]> git.saurik.com Git - apple/xnu.git/blob - bsd/kern/uipc_usrreq.c
xnu-2422.90.20.tar.gz
[apple/xnu.git] / bsd / kern / uipc_usrreq.c
1 /*
2 * Copyright (c) 2000-2012 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*
29 * Copyright (c) 1982, 1986, 1989, 1991, 1993
30 * The Regents of the University of California. All rights reserved.
31 *
32 * Redistribution and use in source and binary forms, with or without
33 * modification, are permitted provided that the following conditions
34 * are met:
35 * 1. Redistributions of source code must retain the above copyright
36 * notice, this list of conditions and the following disclaimer.
37 * 2. Redistributions in binary form must reproduce the above copyright
38 * notice, this list of conditions and the following disclaimer in the
39 * documentation and/or other materials provided with the distribution.
40 * 3. All advertising materials mentioning features or use of this software
41 * must display the following acknowledgement:
42 * This product includes software developed by the University of
43 * California, Berkeley and its contributors.
44 * 4. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * From: @(#)uipc_usrreq.c 8.3 (Berkeley) 1/4/94
61 */
62 /*
63 * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
64 * support for mandatory and extensible security protections. This notice
65 * is included in support of clause 2.2 (b) of the Apple Public License,
66 * Version 2.0.
67 */
68
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/kernel.h>
72 #include <sys/domain.h>
73 #include <sys/fcntl.h>
74 #include <sys/malloc.h> /* XXX must be before <sys/file.h> */
75 #include <sys/file_internal.h>
76 #include <sys/guarded.h>
77 #include <sys/filedesc.h>
78 #include <sys/lock.h>
79 #include <sys/mbuf.h>
80 #include <sys/namei.h>
81 #include <sys/proc_internal.h>
82 #include <sys/kauth.h>
83 #include <sys/protosw.h>
84 #include <sys/socket.h>
85 #include <sys/socketvar.h>
86 #include <sys/stat.h>
87 #include <sys/sysctl.h>
88 #include <sys/un.h>
89 #include <sys/unpcb.h>
90 #include <sys/vnode_internal.h>
91 #include <sys/kdebug.h>
92
93 #include <kern/zalloc.h>
94 #include <kern/locks.h>
95
96 #if CONFIG_MACF
97 #include <security/mac_framework.h>
98 #endif /* CONFIG_MACF */
99
100 #include <mach/vm_param.h>
101
102 #define f_msgcount f_fglob->fg_msgcount
103 #define f_cred f_fglob->fg_cred
104 #define f_ops f_fglob->fg_ops
105 #define f_offset f_fglob->fg_offset
106 #define f_data f_fglob->fg_data
107 struct zone *unp_zone;
108 static unp_gen_t unp_gencnt;
109 static u_int unp_count;
110
111 static lck_attr_t *unp_mtx_attr;
112 static lck_grp_t *unp_mtx_grp;
113 static lck_grp_attr_t *unp_mtx_grp_attr;
114 static lck_rw_t *unp_list_mtx;
115
116 static lck_mtx_t *unp_disconnect_lock;
117 static lck_mtx_t *unp_connect_lock;
118 static u_int disconnect_in_progress;
119
120 extern lck_mtx_t *uipc_lock;
121 static struct unp_head unp_shead, unp_dhead;
122
123 /*
124 * mDNSResponder tracing. When enabled, endpoints connected to
125 * /var/run/mDNSResponder will be traced; during each send on
126 * the traced socket, we log the PID and process name of the
127 * sending process. We also print out a bit of info related
128 * to the data itself; this assumes ipc_msg_hdr in dnssd_ipc.h
129 * of mDNSResponder stays the same.
130 */
131 #define MDNSRESPONDER_PATH "/var/run/mDNSResponder"
132
133 static int unpst_tracemdns; /* enable tracing */
134
135 #define MDNS_IPC_MSG_HDR_VERSION_1 1
136
137 struct mdns_ipc_msg_hdr {
138 uint32_t version;
139 uint32_t datalen;
140 uint32_t ipc_flags;
141 uint32_t op;
142 union {
143 void *context;
144 uint32_t u32[2];
145 } __attribute__((packed));
146 uint32_t reg_index;
147 } __attribute__((packed));
148
149 /*
150 * Unix communications domain.
151 *
152 * TODO:
153 * SEQPACKET, RDM
154 * rethink name space problems
155 * need a proper out-of-band
156 * lock pushdown
157 */
158 static struct sockaddr sun_noname = { sizeof (sun_noname), AF_LOCAL, { 0 } };
159 static ino_t unp_ino; /* prototype for fake inode numbers */
160
161 static int unp_attach(struct socket *);
162 static void unp_detach(struct unpcb *);
163 static int unp_bind(struct unpcb *, struct sockaddr *, proc_t);
164 static int unp_connect(struct socket *, struct sockaddr *, proc_t);
165 static void unp_disconnect(struct unpcb *);
166 static void unp_shutdown(struct unpcb *);
167 static void unp_drop(struct unpcb *, int);
168 __private_extern__ void unp_gc(void);
169 static void unp_scan(struct mbuf *, void (*)(struct fileglob *));
170 static void unp_mark(struct fileglob *);
171 static void unp_discard(struct fileglob *);
172 static void unp_discard_fdlocked(struct fileglob *, proc_t);
173 static int unp_internalize(struct mbuf *, proc_t);
174 static int unp_listen(struct unpcb *, proc_t);
175 static void unpcb_to_compat(struct unpcb *, struct unpcb_compat *);
176 static void unp_get_locks_in_order(struct socket *so, struct socket *conn_so);
177
178 static void
179 unp_get_locks_in_order(struct socket *so, struct socket *conn_so)
180 {
181 if (so < conn_so) {
182 socket_lock(conn_so, 1);
183 } else {
184 struct unpcb *unp = sotounpcb(so);
185 unp->unp_flags |= UNP_DONTDISCONNECT;
186 unp->rw_thrcount++;
187 socket_unlock(so, 0);
188
189 /* Get the locks in the correct order */
190 socket_lock(conn_so, 1);
191 socket_lock(so, 0);
192 unp->rw_thrcount--;
193 if (unp->rw_thrcount == 0) {
194 unp->unp_flags &= ~UNP_DONTDISCONNECT;
195 wakeup(unp);
196 }
197 }
198 }
199
200 static int
201 uipc_abort(struct socket *so)
202 {
203 struct unpcb *unp = sotounpcb(so);
204
205 if (unp == 0)
206 return (EINVAL);
207 unp_drop(unp, ECONNABORTED);
208 unp_detach(unp);
209 sofree(so);
210 return (0);
211 }
212
213 static int
214 uipc_accept(struct socket *so, struct sockaddr **nam)
215 {
216 struct unpcb *unp = sotounpcb(so);
217
218 if (unp == 0)
219 return (EINVAL);
220
221 /*
222 * Pass back name of connected socket,
223 * if it was bound and we are still connected
224 * (our peer may have closed already!).
225 */
226 if (unp->unp_conn && unp->unp_conn->unp_addr) {
227 *nam = dup_sockaddr((struct sockaddr *)
228 unp->unp_conn->unp_addr, 1);
229 } else {
230 *nam = dup_sockaddr((struct sockaddr *)&sun_noname, 1);
231 }
232 return (0);
233 }
234
235 /*
236 * Returns: 0 Success
237 * EISCONN
238 * unp_attach:
239 */
240 static int
241 uipc_attach(struct socket *so, __unused int proto, __unused proc_t p)
242 {
243 struct unpcb *unp = sotounpcb(so);
244
245 if (unp != 0)
246 return (EISCONN);
247 return (unp_attach(so));
248 }
249
250 static int
251 uipc_bind(struct socket *so, struct sockaddr *nam, proc_t p)
252 {
253 struct unpcb *unp = sotounpcb(so);
254
255 if (unp == 0)
256 return (EINVAL);
257
258 return (unp_bind(unp, nam, p));
259 }
260
261 /*
262 * Returns: 0 Success
263 * EINVAL
264 * unp_connect:??? [See elsewhere in this file]
265 */
266 static int
267 uipc_connect(struct socket *so, struct sockaddr *nam, proc_t p)
268 {
269 struct unpcb *unp = sotounpcb(so);
270
271 if (unp == 0)
272 return (EINVAL);
273 return (unp_connect(so, nam, p));
274 }
275
276 /*
277 * Returns: 0 Success
278 * EINVAL
279 * unp_connect2:EPROTOTYPE Protocol wrong type for socket
280 * unp_connect2:EINVAL Invalid argument
281 */
282 static int
283 uipc_connect2(struct socket *so1, struct socket *so2)
284 {
285 struct unpcb *unp = sotounpcb(so1);
286
287 if (unp == 0)
288 return (EINVAL);
289
290 return (unp_connect2(so1, so2));
291 }
292
293 /* control is EOPNOTSUPP */
294
295 static int
296 uipc_detach(struct socket *so)
297 {
298 struct unpcb *unp = sotounpcb(so);
299
300 if (unp == 0)
301 return (EINVAL);
302
303 lck_mtx_assert(&unp->unp_mtx, LCK_MTX_ASSERT_OWNED);
304 unp_detach(unp);
305 return (0);
306 }
307
308 static int
309 uipc_disconnect(struct socket *so)
310 {
311 struct unpcb *unp = sotounpcb(so);
312
313 if (unp == 0)
314 return (EINVAL);
315 unp_disconnect(unp);
316 return (0);
317 }
318
319 /*
320 * Returns: 0 Success
321 * EINVAL
322 */
323 static int
324 uipc_listen(struct socket *so, __unused proc_t p)
325 {
326 struct unpcb *unp = sotounpcb(so);
327
328 if (unp == 0 || unp->unp_vnode == 0)
329 return (EINVAL);
330 return (unp_listen(unp, p));
331 }
332
333 static int
334 uipc_peeraddr(struct socket *so, struct sockaddr **nam)
335 {
336 struct unpcb *unp = sotounpcb(so);
337
338 if (unp == NULL)
339 return (EINVAL);
340 if (unp->unp_conn != NULL && unp->unp_conn->unp_addr != NULL) {
341 *nam = dup_sockaddr((struct sockaddr *)
342 unp->unp_conn->unp_addr, 1);
343 } else {
344 *nam = dup_sockaddr((struct sockaddr *)&sun_noname, 1);
345 }
346 return (0);
347 }
348
349 static int
350 uipc_rcvd(struct socket *so, __unused int flags)
351 {
352 struct unpcb *unp = sotounpcb(so);
353 struct socket *so2;
354
355 if (unp == 0)
356 return (EINVAL);
357 switch (so->so_type) {
358 case SOCK_DGRAM:
359 panic("uipc_rcvd DGRAM?");
360 /*NOTREACHED*/
361
362 case SOCK_STREAM:
363 #define rcv (&so->so_rcv)
364 #define snd (&so2->so_snd)
365 if (unp->unp_conn == 0)
366 break;
367
368 so2 = unp->unp_conn->unp_socket;
369 unp_get_locks_in_order(so, so2);
370 /*
371 * Adjust backpressure on sender
372 * and wakeup any waiting to write.
