2 * Copyright (c) 2000-2010 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
29 * Copyright (C) 1988, 1989, NeXT, Inc.
31 * File: kern/mach_loader.c
32 * Author: Avadis Tevanian, Jr.
34 * Mach object file loader (kernel version, for now).
36 * 21-Jul-88 Avadis Tevanian, Jr. (avie) at NeXT
40 #include <sys/param.h>
41 #include <sys/vnode_internal.h>
43 #include <sys/namei.h>
44 #include <sys/proc_internal.h>
45 #include <sys/kauth.h>
47 #include <sys/malloc.h>
48 #include <sys/mount_internal.h>
49 #include <sys/fcntl.h>
50 #include <sys/ubc_internal.h>
51 #include <sys/imgact.h>
52 #include <sys/codesign.h>
54 #include <mach/mach_types.h>
55 #include <mach/vm_map.h> /* vm_allocate() */
56 #include <mach/mach_vm.h> /* mach_vm_allocate() */
57 #include <mach/vm_statistics.h>
58 #include <mach/task.h>
59 #include <mach/thread_act.h>
61 #include <machine/vmparam.h>
62 #include <machine/exec.h>
63 #include <machine/pal_routines.h>
65 #include <kern/kern_types.h>
66 #include <kern/cpu_number.h>
67 #include <kern/mach_loader.h>
68 #include <kern/mach_fat.h>
69 #include <kern/kalloc.h>
70 #include <kern/task.h>
71 #include <kern/thread.h>
72 #include <kern/page_decrypt.h>
74 #include <mach-o/fat.h>
75 #include <mach-o/loader.h>
78 #include <vm/vm_map.h>
79 #include <vm/vm_kern.h>
80 #include <vm/vm_pager.h>
81 #include <vm/vnode_pager.h>
82 #include <vm/vm_protos.h>
83 #include <IOKit/IOReturn.h> /* for kIOReturnNotPrivileged */
86 * XXX vm/pmap.h should not treat these prototypes as MACH_KERNEL_PRIVATE
87 * when KERNEL is defined.
89 extern pmap_t
pmap_create(ledger_t ledger
, vm_map_size_t size
,
92 /* XXX should have prototypes in a shared header file */
93 extern int get_map_nentries(vm_map_t
);
95 extern kern_return_t
memory_object_signed(memory_object_control_t control
,
98 /* An empty load_result_t */
99 static load_result_t load_result_null
= {
100 .mach_header
= MACH_VM_MIN_ADDRESS
,
101 .entry_point
= MACH_VM_MIN_ADDRESS
,
102 .user_stack
= MACH_VM_MIN_ADDRESS
,
103 .user_stack_size
= 0,
104 .all_image_info_addr
= MACH_VM_MIN_ADDRESS
,
105 .all_image_info_size
= 0,
109 .needs_dynlinker
= 0,
110 .prog_allocated_stack
= 0,
111 .prog_stack_size
= 0,
115 .min_vm_addr
= MACH_VM_MAX_ADDRESS
,
116 .max_vm_addr
= MACH_VM_MIN_ADDRESS
120 * Prototypes of static functions.
127 struct mach_header
*header
,
133 load_result_t
*result
138 struct load_command
*lcp
,
146 load_result_t
*result
151 struct uuid_command
*uulp
,
153 load_result_t
*result
158 struct linkedit_data_command
*lcp
,
163 load_result_t
*result
);
165 #if CONFIG_CODE_DECRYPTION
168 struct encryption_info_command
*lcp
,
174 cpu_subtype_t cpusubtype
);
180 struct entry_point_command
*epc
,
183 load_result_t
*result
188 struct thread_command
*tcp
,
191 load_result_t
*result
206 mach_vm_offset_t
*user_stack
,
215 mach_vm_offset_t
*entry_point
220 struct dylinker_command
*lcp
,
226 load_result_t
*result
235 struct mach_header
*mach_header
,
238 struct macho_data
*macho_data
,
243 widen_segment_command(const struct segment_command
*scp32
,
244 struct segment_command_64
*scp
)
246 scp
->cmd
= scp32
->cmd
;
247 scp
->cmdsize
= scp32
->cmdsize
;
248 bcopy(scp32
->segname
, scp
->segname
, sizeof(scp
->segname
));
249 scp
->vmaddr
= scp32
->vmaddr
;
250 scp
->vmsize
= scp32
->vmsize
;
251 scp
->fileoff
= scp32
->fileoff
;
252 scp
->filesize
= scp32
->filesize
;
253 scp
->maxprot
= scp32
->maxprot
;
254 scp
->initprot
= scp32
->initprot
;
255 scp
->nsects
= scp32
->nsects
;
256 scp
->flags
= scp32
->flags
;
260 note_all_image_info_section(const struct segment_command_64
*scp
,
261 boolean_t is64
, size_t section_size
, const void *sections
,
262 int64_t slide
, load_result_t
*result
)
266 struct section_64 s64
;
270 if (strncmp(scp
->segname
, "__DATA", sizeof(scp
->segname
)) != 0)
272 for (i
= 0; i
< scp
->nsects
; ++i
) {
273 sectionp
= (const void *)
274 ((const char *)sections
+ section_size
* i
);
275 if (0 == strncmp(sectionp
->s64
.sectname
, "__all_image_info",
276 sizeof(sectionp
->s64
.sectname
))) {
