
1461 * otherwise fails kernel input validation; do not free it.
1462 * Pullup may however free the mbuf chain m if it fails.
1463 *
1464 * Return IPPROTO_DONE if we freed m. Otherwise, return 0.
1465 */
1466 int
1467 mld_input(struct mbuf *m, int off, int icmp6len)
1468 {
1469 struct ifnet *ifp;
1470 struct ip6_hdr *ip6;
1471 struct mld_hdr *mld;
1472 int mldlen;
1473
1474 MLD_PRINTF(("%s: called w/mbuf (0x%llx,%d)\n", __func__,
1475 (uint64_t)VM_KERNEL_ADDRPERM(m), off));
1476
1477 ifp = m->m_pkthdr.rcvif;
1478
1479 ip6 = mtod(m, struct ip6_hdr *);
1480
1481 /* Pullup to appropriate size. */
1482 mld = (struct mld_hdr *)(mtod(m, uint8_t *) + off);
1483 if (mld->mld_type == MLD_LISTENER_QUERY &&
1484 icmp6len >= sizeof(struct mldv2_query)) {
1485 mldlen = sizeof(struct mldv2_query);
1486 } else {
1487 mldlen = sizeof(struct mld_hdr);
1488 }
1489 IP6_EXTHDR_GET(mld, struct mld_hdr *, m, off, mldlen);
1490 if (mld == NULL) {
1491 icmp6stat.icp6s_badlen++;
1492 return (IPPROTO_DONE);
1493 }
1494
1495 /*
1496 * Userland needs to see all of this traffic for implementing
1497 * the endpoint discovery portion of multicast routing.
1498 */
1499 switch (mld->mld_type) {
1500 case MLD_LISTENER_QUERY:
1501 icmp6_ifstat_inc(ifp, ifs6_in_mldquery);
1502 if (icmp6len == sizeof(struct mld_hdr)) {
1503 if (mld_v1_input_query(ifp, ip6, mld) != 0)
1504 return (0);
1505 } else if (icmp6len >= sizeof(struct mldv2_query)) {
1506 if (mld_v2_input_query(ifp, ip6, m, off,
1507 icmp6len) != 0)
1508 return (0);
1509 }
1510 break;
1511 case MLD_LISTENER_REPORT:
1512 icmp6_ifstat_inc(ifp, ifs6_in_mldreport);
1513 if (mld_v1_input_report(ifp, m, ip6, mld) != 0)
1514 return (0);
1515 break;
1516 case MLDV2_LISTENER_REPORT:
1517 icmp6_ifstat_inc(ifp, ifs6_in_mldreport);
1518 break;
1519 case MLD_LISTENER_DONE:
1520 icmp6_ifstat_inc(ifp, ifs6_in_mlddone);
1521 break;
1522 default:
1523 break;
1524 }
1525
1526 return (0);
1527 }
1528
1529 /*
1530 * Schedule MLD timer based on various parameters; caller must ensure that
1531 * lock ordering is maintained as this routine acquires MLD global lock.
1532 */
1533 void
1534 mld_set_timeout(struct mld_tparams *mtp)
1535 {
1536 MLD_LOCK_ASSERT_NOTHELD();
1537 VERIFY(mtp != NULL);
1538
1539 if (mtp->qpt != 0 || mtp->it != 0 || mtp->cst != 0 || mtp->sct != 0) {
1540 MLD_LOCK();
1541 if (mtp->qpt != 0)
1542 querier_present_timers_running6 = 1;
1543 if (mtp->it != 0)
1544 interface_timers_running6 = 1;
1545 if (mtp->cst != 0)
1546 current_state_timers_running6 = 1;
1547 if (mtp->sct != 0)
1548 state_change_timers_running6 = 1;
1549 mld_sched_timeout();
1550 MLD_UNLOCK();
1551 }
1552 }
1553
1554 /*
1555 * MLD6 timer handler (per 1 second).
1556 */
1557 static void
1558 mld_timeout(void *arg)
1559 {
1560 #pragma unused(arg)
1561 struct ifqueue scq; /* State-change packets */
1562 struct ifqueue qrq; /* Query response packets */
1563 struct ifnet *ifp;
1564 struct mld_ifinfo *mli;
1565 struct in6_multi *inm;
1566 int uri_sec = 0;
1567 SLIST_HEAD(, in6_multi) in6m_dthead;
1568
1569 SLIST_INIT(&in6m_dthead);
1570
1571 /*
1572 * Update coarse-grained networking timestamp (in sec.); the idea
1573 * is to piggy-back on the timeout callout to update the counter
1574 * returnable via net_uptime().
1575 */
1576 net_update_uptime();
1577
1578 MLD_LOCK();
1579
1580 MLD_PRINTF(("%s: qpt %d, it %d, cst %d, sct %d\n", __func__,
1581 querier_present_timers_running6, interface_timers_running6,
1582 current_state_timers_running6, state_change_timers_running6));
1583
1584 /*
1585 * MLDv1 querier present timer processing.
1586 */
1587 if (querier_present_timers_running6) {
1588 querier_present_timers_running6 = 0;
1589 LIST_FOREACH(mli, &mli_head, mli_link) {
1590 MLI_LOCK(mli);
1591 mld_v1_process_querier_timers(mli);
1592 if (mli->mli_v1_timer > 0)
1593 querier_present_timers_running6 = 1;
1594 MLI_UNLOCK(mli);
1595 }
1596 }
1597
1598 /*
1599 * MLDv2 General Query response timer processing.
1600 */
1601 if (interface_timers_running6) {
1602 MLD_PRINTF(("%s: interface timers running\n", __func__));
1603 interface_timers_running6 = 0;
1604 LIST_FOREACH(mli, &mli_head, mli_link) {
1605 MLI_LOCK(mli);
1606 if (mli->mli_v2_timer == 0) {
1607 /* Do nothing. */
1608 } else if (--mli->mli_v2_timer == 0) {
1609 if (mld_v2_dispatch_general_query(mli) > 0)
1610 interface_timers_running6 = 1;
1611 } else {
1612 interface_timers_running6 = 1;
1613 }
1614 MLI_UNLOCK(mli);
1615 }
1616 }
1617
1618 if (!current_state_timers_running6 &&
1619 !state_change_timers_running6)
1620 goto out_locked;
1621
1622 current_state_timers_running6 = 0;
1623 state_change_timers_running6 = 0;
1624
1625 MLD_PRINTF(("%s: state change timers running\n", __func__));
1626
1627 memset(&qrq, 0, sizeof(struct ifqueue));
1628 qrq.ifq_maxlen = MLD_MAX_G_GS_PACKETS;
1629
1630 memset(&scq, 0, sizeof(struct ifqueue));
1631 scq.ifq_maxlen = MLD_MAX_STATE_CHANGE_PACKETS;
1632
1633 /*
1634 * MLD host report and state-change timer processing.
1635 * Note: Processing a v2 group timer may remove a node.
1636 */
1637 LIST_FOREACH(mli, &mli_head, mli_link) {
1638 struct in6_multistep step;
1639
1640 MLI_LOCK(mli);
1641 ifp = mli->mli_ifp;
1642 uri_sec = MLD_RANDOM_DELAY(mli->mli_uri);
1643 MLI_UNLOCK(mli);
1644
1645 in6_multihead_lock_shared();
1646 IN6_FIRST_MULTI(step, inm);
1647 while (inm != NULL) {
1648 IN6M_LOCK(inm);
1649 if (inm->in6m_ifp != ifp)
1650 goto next;
1651
1652 MLI_LOCK(mli);
1653 switch (mli->mli_version) {
1654 case MLD_VERSION_1:
1655 mld_v1_process_group_timer(inm,
1656 mli->mli_version);
1657 break;
1658 case MLD_VERSION_2:
1659 mld_v2_process_group_timers(mli, &qrq,
1660 &scq, inm, uri_sec);
1661 break;
1662 }
1663 MLI_UNLOCK(mli);
1664 next:
1665 IN6M_UNLOCK(inm);
1666 IN6_NEXT_MULTI(step, inm);
1667 }
1668 in6_multihead_lock_done();
1669
1670 MLI_LOCK(mli);
1671 if (mli->mli_version == MLD_VERSION_1) {
1672 mld_dispatch_queue(mli, &mli->mli_v1q, 0);
1673 } else if (mli->mli_version == MLD_VERSION_2) {
1674 MLI_UNLOCK(mli);
1675 mld_dispatch_queue(NULL, &qrq, 0);
1676 mld_dispatch_queue(NULL, &scq, 0);
1677 VERIFY(qrq.ifq_len == 0);
1678 VERIFY(scq.ifq_len == 0);
1679 MLI_LOCK(mli);
1680 }
1681 /*
1682 * In case there are still any pending membership reports
1683 * which didn't get drained at version change time.
1684 */
1685 IF_DRAIN(&mli->mli_v1q);
1686 /*
1687 * Release all deferred inm records, and drain any locally
1688 * enqueued packets; do it even if the current MLD version
1689 * for the link is no longer MLDv2, in order to handle the
1690 * version change case.
1691 */
1692 mld_flush_relq(mli, (struct mld_in6m_relhead *)&in6m_dthead);
1693 VERIFY(SLIST_EMPTY(&mli->mli_relinmhead));
1694 MLI_UNLOCK(mli);
1695
1696 IF_DRAIN(&qrq);
1697 IF_DRAIN(&scq);
1698 }
1699
1700 out_locked:
1701 /* re-arm the timer if there's work to do */
1702 mld_timeout_run = 0;
1703 mld_sched_timeout();
1704 MLD_UNLOCK();
1705
1706 /* Now that we're dropped all locks, release detached records */
1707 MLD_REMOVE_DETACHED_IN6M(&in6m_dthead);
1708 }
1709
1710 static void
1711 mld_sched_timeout(void)
1712 {
1713 MLD_LOCK_ASSERT_HELD();
1714
1715 if (!mld_timeout_run &&
1716 (querier_present_timers_running6 || current_state_timers_running6 ||
1717 interface_timers_running6 || state_change_timers_running6)) {
1718 mld_timeout_run = 1;
1719 timeout(mld_timeout, NULL, hz);
1720 }
1721 }
1722
1723 /*
1724 * Free the in6_multi reference(s) for this MLD lifecycle.
1725 *
1726 * Caller must be holding mli_lock.
1727 */
1728 static void
1729 mld_flush_relq(struct mld_ifinfo *mli, struct mld_in6m_relhead *in6m_dthead)
1730 {
1731 struct in6_multi *inm;
1732
1733 again:
1734 MLI_LOCK_ASSERT_HELD(mli);
1735 inm = SLIST_FIRST(&mli->mli_relinmhead);
1736 if (inm != NULL) {
1737 int lastref;
1738
1739 SLIST_REMOVE_HEAD(&mli->mli_relinmhead, in6m_nrele);
1740 MLI_UNLOCK(mli);
1741
1742 in6_multihead_lock_exclusive();
1743 IN6M_LOCK(inm);
1744 VERIFY(inm->in6m_nrelecnt != 0);
1745 inm->in6m_nrelecnt--;
1746 lastref = in6_multi_detach(inm);
1747 VERIFY(!lastref || (!(inm->in6m_debug & IFD_ATTACHED) &&
1748 inm->in6m_reqcnt == 0));
1749 IN6M_UNLOCK(inm);
1750 in6_multihead_lock_done();
1751 /* from mli_relinmhead */
1752 IN6M_REMREF(inm);
1753 /* from in6_multihead_list */
1754 if (lastref) {
1755 /*
1756 * Defer releasing our final reference, as we
1757 * are holding the MLD lock at this point, and
1758 * we could end up with locking issues later on
1759 * (while issuing SIOCDELMULTI) when this is the
1760 * final reference count. Let the caller do it
1761 * when it is safe.
