2 * Copyright (c) 2006-2013 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
30 * Memory allocator with per-CPU caching, derived from the kmem magazine
31 * concept and implementation as described in the following paper:
32 * http://www.usenix.org/events/usenix01/full_papers/bonwick/bonwick.pdf
33 * That implementation is Copyright 2006 Sun Microsystems, Inc. All rights
34 * reserved. Use is subject to license terms.
36 * There are several major differences between this and the original kmem
37 * magazine: this derivative implementation allows for multiple objects to
38 * be allocated and freed from/to the object cache in one call; in addition,
39 * it provides for better flexibility where the user is allowed to define
40 * its own slab allocator (instead of the default zone allocator). Finally,
41 * no object construction/destruction takes place at the moment, although
42 * this could be added in future to improve efficiency.
45 #include <sys/param.h>
46 #include <sys/types.h>
47 #include <sys/malloc.h>
49 #include <sys/queue.h>
50 #include <sys/kernel.h>
51 #include <sys/systm.h>
53 #include <kern/debug.h>
54 #include <kern/zalloc.h>
55 #include <kern/cpu_number.h>
56 #include <kern/locks.h>
58 #include <libkern/libkern.h>
59 #include <libkern/OSAtomic.h>
60 #include <libkern/OSDebug.h>
62 #include <mach/vm_param.h>
63 #include <machine/limits.h>
64 #include <machine/machine_routines.h>
68 #include <sys/mcache.h>
70 #define MCACHE_SIZE(n) \
71 ((size_t)(&((mcache_t *)0)->mc_cpu[n]))
73 /* Allocate extra in case we need to manually align the pointer */
74 #define MCACHE_ALLOC_SIZE \
75 (sizeof (void *) + MCACHE_SIZE(ncpu) + CPU_CACHE_LINE_SIZE)
77 #define MCACHE_CPU(c) \
78 (mcache_cpu_t *)((void *)((char *)(c) + MCACHE_SIZE(cpu_number())))
81 * MCACHE_LIST_LOCK() and MCACHE_LIST_UNLOCK() are macros used
82 * to serialize accesses to the global list of caches in the system.
83 * They also record the thread currently running in the critical
84 * section, so that we can avoid recursive requests to reap the
85 * caches when memory runs low.
87 #define MCACHE_LIST_LOCK() { \
88 lck_mtx_lock(mcache_llock); \
89 mcache_llock_owner = current_thread(); \
92 #define MCACHE_LIST_UNLOCK() { \
93 mcache_llock_owner = NULL; \
94 lck_mtx_unlock(mcache_llock); \
97 #define MCACHE_LOCK(l) lck_mtx_lock(l)
98 #define MCACHE_UNLOCK(l) lck_mtx_unlock(l)
99 #define MCACHE_LOCK_TRY(l) lck_mtx_try_lock(l)
102 static unsigned int cache_line_size
;
103 static lck_mtx_t
*mcache_llock
;
104 static struct thread
*mcache_llock_owner
;
105 static lck_attr_t
*mcache_llock_attr
;
106 static lck_grp_t
*mcache_llock_grp
;
107 static lck_grp_attr_t
*mcache_llock_grp_attr
;
108 static struct zone
*mcache_zone
;
109 static unsigned int mcache_reap_interval
;
110 static UInt32 mcache_reaping
;
111 static int mcache_ready
;
112 static int mcache_updating
;
114 static int mcache_bkt_contention
= 3;
116 static unsigned int mcache_flags
= MCF_DEBUG
;
118 static unsigned int mcache_flags
= 0;
121 #define DUMP_MCA_BUF_SIZE 512
122 static char *mca_dump_buf
;
124 static mcache_bkttype_t mcache_bkttype
[] = {
125 { 1, 4096, 32768, NULL
},
126 { 3, 2048, 16384, NULL
},
127 { 7, 1024, 12288, NULL
},
128 { 15, 256, 8192, NULL
},
129 { 31, 64, 4096, NULL
},
130 { 47, 0, 2048, NULL
},
131 { 63, 0, 1024, NULL
},
132 { 95, 0, 512, NULL
},
133 { 143, 0, 256, NULL
},
137 static mcache_t
*mcache_create_common(const char *, size_t, size_t,
138 mcache_allocfn_t
, mcache_freefn_t
, mcache_auditfn_t
, mcache_logfn_t
,
139 mcache_notifyfn_t
, void *, u_int32_t
, int, int);
140 static unsigned int mcache_slab_alloc(void *, mcache_obj_t
***,
142 static void mcache_slab_free(void *, mcache_obj_t
*, boolean_t
);
143 static void mcache_slab_audit(void *, mcache_obj_t
*, boolean_t
);
144 static void mcache_cpu_refill(mcache_cpu_t
*, mcache_bkt_t
*, int);
145 static mcache_bkt_t
*mcache_bkt_alloc(mcache_t
*, mcache_bktlist_t
*,
146 mcache_bkttype_t
**);
147 static void mcache_bkt_free(mcache_t
*, mcache_bktlist_t
*, mcache_bkt_t
*);
148 static void mcache_cache_bkt_enable(mcache_t
*);
149 static void mcache_bkt_purge(mcache_t
*);
150 static void mcache_bkt_destroy(mcache_t
*, mcache_bkttype_t
*,
151 mcache_bkt_t
*, int);
152 static void mcache_bkt_ws_update(mcache_t
*);
153 static void mcache_bkt_ws_reap(mcache_t
*);
154 static void mcache_dispatch(void (*)(void *), void *);
155 static void mcache_cache_reap(mcache_t
*);
156 static void mcache_cache_update(mcache_t
*);
157 static void mcache_cache_bkt_resize(void *);
158 static void mcache_cache_enable(void *);
159 static void mcache_update(void *);
160 static void mcache_update_timeout(void *);
161 static void mcache_applyall(void (*)(mcache_t
*));
162 static void mcache_reap_start(void *);
163 static void mcache_reap_done(void *);
164 static void mcache_reap_timeout(void *);
165 static void mcache_notify(mcache_t
*, u_int32_t
);
166 static void mcache_purge(void *);
168 static LIST_HEAD(, mcache
) mcache_head
;
169 mcache_t
*mcache_audit_cache
;
172 * Initialize the framework; this is currently called as part of BSD init.
