]> git.saurik.com Git - apple/xnu.git/blob - bsd/netinet6/in6_src.c
xnu-2422.90.20.tar.gz
[apple/xnu.git] / bsd / netinet6 / in6_src.c
1 /*
2 * Copyright (c) 2000-2013 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28
29 /*
30 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
31 * All rights reserved.
32 *
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
35 * are met:
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
41 * 3. Neither the name of the project nor the names of its contributors
42 * may be used to endorse or promote products derived from this software
43 * without specific prior written permission.
44 *
45 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
49 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 * SUCH DAMAGE.
56 */
57
58 /*
59 * Copyright (c) 1982, 1986, 1991, 1993
60 * The Regents of the University of California. All rights reserved.
61 *
62 * Redistribution and use in source and binary forms, with or without
63 * modification, are permitted provided that the following conditions
64 * are met:
65 * 1. Redistributions of source code must retain the above copyright
66 * notice, this list of conditions and the following disclaimer.
67 * 2. Redistributions in binary form must reproduce the above copyright
68 * notice, this list of conditions and the following disclaimer in the
69 * documentation and/or other materials provided with the distribution.
70 * 3. All advertising materials mentioning features or use of this software
71 * must display the following acknowledgement:
72 * This product includes software developed by the University of
73 * California, Berkeley and its contributors.
74 * 4. Neither the name of the University nor the names of its contributors
75 * may be used to endorse or promote products derived from this software
76 * without specific prior written permission.
77 *
78 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
79 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
80 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
81 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
82 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
83 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
84 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
85 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
86 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
87 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
88 * SUCH DAMAGE.
89 *
90 * @(#)in_pcb.c 8.2 (Berkeley) 1/4/94
91 */
92
93
94 #include <sys/param.h>
95 #include <sys/systm.h>
96 #include <sys/malloc.h>
97 #include <sys/mbuf.h>
98 #include <sys/protosw.h>
99 #include <sys/socket.h>
100 #include <sys/socketvar.h>
101 #include <sys/errno.h>
102 #include <sys/time.h>
103 #include <sys/proc.h>
104 #include <sys/sysctl.h>
105 #include <sys/kauth.h>
106 #include <sys/priv.h>
107 #include <kern/lock.h>
108
109 #include <net/if.h>
110 #include <net/if_types.h>
111 #include <net/route.h>
112
113 #include <netinet/in.h>
114 #include <netinet/in_var.h>
115 #include <netinet/in_systm.h>
116 #include <netinet/ip.h>
117 #include <netinet/in_pcb.h>
118 #include <netinet6/in6_var.h>
119 #include <netinet/ip6.h>
120 #include <netinet6/in6_pcb.h>
121 #include <netinet6/ip6_var.h>
122 #include <netinet6/scope6_var.h>
123 #include <netinet6/nd6.h>
124
125 #include <net/net_osdep.h>
126
127 #include "loop.h"
128
129 SYSCTL_DECL(_net_inet6_ip6);
130
131 static int ip6_select_srcif_debug = 0;
132 SYSCTL_INT(_net_inet6_ip6, OID_AUTO, select_srcif_debug,
133 CTLFLAG_RW | CTLFLAG_LOCKED, &ip6_select_srcif_debug, 0,
134 "log source interface selection debug info");
135
136 #define ADDR_LABEL_NOTAPP (-1)
137 struct in6_addrpolicy defaultaddrpolicy;
138
139 int ip6_prefer_tempaddr = 1;
140 #ifdef ENABLE_ADDRSEL
141 extern lck_mtx_t *addrsel_mutex;
142 #define ADDRSEL_LOCK() lck_mtx_lock(addrsel_mutex)
143 #define ADDRSEL_UNLOCK() lck_mtx_unlock(addrsel_mutex)
144 #else
145 #define ADDRSEL_LOCK()
146 #define ADDRSEL_UNLOCK()
147 #endif
148
149 static int selectroute(struct sockaddr_in6 *, struct sockaddr_in6 *,
150 struct ip6_pktopts *, struct ip6_moptions *, struct in6_ifaddr **,
151 struct route_in6 *, struct ifnet **, struct rtentry **, int, int,
152 struct ip6_out_args *ip6oa);
153 static int in6_selectif(struct sockaddr_in6 *, struct ip6_pktopts *,
154 struct ip6_moptions *, struct route_in6 *ro,
155 struct ip6_out_args *, struct ifnet **);
156 static void init_policy_queue(void);
157 static int add_addrsel_policyent(const struct in6_addrpolicy *);
158 #ifdef ENABLE_ADDRSEL
159 static int delete_addrsel_policyent(const struct in6_addrpolicy *);
160 #endif
161 static int walk_addrsel_policy(int (*)(const struct in6_addrpolicy *, void *),
162 void *);
163 static int dump_addrsel_policyent(const struct in6_addrpolicy *, void *);
164 static struct in6_addrpolicy *match_addrsel_policy(struct sockaddr_in6 *);
165 void addrsel_policy_init(void);
166
167 /*
168 * Return an IPv6 address, which is the most appropriate for a given
169 * destination and user specified options.
170 * If necessary, this function lookups the routing table and returns
171 * an entry to the caller for later use.
172 */
173 #define REPLACE(r) do {\
174 if ((r) < sizeof (ip6stat.ip6s_sources_rule) / \
175 sizeof (ip6stat.ip6s_sources_rule[0])) /* check for safety */ \
176 ip6stat.ip6s_sources_rule[(r)]++; \
177 goto replace; \
178 } while (0)
179 #define NEXTSRC(r) do {\
180 if ((r) < sizeof (ip6stat.ip6s_sources_rule) / \
181 sizeof (ip6stat.ip6s_sources_rule[0])) /* check for safety */ \
182 ip6stat.ip6s_sources_rule[(r)]++; \
183 goto next; /* XXX: we can't use 'continue' here */ \
184 } while (0)
185 #define BREAK(r) do { \
186 if ((r) < sizeof (ip6stat.ip6s_sources_rule) / \
187 sizeof (ip6stat.ip6s_sources_rule[0])) /* check for safety */ \
188 ip6stat.ip6s_sources_rule[(r)]++; \
189 goto out; /* XXX: we can't use 'break' here */ \
190 } while (0)
191
192 /*
193 * Regardless of error, it will return an ifp with a reference held if the
194 * caller provides a non-NULL ifpp. The caller is responsible for checking
195 * if the returned ifp is valid and release its reference at all times.
196 */
197 struct in6_addr *
198 in6_selectsrc(struct sockaddr_in6 *dstsock, struct ip6_pktopts *opts,
199 struct inpcb *inp, struct route_in6 *ro,
200 struct ifnet **ifpp, struct in6_addr *src_storage, unsigned int ifscope,
201 int *errorp)
202 {
203 struct in6_addr dst;
204 struct ifnet *ifp = NULL;
205 struct in6_ifaddr *ia = NULL, *ia_best = NULL;
206 struct in6_pktinfo *pi = NULL;
207 int dst_scope = -1, best_scope = -1, best_matchlen = -1;
208 struct in6_addrpolicy *dst_policy = NULL, *best_policy = NULL;
209 u_int32_t odstzone;
210 int prefer_tempaddr;
211 struct ip6_moptions *mopts;
212 struct ip6_out_args ip6oa = { ifscope, { 0 }, IP6OAF_SELECT_SRCIF, 0 };
213 boolean_t islocal = FALSE;
214 uint64_t secs = net_uptime();
215
216 dst = dstsock->sin6_addr; /* make a copy for local operation */
217 *errorp = 0;
218 if (ifpp != NULL)
219 *ifpp = NULL;
220
221 if (inp != NULL) {
222 mopts = inp->in6p_moptions;
223 if (inp->inp_flags & INP_NO_IFT_CELLULAR)
224 ip6oa.ip6oa_flags |= IP6OAF_NO_CELLULAR;
225 } else {
226 mopts = NULL;
227 }
228
229 if (ip6oa.ip6oa_boundif != IFSCOPE_NONE)
230 ip6oa.ip6oa_flags |= IP6OAF_BOUND_IF;
231
232 /*
233 * If the source address is explicitly specified by the caller,
234 * check if the requested source address is indeed a unicast address
235 * assigned to the node, and can be used as the packet's source
236 * address. If everything is okay, use the address as source.
237 */
238 if (opts && (pi = opts->ip6po_pktinfo) &&
239 !IN6_IS_ADDR_UNSPECIFIED(&pi->ipi6_addr)) {
240 struct sockaddr_in6 srcsock;
241 struct in6_ifaddr *ia6;
242
243 /* get the outgoing interface */
244 if ((*errorp = in6_selectif(dstsock, opts, mopts, ro, &ip6oa,
245 &ifp)) != 0) {
246 src_storage = NULL;
247 goto done;
248 }
249
250 /*
251 * determine the appropriate zone id of the source based on
252 * the zone of the destination and the outgoing interface.
253 * If the specified address is ambiguous wrt the scope zone,
254 * the interface must be specified; otherwise, ifa_ifwithaddr()
255 * will fail matching the address.