373 */
374 snd->sb_mbmax += unp->unp_mbcnt - rcv->sb_mbcnt;
375 unp->unp_mbcnt = rcv->sb_mbcnt;
376 snd->sb_hiwat += unp->unp_cc - rcv->sb_cc;
377 unp->unp_cc = rcv->sb_cc;
378 sowwakeup(so2);
379
380 socket_unlock(so2, 1);
381
382 #undef snd
383 #undef rcv
384 break;
385
386 default:
387 panic("uipc_rcvd unknown socktype");
388 }
389 return (0);
390 }
391
392 /* pru_rcvoob is EOPNOTSUPP */
393
394 /*
395 * Returns: 0 Success
396 * EINVAL
397 * EOPNOTSUPP
398 * EPIPE
399 * ENOTCONN
400 * EISCONN
401 * unp_internalize:EINVAL
402 * unp_internalize:EBADF
403 * unp_connect:EAFNOSUPPORT Address family not supported
404 * unp_connect:EINVAL Invalid argument
405 * unp_connect:ENOTSOCK Not a socket
406 * unp_connect:ECONNREFUSED Connection refused
407 * unp_connect:EISCONN Socket is connected
408 * unp_connect:EPROTOTYPE Protocol wrong type for socket
409 * unp_connect:???
410 * sbappendaddr:ENOBUFS [5th argument, contents modified]
411 * sbappendaddr:??? [whatever a filter author chooses]
412 */
413 static int
414 uipc_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
415 struct mbuf *control, proc_t p)
416 {
417 int error = 0;
418 struct unpcb *unp = sotounpcb(so);
419 struct socket *so2;
420
421 if (unp == 0) {
422 error = EINVAL;
423 goto release;
424 }
425 if (flags & PRUS_OOB) {
426 error = EOPNOTSUPP;
427 goto release;
428 }
429
430 if (control) {
431 /* release lock to avoid deadlock (4436174) */
432 socket_unlock(so, 0);
433 error = unp_internalize(control, p);
434 socket_lock(so, 0);
435 if (error)
436 goto release;
437 }
438
439 switch (so->so_type) {
440 case SOCK_DGRAM:
441 {
442 struct sockaddr *from;
443
444 if (nam) {
445 if (unp->unp_conn) {
446 error = EISCONN;
447 break;
448 }
449 error = unp_connect(so, nam, p);
450 if (error)
451 break;
452 } else {
453 if (unp->unp_conn == 0) {
454 error = ENOTCONN;
455 break;
456 }
457 }
458
459 so2 = unp->unp_conn->unp_socket;
460 if (so != so2)
461 unp_get_locks_in_order(so, so2);
462
463 if (unp->unp_addr)
464 from = (struct sockaddr *)unp->unp_addr;
465 else
466 from = &sun_noname;
467 /*
468 * sbappendaddr() will fail when the receiver runs out of
469 * space; in contrast to SOCK_STREAM, we will lose messages
470 * for the SOCK_DGRAM case when the receiver's queue overflows.
471 * SB_UNIX on the socket buffer implies that the callee will
472 * not free the control message, if any, because we would need
473 * to call unp_dispose() on it.
474 */
475 if (sbappendaddr(&so2->so_rcv, from, m, control, &error)) {
476 control = NULL;
477 sorwakeup(so2);
478 } else if (control != NULL && error == 0) {
479 /* A socket filter took control; don't touch it */
480 control = NULL;
481 }
482
483 if (so != so2)
484 socket_unlock(so2, 1);
485
486 m = NULL;
487 if (nam)
488 unp_disconnect(unp);
489 break;
490 }
491
492 case SOCK_STREAM: {
493 int didreceive = 0;
494 #define rcv (&so2->so_rcv)
495 #define snd (&so->so_snd)
496 /* Connect if not connected yet. */
497 /*
498 * Note: A better implementation would complain
499 * if not equal to the peer's address.
500 */
501 if ((so->so_state & SS_ISCONNECTED) == 0) {
502 if (nam) {
503 error = unp_connect(so, nam, p);
504 if (error)
505 break; /* XXX */
506 } else {
507 error = ENOTCONN;
508 break;
509 }
510 }
511
512 if (so->so_state & SS_CANTSENDMORE) {
513 error = EPIPE;
514 break;
515 }
516 if (unp->unp_conn == 0)
517 panic("uipc_send connected but no connection?");
518
519 so2 = unp->unp_conn->unp_socket;
520 unp_get_locks_in_order(so, so2);
521
522 /* Check socket state again as we might have unlocked the socket
523 * while trying to get the locks in order
524 */
525
526 if ((so->so_state & SS_CANTSENDMORE)) {
527 error = EPIPE;
528 socket_unlock(so2, 1);
529 break;
530 }
531
532 if (unp->unp_flags & UNP_TRACE_MDNS) {
533 struct mdns_ipc_msg_hdr hdr;
534
535 if (mbuf_copydata(m, 0, sizeof (hdr), &hdr) == 0 &&
536 hdr.version == ntohl(MDNS_IPC_MSG_HDR_VERSION_1)) {
537 printf("%s[mDNSResponder] pid=%d (%s): op=0x%x\n",
538 __func__, p->p_pid, p->p_comm, ntohl(hdr.op));
539 }
540 }
541
542 /*
543 * Send to paired receive port, and then reduce send buffer
544 * hiwater marks to maintain backpressure. Wake up readers.
545 * SB_UNIX flag will allow new record to be appended to the
546 * receiver's queue even when it is already full. It is
547 * possible, however, that append might fail. In that case,
548 * we will need to call unp_dispose() on the control message;
549 * the callee will not free it since SB_UNIX is set.
550 */
551 didreceive = control ?
552 sbappendcontrol(rcv, m, control, &error) : sbappend(rcv, m);
553
554 snd->sb_mbmax -= rcv->sb_mbcnt - unp->unp_conn->unp_mbcnt;
555 unp->unp_conn->unp_mbcnt = rcv->sb_mbcnt;
556 snd->sb_hiwat -= rcv->sb_cc - unp->unp_conn->unp_cc;
557 unp->unp_conn->unp_cc = rcv->sb_cc;
558 if (didreceive) {
559 control = NULL;
560 sorwakeup(so2);
561 } else if (control != NULL && error == 0) {
562 /* A socket filter took control; don't touch it */
563 control = NULL;
564 }
565
566 socket_unlock(so2, 1);
567 m = NULL;
568 #undef snd
569 #undef rcv
570 }
571 break;
572
573 default:
574 panic("uipc_send unknown socktype");
575 }
576
577 /*
578 * SEND_EOF is equivalent to a SEND followed by
579 * a SHUTDOWN.
580 */
581 if (flags & PRUS_EOF) {
582 socantsendmore(so);
583 unp_shutdown(unp);
584 }
585
586 if (control && error != 0) {
587 socket_unlock(so, 0);
588 unp_dispose(control);
589 socket_lock(so, 0);
590 }
591
592 release:
593 if (control)
594 m_freem(control);
595 if (m)
596 m_freem(m);
597 return (error);
598 }
599
600 static int
601 uipc_sense(struct socket *so, void *ub, int isstat64)
602 {
603 struct unpcb *unp = sotounpcb(so);
604 struct socket *so2;
605 blksize_t blksize;
606
607 if (unp == 0)
608 return (EINVAL);
609
610 blksize = so->so_snd.sb_hiwat;
611 if (so->so_type == SOCK_STREAM && unp->unp_conn != 0) {
612 so2 = unp->unp_conn->unp_socket;
613 blksize += so2->so_rcv.sb_cc;
614 }
615 if (unp->unp_ino == 0)
616 unp->unp_ino = unp_ino++;
617
618 if (isstat64 != 0) {
619 struct stat64 *sb64;
620
621 sb64 = (struct stat64 *)ub;
622 sb64->st_blksize = blksize;
623 sb64->st_dev = NODEV;
624 sb64->st_ino = (ino64_t)unp->unp_ino;
625 } else {
626 struct stat *sb;
627
628 sb = (struct stat *)ub;
629 sb->st_blksize = blksize;
630 sb->st_dev = NODEV;
631 sb->st_ino = (ino_t)(uintptr_t)unp->unp_ino;
632 }
633
634 return (0);
635 }
636
637 /*
638 * Returns: 0 Success
639 * EINVAL
640 *
641 * Notes: This is not strictly correct, as unp_shutdown() also calls
642 * socantrcvmore(). These should maybe both be conditionalized
643 * on the 'how' argument in soshutdown() as called from the
644 * shutdown() system call.
645 */
646 static int
647 uipc_shutdown(struct socket *so)
648 {
649 struct unpcb *unp = sotounpcb(so);
650
651 if (unp == 0)
652 return (EINVAL);
653 socantsendmore(so);
654 unp_shutdown(unp);
655 return (0);
656 }
657
658 /*
659 * Returns: 0 Success
660 * EINVAL Invalid argument
661 */
662 static int
663 uipc_sockaddr(struct socket *so, struct sockaddr **nam)
664 {
665 struct unpcb *unp = sotounpcb(so);
666
667 if (unp == NULL)
668 return (EINVAL);
669 if (unp->unp_addr != NULL) {
670 *nam = dup_sockaddr((struct sockaddr *)unp->unp_addr, 1);
671 } else {
672 *nam = dup_sockaddr((struct sockaddr *)&sun_noname, 1);
673 }
674 return (0);
675 }
676
677 struct pr_usrreqs uipc_usrreqs = {
678 .pru_abort = uipc_abort,
679 .pru_accept = uipc_accept,
680 .pru_attach = uipc_attach,
681 .pru_bind = uipc_bind,
682 .pru_connect = uipc_connect,
683 .pru_connect2 = uipc_connect2,
684 .pru_detach = uipc_detach,
685 .pru_disconnect = uipc_disconnect,
686 .pru_listen = uipc_listen,
687 .pru_peeraddr = uipc_peeraddr,
688 .pru_rcvd = uipc_rcvd,
689 .pru_send = uipc_send,
690 .pru_sense = uipc_sense,
691 .pru_shutdown = uipc_shutdown,
692 .pru_sockaddr = uipc_sockaddr,
693 .pru_sosend = sosend,
694 .pru_soreceive = soreceive,
695 };
696
697 int
698 uipc_ctloutput(struct socket *so, struct sockopt *sopt)
699 {
700 struct unpcb *unp = sotounpcb(so);
701 int error = 0;
702 pid_t peerpid;
703 struct socket *peerso;
704
705 switch (sopt->sopt_dir) {
706 case SOPT_GET:
707 switch (sopt->sopt_name) {
708 case LOCAL_PEERCRED:
709 if (unp->unp_flags & UNP_HAVEPC) {
710 error = sooptcopyout(sopt, &unp->unp_peercred,
711 sizeof (unp->unp_peercred));
712 } else {
713 if (so->so_type == SOCK_STREAM)
714 error = ENOTCONN;
715 else
716 error = EINVAL;
717 }
718 break;
719 case LOCAL_PEERPID:
720 case LOCAL_PEEREPID:
721 if (unp->unp_conn == NULL) {
722 error = ENOTCONN;
723 break;
724 }
725 peerso = unp->unp_conn->unp_socket;
726 if (peerso == NULL)
727 panic("peer is connected but has no socket?");
728 unp_get_locks_in_order(so, peerso);
729 if (sopt->sopt_name == LOCAL_PEEREPID &&
730 peerso->so_flags & SOF_DELEGATED)
731 peerpid = peerso->e_pid;
732 else
733 peerpid = peerso->last_pid;
734 socket_unlock(peerso, 1);
735 error = sooptcopyout(sopt, &peerpid, sizeof (peerpid));
736 break;
737 case LOCAL_PEERUUID:
738 case LOCAL_PEEREUUID:
739 if (unp->unp_conn == NULL) {
740 error = ENOTCONN;
741 break;
742 }
743 peerso = unp->unp_conn->unp_socket;
744 if (peerso == NULL)
745 panic("peer is connected but has no socket?");
746 unp_get_locks_in_order(so, peerso);
747 if (sopt->sopt_name == LOCAL_PEEREUUID &&
748 peerso->so_flags & SOF_DELEGATED)
749 error = sooptcopyout(sopt, &peerso->e_uuid,
750 sizeof (peerso->e_uuid));
751 else
752 error = sooptcopyout(sopt, &peerso->last_uuid,
753 sizeof (peerso->last_uuid));
754 socket_unlock(peerso, 1);
755 break;
756 default:
757 error = EOPNOTSUPP;
758 break;
759 }
760 break;
761 case SOPT_SET:
762 default:
763 error = EOPNOTSUPP;
764 break;
765 }
766
767 return (error);
768 }
769
770 /*
771 * Both send and receive buffers are allocated PIPSIZ bytes of buffering
772 * for stream sockets, although the total for sender and receiver is
773 * actually only PIPSIZ.