174 __private_extern__
void
177 mcache_bkttype_t
*btp
;
181 ncpu
= ml_get_max_cpus();
182 (void) mcache_cache_line_size(); /* prime it */
184 mcache_llock_grp_attr
= lck_grp_attr_alloc_init();
185 mcache_llock_grp
= lck_grp_alloc_init("mcache.list",
186 mcache_llock_grp_attr
);
187 mcache_llock_attr
= lck_attr_alloc_init();
188 mcache_llock
= lck_mtx_alloc_init(mcache_llock_grp
, mcache_llock_attr
);
190 mcache_zone
= zinit(MCACHE_ALLOC_SIZE
, 256 * MCACHE_ALLOC_SIZE
,
191 PAGE_SIZE
, "mcache");
192 if (mcache_zone
== NULL
)
193 panic("mcache_init: failed to allocate mcache zone\n");
194 zone_change(mcache_zone
, Z_CALLERACCT
, FALSE
);
196 LIST_INIT(&mcache_head
);
198 for (i
= 0; i
< sizeof (mcache_bkttype
) / sizeof (*btp
); i
++) {
199 btp
= &mcache_bkttype
[i
];
200 (void) snprintf(name
, sizeof (name
), "bkt_%d",
202 btp
->bt_cache
= mcache_create(name
,
203 (btp
->bt_bktsize
+ 1) * sizeof (void *), 0, 0, MCR_SLEEP
);
206 PE_parse_boot_argn("mcache_flags", &mcache_flags
, sizeof (mcache_flags
));
207 mcache_flags
&= MCF_FLAGS_MASK
;
209 mcache_audit_cache
= mcache_create("audit", sizeof (mcache_audit_t
),
212 mcache_reap_interval
= 15 * hz
;
213 mcache_applyall(mcache_cache_bkt_enable
);
216 printf("mcache: %d CPU(s), %d bytes CPU cache line size\n",
217 ncpu
, CPU_CACHE_LINE_SIZE
);
221 * Return the global mcache flags.
223 __private_extern__
unsigned int
224 mcache_getflags(void)
226 return (mcache_flags
);
230 * Return the CPU cache line size.
232 __private_extern__
unsigned int
233 mcache_cache_line_size(void)
235 if (cache_line_size
== 0) {
236 ml_cpu_info_t cpu_info
;
237 ml_cpu_get_info(&cpu_info
);
238 cache_line_size
= cpu_info
.cache_line_size
;
240 return (cache_line_size
);
244 * Create a cache using the zone allocator as the backend slab allocator.
245 * The caller may specify any alignment for the object; if it specifies 0
246 * the default alignment (MCACHE_ALIGN) will be used.
248 __private_extern__ mcache_t
*
249 mcache_create(const char *name
, size_t bufsize
, size_t align
,
250 u_int32_t flags
, int wait
)
252 return (mcache_create_common(name
, bufsize
, align
, mcache_slab_alloc
,
253 mcache_slab_free
, mcache_slab_audit
, NULL
, NULL
, NULL
, flags
, 1,
258 * Create a cache using a custom backend slab allocator. Since the caller
259 * is responsible for allocation, no alignment guarantee will be provided
262 __private_extern__ mcache_t
*
263 mcache_create_ext(const char *name
, size_t bufsize
,
264 mcache_allocfn_t allocfn
, mcache_freefn_t freefn
, mcache_auditfn_t auditfn
,
265 mcache_logfn_t logfn
, mcache_notifyfn_t notifyfn
, void *arg
,
266 u_int32_t flags
, int wait
)
268 return (mcache_create_common(name
, bufsize
, 0, allocfn
,
269 freefn
, auditfn
, logfn
, notifyfn
, arg
, flags
, 0, wait
));
273 * Common cache creation routine.
276 mcache_create_common(const char *name
, size_t bufsize
, size_t align
,
277 mcache_allocfn_t allocfn
, mcache_freefn_t freefn
, mcache_auditfn_t auditfn
,
278 mcache_logfn_t logfn
, mcache_notifyfn_t notifyfn
, void *arg
,
279 u_int32_t flags
, int need_zone
, int wait
)
281 mcache_bkttype_t
*btp
;
288 /* If auditing is on and print buffer is NULL, allocate it now */
289 if ((flags
& MCF_DEBUG
) && mca_dump_buf
== NULL
) {
290 int malloc_wait
= (wait
& MCR_NOSLEEP
) ? M_NOWAIT
: M_WAITOK
;
291 MALLOC(mca_dump_buf
, char *, DUMP_MCA_BUF_SIZE
, M_TEMP
,
292 malloc_wait
| M_ZERO
);
293 if (mca_dump_buf
== NULL
)
297 if (!(wait
& MCR_NOSLEEP
))
298 buf
= zalloc(mcache_zone
);
300 buf
= zalloc_noblock(mcache_zone
);
305 bzero(buf
, MCACHE_ALLOC_SIZE
);
308 * In case we didn't get a cache-aligned memory, round it up
309 * accordingly. This is needed in order to get the rest of
310 * structure members aligned properly. It also means that
311 * the memory span gets shifted due to the round up, but it
312 * is okay since we've allocated extra space for this.
315 P2ROUNDUP((intptr_t)buf
+ sizeof (void *), CPU_CACHE_LINE_SIZE
);
316 pbuf
= (void **)((intptr_t)cp
- sizeof (void *));
320 * Guaranteed alignment is valid only when we use the internal
321 * slab allocator (currently set to use the zone allocator).
326 align
= MCACHE_ALIGN
;
328 if ((align
& (align
- 1)) != 0)
329 panic("mcache_create: bad alignment %lu", align
);
331 cp
->mc_align
= align
;
332 cp
->mc_slab_alloc
= allocfn
;
333 cp
->mc_slab_free
= freefn
;
334 cp
->mc_slab_audit
= auditfn
;
335 cp
->mc_slab_log
= logfn
;
336 cp
->mc_slab_notify
= notifyfn
;
337 cp
->mc_private
= need_zone
? cp
: arg
;
338 cp
->mc_bufsize
= bufsize
;
339 cp
->mc_flags
= (flags
& MCF_FLAGS_MASK
) | mcache_flags
;
341 (void) snprintf(cp
->mc_name
, sizeof (cp
->mc_name
), "mcache.%s", name
);
343 (void) snprintf(lck_name
, sizeof (lck_name
), "%s.cpu", cp
->mc_name
);
344 cp
->mc_cpu_lock_grp_attr
= lck_grp_attr_alloc_init();
345 cp
->mc_cpu_lock_grp
= lck_grp_alloc_init(lck_name
,
346 cp
->mc_cpu_lock_grp_attr
);
347 cp
->mc_cpu_lock_attr
= lck_attr_alloc_init();
350 * Allocation chunk size is the object's size plus any extra size
351 * needed to satisfy the object's alignment. It is enforced to be
352 * at least the size of an LP64 pointer to simplify auditing and to
353 * handle multiple-element allocation requests, where the elements
354 * returned are linked together in a list.
356 chunksize
= MAX(bufsize
, sizeof (u_int64_t
));
358 /* Enforce 64-bit minimum alignment for zone-based buffers */
359 align
= MAX(align
, sizeof (u_int64_t
));
360 chunksize
+= sizeof (void *) + align
;
361 chunksize
= P2ROUNDUP(chunksize
, align
);
362 if ((cp
->mc_slab_zone
= zinit(chunksize
, 64 * 1024 * ncpu
,
363 PAGE_SIZE
, cp
->mc_name
)) == NULL
)
365 zone_change(cp
->mc_slab_zone
, Z_EXPAND
, TRUE
);
367 cp
->mc_chunksize
= chunksize
;
370 * Initialize the bucket layer.