256 */
257 bzero(&srcsock, sizeof (srcsock));
258 srcsock.sin6_family = AF_INET6;
259 srcsock.sin6_len = sizeof (srcsock);
260 srcsock.sin6_addr = pi->ipi6_addr;
261 if (ifp != NULL) {
262 *errorp = in6_setscope(&srcsock.sin6_addr, ifp, NULL);
263 if (*errorp != 0) {
264 src_storage = NULL;
265 goto done;
266 }
267 }
268 ia6 = (struct in6_ifaddr *)ifa_ifwithaddr((struct sockaddr *)
269 (&srcsock));
270 if (ia6 == NULL) {
271 *errorp = EADDRNOTAVAIL;
272 src_storage = NULL;
273 goto done;
274 }
275 IFA_LOCK_SPIN(&ia6->ia_ifa);
276 if ((ia6->ia6_flags & (IN6_IFF_ANYCAST | IN6_IFF_NOTREADY)) ||
277 ((ip6oa.ip6oa_flags & IP6OAF_NO_CELLULAR) &&
278 IFNET_IS_CELLULAR(ia6->ia_ifa.ifa_ifp))) {
279 IFA_UNLOCK(&ia6->ia_ifa);
280 IFA_REMREF(&ia6->ia_ifa);
281 *errorp = EHOSTUNREACH;
282 src_storage = NULL;
283 goto done;
284 }
285
286 *src_storage = satosin6(&ia6->ia_addr)->sin6_addr;
287 IFA_UNLOCK(&ia6->ia_ifa);
288 IFA_REMREF(&ia6->ia_ifa);
289 goto done;
290 }
291
292 /*
293 * Otherwise, if the socket has already bound the source, just use it.
294 */
295 if (inp != NULL && !IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr)) {
296 src_storage = &inp->in6p_laddr;
297 goto done;
298 }
299
300 /*
301 * If the address is not specified, choose the best one based on
302 * the outgoing interface and the destination address.
303 */
304
305 /* get the outgoing interface */
306 if ((*errorp = in6_selectif(dstsock, opts, mopts, ro, &ip6oa,
307 &ifp)) != 0) {
308 src_storage = NULL;
309 goto done;
310 }
311
312 *errorp = in6_setscope(&dst, ifp, &odstzone);
313 if (*errorp != 0) {
314 src_storage = NULL;
315 goto done;
316 }
317 lck_rw_lock_shared(&in6_ifaddr_rwlock);
318
319 for (ia = in6_ifaddrs; ia; ia = ia->ia_next) {
320 int new_scope = -1, new_matchlen = -1;
321 struct in6_addrpolicy *new_policy = NULL;
322 u_int32_t srczone, osrczone, dstzone;
323 struct in6_addr src;
324 struct ifnet *ifp1 = ia->ia_ifp;
325
326 IFA_LOCK(&ia->ia_ifa);
327 /*
328 * We'll never take an address that breaks the scope zone
329 * of the destination. We also skip an address if its zone
330 * does not contain the outgoing interface.
331 * XXX: we should probably use sin6_scope_id here.
332 */
333 if (in6_setscope(&dst, ifp1, &dstzone) ||
334 odstzone != dstzone)
335 goto next;
336
337 src = ia->ia_addr.sin6_addr;
338 if (in6_setscope(&src, ifp, &osrczone) ||
339 in6_setscope(&src, ifp1, &srczone) ||
340 osrczone != srczone)
341 goto next;
342
343 /* avoid unusable addresses */
344 if ((ia->ia6_flags &
345 (IN6_IFF_NOTREADY | IN6_IFF_ANYCAST | IN6_IFF_DETACHED)))
346 goto next;
347
348 if (!ip6_use_deprecated && IFA6_IS_DEPRECATED(ia, secs))
349 goto next;
350
351 if (!nd6_optimistic_dad &&
352 (ia->ia6_flags & IN6_IFF_OPTIMISTIC) != 0)
353 goto next;
354
355 /* Rule 1: Prefer same address */
356 if (IN6_ARE_ADDR_EQUAL(&dst, &ia->ia_addr.sin6_addr))
357 BREAK(1); /* there should be no better candidate */
358
359 if (ia_best == NULL)
360 REPLACE(0);
361
362 /* Rule 2: Prefer appropriate scope */
363 if (dst_scope < 0)
364 dst_scope = in6_addrscope(&dst);
365 new_scope = in6_addrscope(&ia->ia_addr.sin6_addr);
366 if (IN6_ARE_SCOPE_CMP(best_scope, new_scope) < 0) {
367 if (IN6_ARE_SCOPE_CMP(best_scope, dst_scope) < 0)
368 REPLACE(2);
369 NEXTSRC(2);
370 } else if (IN6_ARE_SCOPE_CMP(new_scope, best_scope) < 0) {
371 if (IN6_ARE_SCOPE_CMP(new_scope, dst_scope) < 0)
372 NEXTSRC(2);
373 REPLACE(2);
374 }
375
376 /*
377 * Rule 3: Avoid deprecated addresses. Note that the case of
378 * !ip6_use_deprecated is already rejected above.
379 */
380 if (!IFA6_IS_DEPRECATED(ia_best, secs) &&
381 IFA6_IS_DEPRECATED(ia, secs))
382 NEXTSRC(3);
383 if (IFA6_IS_DEPRECATED(ia_best, secs) &&
384 !IFA6_IS_DEPRECATED(ia, secs))
385 REPLACE(3);
386
387 /*
388 * RFC 4429 says that optimistic addresses are equivalent to
389 * deprecated addresses, so avoid them here.
390 */
391 if ((ia_best->ia6_flags & IN6_IFF_OPTIMISTIC) == 0 &&
392 (ia->ia6_flags & IN6_IFF_OPTIMISTIC) != 0)
393 NEXTSRC(3);
394 if ((ia_best->ia6_flags & IN6_IFF_OPTIMISTIC) != 0 &&
395 (ia->ia6_flags & IN6_IFF_OPTIMISTIC) == 0)
396 REPLACE(3);
397
398 /* Rule 4: Prefer home addresses */
399 /*
400 * XXX: This is a TODO. We should probably merge the MIP6
401 * case above.
402 */
403
404 /* Rule 5: Prefer outgoing interface */
405 if (ia_best->ia_ifp == ifp && ia->ia_ifp != ifp)
406 NEXTSRC(5);
407 if (ia_best->ia_ifp != ifp && ia->ia_ifp == ifp)
408 REPLACE(5);
409
410 /*
411 * Rule 6: Prefer matching label
412 * Note that best_policy should be non-NULL here.
413 */
414 if (dst_policy == NULL)
415 dst_policy = in6_addrsel_lookup_policy(dstsock);
416 if (dst_policy->label != ADDR_LABEL_NOTAPP) {
417 new_policy = in6_addrsel_lookup_policy(&ia->ia_addr);
418 if (dst_policy->label == best_policy->label &&
419 dst_policy->label != new_policy->label)
420 NEXTSRC(6);
421 if (dst_policy->label != best_policy->label &&
422 dst_policy->label == new_policy->label)
423 REPLACE(6);
424 }
425
426 /*
427 * Rule 7: Prefer public addresses.
428 * We allow users to reverse the logic by configuring
429 * a sysctl variable, so that privacy conscious users can
430 * always prefer temporary addresses.
431 * Don't use temporary addresses for local destinations or
432 * for multicast addresses unless we were passed in an option.
433 */
434 if (IN6_IS_ADDR_MULTICAST(&dst) ||
435 in6_matchlen(&ia_best->ia_addr.sin6_addr, &dst) >=
436 ia_best->ia_plen)
437 islocal = TRUE;
438 if (opts == NULL ||
439 opts->ip6po_prefer_tempaddr == IP6PO_TEMPADDR_SYSTEM) {
440 prefer_tempaddr = islocal ? 0 : ip6_prefer_tempaddr;
441 } else if (opts->ip6po_prefer_tempaddr ==
442 IP6PO_TEMPADDR_NOTPREFER) {
443 prefer_tempaddr = 0;
444 } else
445 prefer_tempaddr = 1;
446 if (!(ia_best->ia6_flags & IN6_IFF_TEMPORARY) &&
447 (ia->ia6_flags & IN6_IFF_TEMPORARY)) {
448 if (prefer_tempaddr)
449 REPLACE(7);
450 else
451 NEXTSRC(7);
452 }
453 if ((ia_best->ia6_flags & IN6_IFF_TEMPORARY) &&
454 !(ia->ia6_flags & IN6_IFF_TEMPORARY)) {
455 if (prefer_tempaddr)
456 NEXTSRC(7);
457 else
458 REPLACE(7);
459 }
460
461 /*
462 * Rule 8: prefer addresses on alive interfaces.
463 * This is a KAME specific rule.
464 */
465 if ((ia_best->ia_ifp->if_flags & IFF_UP) &&
466 !(ia->ia_ifp->if_flags & IFF_UP))
467 NEXTSRC(8);
468 if (!(ia_best->ia_ifp->if_flags & IFF_UP) &&
469 (ia->ia_ifp->if_flags & IFF_UP))
470 REPLACE(8);
471
472 /*
473 * Rule 14: Use longest matching prefix.