277 result
->all_image_info_addr
=
278 is64
? sectionp
->s64
.addr
: sectionp
->s32
.addr
;
279 result
->all_image_info_addr
+= slide
;
280 result
->all_image_info_size
=
281 is64
? sectionp
->s64
.size
: sectionp
->s32
.size
;
289 struct image_params
*imgp
,
290 struct mach_header
*header
,
293 load_result_t
*result
296 struct vnode
*vp
= imgp
->ip_vp
;
297 off_t file_offset
= imgp
->ip_arch_offset
;
298 off_t macho_size
= imgp
->ip_arch_size
;
299 off_t file_size
= imgp
->ip_vattr
->va_data_size
;
301 pmap_t pmap
= 0; /* protected by create_map */
304 task_t old_task
= TASK_NULL
; /* protected by create_map */
305 load_result_t myresult
;
307 boolean_t create_map
= FALSE
;
308 int spawn
= (imgp
->ip_flags
& IMGPF_SPAWN
);
309 task_t task
= current_task();
310 proc_t p
= current_proc();
311 mach_vm_offset_t aslr_offset
= 0;
312 mach_vm_offset_t dyld_aslr_offset
= 0;
315 if (macho_size
> file_size
) {
316 return(LOAD_BADMACHO
);
319 if (new_map
== VM_MAP_NULL
) {
321 old_task
= current_task();
325 * If we are spawning, we have created backing objects for the process
326 * already, which include non-lazily creating the task map. So we
327 * are going to switch out the task map with one appropriate for the
328 * bitness of the image being loaded.
332 old_task
= get_threadtask(thread
);
336 pmap
= pmap_create(get_task_ledger(task
), (vm_map_size_t
) 0,
337 (imgp
->ip_flags
& IMGPF_IS_64BIT
));
338 pal_switch_pmap(thread
, pmap
, imgp
->ip_flags
& IMGPF_IS_64BIT
);
339 map
= vm_map_create(pmap
,
341 vm_compute_max_offset((imgp
->ip_flags
& IMGPF_IS_64BIT
)),
346 #ifndef CONFIG_ENFORCE_SIGNED_CODE
347 /* This turns off faulting for executable pages, which allows
348 * to circumvent Code Signing Enforcement. The per process
349 * flag (CS_ENFORCEMENT) is not set yet, but we can use the
352 if ( !cs_enforcement(NULL
) && (header
->flags
& MH_ALLOW_STACK_EXECUTION
) )
353 vm_map_disable_NX(map
);
356 /* Forcibly disallow execution from data pages on even if the arch
357 * normally permits it. */
358 if ((header
->flags
& MH_NO_HEAP_EXECUTION
) && !(imgp
->ip_flags
& IMGPF_ALLOW_DATA_EXEC
))
359 vm_map_disallow_data_exec(map
);
362 * Compute a random offset for ASLR, and an independent random offset for dyld.
364 if (!(imgp
->ip_flags
& IMGPF_DISABLE_ASLR
)) {
365 uint64_t max_slide_pages
;
367 max_slide_pages
= vm_map_get_max_aslr_slide_pages(map
);
369 aslr_offset
= random();
370 aslr_offset
%= max_slide_pages
;
371 aslr_offset
<<= vm_map_page_shift(map
);
373 dyld_aslr_offset
= random();
374 dyld_aslr_offset
%= max_slide_pages
;
375 dyld_aslr_offset
<<= vm_map_page_shift(map
);
381 *result
= load_result_null
;
383 lret
= parse_machfile(vp
, map
, thread
, header
, file_offset
, macho_size
,
384 0, (int64_t)aslr_offset
, (int64_t)dyld_aslr_offset
, result
);
386 if (lret
!= LOAD_SUCCESS
) {
388 vm_map_deallocate(map
); /* will lose pmap reference too */
394 * For 64-bit users, check for presence of a 4GB page zero
395 * which will enable the kernel to share the user's address space
396 * and hence avoid TLB flushes on kernel entry/exit
399 if ((imgp
->ip_flags
& IMGPF_IS_64BIT
) &&
400 vm_map_has_4GB_pagezero(map
)) {
401 vm_map_set_4GB_pagezero(map
);
406 * Swap the new map for the old, which consumes our new map
407 * reference but each leaves us responsible for the old_map reference.
408 * That lets us get off the pmap associated with it, and
409 * then we can release it.
414 * If this is an exec, then we are going to destroy the old
415 * task, and it's correct to halt it; if it's spawn, the
416 * task is not yet running, and it makes no sense.
420 * Mark the task as halting and start the other
421 * threads towards terminating themselves. Then
422 * make sure any threads waiting for a process
423 * transition get informed that we are committed to
424 * this transition, and then finally complete the
425 * task halting (wait for threads and then cleanup
428 * NOTE: task_start_halt() makes sure that no new
429 * threads are created in the task during the transition.