372 (void) snprintf(lck_name
, sizeof (lck_name
), "%s.bkt", cp
->mc_name
);
373 cp
->mc_bkt_lock_grp_attr
= lck_grp_attr_alloc_init();
374 cp
->mc_bkt_lock_grp
= lck_grp_alloc_init(lck_name
,
375 cp
->mc_bkt_lock_grp_attr
);
376 cp
->mc_bkt_lock_attr
= lck_attr_alloc_init();
377 lck_mtx_init(&cp
->mc_bkt_lock
, cp
->mc_bkt_lock_grp
,
378 cp
->mc_bkt_lock_attr
);
380 (void) snprintf(lck_name
, sizeof (lck_name
), "%s.sync", cp
->mc_name
);
381 cp
->mc_sync_lock_grp_attr
= lck_grp_attr_alloc_init();
382 cp
->mc_sync_lock_grp
= lck_grp_alloc_init(lck_name
,
383 cp
->mc_sync_lock_grp_attr
);
384 cp
->mc_sync_lock_attr
= lck_attr_alloc_init();
385 lck_mtx_init(&cp
->mc_sync_lock
, cp
->mc_sync_lock_grp
,
386 cp
->mc_sync_lock_attr
);
388 for (btp
= mcache_bkttype
; chunksize
<= btp
->bt_minbuf
; btp
++)
391 cp
->cache_bkttype
= btp
;
394 * Initialize the CPU layer. Each per-CPU structure is aligned
395 * on the CPU cache line boundary to prevent false sharing.
397 for (c
= 0; c
< ncpu
; c
++) {
398 mcache_cpu_t
*ccp
= &cp
->mc_cpu
[c
];
400 VERIFY(IS_P2ALIGNED(ccp
, CPU_CACHE_LINE_SIZE
));
401 lck_mtx_init(&ccp
->cc_lock
, cp
->mc_cpu_lock_grp
,
402 cp
->mc_cpu_lock_attr
);
408 mcache_cache_bkt_enable(cp
);
410 /* TODO: dynamically create sysctl for stats */
413 LIST_INSERT_HEAD(&mcache_head
, cp
, mc_list
);
414 MCACHE_LIST_UNLOCK();
417 * If cache buckets are enabled and this is the first cache
418 * created, start the periodic cache update.
420 if (!(mcache_flags
& MCF_NOCPUCACHE
) && !mcache_updating
) {
422 mcache_update_timeout(NULL
);
424 if (cp
->mc_flags
& MCF_DEBUG
) {
425 printf("mcache_create: %s (%s) arg %p bufsize %lu align %lu "
426 "chunksize %lu bktsize %d\n", name
, need_zone
? "i" : "e",
427 arg
, bufsize
, cp
->mc_align
, chunksize
, btp
->bt_bktsize
);
433 zfree(mcache_zone
, buf
);
438 * Allocate one or more objects from a cache.
440 __private_extern__
unsigned int
441 mcache_alloc_ext(mcache_t
*cp
, mcache_obj_t
**list
, unsigned int num
, int wait
)
444 mcache_obj_t
**top
= &(*list
);
446 unsigned int need
= num
;
447 boolean_t nwretry
= FALSE
;
449 /* MCR_NOSLEEP and MCR_FAILOK are mutually exclusive */
450 VERIFY((wait
& (MCR_NOSLEEP
|MCR_FAILOK
)) != (MCR_NOSLEEP
|MCR_FAILOK
));
452 ASSERT(list
!= NULL
);
459 /* We may not always be running in the same CPU in case of retries */
460 ccp
= MCACHE_CPU(cp
);
462 MCACHE_LOCK(&ccp
->cc_lock
);
465 * If we have an object in the current CPU's filled bucket,
466 * chain the object to any previous objects and return if
467 * we've satisfied the number of requested objects.
469 if (ccp
->cc_objs
> 0) {
474 * Objects in the bucket are already linked together
475 * with the most recently freed object at the head of
476 * the list; grab as many objects as we can.
478 objs
= MIN((unsigned int)ccp
->cc_objs
, need
);
479 *list
= ccp
->cc_filled
->bkt_obj
[ccp
->cc_objs
- 1];
480 ccp
->cc_objs
-= objs
;
481 ccp
->cc_alloc
+= objs
;
483 tail
= ccp
->cc_filled
->bkt_obj
[ccp
->cc_objs
];
484 list
= &tail
->obj_next
;
487 /* If we got them all, return to caller */
488 if ((need
-= objs
) == 0) {
489 MCACHE_UNLOCK(&ccp
->cc_lock
);
491 if (!(cp
->mc_flags
& MCF_NOLEAKLOG
) &&
492 cp
->mc_slab_log
!= NULL
)
493 (*cp
->mc_slab_log
)(num
, *top
, TRUE
);
495 if (cp
->mc_flags
& MCF_DEBUG
)
503 * The CPU's filled bucket is empty. If the previous filled
504 * bucket was full, exchange and try again.
506 if (ccp
->cc_pobjs
> 0) {
507 mcache_cpu_refill(ccp
, ccp
->cc_pfilled
, ccp
->cc_pobjs
);
512 * If the bucket layer is disabled, allocate from slab. This
513 * can happen either because MCF_NOCPUCACHE is set, or because
514 * the bucket layer is currently being resized.
516 if (ccp
->cc_bktsize
== 0)
520 * Both of the CPU's buckets are empty; try to get a full
521 * bucket from the bucket layer. Upon success, refill this
522 * CPU and place any empty bucket into the empty list.
524 bkt
= mcache_bkt_alloc(cp
, &cp
->mc_full
, NULL
);
526 if (ccp
->cc_pfilled
!= NULL
)
527 mcache_bkt_free(cp
, &cp
->mc_empty
,
529 mcache_cpu_refill(ccp
, bkt
, ccp
->cc_bktsize
);
534 * The bucket layer has no full buckets; allocate the
535 * object(s) directly from the slab layer.
539 MCACHE_UNLOCK(&ccp
->cc_lock
);
541 need
-= (*cp
->mc_slab_alloc
)(cp
->mc_private
, &list
, need
, wait
);
544 * If this is a blocking allocation, or if it is non-blocking and
545 * the cache's full bucket is non-empty, then retry the allocation.
548 if (!(wait
& MCR_NONBLOCKING
)) {
549 atomic_add_32(&cp
->mc_wretry_cnt
, 1);
551 } else if ((wait
& (MCR_NOSLEEP
| MCR_TRYHARD
)) &&
552 !mcache_bkt_isempty(cp
)) {
555 atomic_add_32(&cp
->mc_nwretry_cnt
, 1);
557 } else if (nwretry
) {
558 atomic_add_32(&cp
->mc_nwfail_cnt
, 1);
562 if (!(cp
->mc_flags
& MCF_NOLEAKLOG
) && cp
->mc_slab_log
!= NULL
)
563 (*cp
->mc_slab_log
)((num
- need
), *top
, TRUE
);
565 if (!(cp
->mc_flags
& MCF_DEBUG
))
569 if (cp
->mc_flags
& MCF_DEBUG
) {
570 mcache_obj_t
**o
= top
;
575 * Verify that the chain of objects have the same count as
576 * what we are about to report to the caller. Any mismatch
577 * here means that the object list is insanely broken and
578 * therefore we must panic.