474 * Note: in the address selection draft, this rule is
475 * documented as "Rule 8". However, since it is also
476 * documented that this rule can be overridden, we assign
477 * a large number so that it is easy to assign smaller numbers
478 * to more preferred rules.
479 */
480 new_matchlen = in6_matchlen(&ia->ia_addr.sin6_addr, &dst);
481 if (best_matchlen < new_matchlen)
482 REPLACE(14);
483 if (new_matchlen < best_matchlen)
484 NEXTSRC(14);
485
486 /* Rule 15 is reserved. */
487
488 /*
489 * Last resort: just keep the current candidate.
490 * Or, do we need more rules?
491 */
492 IFA_UNLOCK(&ia->ia_ifa);
493 continue;
494
495 replace:
496 best_scope = (new_scope >= 0 ? new_scope :
497 in6_addrscope(&ia->ia_addr.sin6_addr));
498 best_policy = (new_policy ? new_policy :
499 in6_addrsel_lookup_policy(&ia->ia_addr));
500 best_matchlen = (new_matchlen >= 0 ? new_matchlen :
501 in6_matchlen(&ia->ia_addr.sin6_addr, &dst));
502 IFA_ADDREF_LOCKED(&ia->ia_ifa); /* for ia_best */
503 IFA_UNLOCK(&ia->ia_ifa);
504 if (ia_best != NULL)
505 IFA_REMREF(&ia_best->ia_ifa);
506 ia_best = ia;
507 continue;
508
509 next:
510 IFA_UNLOCK(&ia->ia_ifa);
511 continue;
512
513 out:
514 IFA_ADDREF_LOCKED(&ia->ia_ifa); /* for ia_best */
515 IFA_UNLOCK(&ia->ia_ifa);
516 if (ia_best != NULL)
517 IFA_REMREF(&ia_best->ia_ifa);
518 ia_best = ia;
519 break;
520 }
521
522 lck_rw_done(&in6_ifaddr_rwlock);
523
524 if (ia_best != NULL &&
525 (ip6oa.ip6oa_flags & IP6OAF_NO_CELLULAR) &&
526 IFNET_IS_CELLULAR(ia_best->ia_ifa.ifa_ifp)) {
527 IFA_REMREF(&ia_best->ia_ifa);
528 ia_best = NULL;
529 *errorp = EHOSTUNREACH;
530 }
531
532 if ((ia = ia_best) == NULL) {
533 if (*errorp == 0)
534 *errorp = EADDRNOTAVAIL;
535 src_storage = NULL;
536 goto done;
537 }
538
539 IFA_LOCK_SPIN(&ia->ia_ifa);
540 *src_storage = satosin6(&ia->ia_addr)->sin6_addr;
541 IFA_UNLOCK(&ia->ia_ifa);
542 IFA_REMREF(&ia->ia_ifa);
543 done:
544 if (ifpp != NULL) {
545 /* if ifp is non-NULL, refcnt held in in6_selectif() */
546 *ifpp = ifp;
547 } else if (ifp != NULL) {
548 ifnet_release(ifp);
549 }
550 return (src_storage);
551 }
552
553 /*
554 * Given a source IPv6 address (and route, if available), determine the best
555 * interface to send the packet from. Checking for (and updating) the
556 * ROF_SRCIF_SELECTED flag in the pcb-supplied route placeholder is done
557 * without any locks, based on the assumption that in the event this is
558 * called from ip6_output(), the output operation is single-threaded per-pcb,
559 * i.e. for any given pcb there can only be one thread performing output at
560 * the IPv6 layer.
561 *
562 * This routine is analogous to in_selectsrcif() for IPv4. Regardless of
563 * error, it will return an ifp with a reference held if the caller provides
564 * a non-NULL retifp. The caller is responsible for checking if the
565 * returned ifp is valid and release its reference at all times.
566 *
567 * clone - meaningful only for bsdi and freebsd
568 */
569 static int
570 selectroute(struct sockaddr_in6 *srcsock, struct sockaddr_in6 *dstsock,
571 struct ip6_pktopts *opts, struct ip6_moptions *mopts,
572 struct in6_ifaddr **retsrcia, struct route_in6 *ro,
573 struct ifnet **retifp, struct rtentry **retrt, int clone,
574 int norouteok, struct ip6_out_args *ip6oa)
575 {
576 int error = 0;
577 struct ifnet *ifp = NULL, *ifp0 = NULL;
578 struct route_in6 *route = NULL;
579 struct sockaddr_in6 *sin6_next;
580 struct in6_pktinfo *pi = NULL;
581 struct in6_addr *dst = &dstsock->sin6_addr;
582 struct ifaddr *ifa = NULL;
583 char s_src[MAX_IPv6_STR_LEN], s_dst[MAX_IPv6_STR_LEN];
584 boolean_t select_srcif, proxied_ifa = FALSE, local_dst = FALSE;
585 unsigned int ifscope = ((ip6oa != NULL) ?
586 ip6oa->ip6oa_boundif : IFSCOPE_NONE);
587
588 #if 0
589 char ip6buf[INET6_ADDRSTRLEN];
590
591 if (dstsock->sin6_addr.s6_addr32[0] == 0 &&
592 dstsock->sin6_addr.s6_addr32[1] == 0 &&
593 !IN6_IS_ADDR_LOOPBACK(&dstsock->sin6_addr)) {
594 printf("in6_selectroute: strange destination %s\n",
595 ip6_sprintf(ip6buf, &dstsock->sin6_addr));
596 } else {
597 printf("in6_selectroute: destination = %s%%%d\n",
598 ip6_sprintf(ip6buf, &dstsock->sin6_addr),
599 dstsock->sin6_scope_id); /* for debug */
600 }
601 #endif
602
603 if (retifp != NULL)
604 *retifp = NULL;
605
606 if (retrt != NULL)
607 *retrt = NULL;
608
609 if (ip6_select_srcif_debug) {
610 struct in6_addr src;
611 src = (srcsock != NULL) ? srcsock->sin6_addr : in6addr_any;
612 (void) inet_ntop(AF_INET6, &src, s_src, sizeof (s_src));
613 (void) inet_ntop(AF_INET6, dst, s_dst, sizeof (s_dst));
614 }
615
616 /*
617 * If the destination address is UNSPECIFIED addr, bail out.
618 */
619 if (IN6_IS_ADDR_UNSPECIFIED(dst)) {
620 error = EHOSTUNREACH;
621 goto done;
622 }
623
624 /*
625 * Perform source interface selection only if Scoped Routing
626 * is enabled and a source address that isn't unspecified.
627 */
628 select_srcif = (ip6_doscopedroute && srcsock != NULL &&
629 !IN6_IS_ADDR_UNSPECIFIED(&srcsock->sin6_addr));
630
631 /*
632 * If Scoped Routing is disabled, ignore the given ifscope.
633 * Otherwise even if source selection won't be performed,
634 * we still obey IPV6_BOUND_IF.
635 */
636 if (!ip6_doscopedroute && ifscope != IFSCOPE_NONE)
637 ifscope = IFSCOPE_NONE;
638
639 /* If the caller specified the outgoing interface explicitly, use it */
640 if (opts != NULL && (pi = opts->ip6po_pktinfo) != NULL &&
641 pi->ipi6_ifindex != 0) {
642 /*
643 * If IPV6_PKTINFO takes precedence over IPV6_BOUND_IF.
644 */
645 ifscope = pi->ipi6_ifindex;
646 ifnet_head_lock_shared();
647 /* ifp may be NULL if detached or out of range */
648 ifp = ifp0 =
649 ((ifscope <= if_index) ? ifindex2ifnet[ifscope] : NULL);
650 ifnet_head_done();
651 if (norouteok || retrt == NULL || IN6_IS_ADDR_MULTICAST(dst)) {
652 /*
653 * We do not have to check or get the route for
654 * multicast. If the caller didn't ask/care for
655 * the route and we have no interface to use,
656 * it's an error.
657 */
658 if (ifp == NULL)
659 error = EHOSTUNREACH;
660 goto done;
661 } else {
662 goto getsrcif;
663 }
664 }
665
666 /*
667 * If the destination address is a multicast address and the outgoing
668 * interface for the address is specified by the caller, use it.
669 */
670 if (IN6_IS_ADDR_MULTICAST(dst) && mopts != NULL) {
671 IM6O_LOCK(mopts);
672 if ((ifp = ifp0 = mopts->im6o_multicast_ifp) != NULL) {
673 IM6O_UNLOCK(mopts);
674 goto done; /* we do not need a route for multicast. */
675 }
676 IM6O_UNLOCK(mopts);
677 }
678
679 getsrcif:
680 /*
681 * If the outgoing interface was not set via IPV6_BOUND_IF or
682 * IPV6_PKTINFO, use the scope ID in the destination address.
683 */
684 if (ip6_doscopedroute && ifscope == IFSCOPE_NONE)
685 ifscope = dstsock->sin6_scope_id;
686
687 /*
688 * Perform source interface selection; the source IPv6 address
689 * must belong to one of the addresses of the interface used
690 * by the route. For performance reasons, do this only if
691 * there is no route, or if the routing table has changed,
692 * or if we haven't done source interface selection on this
693 * route (for this PCB instance) before.