1762 */
1763 MLD_ADD_DETACHED_IN6M(in6m_dthead, inm);
1764 }
1765 MLI_LOCK(mli);
1766 goto again;
1767 }
1768 }
1769
1770 /*
1771 * Update host report group timer.
1772 * Will update the global pending timer flags.
1773 */
1774 static void
1775 mld_v1_process_group_timer(struct in6_multi *inm, const int mld_version)
1776 {
1777 #pragma unused(mld_version)
1778 int report_timer_expired;
1779
1780 MLD_LOCK_ASSERT_HELD();
1781 IN6M_LOCK_ASSERT_HELD(inm);
1782 MLI_LOCK_ASSERT_HELD(inm->in6m_mli);
1783
1784 if (inm->in6m_timer == 0) {
1785 report_timer_expired = 0;
1786 } else if (--inm->in6m_timer == 0) {
1787 report_timer_expired = 1;
1788 } else {
1789 current_state_timers_running6 = 1;
1790 /* caller will schedule timer */
1791 return;
1792 }
1793
1794 switch (inm->in6m_state) {
1795 case MLD_NOT_MEMBER:
1796 case MLD_SILENT_MEMBER:
1797 case MLD_IDLE_MEMBER:
1798 case MLD_LAZY_MEMBER:
1799 case MLD_SLEEPING_MEMBER:
1800 case MLD_AWAKENING_MEMBER:
1801 break;
1802 case MLD_REPORTING_MEMBER:
1803 if (report_timer_expired) {
1804 inm->in6m_state = MLD_IDLE_MEMBER;
1805 (void) mld_v1_transmit_report(inm,
1806 MLD_LISTENER_REPORT);
1807 IN6M_LOCK_ASSERT_HELD(inm);
1808 MLI_LOCK_ASSERT_HELD(inm->in6m_mli);
1809 }
1810 break;
1811 case MLD_G_QUERY_PENDING_MEMBER:
1812 case MLD_SG_QUERY_PENDING_MEMBER:
1813 case MLD_LEAVING_MEMBER:
1814 break;
1815 }
1816 }
1817
1818 /*
1819 * Update a group's timers for MLDv2.
1820 * Will update the global pending timer flags.
1821 * Note: Unlocked read from mli.
1822 */
1823 static void
1824 mld_v2_process_group_timers(struct mld_ifinfo *mli,
1825 struct ifqueue *qrq, struct ifqueue *scq,
1826 struct in6_multi *inm, const int uri_sec)
1827 {
1828 int query_response_timer_expired;
1829 int state_change_retransmit_timer_expired;
1830
1831 MLD_LOCK_ASSERT_HELD();
1832 IN6M_LOCK_ASSERT_HELD(inm);
1833 MLI_LOCK_ASSERT_HELD(mli);
1834 VERIFY(mli == inm->in6m_mli);
1835
1836 query_response_timer_expired = 0;
1837 state_change_retransmit_timer_expired = 0;
1838
1839 /*
1840 * During a transition from compatibility mode back to MLDv2,
1841 * a group record in REPORTING state may still have its group
1842 * timer active. This is a no-op in this function; it is easier
1843 * to deal with it here than to complicate the timeout path.
1844 */
1845 if (inm->in6m_timer == 0) {
1846 query_response_timer_expired = 0;
1847 } else if (--inm->in6m_timer == 0) {
1848 query_response_timer_expired = 1;
1849 } else {
1850 current_state_timers_running6 = 1;
1851 /* caller will schedule timer */
1852 }
1853
1854 if (inm->in6m_sctimer == 0) {
1855 state_change_retransmit_timer_expired = 0;
1856 } else if (--inm->in6m_sctimer == 0) {
1857 state_change_retransmit_timer_expired = 1;
1858 } else {
1859 state_change_timers_running6 = 1;
1860 /* caller will schedule timer */
1861 }
1862
1863 /* We are in timer callback, so be quick about it. */
1864 if (!state_change_retransmit_timer_expired &&
1865 !query_response_timer_expired)
1866 return;
1867
1868 switch (inm->in6m_state) {
1869 case MLD_NOT_MEMBER:
1870 case MLD_SILENT_MEMBER:
1871 case MLD_SLEEPING_MEMBER:
1872 case MLD_LAZY_MEMBER:
1873 case MLD_AWAKENING_MEMBER:
1874 case MLD_IDLE_MEMBER:
1875 break;
1876 case MLD_G_QUERY_PENDING_MEMBER:
1877 case MLD_SG_QUERY_PENDING_MEMBER:
1878 /*
1879 * Respond to a previously pending Group-Specific
1880 * or Group-and-Source-Specific query by enqueueing
1881 * the appropriate Current-State report for
1882 * immediate transmission.
1883 */
1884 if (query_response_timer_expired) {
1885 int retval;
1886
1887 retval = mld_v2_enqueue_group_record(qrq, inm, 0, 1,
1888 (inm->in6m_state == MLD_SG_QUERY_PENDING_MEMBER),
1889 0);
1890 MLD_PRINTF(("%s: enqueue record = %d\n",
1891 __func__, retval));
1892 inm->in6m_state = MLD_REPORTING_MEMBER;
1893 in6m_clear_recorded(inm);
1894 }
1895 /* FALLTHROUGH */
1896 case MLD_REPORTING_MEMBER:
1897 case MLD_LEAVING_MEMBER:
1898 if (state_change_retransmit_timer_expired) {
1899 /*
1900 * State-change retransmission timer fired.
1901 * If there are any further pending retransmissions,
1902 * set the global pending state-change flag, and
1903 * reset the timer.
1904 */
1905 if (--inm->in6m_scrv > 0) {
1906 inm->in6m_sctimer = uri_sec;
1907 state_change_timers_running6 = 1;
1908 /* caller will schedule timer */
1909 }
1910 /*
1911 * Retransmit the previously computed state-change
1912 * report. If there are no further pending
1913 * retransmissions, the mbuf queue will be consumed.
1914 * Update T0 state to T1 as we have now sent
1915 * a state-change.
1916 */
1917 (void) mld_v2_merge_state_changes(inm, scq);
1918
1919 in6m_commit(inm);
1920 MLD_PRINTF(("%s: T1 -> T0 for %s/%s\n", __func__,
1921 ip6_sprintf(&inm->in6m_addr),
1922 if_name(inm->in6m_ifp)));
1923
1924 /*
1925 * If we are leaving the group for good, make sure
1926 * we release MLD's reference to it.
1927 * This release must be deferred using a SLIST,
1928 * as we are called from a loop which traverses
1929 * the in_ifmultiaddr TAILQ.
1930 */
1931 if (inm->in6m_state == MLD_LEAVING_MEMBER &&
1932 inm->in6m_scrv == 0) {
1933 inm->in6m_state = MLD_NOT_MEMBER;
1934 /*
1935 * A reference has already been held in
1936 * mld_final_leave() for this inm, so
1937 * no need to hold another one. We also
1938 * bumped up its request count then, so
1939 * that it stays in in6_multihead. Both
1940 * of them will be released when it is
1941 * dequeued later on.
1942 */
1943 VERIFY(inm->in6m_nrelecnt != 0);
1944 SLIST_INSERT_HEAD(&mli->mli_relinmhead,
1945 inm, in6m_nrele);
1946 }
1947 }
1948 break;
1949 }
1950 }
1951
1952 /*
1953 * Switch to a different version on the given interface,
1954 * as per Section 9.12.
1955 */
1956 static uint32_t
1957 mld_set_version(struct mld_ifinfo *mli, const int mld_version)
1958 {
1959 int old_version_timer;
1960
1961 MLI_LOCK_ASSERT_HELD(mli);
1962
1963 MLD_PRINTF(("%s: switching to v%d on ifp 0x%llx(%s)\n", __func__,
1964 mld_version, (uint64_t)VM_KERNEL_ADDRPERM(mli->mli_ifp),
1965 if_name(mli->mli_ifp)));
1966
1967 if (mld_version == MLD_VERSION_1) {
1968 /*
1969 * Compute the "Older Version Querier Present" timer as per
1970 * Section 9.12, in seconds.
1971 */
1972 old_version_timer = (mli->mli_rv * mli->mli_qi) + mli->mli_qri;
1973 mli->mli_v1_timer = old_version_timer;
1974 }
1975
1976 if (mli->mli_v1_timer > 0 && mli->mli_version != MLD_VERSION_1) {
1977 mli->mli_version = MLD_VERSION_1;
1978 mld_v2_cancel_link_timers(mli);
1979 }
1980
1981 MLI_LOCK_ASSERT_HELD(mli);
1982
1983 return (mli->mli_v1_timer);
1984 }
1985
1986 /*
1987 * Cancel pending MLDv2 timers for the given link and all groups
1988 * joined on it; state-change, general-query, and group-query timers.
1989 *
1990 * Only ever called on a transition from v2 to Compatibility mode. Kill
1991 * the timers stone dead (this may be expensive for large N groups), they
1992 * will be restarted if Compatibility Mode deems that they must be due to
1993 * query processing.
1994 */
1995 static void
1996 mld_v2_cancel_link_timers(struct mld_ifinfo *mli)
1997 {
1998 struct ifnet *ifp;
1999 struct in6_multi *inm;
2000 struct in6_multistep step;
2001
2002 MLI_LOCK_ASSERT_HELD(mli);
2003
2004 MLD_PRINTF(("%s: cancel v2 timers on ifp 0x%llx(%s)\n", __func__,
2005 (uint64_t)VM_KERNEL_ADDRPERM(mli->mli_ifp), if_name(mli->mli_ifp)));
2006
2007 /*
2008 * Stop the v2 General Query Response on this link stone dead.
2009 * If timer is woken up due to interface_timers_running6,
2010 * the flag will be cleared if there are no pending link timers.
2011 */
2012 mli->mli_v2_timer = 0;
2013
2014 /*
2015 * Now clear the current-state and state-change report timers
2016 * for all memberships scoped to this link.
2017 */
2018 ifp = mli->mli_ifp;
2019 MLI_UNLOCK(mli);
2020
2021 in6_multihead_lock_shared();
2022 IN6_FIRST_MULTI(step, inm);
2023 while (inm != NULL) {
2024 IN6M_LOCK(inm);
2025 if (inm->in6m_ifp != ifp)
2026 goto next;
2027
2028 switch (inm->in6m_state) {
2029 case MLD_NOT_MEMBER:
2030 case MLD_SILENT_MEMBER:
2031 case MLD_IDLE_MEMBER:
2032 case MLD_LAZY_MEMBER:
2033 case MLD_SLEEPING_MEMBER:
2034 case MLD_AWAKENING_MEMBER:
2035 /*
2036 * These states are either not relevant in v2 mode,
2037 * or are unreported. Do nothing.