584 if (n
!= (num
- need
)) {
585 panic("mcache_alloc_ext: %s cp %p corrupted list "
586 "(got %d actual %d)\n", cp
->mc_name
,
587 (void *)cp
, num
- need
, n
);
591 /* Invoke the slab layer audit callback if auditing is enabled */
592 if ((cp
->mc_flags
& MCF_DEBUG
) && cp
->mc_slab_audit
!= NULL
)
593 (*cp
->mc_slab_audit
)(cp
->mc_private
, *top
, TRUE
);
599 * Allocate a single object from a cache.
601 __private_extern__
void *
602 mcache_alloc(mcache_t
*cp
, int wait
)
606 (void) mcache_alloc_ext(cp
, &buf
, 1, wait
);
610 __private_extern__
void
611 mcache_waiter_inc(mcache_t
*cp
)
613 atomic_add_32(&cp
->mc_waiter_cnt
, 1);
616 __private_extern__
void
617 mcache_waiter_dec(mcache_t
*cp
)
619 atomic_add_32(&cp
->mc_waiter_cnt
, -1);
622 __private_extern__ boolean_t
623 mcache_bkt_isempty(mcache_t
*cp
)
626 * This isn't meant to accurately tell whether there are
627 * any full buckets in the cache; it is simply a way to
628 * obtain "hints" about the state of the cache.
630 return (cp
->mc_full
.bl_total
== 0);
634 * Notify the slab layer about an event.
637 mcache_notify(mcache_t
*cp
, u_int32_t event
)
639 if (cp
->mc_slab_notify
!= NULL
)
640 (*cp
->mc_slab_notify
)(cp
->mc_private
, event
);
644 * Purge the cache and disable its buckets.
647 mcache_purge(void *arg
)
651 mcache_bkt_purge(cp
);
653 * We cannot simply call mcache_cache_bkt_enable() from here as
654 * a bucket resize may be in flight and we would cause the CPU
655 * layers of the cache to point to different sizes. Therefore,
656 * we simply increment the enable count so that during the next
657 * periodic cache update the buckets can be reenabled.
659 lck_mtx_lock_spin(&cp
->mc_sync_lock
);
661 lck_mtx_unlock(&cp
->mc_sync_lock
);
665 __private_extern__ boolean_t
666 mcache_purge_cache(mcache_t
*cp
)
669 * Purging a cache that has no per-CPU caches or is already
670 * in the process of being purged is rather pointless.
672 if (cp
->mc_flags
& MCF_NOCPUCACHE
)
675 lck_mtx_lock_spin(&cp
->mc_sync_lock
);
676 if (cp
->mc_purge_cnt
> 0) {
677 lck_mtx_unlock(&cp
->mc_sync_lock
);
681 lck_mtx_unlock(&cp
->mc_sync_lock
);
683 mcache_dispatch(mcache_purge
, cp
);
689 * Free a single object to a cache.
691 __private_extern__
void
692 mcache_free(mcache_t
*cp
, void *buf
)
694 ((mcache_obj_t
*)buf
)->obj_next
= NULL
;
695 mcache_free_ext(cp
, (mcache_obj_t
*)buf
);
699 * Free one or more objects to a cache.
701 __private_extern__
void
702 mcache_free_ext(mcache_t
*cp
, mcache_obj_t
*list
)
704 mcache_cpu_t
*ccp
= MCACHE_CPU(cp
);
705 mcache_bkttype_t
*btp
;
709 if (!(cp
->mc_flags
& MCF_NOLEAKLOG
) && cp
->mc_slab_log
!= NULL
)
710 (*cp
->mc_slab_log
)(0, list
, FALSE
);
712 /* Invoke the slab layer audit callback if auditing is enabled */
713 if ((cp
->mc_flags
& MCF_DEBUG
) && cp
->mc_slab_audit
!= NULL
)
714 (*cp
->mc_slab_audit
)(cp
->mc_private
, list
, FALSE
);
716 MCACHE_LOCK(&ccp
->cc_lock
);
719 * If there is space in the current CPU's filled bucket, put
720 * the object there and return once all objects are freed.
721 * Note the cast to unsigned integer takes care of the case
722 * where the bucket layer is disabled (when cc_objs is -1).
724 if ((unsigned int)ccp
->cc_objs
<
725 (unsigned int)ccp
->cc_bktsize
) {
727 * Reverse the list while we place the object into the
728 * bucket; this effectively causes the most recently
729 * freed object(s) to be reused during allocation.
731 nlist
= list
->obj_next
;
732 list
->obj_next
= (ccp
->cc_objs
== 0) ? NULL
:
733 ccp
->cc_filled
->bkt_obj
[ccp
->cc_objs
- 1];
734 ccp
->cc_filled
->bkt_obj
[ccp
->cc_objs
++] = list
;
737 if ((list
= nlist
) != NULL
)
740 /* We are done; return to caller */
741 MCACHE_UNLOCK(&ccp
->cc_lock
);
743 /* If there is a waiter below, notify it */
744 if (cp
->mc_waiter_cnt
> 0)
745 mcache_notify(cp
, MCN_RETRYALLOC
);
750 * The CPU's filled bucket is full. If the previous filled
751 * bucket was empty, exchange and try again.
753 if (ccp
->cc_pobjs
== 0) {
754 mcache_cpu_refill(ccp
, ccp
->cc_pfilled
, ccp
->cc_pobjs
);
759 * If the bucket layer is disabled, free to slab. This can
760 * happen either because MCF_NOCPUCACHE is set, or because
761 * the bucket layer is currently being resized.
763 if (ccp
->cc_bktsize
== 0)
767 * Both of the CPU's buckets are full; try to get an empty
768 * bucket from the bucket layer. Upon success, empty this
769 * CPU and place any full bucket into the full list.
771 bkt
= mcache_bkt_alloc(cp
, &cp
->mc_empty
, &btp
);
773 if (ccp
->cc_pfilled
!= NULL
)
774 mcache_bkt_free(cp
, &cp
->mc_full
,
776 mcache_cpu_refill(ccp
, bkt
, 0);
781 * We need an empty bucket to put our freed objects into
782 * but couldn't get an empty bucket from the bucket layer;
783 * attempt to allocate one. We do not want to block for
784 * allocation here, and if the bucket allocation fails
785 * we will simply fall through to the slab layer.
787 MCACHE_UNLOCK(&ccp
->cc_lock
);
788 bkt
= mcache_alloc(btp
->bt_cache
, MCR_NOSLEEP
);
789 MCACHE_LOCK(&ccp
->cc_lock
);
793 * We have an empty bucket, but since we drop the
794 * CPU lock above, the cache's bucket size may have
795 * changed. If so, free the bucket and try again.
797 if (ccp
->cc_bktsize
!= btp
->bt_bktsize
) {
798 MCACHE_UNLOCK(&ccp
->cc_lock
);
799 mcache_free(btp
->bt_cache
, bkt
);
800 MCACHE_LOCK(&ccp
->cc_lock
);
805 * We have an empty bucket of the right size;
806 * add it to the bucket layer and try again.