774 * Datagram sockets really use the sendspace as the maximum datagram size,
775 * and don't really want to reserve the sendspace. Their recvspace should
776 * be large enough for at least one max-size datagram plus address.
777 */
778 #ifndef PIPSIZ
779 #define PIPSIZ 8192
780 #endif
781 static u_int32_t unpst_sendspace = PIPSIZ;
782 static u_int32_t unpst_recvspace = PIPSIZ;
783 static u_int32_t unpdg_sendspace = 2*1024; /* really max datagram size */
784 static u_int32_t unpdg_recvspace = 4*1024;
785
786 static int unp_rights; /* file descriptors in flight */
787 static int unp_disposed; /* discarded file descriptors */
788
789 SYSCTL_DECL(_net_local_stream);
790 SYSCTL_INT(_net_local_stream, OID_AUTO, sendspace, CTLFLAG_RW | CTLFLAG_LOCKED,
791 &unpst_sendspace, 0, "");
792 SYSCTL_INT(_net_local_stream, OID_AUTO, recvspace, CTLFLAG_RW | CTLFLAG_LOCKED,
793 &unpst_recvspace, 0, "");
794 SYSCTL_INT(_net_local_stream, OID_AUTO, tracemdns, CTLFLAG_RW | CTLFLAG_LOCKED,
795 &unpst_tracemdns, 0, "");
796 SYSCTL_DECL(_net_local_dgram);
797 SYSCTL_INT(_net_local_dgram, OID_AUTO, maxdgram, CTLFLAG_RW | CTLFLAG_LOCKED,
798 &unpdg_sendspace, 0, "");
799 SYSCTL_INT(_net_local_dgram, OID_AUTO, recvspace, CTLFLAG_RW | CTLFLAG_LOCKED,
800 &unpdg_recvspace, 0, "");
801 SYSCTL_DECL(_net_local);
802 SYSCTL_INT(_net_local, OID_AUTO, inflight, CTLFLAG_RD | CTLFLAG_LOCKED, &unp_rights, 0, "");
803
804 /*
805 * Returns: 0 Success
806 * ENOBUFS
807 * soreserve:ENOBUFS
808 */
809 static int
810 unp_attach(struct socket *so)
811 {
812 struct unpcb *unp;
813 int error = 0;
814
815 if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
816 switch (so->so_type) {
817
818 case SOCK_STREAM:
819 error = soreserve(so, unpst_sendspace, unpst_recvspace);
820 break;
821
822 case SOCK_DGRAM:
823 error = soreserve(so, unpdg_sendspace, unpdg_recvspace);
824 break;
825
826 default:
827 panic("unp_attach");
828 }
829 if (error)
830 return (error);
831 }
832 unp = (struct unpcb *)zalloc(unp_zone);
833 if (unp == NULL)
834 return (ENOBUFS);
835 bzero(unp, sizeof (*unp));
836
837 lck_mtx_init(&unp->unp_mtx,
838 unp_mtx_grp, unp_mtx_attr);
839
840 lck_rw_lock_exclusive(unp_list_mtx);
841 LIST_INIT(&unp->unp_refs);
842 unp->unp_socket = so;
843 unp->unp_gencnt = ++unp_gencnt;
844 unp_count++;
845 LIST_INSERT_HEAD(so->so_type == SOCK_DGRAM ?
846 &unp_dhead : &unp_shead, unp, unp_link);
847 lck_rw_done(unp_list_mtx);
848 so->so_pcb = (caddr_t)unp;
849 /*
850 * Mark AF_UNIX socket buffers accordingly so that:
851 *
852 * a. In the SOCK_STREAM case, socket buffer append won't fail due to
853 * the lack of space; this essentially loosens the sbspace() check,
854 * since there is disconnect between sosend() and uipc_send() with
855 * respect to flow control that might result in our dropping the
856 * data in uipc_send(). By setting this, we allow for slightly
857 * more records to be appended to the receiving socket to avoid
858 * losing data (which we can't afford in the SOCK_STREAM case).
859 * Flow control still takes place since we adjust the sender's
860 * hiwat during each send. This doesn't affect the SOCK_DGRAM
861 * case and append would still fail when the queue overflows.
862 *
863 * b. In the presence of control messages containing internalized
864 * file descriptors, the append routines will not free them since
865 * we'd need to undo the work first via unp_dispose().
866 */
867 so->so_rcv.sb_flags |= SB_UNIX;
868 so->so_snd.sb_flags |= SB_UNIX;
869 return (0);
870 }
871
872 static void
873 unp_detach(struct unpcb *unp)
874 {
875 int so_locked = 1;
876
877 lck_rw_lock_exclusive(unp_list_mtx);
878 LIST_REMOVE(unp, unp_link);
879 --unp_count;
880 ++unp_gencnt;
881 lck_rw_done(unp_list_mtx);
882 if (unp->unp_vnode) {
883 struct vnode *tvp = NULL;
884 socket_unlock(unp->unp_socket, 0);
885
886 /* Holding unp_connect_lock will avoid a race between
887 * a thread closing the listening socket and a thread
888 * connecting to it.
889 */
890 lck_mtx_lock(unp_connect_lock);
891 socket_lock(unp->unp_socket, 0);
892 if (unp->unp_vnode) {
893 tvp = unp->unp_vnode;
894 unp->unp_vnode->v_socket = NULL;
895 unp->unp_vnode = NULL;
896 }
897 lck_mtx_unlock(unp_connect_lock);
898 if (tvp != NULL)
899 vnode_rele(tvp); /* drop the usecount */
900 }
901 if (unp->unp_conn)
902 unp_disconnect(unp);
903 while (unp->unp_refs.lh_first) {
904 struct unpcb *unp2 = NULL;
905
906 /* This datagram socket is connected to one or more
907 * sockets. In order to avoid a race condition between removing
908 * this reference and closing the connected socket, we need
909 * to check disconnect_in_progress
910 */
911 if (so_locked == 1) {
912 socket_unlock(unp->unp_socket, 0);
913 so_locked = 0;
914 }
915 lck_mtx_lock(unp_disconnect_lock);
916 while (disconnect_in_progress != 0) {
917 (void)msleep((caddr_t)&disconnect_in_progress, unp_disconnect_lock,
918 PSOCK, "disconnect", NULL);
919 }
920 disconnect_in_progress = 1;
921 lck_mtx_unlock(unp_disconnect_lock);
922
923 /* Now we are sure that any unpcb socket disconnect is not happening */
924 if (unp->unp_refs.lh_first != NULL) {
925 unp2 = unp->unp_refs.lh_first;
926 socket_lock(unp2->unp_socket, 1);
927 }
928
929 lck_mtx_lock(unp_disconnect_lock);
930 disconnect_in_progress = 0;
931 wakeup(&disconnect_in_progress);
932 lck_mtx_unlock(unp_disconnect_lock);
933
934 if (unp2 != NULL) {
935 /* We already locked this socket and have a reference on it */
936 unp_drop(unp2, ECONNRESET);
937 socket_unlock(unp2->unp_socket, 1);
938 }
939 }
940
941 if (so_locked == 0) {
942 socket_lock(unp->unp_socket, 0);
943 so_locked = 1;
944 }
945 soisdisconnected(unp->unp_socket);
946 /* makes sure we're getting dealloced */
947 unp->unp_socket->so_flags |= SOF_PCBCLEARING;
948 }
949
950 /*
951 * Returns: 0 Success
952 * EAFNOSUPPORT
953 * EINVAL
954 * EADDRINUSE
955 * namei:??? [anything namei can return]
956 * vnode_authorize:??? [anything vnode_authorize can return]
957 *
958 * Notes: p at this point is the current process, as this function is
959 * only called by sobind().