2038 */
2039 break;
2040 case MLD_LEAVING_MEMBER:
2041 /*
2042 * If we are leaving the group and switching
2043 * version, we need to release the final
2044 * reference held for issuing the INCLUDE {}.
2045 * During mld_final_leave(), we bumped up both the
2046 * request and reference counts. Since we cannot
2047 * call in6_multi_detach() here, defer this task to
2048 * the timer routine.
2049 */
2050 VERIFY(inm->in6m_nrelecnt != 0);
2051 MLI_LOCK(mli);
2052 SLIST_INSERT_HEAD(&mli->mli_relinmhead, inm,
2053 in6m_nrele);
2054 MLI_UNLOCK(mli);
2055 /* FALLTHROUGH */
2056 case MLD_G_QUERY_PENDING_MEMBER:
2057 case MLD_SG_QUERY_PENDING_MEMBER:
2058 in6m_clear_recorded(inm);
2059 /* FALLTHROUGH */
2060 case MLD_REPORTING_MEMBER:
2061 inm->in6m_state = MLD_REPORTING_MEMBER;
2062 break;
2063 }
2064 /*
2065 * Always clear state-change and group report timers.
2066 * Free any pending MLDv2 state-change records.
2067 */
2068 inm->in6m_sctimer = 0;
2069 inm->in6m_timer = 0;
2070 IF_DRAIN(&inm->in6m_scq);
2071 next:
2072 IN6M_UNLOCK(inm);
2073 IN6_NEXT_MULTI(step, inm);
2074 }
2075 in6_multihead_lock_done();
2076
2077 MLI_LOCK(mli);
2078 }
2079
2080 /*
2081 * Update the Older Version Querier Present timers for a link.
2082 * See Section 9.12 of RFC 3810.
2083 */
2084 static void
2085 mld_v1_process_querier_timers(struct mld_ifinfo *mli)
2086 {
2087 MLI_LOCK_ASSERT_HELD(mli);
2088
2089 if (mld_v2enable && mli->mli_version != MLD_VERSION_2 &&
2090 --mli->mli_v1_timer == 0) {
2091 /*
2092 * MLDv1 Querier Present timer expired; revert to MLDv2.
2093 */
2094 MLD_PRINTF(("%s: transition from v%d -> v%d on 0x%llx(%s)\n",
2095 __func__, mli->mli_version, MLD_VERSION_2,
2096 (uint64_t)VM_KERNEL_ADDRPERM(mli->mli_ifp),
2097 if_name(mli->mli_ifp)));
2098 mli->mli_version = MLD_VERSION_2;
2099 }
2100 }
2101
2102 /*
2103 * Transmit an MLDv1 report immediately.
2104 */
2105 static int
2106 mld_v1_transmit_report(struct in6_multi *in6m, const int type)
2107 {
2108 struct ifnet *ifp;
2109 struct in6_ifaddr *ia;
2110 struct ip6_hdr *ip6;
2111 struct mbuf *mh, *md;
2112 struct mld_hdr *mld;
2113 int error = 0;
2114
2115 IN6M_LOCK_ASSERT_HELD(in6m);
2116 MLI_LOCK_ASSERT_HELD(in6m->in6m_mli);
2117
2118 ifp = in6m->in6m_ifp;
2119 /* ia may be NULL if link-local address is tentative. */
2120 ia = in6ifa_ifpforlinklocal(ifp, IN6_IFF_NOTREADY|IN6_IFF_ANYCAST);
2121
2122 MGETHDR(mh, M_DONTWAIT, MT_HEADER);
2123 if (mh == NULL) {
2124 if (ia != NULL)
2125 IFA_REMREF(&ia->ia_ifa);
2126 return (ENOMEM);
2127 }
2128 MGET(md, M_DONTWAIT, MT_DATA);
2129 if (md == NULL) {
2130 m_free(mh);
2131 if (ia != NULL)
2132 IFA_REMREF(&ia->ia_ifa);
2133 return (ENOMEM);
2134 }
2135 mh->m_next = md;
2136
2137 /*
2138 * FUTURE: Consider increasing alignment by ETHER_HDR_LEN, so
2139 * that ether_output() does not need to allocate another mbuf
2140 * for the header in the most common case.
2141 */
2142 MH_ALIGN(mh, sizeof(struct ip6_hdr));
2143 mh->m_pkthdr.len = sizeof(struct ip6_hdr) + sizeof(struct mld_hdr);
2144 mh->m_len = sizeof(struct ip6_hdr);
2145
2146 ip6 = mtod(mh, struct ip6_hdr *);
2147 ip6->ip6_flow = 0;
2148 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
2149 ip6->ip6_vfc |= IPV6_VERSION;
2150 ip6->ip6_nxt = IPPROTO_ICMPV6;
2151 if (ia != NULL)
2152 IFA_LOCK(&ia->ia_ifa);
2153 ip6->ip6_src = ia ? ia->ia_addr.sin6_addr : in6addr_any;
2154 if (ia != NULL) {
2155 IFA_UNLOCK(&ia->ia_ifa);
2156 IFA_REMREF(&ia->ia_ifa);
2157 ia = NULL;
2158 }
2159 ip6->ip6_dst = in6m->in6m_addr;
2160
2161 md->m_len = sizeof(struct mld_hdr);
2162 mld = mtod(md, struct mld_hdr *);
2163 mld->mld_type = type;
2164 mld->mld_code = 0;
2165 mld->mld_cksum = 0;
2166 mld->mld_maxdelay = 0;
2167 mld->mld_reserved = 0;
2168 mld->mld_addr = in6m->in6m_addr;
2169 in6_clearscope(&mld->mld_addr);
2170 mld->mld_cksum = in6_cksum(mh, IPPROTO_ICMPV6,
2171 sizeof(struct ip6_hdr), sizeof(struct mld_hdr));
2172
2173 mld_save_context(mh, ifp);
2174 mh->m_flags |= M_MLDV1;
2175
2176 /*
2177 * Due to the fact that at this point we are possibly holding
2178 * in6_multihead_lock in shared or exclusive mode, we can't call
2179 * mld_dispatch_packet() here since that will eventually call
2180 * ip6_output(), which will try to lock in6_multihead_lock and cause
2181 * a deadlock.
2182 * Instead we defer the work to the mld_timeout() thread, thus
2183 * avoiding unlocking in_multihead_lock here.
2184 */
2185 if (IF_QFULL(&in6m->in6m_mli->mli_v1q)) {
2186 MLD_PRINTF(("%s: v1 outbound queue full\n", __func__));
2187 error = ENOMEM;
2188 m_freem(mh);
2189 } else {
2190 IF_ENQUEUE(&in6m->in6m_mli->mli_v1q, mh);
2191 VERIFY(error == 0);
2192 }
2193
2194 return (error);
2195 }
2196
2197 /*
2198 * Process a state change from the upper layer for the given IPv6 group.
2199 *
2200 * Each socket holds a reference on the in6_multi in its own ip_moptions.
2201 * The socket layer will have made the necessary updates to.the group
2202 * state, it is now up to MLD to issue a state change report if there
2203 * has been any change between T0 (when the last state-change was issued)
2204 * and T1 (now).
2205 *
2206 * We use the MLDv2 state machine at group level. The MLd module
2207 * however makes the decision as to which MLD protocol version to speak.
2208 * A state change *from* INCLUDE {} always means an initial join.
2209 * A state change *to* INCLUDE {} always means a final leave.
2210 *
2211 * If delay is non-zero, and the state change is an initial multicast
2212 * join, the state change report will be delayed by 'delay' ticks
2213 * in units of seconds if MLDv1 is active on the link; otherwise
2214 * the initial MLDv2 state change report will be delayed by whichever
2215 * is sooner, a pending state-change timer or delay itself.
2216 */
2217 int
2218 mld_change_state(struct in6_multi *inm, struct mld_tparams *mtp,
2219 const int delay)
2220 {
2221 struct mld_ifinfo *mli;
2222 struct ifnet *ifp;
2223 int error = 0;
2224
2225 VERIFY(mtp != NULL);
2226 bzero(mtp, sizeof (*mtp));
2227
2228 IN6M_LOCK_ASSERT_HELD(inm);
2229 VERIFY(inm->in6m_mli != NULL);
2230 MLI_LOCK_ASSERT_NOTHELD(inm->in6m_mli);
2231
2232 /*
2233 * Try to detect if the upper layer just asked us to change state
2234 * for an interface which has now gone away.
2235 */
2236 VERIFY(inm->in6m_ifma != NULL);
2237 ifp = inm->in6m_ifma->ifma_ifp;
2238 /*
2239 * Sanity check that netinet6's notion of ifp is the same as net's.
2240 */
2241 VERIFY(inm->in6m_ifp == ifp);
2242
2243 mli = MLD_IFINFO(ifp);
2244 VERIFY(mli != NULL);
2245
2246 /*
2247 * If we detect a state transition to or from MCAST_UNDEFINED
2248 * for this group, then we are starting or finishing an MLD
2249 * life cycle for this group.
2250 */
2251 if (inm->in6m_st[1].iss_fmode != inm->in6m_st[0].iss_fmode) {
2252 MLD_PRINTF(("%s: inm transition %d -> %d\n", __func__,
2253 inm->in6m_st[0].iss_fmode, inm->in6m_st[1].iss_fmode));
2254 if (inm->in6m_st[0].iss_fmode == MCAST_UNDEFINED) {
2255 MLD_PRINTF(("%s: initial join\n", __func__));
2256 error = mld_initial_join(inm, mli, mtp, delay);
2257 goto out;
2258 } else if (inm->in6m_st[1].iss_fmode == MCAST_UNDEFINED) {
2259 MLD_PRINTF(("%s: final leave\n", __func__));
2260 mld_final_leave(inm, mli, mtp);
2261 goto out;
2262 }
2263 } else {
2264 MLD_PRINTF(("%s: filter set change\n", __func__));
2265 }
2266
2267 error = mld_handle_state_change(inm, mli, mtp);
2268 out:
2269 return (error);
2270 }
2271
2272 /*
2273 * Perform the initial join for an MLD group.
2274 *
2275 * When joining a group:
2276 * If the group should have its MLD traffic suppressed, do nothing.
2277 * MLDv1 starts sending MLDv1 host membership reports.
2278 * MLDv2 will schedule an MLDv2 state-change report containing the
2279 * initial state of the membership.
2280 *
2281 * If the delay argument is non-zero, then we must delay sending the
2282 * initial state change for delay ticks (in units of seconds).
2283 */
2284 static int
2285 mld_initial_join(struct in6_multi *inm, struct mld_ifinfo *mli,
2286 struct mld_tparams *mtp, const int delay)
2287 {
2288 struct ifnet *ifp;
2289 struct ifqueue *ifq;
2290 int error, retval, syncstates;
2291 int odelay;
2292
2293 IN6M_LOCK_ASSERT_HELD(inm);
2294 MLI_LOCK_ASSERT_NOTHELD(mli);
2295 VERIFY(mtp != NULL);
2296
2297 MLD_PRINTF(("%s: initial join %s on ifp 0x%llx(%s)\n",
2298 __func__, ip6_sprintf(&inm->in6m_addr),
2299 (uint64_t)VM_KERNEL_ADDRPERM(inm->in6m_ifp),
2300 if_name(inm->in6m_ifp)));
2301
2302 error = 0;
2303 syncstates = 1;
2304
2305 ifp = inm->in6m_ifp;
2306
2307 MLI_LOCK(mli);
2308 VERIFY(mli->mli_ifp == ifp);
2309
2310 /*
2311 * Groups joined on loopback or marked as 'not reported',
2312 * enter the MLD_SILENT_MEMBER state and
2313 * are never reported in any protocol exchanges.