808 mcache_bkt_free(cp
, &cp
->mc_empty
, bkt
);
813 * The bucket layer has no empty buckets; free the
814 * object(s) directly to the slab layer.
818 MCACHE_UNLOCK(&ccp
->cc_lock
);
820 /* If there is a waiter below, notify it */
821 if (cp
->mc_waiter_cnt
> 0)
822 mcache_notify(cp
, MCN_RETRYALLOC
);
824 /* Advise the slab layer to purge the object(s) */
825 (*cp
->mc_slab_free
)(cp
->mc_private
, list
,
826 (cp
->mc_flags
& MCF_DEBUG
) || cp
->mc_purge_cnt
);
830 * Cache destruction routine.
832 __private_extern__
void
833 mcache_destroy(mcache_t
*cp
)
838 LIST_REMOVE(cp
, mc_list
);
839 MCACHE_LIST_UNLOCK();
841 mcache_bkt_purge(cp
);
844 * This cache is dead; there should be no further transaction.
845 * If it's still invoked, make sure that it induces a fault.
847 cp
->mc_slab_alloc
= NULL
;
848 cp
->mc_slab_free
= NULL
;
849 cp
->mc_slab_audit
= NULL
;
851 lck_attr_free(cp
->mc_bkt_lock_attr
);
852 lck_grp_free(cp
->mc_bkt_lock_grp
);
853 lck_grp_attr_free(cp
->mc_bkt_lock_grp_attr
);
855 lck_attr_free(cp
->mc_cpu_lock_attr
);
856 lck_grp_free(cp
->mc_cpu_lock_grp
);
857 lck_grp_attr_free(cp
->mc_cpu_lock_grp_attr
);
859 lck_attr_free(cp
->mc_sync_lock_attr
);
860 lck_grp_free(cp
->mc_sync_lock_grp
);
861 lck_grp_attr_free(cp
->mc_sync_lock_grp_attr
);
864 * TODO: We need to destroy the zone here, but cannot do it
865 * because there is no such way to achieve that. Until then
866 * the memory allocated for the zone structure is leaked.
867 * Once it is achievable, uncomment these lines:
869 * if (cp->mc_slab_zone != NULL) {
870 * zdestroy(cp->mc_slab_zone);
871 * cp->mc_slab_zone = NULL;
875 /* Get the original address since we're about to free it */
876 pbuf
= (void **)((intptr_t)cp
- sizeof (void *));
878 zfree(mcache_zone
, *pbuf
);
882 * Internal slab allocator used as a backend for simple caches. The current
883 * implementation uses the zone allocator for simplicity reasons.
886 mcache_slab_alloc(void *arg
, mcache_obj_t
***plist
, unsigned int num
, int wait
)
889 unsigned int need
= num
;
891 size_t rsize
= P2ROUNDUP(cp
->mc_bufsize
, sizeof (u_int64_t
));
892 u_int32_t flags
= cp
->mc_flags
;
893 void *buf
, *base
, **pbuf
;
894 mcache_obj_t
**list
= *plist
;
899 * The address of the object returned to the caller is an
900 * offset from the 64-bit aligned base address only if the
901 * cache's alignment requirement is neither 1 nor 8 bytes.
903 if (cp
->mc_align
!= 1 && cp
->mc_align
!= sizeof (u_int64_t
))
904 offset
= cp
->mc_align
;
907 if (!(wait
& MCR_NOSLEEP
))
908 buf
= zalloc(cp
->mc_slab_zone
);
910 buf
= zalloc_noblock(cp
->mc_slab_zone
);
915 /* Get the 64-bit aligned base address for this object */
916 base
= (void *)P2ROUNDUP((intptr_t)buf
+ sizeof (u_int64_t
),
920 * Wind back a pointer size from the aligned base and
921 * save the original address so we can free it later.
923 pbuf
= (void **)((intptr_t)base
- sizeof (void *));
927 * If auditing is enabled, patternize the contents of
928 * the buffer starting from the 64-bit aligned base to
929 * the end of the buffer; the length is rounded up to
930 * the nearest 64-bit multiply; this is because we use
931 * 64-bit memory access to set/check the pattern.
933 if (flags
& MCF_DEBUG
) {
934 VERIFY(((intptr_t)base
+ rsize
) <=
935 ((intptr_t)buf
+ cp
->mc_chunksize
));
936 mcache_set_pattern(MCACHE_FREE_PATTERN
, base
, rsize
);
940 * Fix up the object's address to fulfill the cache's
941 * alignment requirement (if needed) and return this
944 VERIFY(((intptr_t)base
+ offset
+ cp
->mc_bufsize
) <=
945 ((intptr_t)buf
+ cp
->mc_chunksize
));
946 *list
= (mcache_obj_t
*)((intptr_t)base
+ offset
);
948 (*list
)->obj_next
= NULL
;
949 list
= *plist
= &(*list
)->obj_next
;
951 /* If we got them all, return to mcache */
960 * Internal slab deallocator used as a backend for simple caches.
963 mcache_slab_free(void *arg
, mcache_obj_t
*list
, __unused boolean_t purged
)
968 size_t rsize
= P2ROUNDUP(cp
->mc_bufsize
, sizeof (u_int64_t
));
969 u_int32_t flags
= cp
->mc_flags
;
974 * The address of the object is an offset from a 64-bit
975 * aligned base address only if the cache's alignment
976 * requirement is neither 1 nor 8 bytes.
978 if (cp
->mc_align
!= 1 && cp
->mc_align
!= sizeof (u_int64_t
))
979 offset
= cp
->mc_align
;
982 nlist
= list
->obj_next
;
983 list
->obj_next
= NULL
;
985 /* Get the 64-bit aligned base address of this object */
986 base
= (void *)((intptr_t)list
- offset
);
987 VERIFY(IS_P2ALIGNED(base
, sizeof (u_int64_t
)));
989 /* Get the original address since we're about to free it */
990 pbuf
= (void **)((intptr_t)base
- sizeof (void *));
992 if (flags
& MCF_DEBUG
) {
993 VERIFY(((intptr_t)base
+ rsize
) <=
994 ((intptr_t)*pbuf
+ cp
->mc_chunksize
));
995 mcache_audit_free_verify(NULL
, base
, offset
, rsize
);
998 /* Free it to zone */
999 VERIFY(((intptr_t)base
+ offset
+ cp
->mc_bufsize
) <=
1000 ((intptr_t)*pbuf
+ cp
->mc_chunksize
));
1001 zfree(cp
->mc_slab_zone
, *pbuf
);
1003 /* No more objects to free; return to mcache */
1004 if ((list
= nlist
) == NULL
)
1010 * Internal slab auditor for simple caches.
1013 mcache_slab_audit(void *arg
, mcache_obj_t
*list
, boolean_t alloc
)
1017 size_t rsize
= P2ROUNDUP(cp
->mc_bufsize
, sizeof (u_int64_t
));
1021 * The address of the object returned to the caller is an
1022 * offset from the 64-bit aligned base address only if the
1023 * cache's alignment requirement is neither 1 nor 8 bytes.