694 */
695 if (!select_srcif) {
696 goto getroute;
697 } else if (!ROUTE_UNUSABLE(ro) && ro->ro_srcia != NULL &&
698 (ro->ro_flags & ROF_SRCIF_SELECTED)) {
699 if (ro->ro_rt->rt_ifp->if_flags & IFF_LOOPBACK)
700 local_dst = TRUE;
701 ifa = ro->ro_srcia;
702 IFA_ADDREF(ifa); /* for caller */
703 goto getroute;
704 }
705
706 /*
707 * Given the source IPv6 address, find a suitable source interface
708 * to use for transmission; if a scope ID has been specified,
709 * optimize the search by looking at the addresses only for that
710 * interface. This is still suboptimal, however, as we need to
711 * traverse the per-interface list.
712 */
713 if (ifscope != IFSCOPE_NONE || (ro != NULL && ro->ro_rt != NULL)) {
714 unsigned int scope = ifscope;
715 struct ifnet *rt_ifp;
716
717 rt_ifp = (ro->ro_rt != NULL) ? ro->ro_rt->rt_ifp : NULL;
718
719 /*
720 * If no scope is specified and the route is stale (pointing
721 * to a defunct interface) use the current primary interface;
722 * this happens when switching between interfaces configured
723 * with the same IPv6 address. Otherwise pick up the scope
724 * information from the route; the ULP may have looked up a
725 * correct route and we just need to verify it here and mark
726 * it with the ROF_SRCIF_SELECTED flag below.
727 */
728 if (scope == IFSCOPE_NONE) {
729 scope = rt_ifp->if_index;
730 if (scope != get_primary_ifscope(AF_INET6) &&
731 ROUTE_UNUSABLE(ro))
732 scope = get_primary_ifscope(AF_INET6);
733 }
734
735 ifa = (struct ifaddr *)
736 ifa_foraddr6_scoped(&srcsock->sin6_addr, scope);
737
738 /*
739 * If we are forwarding and proxying prefix(es), see if the
740 * source address is one of ours and is a proxied address;
741 * if so, use it.
742 */
743 if (ifa == NULL && ip6_forwarding && nd6_prproxy) {
744 ifa = (struct ifaddr *)
745 ifa_foraddr6(&srcsock->sin6_addr);
746 if (ifa != NULL && !(proxied_ifa =
747 nd6_prproxy_ifaddr((struct in6_ifaddr *)ifa))) {
748 IFA_REMREF(ifa);
749 ifa = NULL;
750 }
751 }
752
753 if (ip6_select_srcif_debug && ifa != NULL) {
754 if (ro->ro_rt != NULL) {
755 printf("%s->%s ifscope %d->%d ifa_if %s "
756 "ro_if %s\n", s_src, s_dst, ifscope,
757 scope, if_name(ifa->ifa_ifp),
758 if_name(rt_ifp));
759 } else {
760 printf("%s->%s ifscope %d->%d ifa_if %s\n",
761 s_src, s_dst, ifscope, scope,
762 if_name(ifa->ifa_ifp));
763 }
764 }
765 }
766
767 /*
768 * Slow path; search for an interface having the corresponding source
769 * IPv6 address if the scope was not specified by the caller, and:
770 *
771 * 1) There currently isn't any route, or,
772 * 2) The interface used by the route does not own that source
773 * IPv6 address; in this case, the route will get blown away
774 * and we'll do a more specific scoped search using the newly
775 * found interface.
776 */
777 if (ifa == NULL && ifscope == IFSCOPE_NONE) {
778 struct ifaddr *ifadst;
779
780 /* Check if the destination address is one of ours */
781 ifadst = (struct ifaddr *)ifa_foraddr6(&dstsock->sin6_addr);
782 if (ifadst != NULL) {
783 local_dst = TRUE;
784 IFA_REMREF(ifadst);
785 }
786
787 ifa = (struct ifaddr *)ifa_foraddr6(&srcsock->sin6_addr);
788
789 if (ip6_select_srcif_debug && ifa != NULL) {
790 printf("%s->%s ifscope %d ifa_if %s\n",
791 s_src, s_dst, ifscope, if_name(ifa->ifa_ifp));
792 }
793
794 }
795
796 getroute:
797 if (ifa != NULL && !proxied_ifa && !local_dst)
798 ifscope = ifa->ifa_ifp->if_index;
799
800 /*
801 * If the next hop address for the packet is specified by the caller,
802 * use it as the gateway.
803 */
804 if (opts != NULL && opts->ip6po_nexthop != NULL) {
805 struct route_in6 *ron;
806
807 sin6_next = satosin6(opts->ip6po_nexthop);
808
809 /* at this moment, we only support AF_INET6 next hops */
810 if (sin6_next->sin6_family != AF_INET6) {
811 error = EAFNOSUPPORT; /* or should we proceed? */
812 goto done;
813 }
814
815 /*
816 * If the next hop is an IPv6 address, then the node identified
817 * by that address must be a neighbor of the sending host.
818 */
819 ron = &opts->ip6po_nextroute;
820 if (ron->ro_rt != NULL)
821 RT_LOCK(ron->ro_rt);
822 if (ROUTE_UNUSABLE(ron) || (ron->ro_rt != NULL &&
823 (!(ron->ro_rt->rt_flags & RTF_LLINFO) ||
824 (select_srcif && (ifa == NULL ||
825 (ifa->ifa_ifp != ron->ro_rt->rt_ifp && !proxied_ifa))))) ||
826 !IN6_ARE_ADDR_EQUAL(&satosin6(&ron->ro_dst)->sin6_addr,
827 &sin6_next->sin6_addr)) {
828 if (ron->ro_rt != NULL)
829 RT_UNLOCK(ron->ro_rt);
830
831 ROUTE_RELEASE(ron);
832 *satosin6(&ron->ro_dst) = *sin6_next;
833 }
834 if (ron->ro_rt == NULL) {
835 rtalloc_scoped((struct route *)ron, ifscope);
836 if (ron->ro_rt != NULL)
837 RT_LOCK(ron->ro_rt);
838 if (ROUTE_UNUSABLE(ron) ||
839 !(ron->ro_rt->rt_flags & RTF_LLINFO) ||
840 !IN6_ARE_ADDR_EQUAL(&satosin6(rt_key(ron->ro_rt))->
841 sin6_addr, &sin6_next->sin6_addr)) {
842 if (ron->ro_rt != NULL)
843 RT_UNLOCK(ron->ro_rt);
844
845 ROUTE_RELEASE(ron);
846 error = EHOSTUNREACH;
847 goto done;
848 }
849 }
850 route = ron;
851 ifp = ifp0 = ron->ro_rt->rt_ifp;
852
853 /*
854 * When cloning is required, try to allocate a route to the
855 * destination so that the caller can store path MTU
856 * information.
857 */
858 if (!clone) {
859 if (select_srcif) {
860 /* Keep the route locked */
861 goto validateroute;
862 }
863 RT_UNLOCK(ron->ro_rt);
864 goto done;
865 }
866 RT_UNLOCK(ron->ro_rt);
867 }
868
869 /*
870 * Use a cached route if it exists and is valid, else try to allocate
871 * a new one. Note that we should check the address family of the
872 * cached destination, in case of sharing the cache with IPv4.
873 */
874 if (ro == NULL)
875 goto done;
876 if (ro->ro_rt != NULL)
877 RT_LOCK_SPIN(ro->ro_rt);
878 if (ROUTE_UNUSABLE(ro) || (ro->ro_rt != NULL &&
879 (satosin6(&ro->ro_dst)->sin6_family != AF_INET6 ||
880 !IN6_ARE_ADDR_EQUAL(&satosin6(&ro->ro_dst)->sin6_addr, dst) ||
881 (select_srcif && (ifa == NULL ||
882 (ifa->ifa_ifp != ro->ro_rt->rt_ifp && !proxied_ifa)))))) {
883 if (ro->ro_rt != NULL)
884 RT_UNLOCK(ro->ro_rt);
885
886 ROUTE_RELEASE(ro);
887 }
888 if (ro->ro_rt == NULL) {
889 struct sockaddr_in6 *sa6;
890
891 if (ro->ro_rt != NULL)
892 RT_UNLOCK(ro->ro_rt);
893 /* No route yet, so try to acquire one */
894 bzero(&ro->ro_dst, sizeof (struct sockaddr_in6));
895 sa6 = (struct sockaddr_in6 *)&ro->ro_dst;
896 sa6->sin6_family = AF_INET6;
897 sa6->sin6_len = sizeof (struct sockaddr_in6);
898 sa6->sin6_addr = *dst;
899 if (IN6_IS_ADDR_MULTICAST(dst)) {
900 ro->ro_rt = rtalloc1_scoped(
901 &((struct route *)ro)->ro_dst, 0, 0, ifscope);
902 } else {
903 rtalloc_scoped((struct route *)ro, ifscope);
904 }
905 if (ro->ro_rt != NULL)
906 RT_LOCK_SPIN(ro->ro_rt);
907 }
908
909 /*
910 * Do not care about the result if we have the nexthop
911 * explicitly specified (in case we're asked to clone.)