2314 * All other groups enter the appropriate state machine
2315 * for the version in use on this link.
2316 * A link marked as MLIF_SILENT causes MLD to be completely
2317 * disabled for the link.
2318 */
2319 if ((ifp->if_flags & IFF_LOOPBACK) ||
2320 (mli->mli_flags & MLIF_SILENT) ||
2321 !mld_is_addr_reported(&inm->in6m_addr)) {
2322 MLD_PRINTF(("%s: not kicking state machine for silent group\n",
2323 __func__));
2324 inm->in6m_state = MLD_SILENT_MEMBER;
2325 inm->in6m_timer = 0;
2326 } else {
2327 /*
2328 * Deal with overlapping in6_multi lifecycle.
2329 * If this group was LEAVING, then make sure
2330 * we drop the reference we picked up to keep the
2331 * group around for the final INCLUDE {} enqueue.
2332 * Since we cannot call in6_multi_detach() here,
2333 * defer this task to the timer routine.
2334 */
2335 if (mli->mli_version == MLD_VERSION_2 &&
2336 inm->in6m_state == MLD_LEAVING_MEMBER) {
2337 VERIFY(inm->in6m_nrelecnt != 0);
2338 SLIST_INSERT_HEAD(&mli->mli_relinmhead, inm,
2339 in6m_nrele);
2340 }
2341
2342 inm->in6m_state = MLD_REPORTING_MEMBER;
2343
2344 switch (mli->mli_version) {
2345 case MLD_VERSION_1:
2346 /*
2347 * If a delay was provided, only use it if
2348 * it is greater than the delay normally
2349 * used for an MLDv1 state change report,
2350 * and delay sending the initial MLDv1 report
2351 * by not transitioning to the IDLE state.
2352 */
2353 odelay = MLD_RANDOM_DELAY(MLD_V1_MAX_RI);
2354 if (delay) {
2355 inm->in6m_timer = max(delay, odelay);
2356 mtp->cst = 1;
2357 } else {
2358 inm->in6m_state = MLD_IDLE_MEMBER;
2359 error = mld_v1_transmit_report(inm,
2360 MLD_LISTENER_REPORT);
2361
2362 IN6M_LOCK_ASSERT_HELD(inm);
2363 MLI_LOCK_ASSERT_HELD(mli);
2364
2365 if (error == 0) {
2366 inm->in6m_timer = odelay;
2367 mtp->cst = 1;
2368 }
2369 }
2370 break;
2371
2372 case MLD_VERSION_2:
2373 /*
2374 * Defer update of T0 to T1, until the first copy
2375 * of the state change has been transmitted.
2376 */
2377 syncstates = 0;
2378
2379 /*
2380 * Immediately enqueue a State-Change Report for
2381 * this interface, freeing any previous reports.
2382 * Don't kick the timers if there is nothing to do,
2383 * or if an error occurred.
2384 */
2385 ifq = &inm->in6m_scq;
2386 IF_DRAIN(ifq);
2387 retval = mld_v2_enqueue_group_record(ifq, inm, 1,
2388 0, 0, (mli->mli_flags & MLIF_USEALLOW));
2389 mtp->cst = (ifq->ifq_len > 0);
2390 MLD_PRINTF(("%s: enqueue record = %d\n",
2391 __func__, retval));
2392 if (retval <= 0) {
2393 error = retval * -1;
2394 break;
2395 }
2396
2397 /*
2398 * Schedule transmission of pending state-change
2399 * report up to RV times for this link. The timer
2400 * will fire at the next mld_timeout (1 second)),
2401 * giving us an opportunity to merge the reports.
2402 *
2403 * If a delay was provided to this function, only
2404 * use this delay if sooner than the existing one.
2405 */
2406 VERIFY(mli->mli_rv > 1);
2407 inm->in6m_scrv = mli->mli_rv;
2408 if (delay) {
2409 if (inm->in6m_sctimer > 1) {
2410 inm->in6m_sctimer =
2411 min(inm->in6m_sctimer, delay);
2412 } else
2413 inm->in6m_sctimer = delay;
2414 } else {
2415 inm->in6m_sctimer = 1;
2416 }
2417 mtp->sct = 1;
2418 error = 0;
2419 break;
2420 }
2421 }
2422 MLI_UNLOCK(mli);
2423
2424 /*
2425 * Only update the T0 state if state change is atomic,
2426 * i.e. we don't need to wait for a timer to fire before we
2427 * can consider the state change to have been communicated.
2428 */
2429 if (syncstates) {
2430 in6m_commit(inm);
2431 MLD_PRINTF(("%s: T1 -> T0 for %s/%s\n", __func__,
2432 ip6_sprintf(&inm->in6m_addr),
2433 if_name(inm->in6m_ifp)));
2434 }
2435
2436 return (error);
2437 }
2438
2439 /*
2440 * Issue an intermediate state change during the life-cycle.
2441 */
2442 static int
2443 mld_handle_state_change(struct in6_multi *inm, struct mld_ifinfo *mli,
2444 struct mld_tparams *mtp)
2445 {
2446 struct ifnet *ifp;
2447 int retval = 0;
2448
2449 IN6M_LOCK_ASSERT_HELD(inm);
2450 MLI_LOCK_ASSERT_NOTHELD(mli);
2451 VERIFY(mtp != NULL);
2452
2453 MLD_PRINTF(("%s: state change for %s on ifp 0x%llx(%s)\n",
2454 __func__, ip6_sprintf(&inm->in6m_addr),
2455 (uint64_t)VM_KERNEL_ADDRPERM(inm->in6m_ifp),
2456 if_name(inm->in6m_ifp)));
2457
2458 ifp = inm->in6m_ifp;
2459
2460 MLI_LOCK(mli);
2461 VERIFY(mli->mli_ifp == ifp);
2462
2463 if ((ifp->if_flags & IFF_LOOPBACK) ||
2464 (mli->mli_flags & MLIF_SILENT) ||
2465 !mld_is_addr_reported(&inm->in6m_addr) ||
2466 (mli->mli_version != MLD_VERSION_2)) {
2467 MLI_UNLOCK(mli);
2468 if (!mld_is_addr_reported(&inm->in6m_addr)) {
2469 MLD_PRINTF(("%s: not kicking state machine for silent "
2470 "group\n", __func__));
2471 }
2472 MLD_PRINTF(("%s: nothing to do\n", __func__));
2473 in6m_commit(inm);
2474 MLD_PRINTF(("%s: T1 -> T0 for %s/%s\n", __func__,
2475 ip6_sprintf(&inm->in6m_addr),
2476 if_name(inm->in6m_ifp)));
2477 goto done;
2478 }
2479
2480 IF_DRAIN(&inm->in6m_scq);
2481
2482 retval = mld_v2_enqueue_group_record(&inm->in6m_scq, inm, 1, 0, 0,
2483 (mli->mli_flags & MLIF_USEALLOW));
2484 mtp->cst = (inm->in6m_scq.ifq_len > 0);
2485 MLD_PRINTF(("%s: enqueue record = %d\n", __func__, retval));
2486 if (retval <= 0) {
2487 MLI_UNLOCK(mli);
2488 retval *= -1;
2489 goto done;
2490 }
2491 /*
2492 * If record(s) were enqueued, start the state-change
2493 * report timer for this group.
2494 */
2495 inm->in6m_scrv = mli->mli_rv;
2496 inm->in6m_sctimer = 1;
2497 mtp->sct = 1;
2498 MLI_UNLOCK(mli);
2499
2500 done:
2501 return (retval);
2502 }
2503
2504 /*
2505 * Perform the final leave for a multicast address.
2506 *
2507 * When leaving a group:
2508 * MLDv1 sends a DONE message, if and only if we are the reporter.
2509 * MLDv2 enqueues a state-change report containing a transition
2510 * to INCLUDE {} for immediate transmission.
2511 */
2512 static void
2513 mld_final_leave(struct in6_multi *inm, struct mld_ifinfo *mli,
2514 struct mld_tparams *mtp)
2515 {
2516 int syncstates = 1;
2517
2518 IN6M_LOCK_ASSERT_HELD(inm);
2519 MLI_LOCK_ASSERT_NOTHELD(mli);
2520 VERIFY(mtp != NULL);
2521
2522 MLD_PRINTF(("%s: final leave %s on ifp 0x%llx(%s)\n",
2523 __func__, ip6_sprintf(&inm->in6m_addr),
2524 (uint64_t)VM_KERNEL_ADDRPERM(inm->in6m_ifp),
2525 if_name(inm->in6m_ifp)));
2526
2527 switch (inm->in6m_state) {
2528 case MLD_NOT_MEMBER:
2529 case MLD_SILENT_MEMBER:
2530 case MLD_LEAVING_MEMBER:
2531 /* Already leaving or left; do nothing. */
2532 MLD_PRINTF(("%s: not kicking state machine for silent group\n",
2533 __func__));
2534 break;
2535 case MLD_REPORTING_MEMBER:
2536 case MLD_IDLE_MEMBER:
2537 case MLD_G_QUERY_PENDING_MEMBER:
2538 case MLD_SG_QUERY_PENDING_MEMBER:
2539 MLI_LOCK(mli);
2540 if (mli->mli_version == MLD_VERSION_1) {
2541 if (inm->in6m_state == MLD_G_QUERY_PENDING_MEMBER ||
2542 inm->in6m_state == MLD_SG_QUERY_PENDING_MEMBER) {
2543 panic("%s: MLDv2 state reached, not MLDv2 "
2544 "mode\n", __func__);
2545 /* NOTREACHED */
2546 }
2547 /* scheduler timer if enqueue is successful */
2548 mtp->cst = (mld_v1_transmit_report(inm,
2549 MLD_LISTENER_DONE) == 0);
2550
2551 IN6M_LOCK_ASSERT_HELD(inm);
2552 MLI_LOCK_ASSERT_HELD(mli);
2553
2554 inm->in6m_state = MLD_NOT_MEMBER;
2555 } else if (mli->mli_version == MLD_VERSION_2) {
2556 /*
2557 * Stop group timer and all pending reports.
2558 * Immediately enqueue a state-change report
2559 * TO_IN {} to be sent on the next timeout,
2560 * giving us an opportunity to merge reports.
2561 */
2562 IF_DRAIN(&inm->in6m_scq);
2563 inm->in6m_timer = 0;
2564 inm->in6m_scrv = mli->mli_rv;
2565 MLD_PRINTF(("%s: Leaving %s/%s with %d "
2566 "pending retransmissions.\n", __func__,
2567 ip6_sprintf(&inm->in6m_addr),
2568 if_name(inm->in6m_ifp),
2569 inm->in6m_scrv));
2570 if (inm->in6m_scrv == 0) {
2571 inm->in6m_state = MLD_NOT_MEMBER;
2572 inm->in6m_sctimer = 0;
2573 } else {
2574 int retval;
2575 /*
2576 * Stick around in the in6_multihead list;
2577 * the final detach will be issued by
2578 * mld_v2_process_group_timers() when
2579 * the retransmit timer expires.