1025 if (cp
->mc_align
!= 1 && cp
->mc_align
!= sizeof (u_int64_t
))
1026 offset
= cp
->mc_align
;
1028 while (list
!= NULL
) {
1029 mcache_obj_t
*next
= list
->obj_next
;
1031 /* Get the 64-bit aligned base address of this object */
1032 base
= (void *)((intptr_t)list
- offset
);
1033 VERIFY(IS_P2ALIGNED(base
, sizeof (u_int64_t
)));
1035 /* Get the original address */
1036 pbuf
= (void **)((intptr_t)base
- sizeof (void *));
1038 VERIFY(((intptr_t)base
+ rsize
) <=
1039 ((intptr_t)*pbuf
+ cp
->mc_chunksize
));
1042 mcache_set_pattern(MCACHE_FREE_PATTERN
, base
, rsize
);
1044 mcache_audit_free_verify_set(NULL
, base
, offset
, rsize
);
1046 list
= list
->obj_next
= next
;
1051 * Refill the CPU's filled bucket with bkt and save the previous one.
1054 mcache_cpu_refill(mcache_cpu_t
*ccp
, mcache_bkt_t
*bkt
, int objs
)
1056 ASSERT((ccp
->cc_filled
== NULL
&& ccp
->cc_objs
== -1) ||
1057 (ccp
->cc_filled
&& ccp
->cc_objs
+ objs
== ccp
->cc_bktsize
));
1058 ASSERT(ccp
->cc_bktsize
> 0);
1060 ccp
->cc_pfilled
= ccp
->cc_filled
;
1061 ccp
->cc_pobjs
= ccp
->cc_objs
;
1062 ccp
->cc_filled
= bkt
;
1063 ccp
->cc_objs
= objs
;
1067 * Allocate a bucket from the bucket layer.
1069 static mcache_bkt_t
*
1070 mcache_bkt_alloc(mcache_t
*cp
, mcache_bktlist_t
*blp
, mcache_bkttype_t
**btp
)
1074 if (!MCACHE_LOCK_TRY(&cp
->mc_bkt_lock
)) {
1076 * The bucket layer lock is held by another CPU; increase
1077 * the contention count so that we can later resize the
1078 * bucket size accordingly.
1080 MCACHE_LOCK(&cp
->mc_bkt_lock
);
1081 cp
->mc_bkt_contention
++;
1084 if ((bkt
= blp
->bl_list
) != NULL
) {
1085 blp
->bl_list
= bkt
->bkt_next
;
1086 if (--blp
->bl_total
< blp
->bl_min
)
1087 blp
->bl_min
= blp
->bl_total
;
1092 *btp
= cp
->cache_bkttype
;
1094 MCACHE_UNLOCK(&cp
->mc_bkt_lock
);
1100 * Free a bucket to the bucket layer.
1103 mcache_bkt_free(mcache_t
*cp
, mcache_bktlist_t
*blp
, mcache_bkt_t
*bkt
)
1105 MCACHE_LOCK(&cp
->mc_bkt_lock
);
1107 bkt
->bkt_next
= blp
->bl_list
;
1111 MCACHE_UNLOCK(&cp
->mc_bkt_lock
);
1115 * Enable the bucket layer of a cache.
1118 mcache_cache_bkt_enable(mcache_t
*cp
)
1123 if (cp
->mc_flags
& MCF_NOCPUCACHE
)
1126 for (cpu
= 0; cpu
< ncpu
; cpu
++) {
1127 ccp
= &cp
->mc_cpu
[cpu
];
1128 MCACHE_LOCK(&ccp
->cc_lock
);
1129 ccp
->cc_bktsize
= cp
->cache_bkttype
->bt_bktsize
;
1130 MCACHE_UNLOCK(&ccp
->cc_lock
);
1135 * Purge all buckets from a cache and disable its bucket layer.
1138 mcache_bkt_purge(mcache_t
*cp
)
1141 mcache_bkt_t
*bp
, *pbp
;
1142 mcache_bkttype_t
*btp
;
1143 int cpu
, objs
, pobjs
;
1145 for (cpu
= 0; cpu
< ncpu
; cpu
++) {
1146 ccp
= &cp
->mc_cpu
[cpu
];
1148 MCACHE_LOCK(&ccp
->cc_lock
);
1150 btp
= cp
->cache_bkttype
;
1151 bp
= ccp
->cc_filled
;
1152 pbp
= ccp
->cc_pfilled
;
1153 objs
= ccp
->cc_objs
;
1154 pobjs
= ccp
->cc_pobjs
;
1155 ccp
->cc_filled
= NULL
;
1156 ccp
->cc_pfilled
= NULL
;
1159 ccp
->cc_bktsize
= 0;
1161 MCACHE_UNLOCK(&ccp
->cc_lock
);
1164 mcache_bkt_destroy(cp
, btp
, bp
, objs
);
1166 mcache_bkt_destroy(cp
, btp
, pbp
, pobjs
);
1170 * Updating the working set back to back essentially sets
1171 * the working set size to zero, so everything is reapable.
1173 mcache_bkt_ws_update(cp
);
1174 mcache_bkt_ws_update(cp
);
1176 mcache_bkt_ws_reap(cp
);
1180 * Free one or more objects in the bucket to the slab layer,
1181 * and also free the bucket itself.
1184 mcache_bkt_destroy(mcache_t
*cp
, mcache_bkttype_t
*btp
, mcache_bkt_t
*bkt
,
1188 mcache_obj_t
*top
= bkt
->bkt_obj
[nobjs
- 1];
1190 if (cp
->mc_flags
& MCF_DEBUG
) {
1191 mcache_obj_t
*o
= top
;
1195 * Verify that the chain of objects in the bucket is
1196 * valid. Any mismatch here means a mistake when the
1197 * object(s) were freed to the CPU layer, so we panic.
1204 panic("mcache_bkt_destroy: %s cp %p corrupted "
1205 "list in bkt %p (nobjs %d actual %d)\n",
1206 cp
->mc_name
, (void *)cp
, (void *)bkt
,
1211 /* Advise the slab layer to purge the object(s) */
1212 (*cp
->mc_slab_free
)(cp
->mc_private
, top
,
1213 (cp
->mc_flags
& MCF_DEBUG
) || cp
->mc_purge_cnt
);
1215 mcache_free(btp
->bt_cache
, bkt
);
1219 * Update the bucket layer working set statistics.
1222 mcache_bkt_ws_update(mcache_t
*cp
)
1224 MCACHE_LOCK(&cp
->mc_bkt_lock
);
1226 cp
->mc_full
.bl_reaplimit
= cp
->mc_full
.bl_min
;
1227 cp
->mc_full
.bl_min
= cp
->mc_full
.bl_total
;
1228 cp
->mc_empty
.bl_reaplimit
= cp
->mc_empty
.bl_min
;
1229 cp
->mc_empty
.bl_min
= cp
->mc_empty
.bl_total
;
1231 MCACHE_UNLOCK(&cp
->mc_bkt_lock
);
1235 * Reap all buckets that are beyond the working set.