912 */
913 if (opts != NULL && opts->ip6po_nexthop != NULL) {
914 if (ro->ro_rt != NULL)
915 RT_UNLOCK(ro->ro_rt);
916 goto done;
917 }
918
919 if (ro->ro_rt != NULL) {
920 RT_LOCK_ASSERT_HELD(ro->ro_rt);
921 ifp = ifp0 = ro->ro_rt->rt_ifp;
922 } else {
923 error = EHOSTUNREACH;
924 }
925 route = ro;
926
927 validateroute:
928 if (select_srcif) {
929 boolean_t has_route = (route != NULL && route->ro_rt != NULL);
930 boolean_t srcif_selected = FALSE;
931
932 if (has_route)
933 RT_LOCK_ASSERT_HELD(route->ro_rt);
934 /*
935 * If there is a non-loopback route with the wrong interface,
936 * or if there is no interface configured with such an address,
937 * blow it away. Except for local/loopback, we look for one
938 * with a matching interface scope/index.
939 */
940 if (has_route && (ifa == NULL ||
941 (ifa->ifa_ifp != ifp && ifp != lo_ifp) ||
942 !(route->ro_rt->rt_flags & RTF_UP))) {
943 /*
944 * If the destination address belongs to a proxied
945 * prefix, relax the requirement and allow the packet
946 * to come out of the proxy interface with the source
947 * address of the real interface.
948 */
949 if (ifa != NULL && proxied_ifa &&
950 (route->ro_rt->rt_flags & (RTF_UP|RTF_PROXY)) ==
951 (RTF_UP|RTF_PROXY)) {
952 srcif_selected = TRUE;
953 } else {
954 if (ip6_select_srcif_debug) {
955 if (ifa != NULL) {
956 printf("%s->%s ifscope %d "
957 "ro_if %s != ifa_if %s "
958 "(cached route cleared)\n",
959 s_src, s_dst,
960 ifscope, if_name(ifp),
961 if_name(ifa->ifa_ifp));
962 } else {
963 printf("%s->%s ifscope %d "
964 "ro_if %s (no ifa_if "
965 "found)\n", s_src, s_dst,
966 ifscope, if_name(ifp));
967 }
968 }
969 RT_UNLOCK(route->ro_rt);
970 ROUTE_RELEASE(route);
971 error = EHOSTUNREACH;
972 /* Undo the settings done above */
973 route = NULL;
974 ifp = NULL; /* ditch ifp; keep ifp0 */
975 has_route = FALSE;
976 }
977 } else if (has_route) {
978 srcif_selected = TRUE;
979 }
980
981 if (srcif_selected) {
982 VERIFY(has_route);
983 if (ifa != route->ro_srcia ||
984 !(route->ro_flags & ROF_SRCIF_SELECTED)) {
985 RT_CONVERT_LOCK(route->ro_rt);
986 if (ifa != NULL)
987 IFA_ADDREF(ifa); /* for route_in6 */
988 if (route->ro_srcia != NULL)
989 IFA_REMREF(route->ro_srcia);
990 route->ro_srcia = ifa;
991 route->ro_flags |= ROF_SRCIF_SELECTED;
992 RT_GENID_SYNC(route->ro_rt);
993 }
994 RT_UNLOCK(route->ro_rt);
995 }
996 } else {
997 if (ro->ro_rt != NULL)
998 RT_UNLOCK(ro->ro_rt);
999 if (ifp != NULL && opts != NULL &&
1000 opts->ip6po_pktinfo != NULL &&
1001 opts->ip6po_pktinfo->ipi6_ifindex != 0) {
1002 /*
1003 * Check if the outgoing interface conflicts with the
1004 * interface specified by ipi6_ifindex (if specified).
1005 * Note that loopback interface is always okay.
1006 * (this may happen when we are sending a packet to
1007 * one of our own addresses.)
1008 */
1009 if (!(ifp->if_flags & IFF_LOOPBACK) && ifp->if_index !=
1010 opts->ip6po_pktinfo->ipi6_ifindex) {
1011 error = EHOSTUNREACH;
1012 goto done;
1013 }
1014 }
1015 }
1016
1017 done:
1018 if (error == 0) {
1019 if (ip6oa != NULL &&
1020 (ip6oa->ip6oa_flags & IP6OAF_NO_CELLULAR) &&
1021 ((ifp != NULL && IFNET_IS_CELLULAR(ifp)) ||
1022 (route != NULL && route->ro_rt != NULL &&
1023 IFNET_IS_CELLULAR(route->ro_rt->rt_ifp)))) {
1024 if (route != NULL && route->ro_rt != NULL) {
1025 ROUTE_RELEASE(route);
1026 route = NULL;
1027 }
1028 ifp = NULL; /* ditch ifp; keep ifp0 */
1029 error = EHOSTUNREACH;
1030 ip6oa->ip6oa_retflags |= IP6OARF_IFDENIED;
1031 }
1032 }
1033
1034 /*
1035 * If the interface is disabled for IPv6, then ENETDOWN error.
1036 */
1037 if (error == 0 &&
1038 ifp != NULL && (ifp->if_eflags & IFEF_IPV6_DISABLED)) {
1039 error = ENETDOWN;
1040 }
1041
1042 if (ifp == NULL && (route == NULL || route->ro_rt == NULL)) {
1043 /*
1044 * This can happen if the caller did not pass a cached route
1045 * nor any other hints. We treat this case an error.
1046 */
1047 error = EHOSTUNREACH;
1048 }
1049 if (error == EHOSTUNREACH || error == ENETDOWN)
1050 ip6stat.ip6s_noroute++;
1051
1052 /*
1053 * We'll return ifp regardless of error, so pick it up from ifp0
1054 * in case it was nullified above. Caller is responsible for
1055 * releasing the ifp if it is non-NULL.
1056 */
1057 ifp = ifp0;
1058 if (retifp != NULL) {
1059 if (ifp != NULL)
1060 ifnet_reference(ifp); /* for caller */
1061 *retifp = ifp;
1062 }
1063
1064 if (retsrcia != NULL) {
1065 if (ifa != NULL)
1066 IFA_ADDREF(ifa); /* for caller */
1067 *retsrcia = (struct in6_ifaddr *)ifa;
1068 }
1069
1070 if (error == 0) {
1071 if (retrt != NULL && route != NULL)
1072 *retrt = route->ro_rt; /* ro_rt may be NULL */
1073 } else if (select_srcif && ip6_select_srcif_debug) {
1074 printf("%s->%s ifscope %d ifa_if %s ro_if %s (error=%d)\n",
1075 s_src, s_dst, ifscope,
1076 (ifa != NULL) ? if_name(ifa->ifa_ifp) : "NONE",
1077 (ifp != NULL) ? if_name(ifp) : "NONE", error);
1078 }
1079
1080 if (ifa != NULL)
1081 IFA_REMREF(ifa);
1082
1083 return (error);
1084 }
1085
1086 /*
1087 * Regardless of error, it will return an ifp with a reference held if the
1088 * caller provides a non-NULL retifp. The caller is responsible for checking
1089 * if the returned ifp is valid and release its reference at all times.
1090 */
1091 static int
1092 in6_selectif(struct sockaddr_in6 *dstsock, struct ip6_pktopts *opts,
1093 struct ip6_moptions *mopts, struct route_in6 *ro,
1094 struct ip6_out_args *ip6oa, struct ifnet **retifp)
1095 {
1096 int err = 0;
1097 struct route_in6 sro;
1098 struct rtentry *rt = NULL;
1099
1100 if (ro == NULL) {
1101 bzero(&sro, sizeof (sro));
1102 ro = &sro;
1103 }
1104
1105 if ((err = selectroute(NULL, dstsock, opts, mopts, NULL, ro, retifp,
1106 &rt, 0, 1, ip6oa)) != 0)
1107 goto done;
1108
1109 /*
1110 * do not use a rejected or black hole route.
1111 * XXX: this check should be done in the L2 output routine.
1112 * However, if we skipped this check here, we'd see the following
1113 * scenario:
1114 * - install a rejected route for a scoped address prefix
1115 * (like fe80::/10)
1116 * - send a packet to a destination that matches the scoped prefix,
1117 * with ambiguity about the scope zone.
1118 * - pick the outgoing interface from the route, and disambiguate the
1119 * scope zone with the interface.
1120 * - ip6_output() would try to get another route with the "new"
1121 * destination, which may be valid.
1122 * - we'd see no error on output.
1123 * Although this may not be very harmful, it should still be confusing.
1124 * We thus reject the case here.
1125 */
1126 if (rt && (rt->rt_flags & (RTF_REJECT | RTF_BLACKHOLE))) {
1127 err = ((rt->rt_flags & RTF_HOST) ? EHOSTUNREACH : ENETUNREACH);
1128 goto done;
1129 }
1130
1131 /*
1132 * Adjust the "outgoing" interface. If we're going to loop the packet
1133 * back to ourselves, the ifp would be the loopback interface.