430 * We need to mark the workqueue as exiting before we
431 * wait for threads to terminate (at the end of which
432 * we no longer have a prohibition on thread creation).
434 * Finally, clean up any lingering workqueue data structures
435 * that may have been left behind by the workqueue threads
436 * as they exited (and then clean up the work queue itself).
438 kret
= task_start_halt(task
);
439 if (kret
!= KERN_SUCCESS
) {
442 proc_transcommit(p
, 0);
443 workqueue_mark_exiting(p
);
444 task_complete_halt(task
);
447 old_map
= swap_task_map(old_task
, thread
, map
, !spawn
);
448 vm_map_clear_4GB_pagezero(old_map
);
449 vm_map_deallocate(old_map
);
451 return(LOAD_SUCCESS
);
455 * The file size of a mach-o file is limited to 32 bits; this is because
456 * this is the limit on the kalloc() of enough bytes for a mach_header and
457 * the contents of its sizeofcmds, which is currently constrained to 32
458 * bits in the file format itself. We read into the kernel buffer the
459 * commands section, and then parse it in order to parse the mach-o file
460 * format load_command segment(s). We are only interested in a subset of
461 * the total set of possible commands. If "map"==VM_MAP_NULL or
462 * "thread"==THREAD_NULL, do not make permament VM modifications,
463 * just preflight the parse.
471 struct mach_header
*header
,
476 int64_t dyld_aslr_offset
,
477 load_result_t
*result
481 struct load_command
*lcp
;
482 struct dylinker_command
*dlp
= 0;
483 integer_t dlarchbits
= 0;
485 load_return_t ret
= LOAD_SUCCESS
;
488 vm_size_t size
,kl_size
;
490 size_t oldoffset
; /* for overflow check */
492 proc_t p
= current_proc(); /* XXXX */
495 size_t mach_header_sz
= sizeof(struct mach_header
);
497 boolean_t got_code_signatures
= FALSE
;
500 if (header
->magic
== MH_MAGIC_64
||
501 header
->magic
== MH_CIGAM_64
) {
502 mach_header_sz
= sizeof(struct mach_header_64
);
506 * Break infinite recursion
509 return(LOAD_FAILURE
);
515 * Check to see if right machine type.
517 if (((cpu_type_t
)(header
->cputype
& ~CPU_ARCH_MASK
) != (cpu_type() & ~CPU_ARCH_MASK
)) ||
518 !grade_binary(header
->cputype
,
519 header
->cpusubtype
& ~CPU_SUBTYPE_MASK
))
520 return(LOAD_BADARCH
);
522 abi64
= ((header
->cputype
& CPU_ARCH_ABI64
) == CPU_ARCH_ABI64
);
524 switch (header
->filetype
) {
530 return (LOAD_FAILURE
);
537 return (LOAD_FAILURE
);
543 return (LOAD_FAILURE
);
548 return (LOAD_FAILURE
);
552 * Get the pager for the file.
554 control
= ubc_getobject(vp
, UBC_FLAGS_NONE
);
557 * Map portion that must be accessible directly into
560 if ((off_t
)(mach_header_sz
+ header
->sizeofcmds
) > macho_size
)
561 return(LOAD_BADMACHO
);
564 * Round size of Mach-O commands up to page boundry.
566 size
= round_page(mach_header_sz
+ header
->sizeofcmds
);
568 return(LOAD_BADMACHO
);
571 * Map the load commands into kernel memory.
575 kl_addr
= kalloc(size
);
576 addr
= (caddr_t
)kl_addr
;
578 return(LOAD_NOSPACE
);
580 error
= vn_rdwr(UIO_READ
, vp
, addr
, size
, file_offset
,
581 UIO_SYSSPACE
, 0, kauth_cred_get(), &resid
, p
);
584 kfree(kl_addr
, kl_size
);
585 return(LOAD_IOERROR
);
589 * For PIE and dyld, slide everything by the ASLR offset.
591 if ((header
->flags
& MH_PIE
) || (header
->filetype
== MH_DYLINKER
)) {
596 * Scan through the commands, processing each one as necessary.
597 * We parse in three passes through the headers:
598 * 1: thread state, uuid, code signature
600 * 3: dyld, encryption, check entry point
603 for (pass
= 1; pass
<= 3; pass
++) {
606 * Check that the entry point is contained in an executable segments
608 if ((pass
== 3) && (result
->validentry
== 0)) {
609 thread_state_initialize(thread
);
615 * Loop through each of the load_commands indicated by the
616 * Mach-O header; if an absurd value is provided, we just
617 * run off the end of the reserved section by incrementing
618 * the offset too far, so we are implicitly fail-safe.
620 offset
= mach_header_sz
;
621 ncmds
= header
->ncmds
;
625 * Get a pointer to the command.
627 lcp
= (struct load_command
*)(addr
+ offset
);
629 offset
+= lcp
->cmdsize
;
632 * Perform prevalidation of the struct load_command
633 * before we attempt to use its contents. Invalid
634 * values are ones which result in an overflow, or
635 * which can not possibly be valid commands, or which
636 * straddle or exist past the reserved section at the
637 * start of the image.