2580 */
2581 IN6M_ADDREF_LOCKED(inm);
2582 VERIFY(inm->in6m_debug & IFD_ATTACHED);
2583 inm->in6m_reqcnt++;
2584 VERIFY(inm->in6m_reqcnt >= 1);
2585 inm->in6m_nrelecnt++;
2586 VERIFY(inm->in6m_nrelecnt != 0);
2587
2588 retval = mld_v2_enqueue_group_record(
2589 &inm->in6m_scq, inm, 1, 0, 0,
2590 (mli->mli_flags & MLIF_USEALLOW));
2591 mtp->cst = (inm->in6m_scq.ifq_len > 0);
2592 KASSERT(retval != 0,
2593 ("%s: enqueue record = %d\n", __func__,
2594 retval));
2595
2596 inm->in6m_state = MLD_LEAVING_MEMBER;
2597 inm->in6m_sctimer = 1;
2598 mtp->sct = 1;
2599 syncstates = 0;
2600 }
2601 }
2602 MLI_UNLOCK(mli);
2603 break;
2604 case MLD_LAZY_MEMBER:
2605 case MLD_SLEEPING_MEMBER:
2606 case MLD_AWAKENING_MEMBER:
2607 /* Our reports are suppressed; do nothing. */
2608 break;
2609 }
2610
2611 if (syncstates) {
2612 in6m_commit(inm);
2613 MLD_PRINTF(("%s: T1 -> T0 for %s/%s\n", __func__,
2614 ip6_sprintf(&inm->in6m_addr),
2615 if_name(inm->in6m_ifp)));
2616 inm->in6m_st[1].iss_fmode = MCAST_UNDEFINED;
2617 MLD_PRINTF(("%s: T1 now MCAST_UNDEFINED for 0x%llx/%s\n",
2618 __func__, (uint64_t)VM_KERNEL_ADDRPERM(&inm->in6m_addr),
2619 if_name(inm->in6m_ifp)));
2620 }
2621 }
2622
2623 /*
2624 * Enqueue an MLDv2 group record to the given output queue.
2625 *
2626 * If is_state_change is zero, a current-state record is appended.
2627 * If is_state_change is non-zero, a state-change report is appended.
2628 *
2629 * If is_group_query is non-zero, an mbuf packet chain is allocated.
2630 * If is_group_query is zero, and if there is a packet with free space
2631 * at the tail of the queue, it will be appended to providing there
2632 * is enough free space.
2633 * Otherwise a new mbuf packet chain is allocated.
2634 *
2635 * If is_source_query is non-zero, each source is checked to see if
2636 * it was recorded for a Group-Source query, and will be omitted if
2637 * it is not both in-mode and recorded.
2638 *
2639 * If use_block_allow is non-zero, state change reports for initial join
2640 * and final leave, on an inclusive mode group with a source list, will be
2641 * rewritten to use the ALLOW_NEW and BLOCK_OLD record types, respectively.
2642 *
2643 * The function will attempt to allocate leading space in the packet
2644 * for the IPv6+ICMP headers to be prepended without fragmenting the chain.
2645 *
2646 * If successful the size of all data appended to the queue is returned,
2647 * otherwise an error code less than zero is returned, or zero if
2648 * no record(s) were appended.
2649 */
2650 static int
2651 mld_v2_enqueue_group_record(struct ifqueue *ifq, struct in6_multi *inm,
2652 const int is_state_change, const int is_group_query,
2653 const int is_source_query, const int use_block_allow)
2654 {
2655 struct mldv2_record mr;
2656 struct mldv2_record *pmr;
2657 struct ifnet *ifp;
2658 struct ip6_msource *ims, *nims;
2659 struct mbuf *m0, *m, *md;
2660 int error, is_filter_list_change;
2661 int minrec0len, m0srcs, msrcs, nbytes, off;
2662 int record_has_sources;
2663 int now;
2664 int type;
2665 uint8_t mode;
2666
2667 IN6M_LOCK_ASSERT_HELD(inm);
2668 MLI_LOCK_ASSERT_HELD(inm->in6m_mli);
2669
2670 error = 0;
2671 ifp = inm->in6m_ifp;
2672 is_filter_list_change = 0;
2673 m = NULL;
2674 m0 = NULL;
2675 m0srcs = 0;
2676 msrcs = 0;
2677 nbytes = 0;
2678 nims = NULL;
2679 record_has_sources = 1;
2680 pmr = NULL;
2681 type = MLD_DO_NOTHING;
2682 mode = inm->in6m_st[1].iss_fmode;
2683
2684 /*
2685 * If we did not transition out of ASM mode during t0->t1,
2686 * and there are no source nodes to process, we can skip
2687 * the generation of source records.
2688 */
2689 if (inm->in6m_st[0].iss_asm > 0 && inm->in6m_st[1].iss_asm > 0 &&
2690 inm->in6m_nsrc == 0)
2691 record_has_sources = 0;
2692
2693 if (is_state_change) {
2694 /*
2695 * Queue a state change record.
2696 * If the mode did not change, and there are non-ASM
2697 * listeners or source filters present,
2698 * we potentially need to issue two records for the group.
2699 * If there are ASM listeners, and there was no filter
2700 * mode transition of any kind, do nothing.
2701 *
2702 * If we are transitioning to MCAST_UNDEFINED, we need
2703 * not send any sources. A transition to/from this state is
2704 * considered inclusive with some special treatment.
2705 *
2706 * If we are rewriting initial joins/leaves to use
2707 * ALLOW/BLOCK, and the group's membership is inclusive,
2708 * we need to send sources in all cases.
2709 */
2710 if (mode != inm->in6m_st[0].iss_fmode) {
2711 if (mode == MCAST_EXCLUDE) {
2712 MLD_PRINTF(("%s: change to EXCLUDE\n",
2713 __func__));
2714 type = MLD_CHANGE_TO_EXCLUDE_MODE;
2715 } else {
2716 MLD_PRINTF(("%s: change to INCLUDE\n",
2717 __func__));
2718 if (use_block_allow) {
2719 /*
2720 * XXX
2721 * Here we're interested in state
2722 * edges either direction between
2723 * MCAST_UNDEFINED and MCAST_INCLUDE.
2724 * Perhaps we should just check
2725 * the group state, rather than
2726 * the filter mode.
2727 */
2728 if (mode == MCAST_UNDEFINED) {
2729 type = MLD_BLOCK_OLD_SOURCES;
2730 } else {
2731 type = MLD_ALLOW_NEW_SOURCES;
2732 }
2733 } else {
2734 type = MLD_CHANGE_TO_INCLUDE_MODE;
2735 if (mode == MCAST_UNDEFINED)
2736 record_has_sources = 0;
2737 }
2738 }
2739 } else {
2740 if (record_has_sources) {
2741 is_filter_list_change = 1;
2742 } else {
2743 type = MLD_DO_NOTHING;
2744 }
2745 }
2746 } else {
2747 /*
2748 * Queue a current state record.
2749 */
2750 if (mode == MCAST_EXCLUDE) {
2751 type = MLD_MODE_IS_EXCLUDE;
2752 } else if (mode == MCAST_INCLUDE) {
2753 type = MLD_MODE_IS_INCLUDE;
2754 VERIFY(inm->in6m_st[1].iss_asm == 0);
2755 }
2756 }
2757
2758 /*
2759 * Generate the filter list changes using a separate function.
2760 */
2761 if (is_filter_list_change)
2762 return (mld_v2_enqueue_filter_change(ifq, inm));
2763
2764 if (type == MLD_DO_NOTHING) {
2765 MLD_PRINTF(("%s: nothing to do for %s/%s\n",
2766 __func__, ip6_sprintf(&inm->in6m_addr),
2767 if_name(inm->in6m_ifp)));
2768 return (0);
2769 }
2770
2771 /*
2772 * If any sources are present, we must be able to fit at least
2773 * one in the trailing space of the tail packet's mbuf,
2774 * ideally more.
2775 */
2776 minrec0len = sizeof(struct mldv2_record);
2777 if (record_has_sources)
2778 minrec0len += sizeof(struct in6_addr);
2779 MLD_PRINTF(("%s: queueing %s for %s/%s\n", __func__,
2780 mld_rec_type_to_str(type),
2781 ip6_sprintf(&inm->in6m_addr),
2782 if_name(inm->in6m_ifp)));
2783
2784 /*
2785 * Check if we have a packet in the tail of the queue for this
2786 * group into which the first group record for this group will fit.
2787 * Otherwise allocate a new packet.
2788 * Always allocate leading space for IP6+RA+ICMPV6+REPORT.
2789 * Note: Group records for G/GSR query responses MUST be sent
2790 * in their own packet.
2791 */
2792 m0 = ifq->ifq_tail;
2793 if (!is_group_query &&
2794 m0 != NULL &&
2795 (m0->m_pkthdr.vt_nrecs + 1 <= MLD_V2_REPORT_MAXRECS) &&
2796 (m0->m_pkthdr.len + minrec0len) <
2797 (ifp->if_mtu - MLD_MTUSPACE)) {
2798 m0srcs = (ifp->if_mtu - m0->m_pkthdr.len -
2799 sizeof(struct mldv2_record)) /
2800 sizeof(struct in6_addr);
2801 m = m0;
2802 MLD_PRINTF(("%s: use existing packet\n", __func__));
2803 } else {
2804 if (IF_QFULL(ifq)) {
2805 MLD_PRINTF(("%s: outbound queue full\n", __func__));
2806 return (-ENOMEM);
2807 }
2808 m = NULL;
2809 m0srcs = (ifp->if_mtu - MLD_MTUSPACE -
2810 sizeof(struct mldv2_record)) / sizeof(struct in6_addr);
2811 if (!is_state_change && !is_group_query)
2812 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2813 if (m == NULL)
2814 m = m_gethdr(M_DONTWAIT, MT_DATA);
2815 if (m == NULL)
2816 return (-ENOMEM);
2817
2818 mld_save_context(m, ifp);
2819
2820 MLD_PRINTF(("%s: allocated first packet\n", __func__));
2821 }
2822
2823 /*
2824 * Append group record.
2825 * If we have sources, we don't know how many yet.
2826 */
2827 mr.mr_type = type;
2828 mr.mr_datalen = 0;
2829 mr.mr_numsrc = 0;
2830 mr.mr_addr = inm->in6m_addr;
2831 in6_clearscope(&mr.mr_addr);
2832 if (!m_append(m, sizeof(struct mldv2_record), (void *)&mr)) {
2833 if (m != m0)
2834 m_freem(m);
2835 MLD_PRINTF(("%s: m_append() failed.\n", __func__));
2836 return (-ENOMEM);
2837 }
2838 nbytes += sizeof(struct mldv2_record);
2839
2840 /*
2841 * Append as many sources as will fit in the first packet.
2842 * If we are appending to a new packet, the chain allocation
2843 * may potentially use clusters; use m_getptr() in this case.