1134 * However, we'd rather know the interface associated to the
1135 * destination address (which should probably be one of our own
1136 * addresses.)
1137 */
1138 if (rt != NULL && rt->rt_ifa != NULL && rt->rt_ifa->ifa_ifp != NULL &&
1139 retifp != NULL) {
1140 ifnet_reference(rt->rt_ifa->ifa_ifp);
1141 if (*retifp != NULL)
1142 ifnet_release(*retifp);
1143 *retifp = rt->rt_ifa->ifa_ifp;
1144 }
1145
1146 done:
1147 if (ro == &sro) {
1148 VERIFY(rt == NULL || rt == ro->ro_rt);
1149 ROUTE_RELEASE(ro);
1150 }
1151
1152 /*
1153 * retifp might point to a valid ifp with a reference held;
1154 * caller is responsible for releasing it if non-NULL.
1155 */
1156 return (err);
1157 }
1158
1159 /*
1160 * Regardless of error, it will return an ifp with a reference held if the
1161 * caller provides a non-NULL retifp. The caller is responsible for checking
1162 * if the returned ifp is valid and release its reference at all times.
1163 *
1164 * clone - meaningful only for bsdi and freebsd
1165 */
1166 int
1167 in6_selectroute(struct sockaddr_in6 *srcsock, struct sockaddr_in6 *dstsock,
1168 struct ip6_pktopts *opts, struct ip6_moptions *mopts,
1169 struct in6_ifaddr **retsrcia, struct route_in6 *ro, struct ifnet **retifp,
1170 struct rtentry **retrt, int clone, struct ip6_out_args *ip6oa)
1171 {
1172
1173 return (selectroute(srcsock, dstsock, opts, mopts, retsrcia, ro, retifp,
1174 retrt, clone, 0, ip6oa));
1175 }
1176
1177 /*
1178 * Default hop limit selection. The precedence is as follows:
1179 * 1. Hoplimit value specified via ioctl.
1180 * 2. (If the outgoing interface is detected) the current
1181 * hop limit of the interface specified by router advertisement.
1182 * 3. The system default hoplimit.
1183 */
1184 int
1185 in6_selecthlim(struct in6pcb *in6p, struct ifnet *ifp)
1186 {
1187 if (in6p && in6p->in6p_hops >= 0) {
1188 return (in6p->in6p_hops);
1189 } else {
1190 lck_rw_lock_shared(nd_if_rwlock);
1191 if (ifp && ifp->if_index < nd_ifinfo_indexlim) {
1192 u_int8_t chlim;
1193 struct nd_ifinfo *ndi = &nd_ifinfo[ifp->if_index];
1194
1195 if (ndi->initialized) {
1196 /* access chlim without lock, for performance */
1197 chlim = ndi->chlim;
1198 } else {
1199 chlim = ip6_defhlim;
1200 }
1201 lck_rw_done(nd_if_rwlock);
1202 return (chlim);
1203 } else {
1204 lck_rw_done(nd_if_rwlock);
1205 return (ip6_defhlim);
1206 }
1207 }
1208 }
1209
1210 /*
1211 * XXX: this is borrowed from in6_pcbbind(). If possible, we should
1212 * share this function by all *bsd*...
1213 */
1214 int
1215 in6_pcbsetport(struct in6_addr *laddr, struct inpcb *inp, struct proc *p,
1216 int locked)
1217 {
1218 #pragma unused(laddr)
1219 struct socket *so = inp->inp_socket;
1220 u_int16_t lport = 0, first, last, *lastport;
1221 int count, error = 0, wild = 0;
1222 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1223 kauth_cred_t cred;
1224 if (!locked) { /* Make sure we don't run into a deadlock: 4052373 */
1225 if (!lck_rw_try_lock_exclusive(pcbinfo->ipi_lock)) {
1226 socket_unlock(inp->inp_socket, 0);
1227 lck_rw_lock_exclusive(pcbinfo->ipi_lock);
1228 socket_lock(inp->inp_socket, 0);
1229 }
1230 }
1231
1232 /* XXX: this is redundant when called from in6_pcbbind */
1233 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0)
1234 wild = INPLOOKUP_WILDCARD;
1235
1236 inp->inp_flags |= INP_ANONPORT;
1237
1238 if (inp->inp_flags & INP_HIGHPORT) {
1239 first = ipport_hifirstauto; /* sysctl */
1240 last = ipport_hilastauto;
1241 lastport = &pcbinfo->ipi_lasthi;
1242 } else if (inp->inp_flags & INP_LOWPORT) {
1243 cred = kauth_cred_proc_ref(p);
1244 error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, 0);
1245 kauth_cred_unref(&cred);
1246 if (error != 0) {
1247 if (!locked)
1248 lck_rw_done(pcbinfo->ipi_lock);
1249 return (error);
1250 }
1251 first = ipport_lowfirstauto; /* 1023 */
1252 last = ipport_lowlastauto; /* 600 */
1253 lastport = &pcbinfo->ipi_lastlow;
1254 } else {
1255 first = ipport_firstauto; /* sysctl */
1256 last = ipport_lastauto;
1257 lastport = &pcbinfo->ipi_lastport;
1258 }
1259 /*
1260 * Simple check to ensure all ports are not used up causing
1261 * a deadlock here.
1262 *
1263 * We split the two cases (up and down) so that the direction
1264 * is not being tested on each round of the loop.
1265 */
1266 if (first > last) {
1267 /*
1268 * counting down
1269 */
1270 count = first - last;
1271
1272 do {
1273 if (count-- < 0) { /* completely used? */
1274 /*
1275 * Undo any address bind that may have
1276 * occurred above.
1277 */
1278 inp->in6p_laddr = in6addr_any;
1279 inp->in6p_last_outifp = NULL;
1280 if (!locked)
1281 lck_rw_done(pcbinfo->ipi_lock);
1282 return (EAGAIN);
1283 }
1284 --*lastport;
1285 if (*lastport > first || *lastport < last)
1286 *lastport = first;
1287 lport = htons(*lastport);
1288 } while (in6_pcblookup_local(pcbinfo, &inp->in6p_laddr, lport,
1289 wild));
1290 } else {
1291 /* counting up */
1292 count = last - first;
1293
1294 do {
1295 if (count-- < 0) { /* completely used? */
1296 /*
1297 * Undo any address bind that may have
1298 * occurred above.
1299 */
1300 inp->in6p_laddr = in6addr_any;
1301 inp->in6p_last_outifp = NULL;
1302 if (!locked)
1303 lck_rw_done(pcbinfo->ipi_lock);
1304 return (EAGAIN);
1305 }
1306 ++*lastport;
1307 if (*lastport < first || *lastport > last)
1308 *lastport = first;
1309 lport = htons(*lastport);
1310 } while (in6_pcblookup_local(pcbinfo, &inp->in6p_laddr, lport,
1311 wild));
1312 }
1313
1314 inp->inp_lport = lport;
1315 if (in_pcbinshash(inp, 1) != 0) {
1316 inp->in6p_laddr = in6addr_any;
1317 inp->inp_lport = 0;
1318 inp->in6p_last_outifp = NULL;
1319 if (!locked)
1320 lck_rw_done(pcbinfo->ipi_lock);
1321 return (EAGAIN);
1322 }
1323
1324 if (!locked)
1325 lck_rw_done(pcbinfo->ipi_lock);
1326 return (0);
1327 }
1328
1329 /*
1330 * The followings are implementation of the policy table using a
1331 * simple tail queue.
1332 * XXX such details should be hidden.
1333 * XXX implementation using binary tree should be more efficient.
1334 */
1335 struct addrsel_policyent {
1336 TAILQ_ENTRY(addrsel_policyent) ape_entry;
1337 struct in6_addrpolicy ape_policy;
1338 };
1339
1340 TAILQ_HEAD(addrsel_policyhead, addrsel_policyent);
1341
1342 struct addrsel_policyhead addrsel_policytab;
1343
1344 static void
1345 init_policy_queue(void)
1346 {
1347 TAILQ_INIT(&addrsel_policytab);
1348 }
1349
1350 void
1351 addrsel_policy_init(void)
1352 {
1353 /*
1354 * Default address selection policy based on RFC 3484 and
1355 * draft-arifumi-6man-rfc3484-revise-03.