960 */
961 static int
962 unp_bind(
963 struct unpcb *unp,
964 struct sockaddr *nam,
965 proc_t p)
966 {
967 struct sockaddr_un *soun = (struct sockaddr_un *)nam;
968 struct vnode *vp, *dvp;
969 struct vnode_attr va;
970 vfs_context_t ctx = vfs_context_current();
971 int error, namelen;
972 struct nameidata nd;
973 struct socket *so = unp->unp_socket;
974 char buf[SOCK_MAXADDRLEN];
975
976 if (nam->sa_family != 0 && nam->sa_family != AF_UNIX) {
977 return (EAFNOSUPPORT);
978 }
979
980 if (unp->unp_vnode != NULL)
981 return (EINVAL);
982 namelen = soun->sun_len - offsetof(struct sockaddr_un, sun_path);
983 if (namelen <= 0)
984 return (EINVAL);
985
986 socket_unlock(so, 0);
987
988 strlcpy(buf, soun->sun_path, namelen+1);
989 NDINIT(&nd, CREATE, OP_MKFIFO, FOLLOW | LOCKPARENT, UIO_SYSSPACE,
990 CAST_USER_ADDR_T(buf), ctx);
991 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
992 error = namei(&nd);
993 if (error) {
994 socket_lock(so, 0);
995 return (error);
996 }
997 dvp = nd.ni_dvp;
998 vp = nd.ni_vp;
999
1000 if (vp != NULL) {
1001 /*
1002 * need to do this before the vnode_put of dvp
1003 * since we may have to release an fs_nodelock
1004 */
1005 nameidone(&nd);
1006
1007 vnode_put(dvp);
1008 vnode_put(vp);
1009
1010 socket_lock(so, 0);
1011 return (EADDRINUSE);
1012 }
1013
1014 VATTR_INIT(&va);
1015 VATTR_SET(&va, va_type, VSOCK);
1016 VATTR_SET(&va, va_mode, (ACCESSPERMS & ~p->p_fd->fd_cmask));
1017
1018 #if CONFIG_MACF
1019 error = mac_vnode_check_create(ctx,
1020 nd.ni_dvp, &nd.ni_cnd, &va);
1021
1022 if (error == 0)
1023 #endif /* CONFIG_MACF */
1024 #if CONFIG_MACF_SOCKET_SUBSET
1025 error = mac_vnode_check_uipc_bind(ctx,
1026 nd.ni_dvp, &nd.ni_cnd, &va);
1027
1028 if (error == 0)
1029 #endif /* MAC_SOCKET_SUBSET */
1030 /* authorize before creating */
1031 error = vnode_authorize(dvp, NULL, KAUTH_VNODE_ADD_FILE, ctx);
1032
1033 if (!error) {
1034 /* create the socket */
1035 error = vn_create(dvp, &vp, &nd, &va, 0, 0, NULL, ctx);
1036 }
1037
1038 nameidone(&nd);
1039 vnode_put(dvp);
1040
1041 if (error) {
1042 socket_lock(so, 0);
1043 return (error);
1044 }
1045 vnode_ref(vp); /* gain a longterm reference */
1046 socket_lock(so, 0);
1047 vp->v_socket = unp->unp_socket;
1048 unp->unp_vnode = vp;
1049 unp->unp_addr = (struct sockaddr_un *)dup_sockaddr(nam, 1);
1050 vnode_put(vp); /* drop the iocount */
1051
1052 return (0);
1053 }
1054
1055
1056 /*
1057 * Returns: 0 Success
1058 * EAFNOSUPPORT Address family not supported
1059 * EINVAL Invalid argument
1060 * ENOTSOCK Not a socket
1061 * ECONNREFUSED Connection refused
1062 * EPROTOTYPE Protocol wrong type for socket
1063 * EISCONN Socket is connected
1064 * unp_connect2:EPROTOTYPE Protocol wrong type for socket
1065 * unp_connect2:EINVAL Invalid argument
1066 * namei:??? [anything namei can return]
1067 * vnode_authorize:???? [anything vnode_authorize can return]
1068 *
1069 * Notes: p at this point is the current process, as this function is
1070 * only called by sosend(), sendfile(), and soconnectlock().
1071 */
1072 static int
1073 unp_connect(struct socket *so, struct sockaddr *nam, __unused proc_t p)
1074 {
1075 struct sockaddr_un *soun = (struct sockaddr_un *)nam;
1076 struct vnode *vp;
1077 struct socket *so2, *so3, *list_so=NULL;
1078 struct unpcb *unp, *unp2, *unp3;
1079 vfs_context_t ctx = vfs_context_current();
1080 int error, len;
1081 struct nameidata nd;
1082 char buf[SOCK_MAXADDRLEN];
1083
1084 if (nam->sa_family != 0 && nam->sa_family != AF_UNIX) {
1085 return (EAFNOSUPPORT);
1086 }
1087
1088 unp = sotounpcb(so);
1089 so2 = so3 = NULL;
1090
1091 len = nam->sa_len - offsetof(struct sockaddr_un, sun_path);
1092 if (len <= 0)
1093 return (EINVAL);
1094
1095 strlcpy(buf, soun->sun_path, len+1);
1096 socket_unlock(so, 0);
1097
1098 NDINIT(&nd, LOOKUP, OP_LOOKUP, FOLLOW | LOCKLEAF, UIO_SYSSPACE,
1099 CAST_USER_ADDR_T(buf), ctx);
1100 error = namei(&nd);
1101 if (error) {
1102 socket_lock(so, 0);
1103 return (error);
1104 }
1105 nameidone(&nd);
1106 vp = nd.ni_vp;
1107 if (vp->v_type != VSOCK) {
1108 error = ENOTSOCK;
1109 socket_lock(so, 0);
1110 goto out;
1111 }
1112
1113 #if CONFIG_MACF_SOCKET_SUBSET
1114 error = mac_vnode_check_uipc_connect(ctx, vp);
1115 if (error) {
1116 socket_lock(so, 0);
1117 goto out;
1118 }
1119 #endif /* MAC_SOCKET_SUBSET */
1120
1121 error = vnode_authorize(vp, NULL, KAUTH_VNODE_WRITE_DATA, ctx);
1122 if (error) {
1123 socket_lock(so, 0);
1124 goto out;
1125 }
1126
1127 lck_mtx_lock(unp_connect_lock);
1128
1129 if (vp->v_socket == 0) {
1130 lck_mtx_unlock(unp_connect_lock);
1131 error = ECONNREFUSED;
1132 socket_lock(so, 0);
1133 goto out;
1134 }
1135
1136 socket_lock(vp->v_socket, 1); /* Get a reference on the listening socket */
1137 so2 = vp->v_socket;
1138 lck_mtx_unlock(unp_connect_lock);
1139
1140
1141 if (so2->so_pcb == NULL) {
1142 error = ECONNREFUSED;
1143 if (so != so2) {
1144 socket_unlock(so2, 1);
1145 socket_lock(so, 0);
1146 } else {
1147 /* Release the reference held for the listen socket */
1148 so2->so_usecount--;
1149 }
1150 goto out;
1151 }
1152
1153 if (so < so2) {
1154 socket_unlock(so2, 0);
1155 socket_lock(so, 0);
1156 socket_lock(so2, 0);
1157 } else if (so > so2) {
1158 socket_lock(so, 0);
1159 }
1160 /*
1161 * Check if socket was connected while we were trying to
1162 * get the socket locks in order.
1163 * XXX - probably shouldn't return an error for SOCK_DGRAM
1164 */
1165 if ((so->so_state & SS_ISCONNECTED) != 0) {
1166 error = EISCONN;
1167 goto decref_out;
1168 }
1169
1170 if (so->so_type != so2->so_type) {
1171 error = EPROTOTYPE;
1172 goto decref_out;
1173 }
1174
1175 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
1176 /* Release the incoming socket but keep a reference */
1177 socket_unlock(so, 0);
1178
1179 if ((so2->so_options & SO_ACCEPTCONN) == 0 ||
1180 (so3 = sonewconn(so2, 0, nam)) == 0) {
1181 error = ECONNREFUSED;
1182 if (so != so2) {
1183 socket_unlock(so2, 1);
1184 socket_lock(so, 0);
1185 } else {
1186 socket_lock(so, 0);
1187 /* Release the reference held for
1188 * listen socket.
1189 */
1190 so2->so_usecount--;
1191 }
1192 goto out;
1193 }
1194 unp2 = sotounpcb(so2);
1195 unp3 = sotounpcb(so3);
1196 if (unp2->unp_addr)
1197 unp3->unp_addr = (struct sockaddr_un *)
1198 dup_sockaddr((struct sockaddr *)unp2->unp_addr, 1);
1199
1200 /*
1201 * unp_peercred management:
1202 *
1203 * The connecter's (client's) credentials are copied
1204 * from its process structure at the time of connect()
1205 * (which is now).
1206 */
1207 cru2x(vfs_context_ucred(ctx), &unp3->unp_peercred);
1208 unp3->unp_flags |= UNP_HAVEPC;
1209 /*
1210 * The receiver's (server's) credentials are copied
1211 * from the unp_peercred member of socket on which the
1212 * former called listen(); unp_listen() cached that
1213 * process's credentials at that time so we can use
1214 * them now.
1215 */
1216 KASSERT(unp2->unp_flags & UNP_HAVEPCCACHED,
1217 ("unp_connect: listener without cached peercred"));
1218
1219 /* Here we need to have both so and so2 locks and so2
1220 * is already locked. Lock ordering is required.
1221 */
1222 if (so < so2) {
1223 socket_unlock(so2, 0);
1224 socket_lock(so, 0);
1225 socket_lock(so2, 0);
1226 } else {
1227 socket_lock(so, 0);
1228 }
1229
1230 /* Check again if the socket state changed when its lock was released */
1231 if ((so->so_state & SS_ISCONNECTED) != 0) {
1232 error = EISCONN;
1233 socket_unlock(so2, 1);
1234 socket_lock(so3, 0);
1235 sofreelastref(so3, 1);
1236 goto out;
1237 }
1238 memcpy(&unp->unp_peercred, &unp2->unp_peercred,
1239 sizeof (unp->unp_peercred));
1240 unp->unp_flags |= UNP_HAVEPC;
1241
1242 #if CONFIG_MACF_SOCKET
1243 /* XXXMAC: recursive lock: SOCK_LOCK(so); */
1244 mac_socketpeer_label_associate_socket(so, so3);
1245 mac_socketpeer_label_associate_socket(so3, so);
1246 /* XXXMAC: SOCK_UNLOCK(so); */
1247 #endif /* MAC_SOCKET */
1248
1249 /* Hold the reference on listening socket until the end */
1250 socket_unlock(so2, 0);
1251 list_so = so2;
1252
1253 /* Lock ordering doesn't matter because so3 was just created */
1254 socket_lock(so3, 1);
1255 so2 = so3;
1256
1257 /*
1258 * Enable tracing for mDNSResponder endpoints. (The use
1259 * of sizeof instead of strlen below takes the null
1260 * terminating character into account.)
1261 */
1262 if (unpst_tracemdns &&
1263 !strncmp(soun->sun_path, MDNSRESPONDER_PATH,
1264 sizeof (MDNSRESPONDER_PATH))) {
1265 unp->unp_flags |= UNP_TRACE_MDNS;
1266 unp2->unp_flags |= UNP_TRACE_MDNS;
1267 }
1268 }
1269
1270 error = unp_connect2(so, so2);
1271
1272 decref_out:
1273 if (so2 != NULL) {
1274 if (so != so2) {
1275 socket_unlock(so2, 1);
1276 } else {
1277 /* Release the extra reference held for the listen socket.
1278 * This is possible only for SOCK_DGRAM sockets. We refuse
1279 * connecting to the same socket for SOCK_STREAM sockets.