639 if (oldoffset
> offset
||
640 lcp
->cmdsize
< sizeof(struct load_command
) ||
641 offset
> header
->sizeofcmds
+ mach_header_sz
) {
647 * Act on struct load_command's for which kernel
648 * intervention is required.
657 * Having an LC_SEGMENT command for the
658 * wrong ABI is invalid <rdar://problem/11021230>
664 ret
= load_segment(lcp
,
680 * Having an LC_SEGMENT_64 command for the
681 * wrong ABI is invalid <rdar://problem/11021230>
687 ret
= load_segment(lcp
,
700 ret
= load_unixthread(
701 (struct thread_command
*) lcp
,
712 (struct entry_point_command
*) lcp
,
717 case LC_LOAD_DYLINKER
:
720 if ((depth
== 1) && (dlp
== 0)) {
721 dlp
= (struct dylinker_command
*)lcp
;
722 dlarchbits
= (header
->cputype
& CPU_ARCH_MASK
);
728 if (pass
== 1 && depth
== 1) {
729 ret
= load_uuid((struct uuid_command
*) lcp
,
730 (char *)addr
+ mach_header_sz
+ header
->sizeofcmds
,
734 case LC_CODE_SIGNATURE
:
739 load signatures & store in uip
740 set VM object "signed_pages"
742 ret
= load_code_signature(
743 (struct linkedit_data_command
*) lcp
,
748 (depth
== 1) ? result
: NULL
);
749 if (ret
!= LOAD_SUCCESS
) {
750 printf("proc %d: load code signature error %d "
752 p
->p_pid
, ret
, vp
->v_name
);
753 ret
= LOAD_SUCCESS
; /* ignore error */
755 got_code_signatures
= TRUE
;
758 #if CONFIG_CODE_DECRYPTION
759 case LC_ENCRYPTION_INFO
:
760 case LC_ENCRYPTION_INFO_64
:
763 ret
= set_code_unprotect(
764 (struct encryption_info_command
*) lcp
,
765 addr
, map
, slide
, vp
,
766 header
->cputype
, header
->cpusubtype
);
767 if (ret
!= LOAD_SUCCESS
) {
768 printf("proc %d: set_code_unprotect() error %d "
770 p
->p_pid
, ret
, vp
->v_name
);
772 * Don't let the app run if it's
773 * encrypted but we failed to set up the
774 * decrypter. If the keys are missing it will
775 * return LOAD_DECRYPTFAIL.
777 if (ret
== LOAD_DECRYPTFAIL
) {
778 /* failed to load due to missing FP keys */
780 p
->p_lflag
|= P_LTERM_DECRYPTFAIL
;
788 /* Other commands are ignored by the kernel */
792 if (ret
!= LOAD_SUCCESS
)
795 if (ret
!= LOAD_SUCCESS
)
798 if (ret
== LOAD_SUCCESS
) {
799 if (! got_code_signatures
) {
800 struct cs_blob
*blob
;
801 /* no embedded signatures: look for detached ones */
802 blob
= ubc_cs_blob_get(vp
, -1, file_offset
);
804 /* get flags to be applied to the process */
805 result
->csflags
|= blob
->csb_flags
;
809 /* Make sure if we need dyld, we got it */
810 if (result
->needs_dynlinker
&& !dlp
) {
814 if ((ret
== LOAD_SUCCESS
) && (dlp
!= 0)) {
816 * load the dylinker, and slide it by the independent DYLD ASLR
817 * offset regardless of the PIE-ness of the main binary.
820 ret
= load_dylinker(dlp
, dlarchbits
, map
, thread
, depth
,
821 dyld_aslr_offset
, result
);
824 if((ret
== LOAD_SUCCESS
) && (depth
== 1)) {
825 if (result
->thread_count
== 0) {
832 kfree(kl_addr
, kl_size
);
837 #if CONFIG_CODE_DECRYPTION
839 #define APPLE_UNPROTECTED_HEADER_SIZE (3 * PAGE_SIZE_64)
848 vm_map_offset_t map_addr
,
849 vm_map_size_t map_size
)
854 * The first APPLE_UNPROTECTED_HEADER_SIZE bytes (from offset 0 of
855 * this part of a Universal binary) are not protected...
856 * The rest needs to be "transformed".
858 if (file_off
<= APPLE_UNPROTECTED_HEADER_SIZE
&&
859 file_off
+ file_size
<= APPLE_UNPROTECTED_HEADER_SIZE
) {
860 /* it's all unprotected, nothing to do... */
863 if (file_off
<= APPLE_UNPROTECTED_HEADER_SIZE
) {
865 * We start mapping in the unprotected area.
866 * Skip the unprotected part...