2844 * If we are appending to an existing packet, we need to obtain
2845 * a pointer to the group record after m_append(), in case a new
2846 * mbuf was allocated.
2847 *
2848 * Only append sources which are in-mode at t1. If we are
2849 * transitioning to MCAST_UNDEFINED state on the group, and
2850 * use_block_allow is zero, do not include source entries.
2851 * Otherwise, we need to include this source in the report.
2852 *
2853 * Only report recorded sources in our filter set when responding
2854 * to a group-source query.
2855 */
2856 if (record_has_sources) {
2857 if (m == m0) {
2858 md = m_last(m);
2859 pmr = (struct mldv2_record *)(mtod(md, uint8_t *) +
2860 md->m_len - nbytes);
2861 } else {
2862 md = m_getptr(m, 0, &off);
2863 pmr = (struct mldv2_record *)(mtod(md, uint8_t *) +
2864 off);
2865 }
2866 msrcs = 0;
2867 RB_FOREACH_SAFE(ims, ip6_msource_tree, &inm->in6m_srcs,
2868 nims) {
2869 MLD_PRINTF(("%s: visit node %s\n", __func__,
2870 ip6_sprintf(&ims->im6s_addr)));
2871 now = im6s_get_mode(inm, ims, 1);
2872 MLD_PRINTF(("%s: node is %d\n", __func__, now));
2873 if ((now != mode) ||
2874 (now == mode &&
2875 (!use_block_allow && mode == MCAST_UNDEFINED))) {
2876 MLD_PRINTF(("%s: skip node\n", __func__));
2877 continue;
2878 }
2879 if (is_source_query && ims->im6s_stp == 0) {
2880 MLD_PRINTF(("%s: skip unrecorded node\n",
2881 __func__));
2882 continue;
2883 }
2884 MLD_PRINTF(("%s: append node\n", __func__));
2885 if (!m_append(m, sizeof(struct in6_addr),
2886 (void *)&ims->im6s_addr)) {
2887 if (m != m0)
2888 m_freem(m);
2889 MLD_PRINTF(("%s: m_append() failed.\n",
2890 __func__));
2891 return (-ENOMEM);
2892 }
2893 nbytes += sizeof(struct in6_addr);
2894 ++msrcs;
2895 if (msrcs == m0srcs)
2896 break;
2897 }
2898 MLD_PRINTF(("%s: msrcs is %d this packet\n", __func__,
2899 msrcs));
2900 pmr->mr_numsrc = htons(msrcs);
2901 nbytes += (msrcs * sizeof(struct in6_addr));
2902 }
2903
2904 if (is_source_query && msrcs == 0) {
2905 MLD_PRINTF(("%s: no recorded sources to report\n", __func__));
2906 if (m != m0)
2907 m_freem(m);
2908 return (0);
2909 }
2910
2911 /*
2912 * We are good to go with first packet.
2913 */
2914 if (m != m0) {
2915 MLD_PRINTF(("%s: enqueueing first packet\n", __func__));
2916 m->m_pkthdr.vt_nrecs = 1;
2917 IF_ENQUEUE(ifq, m);
2918 } else {
2919 m->m_pkthdr.vt_nrecs++;
2920 }
2921 /*
2922 * No further work needed if no source list in packet(s).
2923 */
2924 if (!record_has_sources)
2925 return (nbytes);
2926
2927 /*
2928 * Whilst sources remain to be announced, we need to allocate
2929 * a new packet and fill out as many sources as will fit.
2930 * Always try for a cluster first.
2931 */
2932 while (nims != NULL) {
2933 if (IF_QFULL(ifq)) {
2934 MLD_PRINTF(("%s: outbound queue full\n", __func__));
2935 return (-ENOMEM);
2936 }
2937 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2938 if (m == NULL)
2939 m = m_gethdr(M_DONTWAIT, MT_DATA);
2940 if (m == NULL)
2941 return (-ENOMEM);
2942 mld_save_context(m, ifp);
2943 md = m_getptr(m, 0, &off);
2944 pmr = (struct mldv2_record *)(mtod(md, uint8_t *) + off);
2945 MLD_PRINTF(("%s: allocated next packet\n", __func__));
2946
2947 if (!m_append(m, sizeof(struct mldv2_record), (void *)&mr)) {
2948 if (m != m0)
2949 m_freem(m);
2950 MLD_PRINTF(("%s: m_append() failed.\n", __func__));
2951 return (-ENOMEM);
2952 }
2953 m->m_pkthdr.vt_nrecs = 1;
2954 nbytes += sizeof(struct mldv2_record);
2955
2956 m0srcs = (ifp->if_mtu - MLD_MTUSPACE -
2957 sizeof(struct mldv2_record)) / sizeof(struct in6_addr);
2958
2959 msrcs = 0;
2960 RB_FOREACH_FROM(ims, ip6_msource_tree, nims) {
2961 MLD_PRINTF(("%s: visit node %s\n",
2962 __func__, ip6_sprintf(&ims->im6s_addr)));
2963 now = im6s_get_mode(inm, ims, 1);
2964 if ((now != mode) ||
2965 (now == mode &&
2966 (!use_block_allow && mode == MCAST_UNDEFINED))) {
2967 MLD_PRINTF(("%s: skip node\n", __func__));
2968 continue;
2969 }
2970 if (is_source_query && ims->im6s_stp == 0) {
2971 MLD_PRINTF(("%s: skip unrecorded node\n",
2972 __func__));
2973 continue;
2974 }
2975 MLD_PRINTF(("%s: append node\n", __func__));
2976 if (!m_append(m, sizeof(struct in6_addr),
2977 (void *)&ims->im6s_addr)) {
2978 if (m != m0)
2979 m_freem(m);
2980 MLD_PRINTF(("%s: m_append() failed.\n",
2981 __func__));
2982 return (-ENOMEM);
2983 }
2984 ++msrcs;
2985 if (msrcs == m0srcs)
2986 break;
2987 }
2988 pmr->mr_numsrc = htons(msrcs);
2989 nbytes += (msrcs * sizeof(struct in6_addr));
2990
2991 MLD_PRINTF(("%s: enqueueing next packet\n", __func__));
2992 IF_ENQUEUE(ifq, m);
2993 }
2994
2995 return (nbytes);
2996 }
2997
2998 /*
2999 * Type used to mark record pass completion.
3000 * We exploit the fact we can cast to this easily from the
3001 * current filter modes on each ip_msource node.
3002 */
3003 typedef enum {
3004 REC_NONE = 0x00, /* MCAST_UNDEFINED */
3005 REC_ALLOW = 0x01, /* MCAST_INCLUDE */
3006 REC_BLOCK = 0x02, /* MCAST_EXCLUDE */
3007 REC_FULL = REC_ALLOW | REC_BLOCK
3008 } rectype_t;
3009
3010 /*
3011 * Enqueue an MLDv2 filter list change to the given output queue.
3012 *
3013 * Source list filter state is held in an RB-tree. When the filter list
3014 * for a group is changed without changing its mode, we need to compute
3015 * the deltas between T0 and T1 for each source in the filter set,
3016 * and enqueue the appropriate ALLOW_NEW/BLOCK_OLD records.
3017 *
3018 * As we may potentially queue two record types, and the entire R-B tree
3019 * needs to be walked at once, we break this out into its own function
3020 * so we can generate a tightly packed queue of packets.
3021 *
3022 * XXX This could be written to only use one tree walk, although that makes
3023 * serializing into the mbuf chains a bit harder. For now we do two walks
3024 * which makes things easier on us, and it may or may not be harder on
3025 * the L2 cache.
3026 *
3027 * If successful the size of all data appended to the queue is returned,
3028 * otherwise an error code less than zero is returned, or zero if
3029 * no record(s) were appended.
3030 */
3031 static int
3032 mld_v2_enqueue_filter_change(struct ifqueue *ifq, struct in6_multi *inm)
3033 {
3034 static const int MINRECLEN =
3035 sizeof(struct mldv2_record) + sizeof(struct in6_addr);
3036 struct ifnet *ifp;
3037 struct mldv2_record mr;
3038 struct mldv2_record *pmr;
3039 struct ip6_msource *ims, *nims;
3040 struct mbuf *m, *m0, *md;
3041 int m0srcs, nbytes, npbytes, off, rsrcs, schanged;
3042 int nallow, nblock;
3043 uint8_t mode, now, then;
3044 rectype_t crt, drt, nrt;
3045
3046 IN6M_LOCK_ASSERT_HELD(inm);
3047
3048 if (inm->in6m_nsrc == 0 ||
3049 (inm->in6m_st[0].iss_asm > 0 && inm->in6m_st[1].iss_asm > 0))
3050 return (0);
3051
3052 ifp = inm->in6m_ifp; /* interface */
3053 mode = inm->in6m_st[1].iss_fmode; /* filter mode at t1 */
3054 crt = REC_NONE; /* current group record type */
3055 drt = REC_NONE; /* mask of completed group record types */
3056 nrt = REC_NONE; /* record type for current node */
3057 m0srcs = 0; /* # source which will fit in current mbuf chain */
3058 npbytes = 0; /* # of bytes appended this packet */
3059 nbytes = 0; /* # of bytes appended to group's state-change queue */
3060 rsrcs = 0; /* # sources encoded in current record */
3061 schanged = 0; /* # nodes encoded in overall filter change */
3062 nallow = 0; /* # of source entries in ALLOW_NEW */
3063 nblock = 0; /* # of source entries in BLOCK_OLD */
3064 nims = NULL; /* next tree node pointer */
3065
3066 /*
3067 * For each possible filter record mode.
3068 * The first kind of source we encounter tells us which
3069 * is the first kind of record we start appending.
3070 * If a node transitioned to UNDEFINED at t1, its mode is treated
3071 * as the inverse of the group's filter mode.
3072 */
3073 while (drt != REC_FULL) {
3074 do {
3075 m0 = ifq->ifq_tail;
3076 if (m0 != NULL &&
3077 (m0->m_pkthdr.vt_nrecs + 1 <=
3078 MLD_V2_REPORT_MAXRECS) &&
3079 (m0->m_pkthdr.len + MINRECLEN) <
3080 (ifp->if_mtu - MLD_MTUSPACE)) {
3081 m = m0;
3082 m0srcs = (ifp->if_mtu - m0->m_pkthdr.len -
3083 sizeof(struct mldv2_record)) /
3084 sizeof(struct in6_addr);
3085 MLD_PRINTF(("%s: use previous packet\n",
3086 __func__));
3087 } else {
3088 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
3089 if (m == NULL)
3090 m = m_gethdr(M_DONTWAIT, MT_DATA);
3091 if (m == NULL) {
3092 MLD_PRINTF(("%s: m_get*() failed\n",
3093 __func__));
3094 return (-ENOMEM);
3095 }
3096 m->m_pkthdr.vt_nrecs = 0;
3097 mld_save_context(m, ifp);
3098 m0srcs = (ifp->if_mtu - MLD_MTUSPACE -
3099 sizeof(struct mldv2_record)) /
3100 sizeof(struct in6_addr);
3101 npbytes = 0;
3102 MLD_PRINTF(("%s: allocated new packet\n",
3103 __func__));
3104 }
3105 /*
3106 * Append the MLD group record header to the
3107 * current packet's data area.