1280 */
1281 so2->so_usecount--;
1282 }
1283 }
1284
1285 if (list_so != NULL) {
1286 socket_lock(list_so, 0);
1287 socket_unlock(list_so, 1);
1288 }
1289
1290 out:
1291 lck_mtx_assert(&unp->unp_mtx, LCK_MTX_ASSERT_OWNED);
1292 vnode_put(vp);
1293 return (error);
1294 }
1295
1296 /*
1297 * Returns: 0 Success
1298 * EPROTOTYPE Protocol wrong type for socket
1299 * EINVAL Invalid argument
1300 */
1301 int
1302 unp_connect2(struct socket *so, struct socket *so2)
1303 {
1304 struct unpcb *unp = sotounpcb(so);
1305 struct unpcb *unp2;
1306
1307 if (so2->so_type != so->so_type)
1308 return (EPROTOTYPE);
1309
1310 unp2 = sotounpcb(so2);
1311
1312 lck_mtx_assert(&unp->unp_mtx, LCK_MTX_ASSERT_OWNED);
1313 lck_mtx_assert(&unp2->unp_mtx, LCK_MTX_ASSERT_OWNED);
1314
1315 /* Verify both sockets are still opened */
1316 if (unp == 0 || unp2 == 0)
1317 return (EINVAL);
1318
1319 unp->unp_conn = unp2;
1320 so2->so_usecount++;
1321
1322 switch (so->so_type) {
1323
1324 case SOCK_DGRAM:
1325 LIST_INSERT_HEAD(&unp2->unp_refs, unp, unp_reflink);
1326
1327 if (so != so2) {
1328 /* Avoid lock order reversals due to drop/acquire in soisconnected. */
1329 /* Keep an extra reference on so2 that will be dropped
1330 * soon after getting the locks in order
1331 */
1332 socket_unlock(so2, 0);
1333 soisconnected(so);
1334 unp_get_locks_in_order(so, so2);
1335 so2->so_usecount--;
1336 } else {
1337 soisconnected(so);
1338 }
1339
1340 break;
1341
1342 case SOCK_STREAM:
1343 /* This takes care of socketpair */
1344 if (!(unp->unp_flags & UNP_HAVEPC) &&
1345 !(unp2->unp_flags & UNP_HAVEPC)) {
1346 cru2x(kauth_cred_get(), &unp->unp_peercred);
1347 unp->unp_flags |= UNP_HAVEPC;
1348
1349 cru2x(kauth_cred_get(), &unp2->unp_peercred);
1350 unp2->unp_flags |= UNP_HAVEPC;
1351 }
1352 unp2->unp_conn = unp;
1353 so->so_usecount++;
1354
1355 /* Avoid lock order reversals due to drop/acquire in soisconnected. */
1356 socket_unlock(so, 0);
1357 soisconnected(so2);
1358
1359 /* Keep an extra reference on so2, that will be dropped soon after
1360 * getting the locks in order again.
1361 */
1362 socket_unlock(so2, 0);
1363
1364 socket_lock(so, 0);
1365 soisconnected(so);
1366
1367 unp_get_locks_in_order(so, so2);
1368 /* Decrement the extra reference left before */
1369 so2->so_usecount--;
1370 break;
1371
1372 default:
1373 panic("unknown socket type %d in unp_connect2", so->so_type);
1374 }
1375 lck_mtx_assert(&unp->unp_mtx, LCK_MTX_ASSERT_OWNED);
1376 lck_mtx_assert(&unp2->unp_mtx, LCK_MTX_ASSERT_OWNED);
1377 return (0);
1378 }
1379
1380 static void
1381 unp_disconnect(struct unpcb *unp)
1382 {
1383 struct unpcb *unp2 = NULL;
1384 struct socket *so2 = NULL, *so;
1385 struct socket *waitso;
1386 int so_locked = 1, strdisconn = 0;
1387
1388 so = unp->unp_socket;
1389 if (unp->unp_conn == NULL) {
1390 return;
1391 }
1392 lck_mtx_lock(unp_disconnect_lock);
1393 while (disconnect_in_progress != 0) {
1394 if (so_locked == 1) {
1395 socket_unlock(so, 0);
1396 so_locked = 0;
1397 }
1398 (void)msleep((caddr_t)&disconnect_in_progress, unp_disconnect_lock,
1399 PSOCK, "disconnect", NULL);
1400 }
1401 disconnect_in_progress = 1;
1402 lck_mtx_unlock(unp_disconnect_lock);
1403
1404 if (so_locked == 0) {
1405 socket_lock(so, 0);
1406 so_locked = 1;
1407 }
1408
1409 unp2 = unp->unp_conn;
1410
1411 if (unp2 == 0 || unp2->unp_socket == NULL) {
1412 goto out;
1413 }
1414 so2 = unp2->unp_socket;
1415
1416 try_again:
1417 if (so == so2) {
1418 if (so_locked == 0) {
1419 socket_lock(so, 0);
1420 }
1421 waitso = so;
1422 } else if (so < so2) {
1423 if (so_locked == 0) {
1424 socket_lock(so, 0);
1425 }
1426 socket_lock(so2, 1);
1427 waitso = so2;
1428 } else {
1429 if (so_locked == 1) {
1430 socket_unlock(so, 0);
1431 }
1432 socket_lock(so2, 1);
1433 socket_lock(so, 0);
1434 waitso = so;
1435 }
1436 so_locked = 1;
1437
1438 lck_mtx_assert(&unp->unp_mtx, LCK_MTX_ASSERT_OWNED);
1439 lck_mtx_assert(&unp2->unp_mtx, LCK_MTX_ASSERT_OWNED);
1440
1441 /* Check for the UNP_DONTDISCONNECT flag, if it
1442 * is set, release both sockets and go to sleep
1443 */
1444
1445 if ((((struct unpcb *)waitso->so_pcb)->unp_flags & UNP_DONTDISCONNECT) != 0) {
1446 if (so != so2) {
1447 socket_unlock(so2, 1);
1448 }
1449 so_locked = 0;
1450
1451 (void)msleep(waitso->so_pcb, &unp->unp_mtx,
1452 PSOCK | PDROP, "unpdisconnect", NULL);
1453 goto try_again;
1454 }
1455
1456 if (unp->unp_conn == NULL) {
1457 panic("unp_conn became NULL after sleep");
1458 }
1459
1460 unp->unp_conn = NULL;
1461 so2->so_usecount--;
1462
1463 if (unp->unp_flags & UNP_TRACE_MDNS)
1464 unp->unp_flags &= ~UNP_TRACE_MDNS;
1465
1466 switch (unp->unp_socket->so_type) {
1467
1468 case SOCK_DGRAM:
1469 LIST_REMOVE(unp, unp_reflink);
1470 unp->unp_socket->so_state &= ~SS_ISCONNECTED;
1471 if (so != so2)
1472 socket_unlock(so2, 1);
1473 break;
1474
1475 case SOCK_STREAM:
1476 unp2->unp_conn = NULL;
1477 so->so_usecount--;
1478
1479 /* Set the socket state correctly but do a wakeup later when
1480 * we release all locks except the socket lock, this will avoid
1481 * a deadlock.
1482 */
1483 unp->unp_socket->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
1484 unp->unp_socket->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
1485
1486 unp2->unp_socket->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
1487 unp->unp_socket->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
1488
1489 if (unp2->unp_flags & UNP_TRACE_MDNS)
1490 unp2->unp_flags &= ~UNP_TRACE_MDNS;
1491
1492 strdisconn = 1;
1493 break;
1494 default:
1495 panic("unknown socket type %d", so->so_type);
1496 }
1497 out:
1498 lck_mtx_lock(unp_disconnect_lock);
1499 disconnect_in_progress = 0;
1500 wakeup(&disconnect_in_progress);
1501 lck_mtx_unlock(unp_disconnect_lock);
1502
1503 if (strdisconn) {
1504 socket_unlock(so, 0);
1505 soisdisconnected(so2);
1506 socket_unlock(so2, 1);
1507
1508 socket_lock(so,0);
1509 soisdisconnected(so);
1510 }
1511 lck_mtx_assert(&unp->unp_mtx, LCK_MTX_ASSERT_OWNED);
1512 return;
1513 }
1514
1515 /*
1516 * unpcb_to_compat copies specific bits of a unpcb to a unpcb_compat format.
1517 * The unpcb_compat data structure is passed to user space and must not change.
1518 */
1519 static void
1520 unpcb_to_compat(struct unpcb *up, struct unpcb_compat *cp)
1521 {
1522 #if defined(__LP64__)
1523 cp->unp_link.le_next = (u_int32_t)
1524 VM_KERNEL_ADDRPERM(up->unp_link.le_next);
1525 cp->unp_link.le_prev = (u_int32_t)
1526 VM_KERNEL_ADDRPERM(up->unp_link.le_prev);
1527 #else
1528 cp->unp_link.le_next = (struct unpcb_compat *)
1529 VM_KERNEL_ADDRPERM(up->unp_link.le_next);
1530 cp->unp_link.le_prev = (struct unpcb_compat **)
1531 VM_KERNEL_ADDRPERM(up->unp_link.le_prev);
1532 #endif
1533 cp->unp_socket = (_UNPCB_PTR(struct socket *))
1534 VM_KERNEL_ADDRPERM(up->unp_socket);
1535 cp->unp_vnode = (_UNPCB_PTR(struct vnode *))
1536 VM_KERNEL_ADDRPERM(up->unp_vnode);
1537 cp->unp_ino = up->unp_ino;
1538 cp->unp_conn = (_UNPCB_PTR(struct unpcb_compat *))
1539 VM_KERNEL_ADDRPERM(up->unp_conn);
1540 cp->unp_refs = (u_int32_t)VM_KERNEL_ADDRPERM(up->unp_refs.lh_first);
1541 #if defined(__LP64__)
1542 cp->unp_reflink.le_next =
1543 (u_int32_t)VM_KERNEL_ADDRPERM(up->unp_reflink.le_next);
1544 cp->unp_reflink.le_prev =
1545 (u_int32_t)VM_KERNEL_ADDRPERM(up->unp_reflink.le_prev);
1546 #else
1547 cp->unp_reflink.le_next =
1548 (struct unpcb_compat *)VM_KERNEL_ADDRPERM(up->unp_reflink.le_next);
1549 cp->unp_reflink.le_prev =
1550 (struct unpcb_compat **)VM_KERNEL_ADDRPERM(up->unp_reflink.le_prev);
1551 #endif
1552 cp->unp_addr = (_UNPCB_PTR(struct sockaddr_un *))
1553 VM_KERNEL_ADDRPERM(up->unp_addr);
1554 cp->unp_cc = up->unp_cc;
1555 cp->unp_mbcnt = up->unp_mbcnt;
1556 cp->unp_gencnt = up->unp_gencnt;
1557 }
1558
1559 static int
1560 unp_pcblist SYSCTL_HANDLER_ARGS
1561 {
1562 #pragma unused(oidp,arg2)
1563 int error, i, n;
1564 struct unpcb *unp, **unp_list;
1565 unp_gen_t gencnt;
1566 struct xunpgen xug;
1567 struct unp_head *head;
1568
1569 lck_rw_lock_shared(unp_list_mtx);
1570 head = ((intptr_t)arg1 == SOCK_DGRAM ? &unp_dhead : &unp_shead);
1571
1572 /*
1573 * The process of preparing the PCB list is too time-consuming and
1574 * resource-intensive to repeat twice on every request.