868 vm_map_offset_t delta
;
870 delta
= APPLE_UNPROTECTED_HEADER_SIZE
;
875 /* ... transform the rest of the mapping. */
876 struct pager_crypt_info crypt_info
;
877 crypt_info
.page_decrypt
= dsmos_page_transform
;
878 crypt_info
.crypt_ops
= NULL
;
879 crypt_info
.crypt_end
= NULL
;
880 #pragma unused(vp, macho_offset)
881 crypt_info
.crypt_ops
= (void *)0x2e69cf40;
882 kr
= vm_map_apple_protected(map
,
888 if (kr
!= KERN_SUCCESS
) {
893 #else /* CONFIG_CODE_DECRYPTION */
896 __unused
uint64_t file_off
,
897 __unused
uint64_t file_size
,
898 __unused
struct vnode
*vp
,
899 __unused off_t macho_offset
,
900 __unused vm_map_t map
,
901 __unused vm_map_offset_t map_addr
,
902 __unused vm_map_size_t map_size
)
906 #endif /* CONFIG_CODE_DECRYPTION */
911 struct load_command
*lcp
,
919 load_result_t
*result
922 struct segment_command_64 segment_command
, *scp
;
924 vm_map_offset_t map_addr
, map_offset
;
925 vm_map_size_t map_size
, seg_size
, delta_size
;
928 size_t segment_command_size
, total_section_size
,
930 boolean_t prohibit_pagezero_mapping
= FALSE
;
932 if (LC_SEGMENT_64
== lcp
->cmd
) {
933 segment_command_size
= sizeof(struct segment_command_64
);
934 single_section_size
= sizeof(struct section_64
);
936 segment_command_size
= sizeof(struct segment_command
);
937 single_section_size
= sizeof(struct section
);
939 if (lcp
->cmdsize
< segment_command_size
)
940 return (LOAD_BADMACHO
);
941 total_section_size
= lcp
->cmdsize
- segment_command_size
;
943 if (LC_SEGMENT_64
== lcp
->cmd
)
944 scp
= (struct segment_command_64
*)lcp
;
946 scp
= &segment_command
;
947 widen_segment_command((struct segment_command
*)lcp
, scp
);
951 * Make sure what we get from the file is really ours (as specified
954 if (scp
->fileoff
+ scp
->filesize
< scp
->fileoff
||
955 scp
->fileoff
+ scp
->filesize
> (uint64_t)macho_size
)
956 return (LOAD_BADMACHO
);
958 * Ensure that the number of sections specified would fit
959 * within the load command size.
961 if (total_section_size
/ single_section_size
< scp
->nsects
)
962 return (LOAD_BADMACHO
);
964 * Make sure the segment is page-aligned in the file.
966 if ((scp
->fileoff
& PAGE_MASK_64
) != 0)
967 return (LOAD_BADMACHO
);
970 * Round sizes to page size.
972 seg_size
= round_page_64(scp
->vmsize
);
973 map_size
= round_page_64(scp
->filesize
);
974 map_addr
= trunc_page_64(scp
->vmaddr
); /* JVXXX note that in XNU TOT this is round instead of trunc for 64 bits */
976 seg_size
= vm_map_round_page(seg_size
, vm_map_page_mask(map
));
977 map_size
= vm_map_round_page(map_size
, vm_map_page_mask(map
));
980 return (KERN_SUCCESS
);
984 (scp
->initprot
& VM_PROT_ALL
) == VM_PROT_NONE
&&
985 (scp
->maxprot
& VM_PROT_ALL
) == VM_PROT_NONE
) {
987 * For PIE, extend page zero rather than moving it. Extending
988 * page zero keeps early allocations from falling predictably
989 * between the end of page zero and the beginning of the first
994 /* XXX (4596982) this interferes with Rosetta, so limit to 64-bit tasks */
995 if (scp
->cmd
== LC_SEGMENT_64
) {
996 prohibit_pagezero_mapping
= TRUE
;
999 if (prohibit_pagezero_mapping
) {
1001 * This is a "page zero" segment: it starts at address 0,
1002 * is not mapped from the binary file and is not accessible.
1003 * User-space should never be able to access that memory, so
1004 * make it completely off limits by raising the VM map's
1007 ret
= vm_map_raise_min_offset(map
, seg_size
);
1008 if (ret
!= KERN_SUCCESS
) {
1009 return (LOAD_FAILURE
);
1011 return (LOAD_SUCCESS
);
1015 /* If a non-zero slide was specified by the caller, apply now */
1018 if (map_addr
< result
->min_vm_addr
)
1019 result
->min_vm_addr
= map_addr
;
1020 if (map_addr
+seg_size
> result
->max_vm_addr
)
1021 result
->max_vm_addr
= map_addr
+seg_size
;
1023 if (map
== VM_MAP_NULL
)
1024 return (LOAD_SUCCESS
);
1026 map_offset
= pager_offset
+ scp
->fileoff
; /* limited to 32 bits */
1029 initprot
= (scp
->initprot
) & VM_PROT_ALL
;
1030 maxprot
= (scp
->maxprot
) & VM_PROT_ALL
;
1032 * Map a copy of the file into the address space.