3108 * Recalculate pointer to free space for next
3109 * group record, in case m_append() allocated
3110 * a new mbuf or cluster.
3111 */
3112 memset(&mr, 0, sizeof(mr));
3113 mr.mr_addr = inm->in6m_addr;
3114 in6_clearscope(&mr.mr_addr);
3115 if (!m_append(m, sizeof(mr), (void *)&mr)) {
3116 if (m != m0)
3117 m_freem(m);
3118 MLD_PRINTF(("%s: m_append() failed\n",
3119 __func__));
3120 return (-ENOMEM);
3121 }
3122 npbytes += sizeof(struct mldv2_record);
3123 if (m != m0) {
3124 /* new packet; offset in chain */
3125 md = m_getptr(m, npbytes -
3126 sizeof(struct mldv2_record), &off);
3127 pmr = (struct mldv2_record *)(mtod(md,
3128 uint8_t *) + off);
3129 } else {
3130 /* current packet; offset from last append */
3131 md = m_last(m);
3132 pmr = (struct mldv2_record *)(mtod(md,
3133 uint8_t *) + md->m_len -
3134 sizeof(struct mldv2_record));
3135 }
3136 /*
3137 * Begin walking the tree for this record type
3138 * pass, or continue from where we left off
3139 * previously if we had to allocate a new packet.
3140 * Only report deltas in-mode at t1.
3141 * We need not report included sources as allowed
3142 * if we are in inclusive mode on the group,
3143 * however the converse is not true.
3144 */
3145 rsrcs = 0;
3146 if (nims == NULL) {
3147 nims = RB_MIN(ip6_msource_tree,
3148 &inm->in6m_srcs);
3149 }
3150 RB_FOREACH_FROM(ims, ip6_msource_tree, nims) {
3151 MLD_PRINTF(("%s: visit node %s\n", __func__,
3152 ip6_sprintf(&ims->im6s_addr)));
3153 now = im6s_get_mode(inm, ims, 1);
3154 then = im6s_get_mode(inm, ims, 0);
3155 MLD_PRINTF(("%s: mode: t0 %d, t1 %d\n",
3156 __func__, then, now));
3157 if (now == then) {
3158 MLD_PRINTF(("%s: skip unchanged\n",
3159 __func__));
3160 continue;
3161 }
3162 if (mode == MCAST_EXCLUDE &&
3163 now == MCAST_INCLUDE) {
3164 MLD_PRINTF(("%s: skip IN src on EX "
3165 "group\n", __func__));
3166 continue;
3167 }
3168 nrt = (rectype_t)now;
3169 if (nrt == REC_NONE)
3170 nrt = (rectype_t)(~mode & REC_FULL);
3171 if (schanged++ == 0) {
3172 crt = nrt;
3173 } else if (crt != nrt)
3174 continue;
3175 if (!m_append(m, sizeof(struct in6_addr),
3176 (void *)&ims->im6s_addr)) {
3177 if (m != m0)
3178 m_freem(m);
3179 MLD_PRINTF(("%s: m_append() failed\n",
3180 __func__));
3181 return (-ENOMEM);
3182 }
3183 nallow += !!(crt == REC_ALLOW);
3184 nblock += !!(crt == REC_BLOCK);
3185 if (++rsrcs == m0srcs)
3186 break;
3187 }
3188 /*
3189 * If we did not append any tree nodes on this
3190 * pass, back out of allocations.
3191 */
3192 if (rsrcs == 0) {
3193 npbytes -= sizeof(struct mldv2_record);
3194 if (m != m0) {
3195 MLD_PRINTF(("%s: m_free(m)\n",
3196 __func__));
3197 m_freem(m);
3198 } else {
3199 MLD_PRINTF(("%s: m_adj(m, -mr)\n",
3200 __func__));
3201 m_adj(m, -((int)sizeof(
3202 struct mldv2_record)));
3203 }
3204 continue;
3205 }
3206 npbytes += (rsrcs * sizeof(struct in6_addr));
3207 if (crt == REC_ALLOW)
3208 pmr->mr_type = MLD_ALLOW_NEW_SOURCES;
3209 else if (crt == REC_BLOCK)
3210 pmr->mr_type = MLD_BLOCK_OLD_SOURCES;
3211 pmr->mr_numsrc = htons(rsrcs);
3212 /*
3213 * Count the new group record, and enqueue this
3214 * packet if it wasn't already queued.
3215 */
3216 m->m_pkthdr.vt_nrecs++;
3217 if (m != m0)
3218 IF_ENQUEUE(ifq, m);
3219 nbytes += npbytes;
3220 } while (nims != NULL);
3221 drt |= crt;
3222 crt = (~crt & REC_FULL);
3223 }
3224
3225 MLD_PRINTF(("%s: queued %d ALLOW_NEW, %d BLOCK_OLD\n", __func__,
3226 nallow, nblock));
3227
3228 return (nbytes);
3229 }
3230
3231 static int
3232 mld_v2_merge_state_changes(struct in6_multi *inm, struct ifqueue *ifscq)
3233 {
3234 struct ifqueue *gq;
3235 struct mbuf *m; /* pending state-change */
3236 struct mbuf *m0; /* copy of pending state-change */
3237 struct mbuf *mt; /* last state-change in packet */
3238 struct mbuf *n;
3239 int docopy, domerge;
3240 u_int recslen;
3241
3242 IN6M_LOCK_ASSERT_HELD(inm);
3243
3244 docopy = 0;
3245 domerge = 0;
3246 recslen = 0;
3247
3248 /*
3249 * If there are further pending retransmissions, make a writable
3250 * copy of each queued state-change message before merging.
3251 */
3252 if (inm->in6m_scrv > 0)
3253 docopy = 1;
3254
3255 gq = &inm->in6m_scq;
3256 #ifdef MLD_DEBUG
3257 if (gq->ifq_head == NULL) {
3258 MLD_PRINTF(("%s: WARNING: queue for inm 0x%llx is empty\n",
3259 __func__, (uint64_t)VM_KERNEL_ADDRPERM(inm)));
3260 }
3261 #endif
3262
3263 /*
3264 * Use IF_REMQUEUE() instead of IF_DEQUEUE() below, since the
3265 * packet might not always be at the head of the ifqueue.
3266 */
3267 m = gq->ifq_head;
3268 while (m != NULL) {
3269 /*
3270 * Only merge the report into the current packet if
3271 * there is sufficient space to do so; an MLDv2 report
3272 * packet may only contain 65,535 group records.
3273 * Always use a simple mbuf chain concatentation to do this,
3274 * as large state changes for single groups may have
3275 * allocated clusters.
3276 */
3277 domerge = 0;
3278 mt = ifscq->ifq_tail;
3279 if (mt != NULL) {
3280 recslen = m_length(m);
3281
3282 if ((mt->m_pkthdr.vt_nrecs +
3283 m->m_pkthdr.vt_nrecs <=
3284 MLD_V2_REPORT_MAXRECS) &&
3285 (mt->m_pkthdr.len + recslen <=
3286 (inm->in6m_ifp->if_mtu - MLD_MTUSPACE)))
3287 domerge = 1;
3288 }
3289
3290 if (!domerge && IF_QFULL(gq)) {
3291 MLD_PRINTF(("%s: outbound queue full, skipping whole "
3292 "packet 0x%llx\n", __func__,
3293 (uint64_t)VM_KERNEL_ADDRPERM(m)));
3294 n = m->m_nextpkt;
3295 if (!docopy) {
3296 IF_REMQUEUE(gq, m);
3297 m_freem(m);
3298 }
3299 m = n;
3300 continue;
3301 }
3302
3303 if (!docopy) {
3304 MLD_PRINTF(("%s: dequeueing 0x%llx\n", __func__,
3305 (uint64_t)VM_KERNEL_ADDRPERM(m)));
3306 n = m->m_nextpkt;
3307 IF_REMQUEUE(gq, m);
3308 m0 = m;
3309 m = n;
3310 } else {
3311 MLD_PRINTF(("%s: copying 0x%llx\n", __func__,
3312 (uint64_t)VM_KERNEL_ADDRPERM(m)));
3313 m0 = m_dup(m, M_NOWAIT);
3314 if (m0 == NULL)
3315 return (ENOMEM);
3316 m0->m_nextpkt = NULL;
3317 m = m->m_nextpkt;
3318 }
3319
3320 if (!domerge) {
3321 MLD_PRINTF(("%s: queueing 0x%llx to ifscq 0x%llx)\n",
3322 __func__, (uint64_t)VM_KERNEL_ADDRPERM(m0),
3323 (uint64_t)VM_KERNEL_ADDRPERM(ifscq)));
3324 IF_ENQUEUE(ifscq, m0);
3325 } else {
3326 struct mbuf *mtl; /* last mbuf of packet mt */
3327
3328 MLD_PRINTF(("%s: merging 0x%llx with ifscq tail "
3329 "0x%llx)\n", __func__,
3330 (uint64_t)VM_KERNEL_ADDRPERM(m0),
3331 (uint64_t)VM_KERNEL_ADDRPERM(mt)));
3332
3333 mtl = m_last(mt);
3334 m0->m_flags &= ~M_PKTHDR;
3335 mt->m_pkthdr.len += recslen;
3336 mt->m_pkthdr.vt_nrecs +=
3337 m0->m_pkthdr.vt_nrecs;
3338
3339 mtl->m_next = m0;
3340 }
3341 }
3342
3343 return (0);
3344 }
3345
3346 /*
3347 * Respond to a pending MLDv2 General Query.
3348 */
3349 static uint32_t
3350 mld_v2_dispatch_general_query(struct mld_ifinfo *mli)
3351 {
3352 struct ifnet *ifp;
3353 struct in6_multi *inm;
3354 struct in6_multistep step;
3355 int retval;
3356
3357 MLI_LOCK_ASSERT_HELD(mli);
3358
3359 VERIFY(mli->mli_version == MLD_VERSION_2);
3360
3361 ifp = mli->mli_ifp;
3362 MLI_UNLOCK(mli);
3363
3364 in6_multihead_lock_shared();
3365 IN6_FIRST_MULTI(step, inm);
3366 while (inm != NULL) {
3367 IN6M_LOCK(inm);
3368 if (inm->in6m_ifp != ifp)
3369 goto next;
3370
3371 switch (inm->in6m_state) {
3372 case MLD_NOT_MEMBER:
3373 case MLD_SILENT_MEMBER:
3374 break;
3375 case MLD_REPORTING_MEMBER:
3376 case MLD_IDLE_MEMBER:
3377 case MLD_LAZY_MEMBER:
3378 case MLD_SLEEPING_MEMBER:
3379 case MLD_AWAKENING_MEMBER:
3380 inm->in6m_state = MLD_REPORTING_MEMBER;
3381 MLI_LOCK(mli);
3382 retval = mld_v2_enqueue_group_record(&mli->mli_gq,
3383 inm, 0, 0, 0, 0);
3384 MLI_UNLOCK(mli);
3385 MLD_PRINTF(("%s: enqueue record = %d\n",
3386 __func__, retval));
3387 break;
3388 case MLD_G_QUERY_PENDING_MEMBER:
3389 case MLD_SG_QUERY_PENDING_MEMBER:
3390 case MLD_LEAVING_MEMBER:
3391 break;
3392 }
3393 next:
3394 IN6M_UNLOCK(inm);
3395 IN6_NEXT_MULTI(step, inm);
3396 }
3397 in6_multihead_lock_done();
3398
3399 MLI_LOCK(mli);
3400 mld_dispatch_queue(mli, &mli->mli_gq, MLD_MAX_RESPONSE_BURST);
3401 MLI_LOCK_ASSERT_HELD(mli);
3402
3403 /*
3404 * Slew transmission of bursts over 1 second intervals.