1575 */
1576 if (req->oldptr == USER_ADDR_NULL) {
1577 n = unp_count;
1578 req->oldidx = 2 * sizeof (xug) + (n + n / 8) *
1579 sizeof (struct xunpcb);
1580 lck_rw_done(unp_list_mtx);
1581 return (0);
1582 }
1583
1584 if (req->newptr != USER_ADDR_NULL) {
1585 lck_rw_done(unp_list_mtx);
1586 return (EPERM);
1587 }
1588
1589 /*
1590 * OK, now we're committed to doing something.
1591 */
1592 gencnt = unp_gencnt;
1593 n = unp_count;
1594
1595 bzero(&xug, sizeof (xug));
1596 xug.xug_len = sizeof (xug);
1597 xug.xug_count = n;
1598 xug.xug_gen = gencnt;
1599 xug.xug_sogen = so_gencnt;
1600 error = SYSCTL_OUT(req, &xug, sizeof (xug));
1601 if (error) {
1602 lck_rw_done(unp_list_mtx);
1603 return (error);
1604 }
1605
1606 /*
1607 * We are done if there is no pcb
1608 */
1609 if (n == 0) {
1610 lck_rw_done(unp_list_mtx);
1611 return (0);
1612 }
1613
1614 MALLOC(unp_list, struct unpcb **, n * sizeof (*unp_list),
1615 M_TEMP, M_WAITOK);
1616 if (unp_list == 0) {
1617 lck_rw_done(unp_list_mtx);
1618 return (ENOMEM);
1619 }
1620
1621 for (unp = head->lh_first, i = 0; unp && i < n;
1622 unp = unp->unp_link.le_next) {
1623 if (unp->unp_gencnt <= gencnt)
1624 unp_list[i++] = unp;
1625 }
1626 n = i; /* in case we lost some during malloc */
1627
1628 error = 0;
1629 for (i = 0; i < n; i++) {
1630 unp = unp_list[i];
1631 if (unp->unp_gencnt <= gencnt) {
1632 struct xunpcb xu;
1633
1634 bzero(&xu, sizeof (xu));
1635 xu.xu_len = sizeof (xu);
1636 xu.xu_unpp = (_UNPCB_PTR(struct unpcb_compat *))
1637 VM_KERNEL_ADDRPERM(unp);
1638 /*
1639 * XXX - need more locking here to protect against
1640 * connect/disconnect races for SMP.
1641 */
1642 if (unp->unp_addr)
1643 bcopy(unp->unp_addr, &xu.xu_addr,
1644 unp->unp_addr->sun_len);
1645 if (unp->unp_conn && unp->unp_conn->unp_addr)
1646 bcopy(unp->unp_conn->unp_addr,
1647 &xu.xu_caddr,
1648 unp->unp_conn->unp_addr->sun_len);
1649 unpcb_to_compat(unp, &xu.xu_unp);
1650 sotoxsocket(unp->unp_socket, &xu.xu_socket);
1651 error = SYSCTL_OUT(req, &xu, sizeof (xu));
1652 }
1653 }
1654 if (!error) {
1655 /*
1656 * Give the user an updated idea of our state.
1657 * If the generation differs from what we told
1658 * her before, she knows that something happened
1659 * while we were processing this request, and it
1660 * might be necessary to retry.
1661 */
1662 bzero(&xug, sizeof (xug));
1663 xug.xug_len = sizeof (xug);
1664 xug.xug_gen = unp_gencnt;
1665 xug.xug_sogen = so_gencnt;
1666 xug.xug_count = unp_count;
1667 error = SYSCTL_OUT(req, &xug, sizeof (xug));
1668 }
1669 FREE(unp_list, M_TEMP);
1670 lck_rw_done(unp_list_mtx);
1671 return (error);
1672 }
1673
1674 SYSCTL_PROC(_net_local_dgram, OID_AUTO, pcblist, CTLFLAG_RD | CTLFLAG_LOCKED,
1675 (caddr_t)(long)SOCK_DGRAM, 0, unp_pcblist, "S,xunpcb",
1676 "List of active local datagram sockets");
1677 SYSCTL_PROC(_net_local_stream, OID_AUTO, pcblist, CTLFLAG_RD | CTLFLAG_LOCKED,
1678 (caddr_t)(long)SOCK_STREAM, 0, unp_pcblist, "S,xunpcb",
1679 "List of active local stream sockets");
1680
1681
1682 static int
1683 unp_pcblist64 SYSCTL_HANDLER_ARGS
1684 {
1685 #pragma unused(oidp,arg2)
1686 int error, i, n;
1687 struct unpcb *unp, **unp_list;
1688 unp_gen_t gencnt;
1689 struct xunpgen xug;
1690 struct unp_head *head;
1691
1692 lck_rw_lock_shared(unp_list_mtx);
1693 head = ((intptr_t)arg1 == SOCK_DGRAM ? &unp_dhead : &unp_shead);
1694
1695 /*
1696 * The process of preparing the PCB list is too time-consuming and
1697 * resource-intensive to repeat twice on every request.
1698 */
1699 if (req->oldptr == USER_ADDR_NULL) {
1700 n = unp_count;
1701 req->oldidx = 2 * sizeof (xug) + (n + n / 8) *
1702 (sizeof (struct xunpcb64));
1703 lck_rw_done(unp_list_mtx);
1704 return (0);
1705 }
1706
1707 if (req->newptr != USER_ADDR_NULL) {
1708 lck_rw_done(unp_list_mtx);
1709 return (EPERM);
1710 }
1711
1712 /*
1713 * OK, now we're committed to doing something.
1714 */
1715 gencnt = unp_gencnt;
1716 n = unp_count;
1717
1718 bzero(&xug, sizeof (xug));
1719 xug.xug_len = sizeof (xug);
1720 xug.xug_count = n;
1721 xug.xug_gen = gencnt;
1722 xug.xug_sogen = so_gencnt;
1723 error = SYSCTL_OUT(req, &xug, sizeof (xug));
1724 if (error) {
1725 lck_rw_done(unp_list_mtx);
1726 return (error);
1727 }
1728
1729 /*
1730 * We are done if there is no pcb
1731 */
1732 if (n == 0) {
1733 lck_rw_done(unp_list_mtx);
1734 return (0);
1735 }
1736
1737 MALLOC(unp_list, struct unpcb **, n * sizeof (*unp_list),
1738 M_TEMP, M_WAITOK);
1739 if (unp_list == 0) {
1740 lck_rw_done(unp_list_mtx);
1741 return (ENOMEM);
1742 }
1743
1744 for (unp = head->lh_first, i = 0; unp && i < n;
1745 unp = unp->unp_link.le_next) {
1746 if (unp->unp_gencnt <= gencnt)
1747 unp_list[i++] = unp;
1748 }
1749 n = i; /* in case we lost some during malloc */
1750
1751 error = 0;
1752 for (i = 0; i < n; i++) {
1753 unp = unp_list[i];
1754 if (unp->unp_gencnt <= gencnt) {
1755 struct xunpcb64 xu;
1756 size_t xu_len = sizeof(struct xunpcb64);
1757
1758 bzero(&xu, xu_len);
1759 xu.xu_len = xu_len;
1760 xu.xu_unpp = (u_int64_t)VM_KERNEL_ADDRPERM(unp);
1761 xu.xunp_link.le_next = (u_int64_t)
1762 VM_KERNEL_ADDRPERM(unp->unp_link.le_next);
1763 xu.xunp_link.le_prev = (u_int64_t)
1764 VM_KERNEL_ADDRPERM(unp->unp_link.le_prev);
1765 xu.xunp_socket = (u_int64_t)
1766 VM_KERNEL_ADDRPERM(unp->unp_socket);
1767 xu.xunp_vnode = (u_int64_t)
1768 VM_KERNEL_ADDRPERM(unp->unp_vnode);
1769 xu.xunp_ino = unp->unp_ino;
1770 xu.xunp_conn = (u_int64_t)
1771 VM_KERNEL_ADDRPERM(unp->unp_conn);
1772 xu.xunp_refs = (u_int64_t)
1773 VM_KERNEL_ADDRPERM(unp->unp_refs.lh_first);
1774 xu.xunp_reflink.le_next = (u_int64_t)
1775 VM_KERNEL_ADDRPERM(unp->unp_reflink.le_next);
1776 xu.xunp_reflink.le_prev = (u_int64_t)
1777 VM_KERNEL_ADDRPERM(unp->unp_reflink.le_prev);
1778 xu.xunp_cc = unp->unp_cc;
1779 xu.xunp_mbcnt = unp->unp_mbcnt;
1780 xu.xunp_gencnt = unp->unp_gencnt;
1781
1782 if (unp->unp_socket)
1783 sotoxsocket64(unp->unp_socket, &xu.xu_socket);
1784
1785 /*
1786 * XXX - need more locking here to protect against
1787 * connect/disconnect races for SMP.
1788 */
1789 if (unp->unp_addr)
1790 bcopy(unp->unp_addr, &xu.xunp_addr,
1791 unp->unp_addr->sun_len);
1792 if (unp->unp_conn && unp->unp_conn->unp_addr)
1793 bcopy(unp->unp_conn->unp_addr,
1794 &xu.xunp_caddr,
1795 unp->unp_conn->unp_addr->sun_len);
1796
1797 error = SYSCTL_OUT(req, &xu, xu_len);
1798 }
1799 }
1800 if (!error) {
1801 /*
1802 * Give the user an updated idea of our state.
1803 * If the generation differs from what we told
1804 * her before, she knows that something happened
1805 * while we were processing this request, and it
1806 * might be necessary to retry.
1807 */
1808 bzero(&xug, sizeof (xug));
1809 xug.xug_len = sizeof (xug);
1810 xug.xug_gen = unp_gencnt;
1811 xug.xug_sogen = so_gencnt;
1812 xug.xug_count = unp_count;
1813 error = SYSCTL_OUT(req, &xug, sizeof (xug));
1814 }
1815 FREE(unp_list, M_TEMP);
1816 lck_rw_done(unp_list_mtx);
1817 return (error);
1818 }
1819
1820 SYSCTL_PROC(_net_local_dgram, OID_AUTO, pcblist64, CTLFLAG_RD | CTLFLAG_LOCKED,
1821 (caddr_t)(long)SOCK_DGRAM, 0, unp_pcblist64, "S,xunpcb64",
1822 "List of active local datagram sockets 64 bit");
1823 SYSCTL_PROC(_net_local_stream, OID_AUTO, pcblist64, CTLFLAG_RD | CTLFLAG_LOCKED,
1824 (caddr_t)(long)SOCK_STREAM, 0, unp_pcblist64, "S,xunpcb64",
1825 "List of active local stream sockets 64 bit");
1826
1827
1828 static void
1829 unp_shutdown(struct unpcb *unp)
1830 {
1831 struct socket *so = unp->unp_socket;
1832 struct socket *so2;
1833 if (unp->unp_socket->so_type == SOCK_STREAM && unp->unp_conn) {
1834 so2 = unp->unp_conn->unp_socket;
1835 unp_get_locks_in_order(so, so2);
1836 socantrcvmore(so2);
1837 socket_unlock(so2, 1);
1838 }
1839 }
1840
1841 static void
1842 unp_drop(struct unpcb *unp, int errno)
1843 {
1844 struct socket *so = unp->unp_socket;
1845
1846 so->so_error = errno;
1847 unp_disconnect(unp);
1848 }
1849
1850 /*
1851 * Returns: 0 Success
1852 * EMSGSIZE The new fd's will not fit
1853 * ENOBUFS Cannot alloc struct fileproc
1854 */
1855 int
1856 unp_externalize(struct mbuf *rights)
1857 {
1858 proc_t p = current_proc(); /* XXX */
1859 int i;
1860 struct cmsghdr *cm = mtod(rights, struct cmsghdr *);
1861 struct fileglob **rp = (struct fileglob **)(cm + 1);
1862 int *fds = (int *)(cm + 1);
1863 struct fileproc *fp;
1864 struct fileglob *fg;
1865 int newfds = (cm->cmsg_len - sizeof (*cm)) / sizeof (int);
1866 int f;
1867
1868 proc_fdlock(p);
1869
1870 /*
1871 * if the new FD's will not fit, then we free them all
1872 */
1873 if (!fdavail(p, newfds)) {
1874 for (i = 0; i < newfds; i++) {
1875 fg = *rp;
1876 unp_discard_fdlocked(fg, p);
1877 *rp++ = NULL;
1878 }
1879 proc_fdunlock(p);
1880
1881 return (EMSGSIZE);
1882 }
1883 /*
1884 * now change each pointer to an fd in the global table to
1885 * an integer that is the index to the local fd table entry
1886 * that we set up to point to the global one we are transferring.