1238 mcache_bkt_ws_reap(mcache_t
*cp
)
1242 mcache_bkttype_t
*btp
;
1244 reap
= MIN(cp
->mc_full
.bl_reaplimit
, cp
->mc_full
.bl_min
);
1246 (bkt
= mcache_bkt_alloc(cp
, &cp
->mc_full
, &btp
)) != NULL
)
1247 mcache_bkt_destroy(cp
, btp
, bkt
, btp
->bt_bktsize
);
1249 reap
= MIN(cp
->mc_empty
.bl_reaplimit
, cp
->mc_empty
.bl_min
);
1251 (bkt
= mcache_bkt_alloc(cp
, &cp
->mc_empty
, &btp
)) != NULL
)
1252 mcache_bkt_destroy(cp
, btp
, bkt
, 0);
1256 mcache_reap_timeout(void *arg
)
1258 volatile UInt32
*flag
= arg
;
1260 ASSERT(flag
== &mcache_reaping
);
1266 mcache_reap_done(void *flag
)
1268 timeout(mcache_reap_timeout
, flag
, mcache_reap_interval
);
1272 mcache_reap_start(void *arg
)
1276 ASSERT(flag
== &mcache_reaping
);
1278 mcache_applyall(mcache_cache_reap
);
1279 mcache_dispatch(mcache_reap_done
, flag
);
1282 __private_extern__
void
1285 UInt32
*flag
= &mcache_reaping
;
1287 if (mcache_llock_owner
== current_thread() ||
1288 !OSCompareAndSwap(0, 1, flag
))
1291 mcache_dispatch(mcache_reap_start
, flag
);
1295 mcache_cache_reap(mcache_t
*cp
)
1297 mcache_bkt_ws_reap(cp
);
1301 * Performs period maintenance on a cache.
1304 mcache_cache_update(mcache_t
*cp
)
1306 int need_bkt_resize
= 0;
1307 int need_bkt_reenable
= 0;
1309 lck_mtx_assert(mcache_llock
, LCK_MTX_ASSERT_OWNED
);
1311 mcache_bkt_ws_update(cp
);
1314 * Cache resize and post-purge reenable are mutually exclusive.
1315 * If the cache was previously purged, there is no point of
1316 * increasing the bucket size as there was an indication of
1317 * memory pressure on the system.
1319 lck_mtx_lock_spin(&cp
->mc_sync_lock
);
1320 if (!(cp
->mc_flags
& MCF_NOCPUCACHE
) && cp
->mc_enable_cnt
)
1321 need_bkt_reenable
= 1;
1322 lck_mtx_unlock(&cp
->mc_sync_lock
);
1324 MCACHE_LOCK(&cp
->mc_bkt_lock
);
1326 * If the contention count is greater than the threshold, and if
1327 * we are not already at the maximum bucket size, increase it.
1328 * Otherwise, if this cache was previously purged by the user
1329 * then we simply reenable it.
1331 if ((unsigned int)cp
->mc_chunksize
< cp
->cache_bkttype
->bt_maxbuf
&&
1332 (int)(cp
->mc_bkt_contention
- cp
->mc_bkt_contention_prev
) >
1333 mcache_bkt_contention
&& !need_bkt_reenable
)
1334 need_bkt_resize
= 1;
1336 cp
->mc_bkt_contention_prev
= cp
->mc_bkt_contention
;
1337 MCACHE_UNLOCK(&cp
->mc_bkt_lock
);
1339 if (need_bkt_resize
)
1340 mcache_dispatch(mcache_cache_bkt_resize
, cp
);
1341 else if (need_bkt_reenable
)
1342 mcache_dispatch(mcache_cache_enable
, cp
);
1346 * Recompute a cache's bucket size. This is an expensive operation
1347 * and should not be done frequently; larger buckets provide for a
1348 * higher transfer rate with the bucket while smaller buckets reduce
1349 * the memory consumption.
1352 mcache_cache_bkt_resize(void *arg
)
1355 mcache_bkttype_t
*btp
= cp
->cache_bkttype
;
1357 if ((unsigned int)cp
->mc_chunksize
< btp
->bt_maxbuf
) {
1358 mcache_bkt_purge(cp
);
1361 * Upgrade to the next bucket type with larger bucket size;
1362 * temporarily set the previous contention snapshot to a
1363 * negative number to prevent unnecessary resize request.
1365 MCACHE_LOCK(&cp
->mc_bkt_lock
);
1366 cp
->cache_bkttype
= ++btp
;
1367 cp
->mc_bkt_contention_prev
= cp
->mc_bkt_contention
+ INT_MAX
;
1368 MCACHE_UNLOCK(&cp
->mc_bkt_lock
);
1370 mcache_cache_enable(cp
);
1375 * Reenable a previously disabled cache due to purge.
1378 mcache_cache_enable(void *arg
)
1382 lck_mtx_lock_spin(&cp
->mc_sync_lock
);
1383 cp
->mc_purge_cnt
= 0;
1384 cp
->mc_enable_cnt
= 0;
1385 lck_mtx_unlock(&cp
->mc_sync_lock
);
1387 mcache_cache_bkt_enable(cp
);
1391 mcache_update_timeout(__unused
void *arg
)
1393 timeout(mcache_update
, NULL
, mcache_reap_interval
);
1397 mcache_update(__unused
void *arg
)
1399 mcache_applyall(mcache_cache_update
);
1400 mcache_dispatch(mcache_update_timeout
, NULL
);
1404 mcache_applyall(void (*func
)(mcache_t
*))
1409 LIST_FOREACH(cp
, &mcache_head
, mc_list
) {
1412 MCACHE_LIST_UNLOCK();
1416 mcache_dispatch(void (*func
)(void *), void *arg
)
1418 ASSERT(func
!= NULL
);
1419 timeout(func
, arg
, hz
/1000);
1422 __private_extern__
void
1423 mcache_buffer_log(mcache_audit_t
*mca
, void *addr
, mcache_t
*cp
,
1424 struct timeval
*base_ts
)
1426 struct timeval now
, base
= { 0, 0 };
1427 void *stack
[MCACHE_STACK_DEPTH
+ 1];
1429 mca
->mca_addr
= addr
;
1430 mca
->mca_cache
= cp
;
1431 mca
->mca_pthread
= mca
->mca_thread
;
1432 mca
->mca_thread
= current_thread();
1433 bcopy(mca
->mca_stack
, mca
->mca_pstack
, sizeof (mca
->mca_pstack
));
1434 mca
->mca_pdepth
= mca
->mca_depth
;
1435 bzero(stack
, sizeof (stack
));
1436 mca
->mca_depth
= OSBacktrace(stack
, MCACHE_STACK_DEPTH
+ 1) - 1;
1437 bcopy(&stack
[1], mca
->mca_stack
, sizeof (mca
->mca_pstack
));
1439 mca
->mca_ptstamp
= mca
->mca_tstamp
;