1356 */
1357 static const struct in6_addrpolicy defaddrsel[] = {
1358 /* localhost */
1359 {
1360 .addr = {
1361 .sin6_family = AF_INET6,
1362 .sin6_addr = IN6ADDR_LOOPBACK_INIT,
1363 .sin6_len = sizeof (struct sockaddr_in6)
1364 },
1365 .addrmask = {
1366 .sin6_family = AF_INET6,
1367 .sin6_addr = IN6MASK128,
1368 .sin6_len = sizeof (struct sockaddr_in6)
1369 },
1370 .preced = 60,
1371 .label = 0
1372 },
1373
1374 /* ULA */
1375 {
1376 .addr = {
1377 .sin6_family = AF_INET6,
1378 .sin6_addr = {{{ 0xfc }}},
1379 .sin6_len = sizeof (struct sockaddr_in6)
1380 },
1381 .addrmask = {
1382 .sin6_family = AF_INET6,
1383 .sin6_addr = IN6MASK7,
1384 .sin6_len = sizeof (struct sockaddr_in6)
1385 },
1386 .preced = 50,
1387 .label = 1
1388 },
1389
1390 /* any IPv6 src */
1391 {
1392 .addr = {
1393 .sin6_family = AF_INET6,
1394 .sin6_addr = IN6ADDR_ANY_INIT,
1395 .sin6_len = sizeof (struct sockaddr_in6)
1396 },
1397 .addrmask = {
1398 .sin6_family = AF_INET6,
1399 .sin6_addr = IN6MASK0,
1400 .sin6_len = sizeof (struct sockaddr_in6)
1401 },
1402 .preced = 40,
1403 .label = 2 },
1404
1405 /* any IPv4 src */
1406 {
1407 .addr = {
1408 .sin6_family = AF_INET6,
1409 .sin6_addr = IN6ADDR_V4MAPPED_INIT,
1410 .sin6_len = sizeof (struct sockaddr_in6)
1411 },
1412 .addrmask = {
1413 .sin6_family = AF_INET6,
1414 .sin6_addr = IN6MASK96,
1415 .sin6_len = sizeof (struct sockaddr_in6)
1416 },
1417 .preced = 30,
1418 .label = 3
1419 },
1420
1421 /* 6to4 */
1422 {
1423 .addr = {
1424 .sin6_family = AF_INET6,
1425 .sin6_addr = {{{ 0x20, 0x02 }}},
1426 .sin6_len = sizeof (struct sockaddr_in6)
1427 },
1428 .addrmask = {
1429 .sin6_family = AF_INET6,
1430 .sin6_addr = IN6MASK16,
1431 .sin6_len = sizeof (struct sockaddr_in6)
1432 },
1433 .preced = 20,
1434 .label = 4
1435 },
1436
1437 /* Teredo */
1438 {
1439 .addr = {
1440 .sin6_family = AF_INET6,
1441 .sin6_addr = {{{ 0x20, 0x01 }}},
1442 .sin6_len = sizeof (struct sockaddr_in6)
1443 },
1444 .addrmask = {
1445 .sin6_family = AF_INET6,
1446 .sin6_addr = IN6MASK32,
1447 .sin6_len = sizeof (struct sockaddr_in6)
1448 },
1449 .preced = 10,
1450 .label = 5
1451 },
1452
1453 /* v4 compat addresses */
1454 {
1455 .addr = {
1456 .sin6_family = AF_INET6,
1457 .sin6_addr = IN6ADDR_ANY_INIT,
1458 .sin6_len = sizeof (struct sockaddr_in6)
1459 },
1460 .addrmask = {
1461 .sin6_family = AF_INET6,
1462 .sin6_addr = IN6MASK96,
1463 .sin6_len = sizeof (struct sockaddr_in6)
1464 },
1465 .preced = 1,
1466 .label = 10
1467 },
1468
1469 /* site-local (deprecated) */
1470 {
1471 .addr = {
1472 .sin6_family = AF_INET6,
1473 .sin6_addr = {{{ 0xfe, 0xc0 }}},
1474 .sin6_len = sizeof (struct sockaddr_in6)
1475 },
1476 .addrmask = {
1477 .sin6_family = AF_INET6,
1478 .sin6_addr = IN6MASK16,
1479 .sin6_len = sizeof (struct sockaddr_in6)
1480 },
1481 .preced = 1,
1482 .label = 11
1483 },
1484
1485 /* 6bone (deprecated) */
1486 {
1487 .addr = {
1488 .sin6_family = AF_INET6,
1489 .sin6_addr = {{{ 0x3f, 0xfe }}},
1490 .sin6_len = sizeof (struct sockaddr_in6)
1491 },
1492 .addrmask = {
1493 .sin6_family = AF_INET6,
1494 .sin6_addr = IN6MASK16,
1495 .sin6_len = sizeof (struct sockaddr_in6)
1496 },
1497 .preced = 1,
1498 .label = 12
1499 },
1500 };
1501 int i;
1502
1503 init_policy_queue();
1504
1505 /* initialize the "last resort" policy */
1506 bzero(&defaultaddrpolicy, sizeof (defaultaddrpolicy));
1507 defaultaddrpolicy.label = ADDR_LABEL_NOTAPP;
1508
1509 for (i = 0; i < sizeof (defaddrsel) / sizeof (defaddrsel[0]); i++)
1510 add_addrsel_policyent(&defaddrsel[i]);
1511
1512 }
1513
1514 struct in6_addrpolicy *
1515 in6_addrsel_lookup_policy(struct sockaddr_in6 *key)
1516 {
1517 struct in6_addrpolicy *match = NULL;
1518
1519 ADDRSEL_LOCK();
1520 match = match_addrsel_policy(key);
1521
1522 if (match == NULL)
1523 match = &defaultaddrpolicy;
1524 else
1525 match->use++;
1526 ADDRSEL_UNLOCK();
1527
1528 return (match);
1529 }
1530
1531 static struct in6_addrpolicy *
1532 match_addrsel_policy(struct sockaddr_in6 *key)
1533 {
1534 struct addrsel_policyent *pent;
1535 struct in6_addrpolicy *bestpol = NULL, *pol;
1536 int matchlen, bestmatchlen = -1;
1537 u_char *mp, *ep, *k, *p, m;
1538
1539 TAILQ_FOREACH(pent, &addrsel_policytab, ape_entry) {
1540 matchlen = 0;
1541
1542 pol = &pent->ape_policy;
1543 mp = (u_char *)&pol->addrmask.sin6_addr;
1544 ep = mp + 16; /* XXX: scope field? */
1545 k = (u_char *)&key->sin6_addr;
1546 p = (u_char *)&pol->addr.sin6_addr;
1547 for (; mp < ep && *mp; mp++, k++, p++) {
1548 m = *mp;
1549 if ((*k & m) != *p)
1550 goto next; /* not match */
1551 if (m == 0xff) /* short cut for a typical case */
1552 matchlen += 8;
1553 else {
1554 while (m >= 0x80) {
1555 matchlen++;
1556 m <<= 1;
1557 }
1558 }
1559 }
1560
1561 /* matched. check if this is better than the current best. */
1562 if (bestpol == NULL ||
1563 matchlen > bestmatchlen) {
1564 bestpol = pol;
1565 bestmatchlen = matchlen;
1566 }
1567
1568 next:
1569 continue;
1570 }
1571
1572 return (bestpol);
1573 }
1574
1575 static int
1576 add_addrsel_policyent(const struct in6_addrpolicy *newpolicy)
1577 {
1578 struct addrsel_policyent *new, *pol;
1579
1580 MALLOC(new, struct addrsel_policyent *, sizeof (*new), M_IFADDR,
1581 M_WAITOK);
1582
1583 ADDRSEL_LOCK();
1584
1585 /* duplication check */
1586 TAILQ_FOREACH(pol, &addrsel_policytab, ape_entry) {
1587 if (IN6_ARE_ADDR_EQUAL(&newpolicy->addr.sin6_addr,
1588 &pol->ape_policy.addr.sin6_addr) &&
1589 IN6_ARE_ADDR_EQUAL(&newpolicy->addrmask.sin6_addr,
1590 &pol->ape_policy.addrmask.sin6_addr)) {
1591 ADDRSEL_UNLOCK();
1592 FREE(new, M_IFADDR);
1593 return (EEXIST); /* or override it? */
1594 }
1595 }
1596
1597 bzero(new, sizeof (*new));
1598
1599 /* XXX: should validate entry */
1600 new->ape_policy = *newpolicy;
1601
1602 TAILQ_INSERT_TAIL(&addrsel_policytab, new, ape_entry);
1603 ADDRSEL_UNLOCK();
1604
1605 return (0);
1606 }
1607 #ifdef ENABLE_ADDRSEL
1608 static int
1609 delete_addrsel_policyent(const struct in6_addrpolicy *key)
1610 {
1611 struct addrsel_policyent *pol;
1612
1613
1614 ADDRSEL_LOCK();
1615
1616 /* search for the entry in the table */
1617 TAILQ_FOREACH(pol, &addrsel_policytab, ape_entry) {
1618 if (IN6_ARE_ADDR_EQUAL(&key->addr.sin6_addr,
1619 &pol->ape_policy.addr.sin6_addr) &&
1620 IN6_ARE_ADDR_EQUAL(&key->addrmask.sin6_addr,
1621 &pol->ape_policy.addrmask.sin6_addr)) {
1622 break;
1623 }
1624 }
1625 if (pol == NULL) {
1626 ADDRSEL_UNLOCK();
1627 return (ESRCH);
1628 }
1629
1630 TAILQ_REMOVE(&addrsel_policytab, pol, ape_entry);
1631 FREE(pol, M_IFADDR);
1632 pol = NULL;
1633 ADDRSEL_UNLOCK();
1634
1635 return (0);
1636 }
1637 #endif /* ENABLE_ADDRSEL */
1638
1639 int
1640 walk_addrsel_policy(int (*callback)(const struct in6_addrpolicy *, void *),
1641 void *w)
1642 {
1643 struct addrsel_policyent *pol;
1644 int error = 0;
1645
1646 ADDRSEL_LOCK();
1647 TAILQ_FOREACH(pol, &addrsel_policytab, ape_entry) {
1648 if ((error = (*callback)(&pol->ape_policy, w)) != 0) {
1649 ADDRSEL_UNLOCK();
1650 return (error);
1651 }
1652 }
1653 ADDRSEL_UNLOCK();
1654 return (error);
1655 }
1656 /*
1657 * Subroutines to manage the address selection policy table via sysctl.