1034 ret
= vm_map_enter_mem_object_control(map
,
1035 &map_addr
, map_size
, (mach_vm_offset_t
)0,
1036 VM_FLAGS_FIXED
, control
, map_offset
, TRUE
,
1038 VM_INHERIT_DEFAULT
);
1039 if (ret
!= KERN_SUCCESS
) {
1040 return (LOAD_NOSPACE
);
1044 * If the file didn't end on a page boundary,
1045 * we need to zero the leftover.
1047 delta_size
= map_size
- scp
->filesize
;
1049 if (delta_size
> 0) {
1050 mach_vm_offset_t tmp
;
1052 ret
= mach_vm_allocate(kernel_map
, &tmp
, delta_size
, VM_FLAGS_ANYWHERE
);
1053 if (ret
!= KERN_SUCCESS
)
1054 return(LOAD_RESOURCE
);
1056 if (copyout(tmp
, map_addr
+ scp
->filesize
,
1058 (void) mach_vm_deallocate(
1059 kernel_map
, tmp
, delta_size
);
1060 return (LOAD_FAILURE
);
1063 (void) mach_vm_deallocate(kernel_map
, tmp
, delta_size
);
1069 * If the virtual size of the segment is greater
1070 * than the size from the file, we need to allocate
1071 * zero fill memory for the rest.
1073 delta_size
= seg_size
- map_size
;
1074 if (delta_size
> 0) {
1075 mach_vm_offset_t tmp
= map_addr
+ map_size
;
1077 ret
= mach_vm_map(map
, &tmp
, delta_size
, 0, VM_FLAGS_FIXED
,
1079 scp
->initprot
, scp
->maxprot
,
1080 VM_INHERIT_DEFAULT
);
1081 if (ret
!= KERN_SUCCESS
)
1082 return(LOAD_NOSPACE
);
1085 if ( (scp
->fileoff
== 0) && (scp
->filesize
!= 0) )
1086 result
->mach_header
= map_addr
;
1088 if (scp
->flags
& SG_PROTECTED_VERSION_1
) {
1089 ret
= unprotect_segment(scp
->fileoff
,
1099 if (LOAD_SUCCESS
== ret
&& filetype
== MH_DYLINKER
&&
1100 result
->all_image_info_addr
== MACH_VM_MIN_ADDRESS
)
1101 note_all_image_info_section(scp
,
1102 LC_SEGMENT_64
== lcp
->cmd
, single_section_size
,
1103 (const char *)lcp
+ segment_command_size
, slide
, result
);
1105 if ((result
->entry_point
>= map_addr
) && (result
->entry_point
< (map_addr
+ map_size
)))
1106 result
->validentry
= 1;
1114 struct uuid_command
*uulp
,
1116 load_result_t
*result
1120 * We need to check the following for this command:
1121 * - The command size should be atleast the size of struct uuid_command
1122 * - The UUID part of the command should be completely within the mach-o header
1125 if ((uulp
->cmdsize
< sizeof(struct uuid_command
)) ||
1126 (((char *)uulp
+ sizeof(struct uuid_command
)) > command_end
)) {
1127 return (LOAD_BADMACHO
);
1130 memcpy(&result
->uuid
[0], &uulp
->uuid
[0], sizeof(result
->uuid
));
1131 return (LOAD_SUCCESS
);
1137 struct entry_point_command
*epc
,
1140 load_result_t
*result
1143 mach_vm_offset_t addr
;
1146 if (epc
->cmdsize
< sizeof(*epc
))
1147 return (LOAD_BADMACHO
);
1148 if (result
->thread_count
!= 0) {
1149 printf("load_main: already have a thread!");
1150 return (LOAD_FAILURE
);
1153 if (thread
== THREAD_NULL
)
1154 return (LOAD_SUCCESS
);
1156 /* LC_MAIN specifies stack size but not location */
1157 if (epc
->stacksize
) {
1158 result
->prog_stack_size
= 1;
1159 result
->user_stack_size
= epc
->stacksize
;
1161 result
->prog_stack_size
= 0;
1162 result
->user_stack_size
= MAXSSIZ
;
1164 result
->prog_allocated_stack
= 0;
1166 /* use default location for stack */
1167 ret
= thread_userstackdefault(thread
, &addr
);
1168 if (ret
!= KERN_SUCCESS
)
1169 return(LOAD_FAILURE
);
1171 /* The stack slides down from the default location */
1172 result
->user_stack
= addr
;
1173 result
->user_stack
-= slide
;
1175 /* kernel does *not* use entryoff from LC_MAIN. Dyld uses it. */
1176 result
->needs_dynlinker
= TRUE
;
1177 result
->validentry
= TRUE
;
1179 ret
= thread_state_initialize( thread
);
1180 if (ret
!= KERN_SUCCESS
) {
1181 return(LOAD_FAILURE
);
1184 result
->unixproc
= TRUE
;
1185 result
->thread_count
++;
1187 return(LOAD_SUCCESS
);
1194 struct thread_command
*tcp
,
1197 load_result_t