1441 if (base_ts
!= NULL
)
1443 /* tstamp is in ms relative to base_ts */
1444 mca
->mca_tstamp
= ((now
.tv_usec
- base
.tv_usec
) / 1000);
1445 if ((now
.tv_sec
- base
.tv_sec
) > 0)
1446 mca
->mca_tstamp
+= ((now
.tv_sec
- base
.tv_sec
) * 1000);
1449 __private_extern__
void
1450 mcache_set_pattern(u_int64_t pattern
, void *buf_arg
, size_t size
)
1452 u_int64_t
*buf_end
= (u_int64_t
*)((void *)((char *)buf_arg
+ size
));
1453 u_int64_t
*buf
= (u_int64_t
*)buf_arg
;
1455 VERIFY(IS_P2ALIGNED(buf_arg
, sizeof (u_int64_t
)));
1456 VERIFY(IS_P2ALIGNED(size
, sizeof (u_int64_t
)));
1458 while (buf
< buf_end
)
1462 __private_extern__
void *
1463 mcache_verify_pattern(u_int64_t pattern
, void *buf_arg
, size_t size
)
1465 u_int64_t
*buf_end
= (u_int64_t
*)((void *)((char *)buf_arg
+ size
));
1468 VERIFY(IS_P2ALIGNED(buf_arg
, sizeof (u_int64_t
)));
1469 VERIFY(IS_P2ALIGNED(size
, sizeof (u_int64_t
)));
1471 for (buf
= buf_arg
; buf
< buf_end
; buf
++) {
1472 if (*buf
!= pattern
)
1478 __private_extern__
void *
1479 mcache_verify_set_pattern(u_int64_t old
, u_int64_t
new, void *buf_arg
,
1482 u_int64_t
*buf_end
= (u_int64_t
*)((void *)((char *)buf_arg
+ size
));
1485 VERIFY(IS_P2ALIGNED(buf_arg
, sizeof (u_int64_t
)));
1486 VERIFY(IS_P2ALIGNED(size
, sizeof (u_int64_t
)));
1488 for (buf
= buf_arg
; buf
< buf_end
; buf
++) {
1490 mcache_set_pattern(old
, buf_arg
,
1491 (uintptr_t)buf
- (uintptr_t)buf_arg
);
1499 __private_extern__
void
1500 mcache_audit_free_verify(mcache_audit_t
*mca
, void *base
, size_t offset
,
1507 addr
= (void *)((uintptr_t)base
+ offset
);
1508 next
= ((mcache_obj_t
*)addr
)->obj_next
;
1510 /* For the "obj_next" pointer in the buffer */
1511 oaddr64
= (u_int64_t
*)P2ROUNDDOWN(addr
, sizeof (u_int64_t
));
1512 *oaddr64
= MCACHE_FREE_PATTERN
;
1514 if ((oaddr64
= mcache_verify_pattern(MCACHE_FREE_PATTERN
,
1515 (caddr_t
)base
, size
)) != NULL
) {
1516 mcache_audit_panic(mca
, addr
, (caddr_t
)oaddr64
- (caddr_t
)base
,
1517 (int64_t)MCACHE_FREE_PATTERN
, (int64_t)*oaddr64
);
1520 ((mcache_obj_t
*)addr
)->obj_next
= next
;
1523 __private_extern__
void
1524 mcache_audit_free_verify_set(mcache_audit_t
*mca
, void *base
, size_t offset
,
1531 addr
= (void *)((uintptr_t)base
+ offset
);
1532 next
= ((mcache_obj_t
*)addr
)->obj_next
;
1534 /* For the "obj_next" pointer in the buffer */
1535 oaddr64
= (u_int64_t
*)P2ROUNDDOWN(addr
, sizeof (u_int64_t
));
1536 *oaddr64
= MCACHE_FREE_PATTERN
;
1538 if ((oaddr64
= mcache_verify_set_pattern(MCACHE_FREE_PATTERN
,
1539 MCACHE_UNINITIALIZED_PATTERN
, (caddr_t
)base
, size
)) != NULL
) {
1540 mcache_audit_panic(mca
, addr
, (caddr_t
)oaddr64
- (caddr_t
)base
,
1541 (int64_t)MCACHE_FREE_PATTERN
, (int64_t)*oaddr64
);
1544 ((mcache_obj_t
*)addr
)->obj_next
= next
;
1549 __private_extern__
char *
1550 mcache_dump_mca(mcache_audit_t
*mca
)
1552 if (mca_dump_buf
== NULL
)
1555 snprintf(mca_dump_buf
, DUMP_MCA_BUF_SIZE
,
1556 "mca %p: addr %p, cache %p (%s)\n"
1557 "last transaction; thread %p, saved PC stack (%d deep):\n"
1558 "\t%p, %p, %p, %p, %p, %p, %p, %p\n"
1559 "\t%p, %p, %p, %p, %p, %p, %p, %p\n"
1560 "previous transaction; thread %p, saved PC stack (%d deep):\n"
1561 "\t%p, %p, %p, %p, %p, %p, %p, %p\n"
1562 "\t%p, %p, %p, %p, %p, %p, %p, %p\n",
1563 mca
, mca
->mca_addr
, mca
->mca_cache
,
1564 mca
->mca_cache
? mca
->mca_cache
->mc_name
: "?",
1565 mca
->mca_thread
, mca
->mca_depth
,
1566 mca
->mca_stack
[0], mca
->mca_stack
[1], mca
->mca_stack
[2],
1567 mca
->mca_stack
[3], mca
->mca_stack
[4], mca
->mca_stack
[5],
1568 mca
->mca_stack
[6], mca
->mca_stack
[7], mca
->mca_stack
[8],
1569 mca
->mca_stack
[9], mca
->mca_stack
[10], mca
->mca_stack
[11],
1570 mca
->mca_stack
[12], mca
->mca_stack
[13], mca
->mca_stack
[14],
1572 mca
->mca_pthread
, mca
->mca_pdepth
,
1573 mca
->mca_pstack
[0], mca
->mca_pstack
[1], mca
->mca_pstack
[2],
1574 mca
->mca_pstack
[3], mca
->mca_pstack
[4], mca
->mca_pstack
[5],
1575 mca
->mca_pstack
[6], mca
->mca_pstack
[7], mca
->mca_pstack
[8],
1576 mca
->mca_pstack
[9], mca
->mca_pstack
[10], mca
->mca_pstack
[11],
1577 mca
->mca_pstack
[12], mca
->mca_pstack
[13], mca
->mca_pstack
[14],
1578 mca
->mca_pstack
[15]);
1580 return (mca_dump_buf
);
1583 __private_extern__
void
1584 mcache_audit_panic(mcache_audit_t
*mca
, void *addr
, size_t offset
,
1585 int64_t expected
, int64_t got
)
1588 panic("mcache_audit: buffer %p modified after free at "
1589 "offset 0x%lx (0x%llx instead of 0x%llx)\n", addr
,
1590 offset
, got
, expected
);
1594 panic("mcache_audit: buffer %p modified after free at offset 0x%lx "
1595 "(0x%llx instead of 0x%llx)\n%s\n",
1596 addr
, offset
, got
, expected
, mcache_dump_mca(mca
));
1600 __private_extern__
int
1601 assfail(const char *a
, const char *f
, int l
)
1603 panic("assertion failed: %s, file: %s, line: %d", a
, f
, l
);