1887 * XXX (1) this assumes a pointer and int are the same size,
1888 * XXX or the mbuf can hold the expansion
1889 * XXX (2) allocation failures should be non-fatal
1890 */
1891 for (i = 0; i < newfds; i++) {
1892 #if CONFIG_MACF_SOCKET
1893 /*
1894 * If receive access is denied, don't pass along
1895 * and error message, just discard the descriptor.
1896 */
1897 if (mac_file_check_receive(kauth_cred_get(), *rp)) {
1898 fg = *rp;
1899 *rp++ = 0;
1900 unp_discard_fdlocked(fg, p);
1901 continue;
1902 }
1903 #endif
1904 if (fdalloc(p, 0, &f))
1905 panic("unp_externalize:fdalloc");
1906 fg = rp[i];
1907 fp = fileproc_alloc_init(NULL);
1908 if (fp == NULL)
1909 panic("unp_externalize: MALLOC_ZONE");
1910 fp->f_iocount = 0;
1911 fp->f_fglob = fg;
1912 fg_removeuipc(fg);
1913 procfdtbl_releasefd(p, f, fp);
1914 (void) OSAddAtomic(-1, &unp_rights);
1915 fds[i] = f;
1916 }
1917 proc_fdunlock(p);
1918
1919 return (0);
1920 }
1921
1922 void
1923 unp_init(void)
1924 {
1925 unp_zone = zinit(sizeof (struct unpcb),
1926 (nmbclusters * sizeof (struct unpcb)), 4096, "unpzone");
1927
1928 if (unp_zone == 0)
1929 panic("unp_init");
1930 LIST_INIT(&unp_dhead);
1931 LIST_INIT(&unp_shead);
1932
1933 /*
1934 * allocate lock group attribute and group for udp pcb mutexes
1935 */
1936 unp_mtx_grp_attr = lck_grp_attr_alloc_init();
1937
1938 unp_mtx_grp = lck_grp_alloc_init("unp_list", unp_mtx_grp_attr);
1939
1940 unp_mtx_attr = lck_attr_alloc_init();
1941
1942 if ((unp_list_mtx = lck_rw_alloc_init(unp_mtx_grp,
1943 unp_mtx_attr)) == NULL)
1944 return; /* pretty much dead if this fails... */
1945
1946 if ((unp_disconnect_lock = lck_mtx_alloc_init(unp_mtx_grp,
1947 unp_mtx_attr)) == NULL)
1948 return;
1949
1950 if ((unp_connect_lock = lck_mtx_alloc_init(unp_mtx_grp,
1951 unp_mtx_attr)) == NULL)
1952 return;
1953 }
1954
1955 #ifndef MIN
1956 #define MIN(a, b) (((a) < (b)) ? (a) : (b))
1957 #endif
1958
1959 /*
1960 * Returns: 0 Success
1961 * EINVAL
1962 * fdgetf_noref:EBADF
1963 */
1964 static int
1965 unp_internalize(struct mbuf *control, proc_t p)
1966 {
1967 struct cmsghdr *cm = mtod(control, struct cmsghdr *);
1968 int *fds;
1969 struct fileglob **rp;
1970 struct fileproc *fp;
1971 int i, error;
1972 int oldfds;
1973
1974 /* 64bit: cmsg_len is 'uint32_t', m_len is 'long' */
1975 if (cm->cmsg_type != SCM_RIGHTS || cm->cmsg_level != SOL_SOCKET ||
1976 (socklen_t)cm->cmsg_len != (socklen_t)control->m_len) {
1977 return (EINVAL);
1978 }
1979 oldfds = (cm->cmsg_len - sizeof (*cm)) / sizeof (int);
1980
1981 proc_fdlock(p);
1982 fds = (int *)(cm + 1);
1983
1984 for (i = 0; i < oldfds; i++) {
1985 struct fileproc *tmpfp;
1986 if (((error = fdgetf_noref(p, fds[i], &tmpfp)) != 0)) {
1987 proc_fdunlock(p);
1988 return (error);
1989 } else if (!filetype_issendable(FILEGLOB_DTYPE(tmpfp->f_fglob))) {
1990 proc_fdunlock(p);
1991 return (EINVAL);
1992 } else if (FP_ISGUARDED(tmpfp, GUARD_SOCKET_IPC)) {
1993 error = fp_guard_exception(p,
1994 fds[i], tmpfp, kGUARD_EXC_SOCKET_IPC);
1995 proc_fdunlock(p);
1996 return (error);
1997 }
1998 }
1999 rp = (struct fileglob **)(cm + 1);
2000
2001 /* On K64 we need to walk backwards because a fileglob * is twice the size of an fd
2002 * and doing them in-order would result in stomping over unprocessed fd's
2003 */
2004 for (i = (oldfds - 1); i >= 0; i--) {
2005 (void) fdgetf_noref(p, fds[i], &fp);
2006 fg_insertuipc(fp->f_fglob);
2007 rp[i] = fp->f_fglob;
2008 (void) OSAddAtomic(1, &unp_rights);
2009 }
2010 proc_fdunlock(p);
2011
2012 return (0);
2013 }
2014
2015 static int unp_defer, unp_gcing, unp_gcwait;
2016 static thread_t unp_gcthread = NULL;
2017
2018 /* always called under uipc_lock */
2019 void
2020 unp_gc_wait(void)
2021 {
2022 if (unp_gcthread == current_thread())
2023 return;
2024
2025 while (unp_gcing != 0) {
2026 unp_gcwait = 1;
2027 msleep(&unp_gcing, uipc_lock, 0 , "unp_gc_wait", NULL);
2028 }
2029 }
2030
2031
2032 __private_extern__ void
2033 unp_gc(void)
2034 {
2035 struct fileglob *fg, *nextfg;
2036 struct socket *so;
2037 static struct fileglob **extra_ref;
2038 struct fileglob **fpp;
2039 int nunref, i;
2040 int need_gcwakeup = 0;
2041
2042 lck_mtx_lock(uipc_lock);
2043 if (unp_gcing) {
2044 lck_mtx_unlock(uipc_lock);
2045 return;
2046 }
2047 unp_gcing = 1;
2048 unp_defer = 0;
2049 unp_gcthread = current_thread();
2050 lck_mtx_unlock(uipc_lock);
2051 /*
2052 * before going through all this, set all FDs to
2053 * be NOT defered and NOT externally accessible
2054 */
2055 for (fg = fmsghead.lh_first; fg != 0; fg = fg->f_msglist.le_next) {
2056 lck_mtx_lock(&fg->fg_lock);
2057 fg->fg_flag &= ~(FMARK|FDEFER);
2058 lck_mtx_unlock(&fg->fg_lock);
2059 }
2060 do {
2061 for (fg = fmsghead.lh_first; fg != 0;
2062 fg = fg->f_msglist.le_next) {
2063 lck_mtx_lock(&fg->fg_lock);
2064 /*
2065 * If the file is not open, skip it
2066 */
2067 if (fg->fg_count == 0) {
2068 lck_mtx_unlock(&fg->fg_lock);
2069 continue;
2070 }
2071 /*
2072 * If we already marked it as 'defer' in a
2073 * previous pass, then try process it this time
2074 * and un-mark it
2075 */
2076 if (fg->fg_flag & FDEFER) {
2077 fg->fg_flag &= ~FDEFER;
2078 unp_defer--;
2079 } else {
2080 /*
2081 * if it's not defered, then check if it's
2082 * already marked.. if so skip it
2083 */
2084 if (fg->fg_flag & FMARK) {
2085 lck_mtx_unlock(&fg->fg_lock);
2086 continue;
2087 }
2088 /*
2089 * If all references are from messages
2090 * in transit, then skip it. it's not
2091 * externally accessible.
2092 */
2093 if (fg->fg_count == fg->fg_msgcount) {
2094 lck_mtx_unlock(&fg->fg_lock);
2095 continue;
2096 }
2097 /*
2098 * If it got this far then it must be
2099 * externally accessible.
2100 */
2101 fg->fg_flag |= FMARK;
2102 }
2103 /*
2104 * either it was defered, or it is externally
2105 * accessible and not already marked so.
2106 * Now check if it is possibly one of OUR sockets.
2107 */
2108 if (FILEGLOB_DTYPE(fg) != DTYPE_SOCKET ||
2109 (so = (struct socket *)fg->fg_data) == 0) {
2110 lck_mtx_unlock(&fg->fg_lock);
2111 continue;
2112 }
2113 if (so->so_proto->pr_domain != localdomain ||
2114 (so->so_proto->pr_flags&PR_RIGHTS) == 0) {
2115 lck_mtx_unlock(&fg->fg_lock);
2116 continue;
2117 }
2118 #ifdef notdef
2119 /*
2120 * if this code is enabled need to run
2121 * under network funnel
2122 */
2123 if (so->so_rcv.sb_flags & SB_LOCK) {
2124 /*
2125 * This is problematical; it's not clear
2126 * we need to wait for the sockbuf to be
2127 * unlocked (on a uniprocessor, at least),
2128 * and it's also not clear what to do
2129 * if sbwait returns an error due to receipt
2130 * of a signal. If sbwait does return
2131 * an error, we'll go into an infinite
2132 * loop. Delete all of this for now.
2133 */
2134 (void) sbwait(&so->so_rcv);
2135 goto restart;
2136 }
2137 #endif
2138 /*
2139 * So, Ok, it's one of our sockets and it IS externally
2140 * accessible (or was defered). Now we look
2141 * to see if we hold any file descriptors in its
2142 * message buffers. Follow those links and mark them
2143 * as accessible too.