*result
1202 mach_vm_offset_t addr
;
1204 if (tcp
->cmdsize
< sizeof(*tcp
))
1205 return (LOAD_BADMACHO
);
1206 if (result
->thread_count
!= 0) {
1207 printf("load_unixthread: already have a thread!");
1208 return (LOAD_FAILURE
);
1211 if (thread
== THREAD_NULL
)
1212 return (LOAD_SUCCESS
);
1214 ret
= load_threadstack(thread
,
1215 (uint32_t *)(((vm_offset_t
)tcp
) +
1216 sizeof(struct thread_command
)),
1217 tcp
->cmdsize
- sizeof(struct thread_command
),
1220 if (ret
!= LOAD_SUCCESS
)
1223 /* LC_UNIXTHREAD optionally specifies stack size and location */
1226 result
->prog_stack_size
= 0; /* unknown */
1227 result
->prog_allocated_stack
= 1;
1229 result
->prog_allocated_stack
= 0;
1230 result
->prog_stack_size
= 0;
1231 result
->user_stack_size
= MAXSSIZ
;
1234 /* The stack slides down from the default location */
1235 result
->user_stack
= addr
;
1236 result
->user_stack
-= slide
;
1238 ret
= load_threadentry(thread
,
1239 (uint32_t *)(((vm_offset_t
)tcp
) +
1240 sizeof(struct thread_command
)),
1241 tcp
->cmdsize
- sizeof(struct thread_command
),
1243 if (ret
!= LOAD_SUCCESS
)
1246 result
->entry_point
= addr
;
1247 result
->entry_point
+= slide
;
1249 ret
= load_threadstate(thread
,
1250 (uint32_t *)(((vm_offset_t
)tcp
) +
1251 sizeof(struct thread_command
)),
1252 tcp
->cmdsize
- sizeof(struct thread_command
));
1253 if (ret
!= LOAD_SUCCESS
)
1256 result
->unixproc
= TRUE
;
1257 result
->thread_count
++;
1259 return(LOAD_SUCCESS
);
1273 uint32_t thread_size
;
1275 ret
= thread_state_initialize( thread
);
1276 if (ret
!= KERN_SUCCESS
) {
1277 return(LOAD_FAILURE
);
1281 * Set the new thread state; iterate through the state flavors in
1284 while (total_size
> 0) {
1287 if (UINT32_MAX
-2 < size
||
1288 UINT32_MAX
/sizeof(uint32_t) < size
+2)
1289 return (LOAD_BADMACHO
);
1290 thread_size
= (size
+2)*sizeof(uint32_t);
1291 if (thread_size
> total_size
)
1292 return(LOAD_BADMACHO
);
1293 total_size
-= thread_size
;
1295 * Third argument is a kernel space pointer; it gets cast
1296 * to the appropriate type in machine_thread_set_state()
1297 * based on the value of flavor.
1299 ret
= thread_setstatus(thread
, flavor
, (thread_state_t
)ts
, size
);
1300 if (ret
!= KERN_SUCCESS
) {
1301 return(LOAD_FAILURE
);
1303 ts
+= size
; /* ts is a (uint32_t *) */
1305 return(LOAD_SUCCESS
);
1313 uint32_t total_size
,
1314 mach_vm_offset_t
*user_stack
,
1321 uint32_t stack_size
;
1323 while (total_size
> 0) {
1326 if (UINT32_MAX
-2 < size
||
1327 UINT32_MAX
/sizeof(uint32_t) < size
+2)
1328 return (LOAD_BADMACHO
);
1329 stack_size
= (size
+2)*sizeof(uint32_t);
1330 if (stack_size
> total_size
)
1331 return(LOAD_BADMACHO
);
1332 total_size
-= stack_size
;
1335 * Third argument is a kernel space pointer; it gets cast
1336 * to the appropriate type in thread_userstack() based on
1337 * the value of flavor.
1339 ret
= thread_userstack(thread
, flavor
, (thread_state_t
)ts
, size
, user_stack
, customstack
);
1340 if (ret
!= KERN_SUCCESS
) {
1341 return(LOAD_FAILURE
);
1343 ts
+= size
; /* ts is a (uint32_t *) */
1345 return(LOAD_SUCCESS
);
1353 uint32_t total_size
,
1354 mach_vm_offset_t
*entry_point
1360 uint32_t entry_size
;
1363 * Set the thread state.
1365 *entry_point
= MACH_VM_MIN_ADDRESS
;
1366 while (total_size
> 0) {
1369 if (UINT32_MAX
-2 < size
||
1370 UINT32_MAX
/sizeof(uint32_t) < size
+2)
1371 return (LOAD_BADMACHO
);
1372 entry_size
= (size
+2)*sizeof(uint32_t);
1373 if (entry_size
> total_size
)
1374 return(LOAD_BADMACHO
);
1375 total_size
-= entry_size
;
1377 * Third argument is a kernel space pointer; it gets cast
1378 * to the appropriate type in thread_entrypoint() based on
1379 * the value of flavor.