1658 */
1659 struct walkarg {
1660 struct sysctl_req *w_req;
1661 };
1662
1663
1664 static int
1665 dump_addrsel_policyent(const struct in6_addrpolicy *pol, void *arg)
1666 {
1667 int error = 0;
1668 struct walkarg *w = arg;
1669
1670 error = SYSCTL_OUT(w->w_req, pol, sizeof (*pol));
1671
1672 return (error);
1673 }
1674
1675 static int
1676 in6_src_sysctl SYSCTL_HANDLER_ARGS
1677 {
1678 #pragma unused(oidp, arg1, arg2)
1679 struct walkarg w;
1680
1681 if (req->newptr)
1682 return (EPERM);
1683 bzero(&w, sizeof (w));
1684 w.w_req = req;
1685
1686 return (walk_addrsel_policy(dump_addrsel_policyent, &w));
1687 }
1688
1689
1690 SYSCTL_NODE(_net_inet6_ip6, IPV6CTL_ADDRCTLPOLICY, addrctlpolicy,
1691 CTLFLAG_RD | CTLFLAG_LOCKED, in6_src_sysctl, "");
1692 int
1693 in6_src_ioctl(u_long cmd, caddr_t data)
1694 {
1695 int i;
1696 struct in6_addrpolicy ent0;
1697
1698 if (cmd != SIOCAADDRCTL_POLICY && cmd != SIOCDADDRCTL_POLICY)
1699 return (EOPNOTSUPP); /* check for safety */
1700
1701 bcopy(data, &ent0, sizeof (ent0));
1702
1703 if (ent0.label == ADDR_LABEL_NOTAPP)
1704 return (EINVAL);
1705 /* check if the prefix mask is consecutive. */
1706 if (in6_mask2len(&ent0.addrmask.sin6_addr, NULL) < 0)
1707 return (EINVAL);
1708 /* clear trailing garbages (if any) of the prefix address. */
1709 for (i = 0; i < 4; i++) {
1710 ent0.addr.sin6_addr.s6_addr32[i] &=
1711 ent0.addrmask.sin6_addr.s6_addr32[i];
1712 }
1713 ent0.use = 0;
1714
1715 switch (cmd) {
1716 case SIOCAADDRCTL_POLICY:
1717 #ifdef ENABLE_ADDRSEL
1718 return (add_addrsel_policyent(&ent0));
1719 #else
1720 return (ENOTSUP);
1721 #endif
1722 case SIOCDADDRCTL_POLICY:
1723 #ifdef ENABLE_ADDRSEL
1724 return (delete_addrsel_policyent(&ent0));
1725 #else
1726 return (ENOTSUP);
1727 #endif
1728 }
1729
1730 return (0); /* XXX: compromise compilers */
1731 }
1732
1733 /*
1734 * generate kernel-internal form (scopeid embedded into s6_addr16[1]).
1735 * If the address scope of is link-local, embed the interface index in the
1736 * address. The routine determines our precedence
1737 * between advanced API scope/interface specification and basic API
1738 * specification.
1739 *
1740 * this function should be nuked in the future, when we get rid of
1741 * embedded scopeid thing.
1742 *
1743 * XXX actually, it is over-specification to return ifp against sin6_scope_id.
1744 * there can be multiple interfaces that belong to a particular scope zone
1745 * (in specification, we have 1:N mapping between a scope zone and interfaces).
1746 * we may want to change the function to return something other than ifp.
1747 */
1748 int
1749 in6_embedscope(struct in6_addr *in6, const struct sockaddr_in6 *sin6,
1750 struct in6pcb *in6p, struct ifnet **ifpp, struct ip6_pktopts *opt)
1751 {
1752 struct ifnet *ifp = NULL;
1753 u_int32_t scopeid;
1754 struct ip6_pktopts *optp = NULL;
1755
1756 *in6 = sin6->sin6_addr;
1757 scopeid = sin6->sin6_scope_id;
1758 if (ifpp != NULL)
1759 *ifpp = NULL;
1760
1761 /*
1762 * don't try to read sin6->sin6_addr beyond here, since the caller may
1763 * ask us to overwrite existing sockaddr_in6
1764 */
1765
1766 #ifdef ENABLE_DEFAULT_SCOPE
1767 if (scopeid == 0)
1768 scopeid = scope6_addr2default(in6);
1769 #endif
1770
1771 if (IN6_IS_SCOPE_LINKLOCAL(in6)) {
1772 struct in6_pktinfo *pi;
1773 struct ifnet *im6o_multicast_ifp = NULL;
1774
1775 if (in6p != NULL && IN6_IS_ADDR_MULTICAST(in6) &&
1776 in6p->in6p_moptions != NULL) {
1777 IM6O_LOCK(in6p->in6p_moptions);
1778 im6o_multicast_ifp =
1779 in6p->in6p_moptions->im6o_multicast_ifp;
1780 IM6O_UNLOCK(in6p->in6p_moptions);
1781 }
1782
1783 if (opt != NULL)
1784 optp = opt;
1785 else if (in6p != NULL)
1786 optp = in6p->in6p_outputopts;
1787 /*
1788 * KAME assumption: link id == interface id
1789 */
1790 if (in6p != NULL && optp != NULL &&
1791 (pi = optp->ip6po_pktinfo) != NULL &&
1792 pi->ipi6_ifindex != 0) {
1793 /* ifp is needed here if only we're returning it */
1794 if (ifpp != NULL) {
1795 ifnet_head_lock_shared();
1796 ifp = ifindex2ifnet[pi->ipi6_ifindex];
1797 ifnet_head_done();
1798 }
1799 in6->s6_addr16[1] = htons(pi->ipi6_ifindex);
1800 } else if (in6p != NULL && IN6_IS_ADDR_MULTICAST(in6) &&
1801 in6p->in6p_moptions != NULL && im6o_multicast_ifp != NULL) {
1802 ifp = im6o_multicast_ifp;
1803 in6->s6_addr16[1] = htons(ifp->if_index);
1804 } else if (scopeid != 0) {
1805 /*
1806 * Since scopeid is unsigned, we only have to check it
1807 * against if_index (ifnet_head_lock not needed since
1808 * if_index is an ever-increasing integer.)
1809 */
1810 if (if_index < scopeid)
1811 return (ENXIO); /* XXX EINVAL? */
1812
1813 /* ifp is needed here only if we're returning it */
1814 if (ifpp != NULL) {
1815 ifnet_head_lock_shared();
1816 ifp = ifindex2ifnet[scopeid];
1817 ifnet_head_done();
1818 }
1819 /* XXX assignment to 16bit from 32bit variable */
1820 in6->s6_addr16[1] = htons(scopeid & 0xffff);
1821 }
1822
1823 if (ifpp != NULL) {
1824 if (ifp != NULL)
1825 ifnet_reference(ifp); /* for caller */
1826 *ifpp = ifp;
1827 }
1828 }
1829
1830 return (0);
1831 }
1832
1833 /*
1834 * generate standard sockaddr_in6 from embedded form.
1835 * touches sin6_addr and sin6_scope_id only.
1836 *
1837 * this function should be nuked in the future, when we get rid of
1838 * embedded scopeid thing.
1839 */
1840 int
1841 in6_recoverscope(
1842 struct sockaddr_in6 *sin6,
1843 const struct in6_addr *in6,
1844 struct ifnet *ifp)
1845 {
1846 u_int32_t scopeid;
1847
1848 sin6->sin6_addr = *in6;
1849
1850 /*
1851 * don't try to read *in6 beyond here, since the caller may
1852 * ask us to overwrite existing sockaddr_in6
1853 */
1854
1855 sin6->sin6_scope_id = 0;
1856 if (IN6_IS_SCOPE_LINKLOCAL(in6)) {
1857 /*
1858 * KAME assumption: link id == interface id
1859 */
1860 scopeid = ntohs(sin6->sin6_addr.s6_addr16[1]);
1861 if (scopeid) {
1862 /*
1863 * sanity check
1864 *
1865 * Since scopeid is unsigned, we only have to check it
1866 * against if_index
1867 */
1868 if (if_index < scopeid)
1869 return (ENXIO);
1870 if (ifp && ifp->if_index != scopeid)
1871 return (ENXIO);
1872 sin6->sin6_addr.s6_addr16[1] = 0;
1873 sin6->sin6_scope_id = scopeid;
1874 }
1875 }
1876
1877 return (0);
1878 }