2144 *
2145 * In case a file is passed onto itself we need to
2146 * release the file lock.
2147 */
2148 lck_mtx_unlock(&fg->fg_lock);
2149
2150 unp_scan(so->so_rcv.sb_mb, unp_mark);
2151 }
2152 } while (unp_defer);
2153 /*
2154 * We grab an extra reference to each of the file table entries
2155 * that are not otherwise accessible and then free the rights
2156 * that are stored in messages on them.
2157 *
2158 * The bug in the orginal code is a little tricky, so I'll describe
2159 * what's wrong with it here.
2160 *
2161 * It is incorrect to simply unp_discard each entry for f_msgcount
2162 * times -- consider the case of sockets A and B that contain
2163 * references to each other. On a last close of some other socket,
2164 * we trigger a gc since the number of outstanding rights (unp_rights)
2165 * is non-zero. If during the sweep phase the gc code un_discards,
2166 * we end up doing a (full) closef on the descriptor. A closef on A
2167 * results in the following chain. Closef calls soo_close, which
2168 * calls soclose. Soclose calls first (through the switch
2169 * uipc_usrreq) unp_detach, which re-invokes unp_gc. Unp_gc simply
2170 * returns because the previous instance had set unp_gcing, and
2171 * we return all the way back to soclose, which marks the socket
2172 * with SS_NOFDREF, and then calls sofree. Sofree calls sorflush
2173 * to free up the rights that are queued in messages on the socket A,
2174 * i.e., the reference on B. The sorflush calls via the dom_dispose
2175 * switch unp_dispose, which unp_scans with unp_discard. This second
2176 * instance of unp_discard just calls closef on B.
2177 *
2178 * Well, a similar chain occurs on B, resulting in a sorflush on B,
2179 * which results in another closef on A. Unfortunately, A is already
2180 * being closed, and the descriptor has already been marked with
2181 * SS_NOFDREF, and soclose panics at this point.
2182 *
2183 * Here, we first take an extra reference to each inaccessible
2184 * descriptor. Then, we call sorflush ourself, since we know
2185 * it is a Unix domain socket anyhow. After we destroy all the
2186 * rights carried in messages, we do a last closef to get rid
2187 * of our extra reference. This is the last close, and the
2188 * unp_detach etc will shut down the socket.
2189 *
2190 * 91/09/19, bsy@cs.cmu.edu
2191 */
2192 extra_ref = _MALLOC(nfiles * sizeof (struct fileglob *),
2193 M_FILEGLOB, M_WAITOK);
2194 if (extra_ref == NULL)
2195 goto bail;
2196 for (nunref = 0, fg = fmsghead.lh_first, fpp = extra_ref; fg != 0;
2197 fg = nextfg) {
2198 lck_mtx_lock(&fg->fg_lock);
2199
2200 nextfg = fg->f_msglist.le_next;
2201 /*
2202 * If it's not open, skip it
2203 */
2204 if (fg->fg_count == 0) {
2205 lck_mtx_unlock(&fg->fg_lock);
2206 continue;
2207 }
2208 /*
2209 * If all refs are from msgs, and it's not marked accessible
2210 * then it must be referenced from some unreachable cycle
2211 * of (shut-down) FDs, so include it in our
2212 * list of FDs to remove
2213 */
2214 if (fg->fg_count == fg->fg_msgcount && !(fg->fg_flag & FMARK)) {
2215 fg->fg_count++;
2216 *fpp++ = fg;
2217 nunref++;
2218 }
2219 lck_mtx_unlock(&fg->fg_lock);
2220 }
2221 /*
2222 * for each FD on our hit list, do the following two things
2223 */
2224 for (i = nunref, fpp = extra_ref; --i >= 0; ++fpp) {
2225 struct fileglob *tfg;
2226
2227 tfg = *fpp;
2228
2229 if (FILEGLOB_DTYPE(tfg) == DTYPE_SOCKET &&
2230 tfg->fg_data != NULL) {
2231 so = (struct socket *)(tfg->fg_data);
2232
2233 socket_lock(so, 0);
2234
2235 sorflush(so);
2236
2237 socket_unlock(so, 0);
2238 }
2239 }
2240 for (i = nunref, fpp = extra_ref; --i >= 0; ++fpp)
2241 closef_locked((struct fileproc *)0, *fpp, (proc_t)NULL);
2242
2243 FREE((caddr_t)extra_ref, M_FILEGLOB);
2244 bail:
2245 lck_mtx_lock(uipc_lock);
2246 unp_gcing = 0;
2247 unp_gcthread = NULL;
2248
2249 if (unp_gcwait != 0) {
2250 unp_gcwait = 0;
2251 need_gcwakeup = 1;
2252 }
2253 lck_mtx_unlock(uipc_lock);
2254
2255 if (need_gcwakeup != 0)
2256 wakeup(&unp_gcing);
2257 }
2258
2259 void
2260 unp_dispose(struct mbuf *m)
2261 {
2262 if (m) {
2263 unp_scan(m, unp_discard);
2264 }
2265 }
2266
2267 /*
2268 * Returns: 0 Success
2269 */
2270 static int
2271 unp_listen(struct unpcb *unp, proc_t p)
2272 {
2273 kauth_cred_t safecred = kauth_cred_proc_ref(p);
2274 cru2x(safecred, &unp->unp_peercred);
2275 kauth_cred_unref(&safecred);
2276 unp->unp_flags |= UNP_HAVEPCCACHED;
2277 return (0);
2278 }
2279
2280 /* should run under kernel funnel */
2281 static void
2282 unp_scan(struct mbuf *m0, void (*op)(struct fileglob *))
2283 {
2284 struct mbuf *m;
2285 struct fileglob **rp;
2286 struct cmsghdr *cm;
2287 int i;
2288 int qfds;
2289
2290 while (m0) {
2291 for (m = m0; m; m = m->m_next)
2292 if (m->m_type == MT_CONTROL &&
2293 (size_t)m->m_len >= sizeof (*cm)) {
2294 cm = mtod(m, struct cmsghdr *);
2295 if (cm->cmsg_level != SOL_SOCKET ||
2296 cm->cmsg_type != SCM_RIGHTS)
2297 continue;
2298 qfds = (cm->cmsg_len - sizeof (*cm)) /
2299 sizeof (int);
2300 rp = (struct fileglob **)(cm + 1);
2301 for (i = 0; i < qfds; i++)
2302 (*op)(*rp++);
2303 break; /* XXX, but saves time */
2304 }
2305 m0 = m0->m_act;
2306 }
2307 }
2308
2309 /* should run under kernel funnel */
2310 static void
2311 unp_mark(struct fileglob *fg)
2312 {
2313 lck_mtx_lock(&fg->fg_lock);
2314
2315 if (fg->fg_flag & FMARK) {
2316 lck_mtx_unlock(&fg->fg_lock);
2317 return;
2318 }
2319 fg->fg_flag |= (FMARK|FDEFER);
2320
2321 lck_mtx_unlock(&fg->fg_lock);
2322
2323 unp_defer++;
2324 }
2325
2326 /* should run under kernel funnel */
2327 static void
2328 unp_discard(struct fileglob *fg)
2329 {
2330 proc_t p = current_proc(); /* XXX */
2331
2332 (void) OSAddAtomic(1, &unp_disposed);
2333
2334 proc_fdlock(p);
2335 unp_discard_fdlocked(fg, p);
2336 proc_fdunlock(p);
2337 }
2338 static void
2339 unp_discard_fdlocked(struct fileglob *fg, proc_t p)
2340 {
2341 fg_removeuipc(fg);
2342
2343 (void) OSAddAtomic(-1, &unp_rights);
2344 (void) closef_locked((struct fileproc *)0, fg, p);
2345 }
2346
2347 int
2348 unp_lock(struct socket *so, int refcount, void * lr)
2349 {
2350 void * lr_saved;
2351 if (lr == 0)
2352 lr_saved = (void *) __builtin_return_address(0);
2353 else lr_saved = lr;
2354
2355 if (so->so_pcb) {
2356 lck_mtx_lock(&((struct unpcb *)so->so_pcb)->unp_mtx);
2357 } else {
2358 panic("unp_lock: so=%p NO PCB! lr=%p ref=0x%x\n",
2359 so, lr_saved, so->so_usecount);
2360 }
2361
2362 if (so->so_usecount < 0)
2363 panic("unp_lock: so=%p so_pcb=%p lr=%p ref=0x%x\n",
2364 so, so->so_pcb, lr_saved, so->so_usecount);
2365
2366 if (refcount)
2367 so->so_usecount++;
2368
2369 so->lock_lr[so->next_lock_lr] = lr_saved;
2370 so->next_lock_lr = (so->next_lock_lr+1) % SO_LCKDBG_MAX;
2371 return (0);
2372 }
2373
2374 int
2375 unp_unlock(struct socket *so, int refcount, void * lr)
2376 {
2377 void * lr_saved;
2378 lck_mtx_t * mutex_held = NULL;
2379 struct unpcb *unp = sotounpcb(so);
2380
2381 if (lr == 0)
2382 lr_saved = (void *) __builtin_return_address(0);
2383 else lr_saved = lr;
2384
2385 if (refcount)
2386 so->so_usecount--;
2387
2388 if (so->so_usecount < 0)
2389 panic("unp_unlock: so=%p usecount=%x\n", so, so->so_usecount);
2390 if (so->so_pcb == NULL) {
2391 panic("unp_unlock: so=%p NO PCB usecount=%x\n", so, so->so_usecount);
2392 } else {
2393 mutex_held = &((struct unpcb *)so->so_pcb)->unp_mtx;
2394 }
2395 lck_mtx_assert(mutex_held, LCK_MTX_ASSERT_OWNED);
2396 so->unlock_lr[so->next_unlock_lr] = lr_saved;
2397 so->next_unlock_lr = (so->next_unlock_lr+1) % SO_LCKDBG_MAX;
2398
2399 if (so->so_usecount == 0 && (so->so_flags & SOF_PCBCLEARING)) {
2400 sofreelastref(so, 1);
2401
2402 if (unp->unp_addr)
2403 FREE(unp->unp_addr, M_SONAME);
2404
2405 lck_mtx_unlock(mutex_held);
2406
2407 lck_mtx_destroy(&unp->unp_mtx, unp_mtx_grp);
2408 zfree(unp_zone, unp);
2409
2410 unp_gc();
2411 } else {
2412 lck_mtx_unlock(mutex_held);
2413 }
2414
2415 return (0);
2416 }
2417
2418 lck_mtx_t *
2419 unp_getlock(struct socket *so, __unused int locktype)
2420 {
2421 struct unpcb *unp = (struct unpcb *)so->so_pcb;
2422
2423
2424 if (so->so_pcb) {
2425 if (so->so_usecount < 0)
2426 panic("unp_getlock: so=%p usecount=%x\n", so, so->so_usecount);
2427 return(&unp->unp_mtx);
2428 } else {
2429 panic("unp_getlock: so=%p NULL so_pcb\n", so);
2430 return (so->so_proto->pr_domain->dom_mtx);
2431 }
2432 }
2433