3405 */
3406 if (mli->mli_gq.ifq_head != NULL) {
3407 mli->mli_v2_timer = 1 + MLD_RANDOM_DELAY(
3408 MLD_RESPONSE_BURST_INTERVAL);
3409 }
3410
3411 return (mli->mli_v2_timer);
3412 }
3413
3414 /*
3415 * Transmit the next pending message in the output queue.
3416 *
3417 * Must not be called with in6m_lockm or mli_lock held.
3418 */
3419 static void
3420 mld_dispatch_packet(struct mbuf *m)
3421 {
3422 struct ip6_moptions *im6o;
3423 struct ifnet *ifp;
3424 struct ifnet *oifp = NULL;
3425 struct mbuf *m0;
3426 struct mbuf *md;
3427 struct ip6_hdr *ip6;
3428 struct mld_hdr *mld;
3429 int error;
3430 int off;
3431 int type;
3432
3433 MLD_PRINTF(("%s: transmit 0x%llx\n", __func__,
3434 (uint64_t)VM_KERNEL_ADDRPERM(m)));
3435
3436 /*
3437 * Check if the ifnet is still attached.
3438 */
3439 ifp = mld_restore_context(m);
3440 if (ifp == NULL || !ifnet_is_attached(ifp, 0)) {
3441 MLD_PRINTF(("%s: dropped 0x%llx as ifindex %u went away.\n",
3442 __func__, (uint64_t)VM_KERNEL_ADDRPERM(m),
3443 (u_int)if_index));
3444 m_freem(m);
3445 ip6stat.ip6s_noroute++;
3446 return;
3447 }
3448
3449 im6o = ip6_allocmoptions(M_WAITOK);
3450 if (im6o == NULL) {
3451 m_freem(m);
3452 return;
3453 }
3454
3455 im6o->im6o_multicast_hlim = 1;
3456 #if MROUTING
3457 im6o->im6o_multicast_loop = (ip6_mrouter != NULL);
3458 #else
3459 im6o->im6o_multicast_loop = 0;
3460 #endif
3461 im6o->im6o_multicast_ifp = ifp;
3462
3463 if (m->m_flags & M_MLDV1) {
3464 m0 = m;
3465 } else {
3466 m0 = mld_v2_encap_report(ifp, m);
3467 if (m0 == NULL) {
3468 MLD_PRINTF(("%s: dropped 0x%llx\n", __func__,
3469 (uint64_t)VM_KERNEL_ADDRPERM(m)));
3470 /*
3471 * mld_v2_encap_report() has already freed our mbuf.
3472 */
3473 IM6O_REMREF(im6o);
3474 ip6stat.ip6s_odropped++;
3475 return;
3476 }
3477 }
3478
3479 mld_scrub_context(m0);
3480 m->m_flags &= ~(M_PROTOFLAGS);
3481 m0->m_pkthdr.rcvif = lo_ifp;
3482
3483 ip6 = mtod(m0, struct ip6_hdr *);
3484 (void) in6_setscope(&ip6->ip6_dst, ifp, NULL);
3485
3486 /*
3487 * Retrieve the ICMPv6 type before handoff to ip6_output(),
3488 * so we can bump the stats.
3489 */
3490 md = m_getptr(m0, sizeof(struct ip6_hdr), &off);
3491 mld = (struct mld_hdr *)(mtod(md, uint8_t *) + off);
3492 type = mld->mld_type;
3493
3494 if (ifp->if_eflags & IFEF_TXSTART) {
3495 /*
3496 * Use control service class if the outgoing
3497 * interface supports transmit-start model.
3498 */
3499 (void) m_set_service_class(m0, MBUF_SC_CTL);
3500 }
3501
3502 error = ip6_output(m0, &mld_po, NULL, IPV6_UNSPECSRC, im6o,
3503 &oifp, NULL);
3504
3505 IM6O_REMREF(im6o);
3506
3507 if (error) {
3508 MLD_PRINTF(("%s: ip6_output(0x%llx) = %d\n", __func__,
3509 (uint64_t)VM_KERNEL_ADDRPERM(m0), error));
3510 if (oifp != NULL)
3511 ifnet_release(oifp);
3512 return;
3513 }
3514
3515 icmp6stat.icp6s_outhist[type]++;
3516 if (oifp != NULL) {
3517 icmp6_ifstat_inc(oifp, ifs6_out_msg);
3518 switch (type) {
3519 case MLD_LISTENER_REPORT:
3520 case MLDV2_LISTENER_REPORT:
3521 icmp6_ifstat_inc(oifp, ifs6_out_mldreport);
3522 break;
3523 case MLD_LISTENER_DONE:
3524 icmp6_ifstat_inc(oifp, ifs6_out_mlddone);
3525 break;
3526 }
3527 ifnet_release(oifp);
3528 }
3529 }
3530
3531 /*
3532 * Encapsulate an MLDv2 report.
3533 *
3534 * KAME IPv6 requires that hop-by-hop options be passed separately,
3535 * and that the IPv6 header be prepended in a separate mbuf.
3536 *
3537 * Returns a pointer to the new mbuf chain head, or NULL if the
3538 * allocation failed.
3539 */
3540 static struct mbuf *
3541 mld_v2_encap_report(struct ifnet *ifp, struct mbuf *m)
3542 {
3543 struct mbuf *mh;
3544 struct mldv2_report *mld;
3545 struct ip6_hdr *ip6;
3546 struct in6_ifaddr *ia;
3547 int mldreclen;
3548
3549 VERIFY(m->m_flags & M_PKTHDR);
3550
3551 /*
3552 * RFC3590: OK to send as :: or tentative during DAD.
3553 */
3554 ia = in6ifa_ifpforlinklocal(ifp, IN6_IFF_NOTREADY|IN6_IFF_ANYCAST);
3555 if (ia == NULL)
3556 MLD_PRINTF(("%s: warning: ia is NULL\n", __func__));
3557
3558 MGETHDR(mh, M_DONTWAIT, MT_HEADER);
3559 if (mh == NULL) {
3560 if (ia != NULL)
3561 IFA_REMREF(&ia->ia_ifa);
3562 m_freem(m);
3563 return (NULL);
3564 }
3565 MH_ALIGN(mh, sizeof(struct ip6_hdr) + sizeof(struct mldv2_report));
3566
3567 mldreclen = m_length(m);
3568 MLD_PRINTF(("%s: mldreclen is %d\n", __func__, mldreclen));
3569
3570 mh->m_len = sizeof(struct ip6_hdr) + sizeof(struct mldv2_report);
3571 mh->m_pkthdr.len = sizeof(struct ip6_hdr) +
3572 sizeof(struct mldv2_report) + mldreclen;
3573
3574 ip6 = mtod(mh, struct ip6_hdr *);
3575 ip6->ip6_flow = 0;
3576 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
3577 ip6->ip6_vfc |= IPV6_VERSION;
3578 ip6->ip6_nxt = IPPROTO_ICMPV6;
3579 if (ia != NULL)
3580 IFA_LOCK(&ia->ia_ifa);
3581 ip6->ip6_src = ia ? ia->ia_addr.sin6_addr : in6addr_any;
3582 if (ia != NULL) {
3583 IFA_UNLOCK(&ia->ia_ifa);
3584 IFA_REMREF(&ia->ia_ifa);
3585 ia = NULL;
3586 }
3587 ip6->ip6_dst = in6addr_linklocal_allv2routers;
3588 /* scope ID will be set in netisr */
3589
3590 mld = (struct mldv2_report *)(ip6 + 1);
3591 mld->mld_type = MLDV2_LISTENER_REPORT;
3592 mld->mld_code = 0;
3593 mld->mld_cksum = 0;
3594 mld->mld_v2_reserved = 0;
3595 mld->mld_v2_numrecs = htons(m->m_pkthdr.vt_nrecs);
3596 m->m_pkthdr.vt_nrecs = 0;
3597 m->m_flags &= ~M_PKTHDR;
3598
3599 mh->m_next = m;
3600 mld->mld_cksum = in6_cksum(mh, IPPROTO_ICMPV6,
3601 sizeof(struct ip6_hdr), sizeof(struct mldv2_report) + mldreclen);
3602 return (mh);
3603 }
3604
3605 #ifdef MLD_DEBUG
3606 static const char *
3607 mld_rec_type_to_str(const int type)
3608 {
3609 switch (type) {
3610 case MLD_CHANGE_TO_EXCLUDE_MODE:
3611 return "TO_EX";
3612 break;
3613 case MLD_CHANGE_TO_INCLUDE_MODE:
3614 return "TO_IN";
3615 break;
3616 case MLD_MODE_IS_EXCLUDE:
3617 return "MODE_EX";
3618 break;
3619 case MLD_MODE_IS_INCLUDE:
3620 return "MODE_IN";
3621 break;
3622 case MLD_ALLOW_NEW_SOURCES:
3623 return "ALLOW_NEW";
3624 break;
3625 case MLD_BLOCK_OLD_SOURCES:
3626 return "BLOCK_OLD";
3627 break;
3628 default:
3629 break;
3630 }
3631 return "unknown";
3632 }
3633 #endif
3634
3635 void
3636 mld_init(void)
3637 {
3638
3639 MLD_PRINTF(("%s: initializing\n", __func__));
3640
3641 /* Setup lock group and attribute for mld_mtx */
3642 mld_mtx_grp_attr = lck_grp_attr_alloc_init();
3643 mld_mtx_grp = lck_grp_alloc_init("mld_mtx\n", mld_mtx_grp_attr);
3644 mld_mtx_attr = lck_attr_alloc_init();
3645 lck_mtx_init(&mld_mtx, mld_mtx_grp, mld_mtx_attr);
3646
3647 ip6_initpktopts(&mld_po);
3648 mld_po.ip6po_hlim = 1;
3649 mld_po.ip6po_hbh = &mld_ra.hbh;
3650 mld_po.ip6po_prefer_tempaddr = IP6PO_TEMPADDR_NOTPREFER;
3651 mld_po.ip6po_flags = IP6PO_DONTFRAG;
3652 LIST_INIT(&mli_head);
3653
3654 mli_size = sizeof (struct mld_ifinfo);
3655 mli_zone = zinit(mli_size, MLI_ZONE_MAX * mli_size,
3656 0, MLI_ZONE_NAME);
3657 if (mli_zone == NULL) {
3658 panic("%s: failed allocating %s", __func__, MLI_ZONE_NAME);
3659 /* NOTREACHED */
3660 }
3661 zone_change(mli_zone, Z_EXPAND, TRUE);
3662 zone_change(mli_zone, Z_CALLERACCT, FALSE);
3663 }