1381 ret
= thread_entrypoint(thread
, flavor
, (thread_state_t
)ts
, size
, entry_point
);
1382 if (ret
!= KERN_SUCCESS
) {
1383 return(LOAD_FAILURE
);
1385 ts
+= size
; /* ts is a (uint32_t *) */
1387 return(LOAD_SUCCESS
);
1391 struct nameidata __nid
;
1392 union macho_vnode_header
{
1393 struct mach_header mach_header
;
1394 struct fat_header fat_header
;
1399 static load_return_t
1401 struct dylinker_command
*lcp
,
1407 load_result_t
*result
1412 struct vnode
*vp
= NULLVP
; /* set by get_macho_vnode() */
1413 struct mach_header
*header
;
1414 off_t file_offset
= 0; /* set by get_macho_vnode() */
1415 off_t macho_size
= 0; /* set by get_macho_vnode() */
1416 load_result_t
*myresult
;
1418 struct macho_data
*macho_data
;
1420 struct mach_header __header
;
1421 load_result_t __myresult
;
1422 struct macho_data __macho_data
;
1425 if (lcp
->cmdsize
< sizeof(*lcp
))
1426 return (LOAD_BADMACHO
);
1428 name
= (char *)lcp
+ lcp
->name
.offset
;
1430 * Check for a proper null terminated string.
1434 if (p
>= (char *)lcp
+ lcp
->cmdsize
)
1435 return(LOAD_BADMACHO
);
1438 /* Allocate wad-of-data from heap to reduce excessively deep stacks */
1440 MALLOC(dyld_data
, void *, sizeof (*dyld_data
), M_TEMP
, M_WAITOK
);
1441 header
= &dyld_data
->__header
;
1442 myresult
= &dyld_data
->__myresult
;
1443 macho_data
= &dyld_data
->__macho_data
;
1445 ret
= get_macho_vnode(name
, archbits
, header
,
1446 &file_offset
, &macho_size
, macho_data
, &vp
);
1450 *myresult
= load_result_null
;
1453 * First try to map dyld in directly. This should work most of
1454 * the time since there shouldn't normally be something already
1455 * mapped to its address.
1458 ret
= parse_machfile(vp
, map
, thread
, header
, file_offset
,
1459 macho_size
, depth
, slide
, 0, myresult
);
1462 * If it turned out something was in the way, then we'll take
1463 * take this longer path to preflight dyld's vm ranges, then
1464 * map it at a free location in the address space.
1467 if (ret
== LOAD_NOSPACE
) {
1468 mach_vm_offset_t dyl_start
, map_addr
;
1469 mach_vm_size_t dyl_length
;
1470 int64_t slide_amount
;
1472 *myresult
= load_result_null
;
1475 * Preflight parsing the Mach-O file with a NULL
1476 * map, which will return the ranges needed for a
1477 * subsequent map attempt (with a slide) in "myresult"
1479 ret
= parse_machfile(vp
, VM_MAP_NULL
, THREAD_NULL
, header
,
1480 file_offset
, macho_size
, depth
,
1481 0 /* slide */, 0, myresult
);
1483 if (ret
!= LOAD_SUCCESS
) {
1487 dyl_start
= myresult
->min_vm_addr
;
1488 dyl_length
= myresult
->max_vm_addr
- myresult
->min_vm_addr
;
1490 dyl_length
+= slide
;
1492 /* To find an appropriate load address, do a quick allocation */
1493 map_addr
= dyl_start
;
1494 ret
= mach_vm_allocate(map
, &map_addr
, dyl_length
, VM_FLAGS_ANYWHERE
);
1495 if (ret
!= KERN_SUCCESS
) {
1500 ret
= mach_vm_deallocate(map
, map_addr
, dyl_length
);
1501 if (ret
!= KERN_SUCCESS
) {
1506 if (map_addr
< dyl_start
)
1507 slide_amount
= -(int64_t)(dyl_start
- map_addr
);
1509 slide_amount
= (int64_t)(map_addr
- dyl_start
);
1511 slide_amount
+= slide
;
1513 *myresult
= load_result_null
;
1515 ret
= parse_machfile(vp
, map
, thread
, header
,
1516 file_offset
, macho_size
, depth
,
1517 slide_amount
, 0, myresult
);
1524 if (ret
== LOAD_SUCCESS
) {
1525 result
->dynlinker
= TRUE
;
1526 result
->entry_point
= myresult
->entry_point
;
1527 result
->validentry
= myresult
->validentry
;
1528 result
->all_image_info_addr
= myresult
->all_image_info_addr
;
1529 result
->all_image_info_size
= myresult
->all_image_info_size
;
1534 FREE(dyld_data
, M_TEMP
);
1539 static load_return_t
1540 load_code_signature(
1541 struct linkedit_data_command
*lcp
,
1546 load_result_t
*result
)
1552 struct cs_blob
*blob
;
1554 vm_size_t blob_size
;
1559 if (lcp
->cmdsize
!= sizeof (struct linkedit_data_command
) ||
1560 lcp
->dataoff
+ lcp
->datasize
> macho_size
) {
1561 ret
= LOAD_BADMACHO
;
1565 blob
= ubc_cs_blob_get(vp
, cputype
, -1);
1567 blob
->csb_cpu_type
== cputype
&&
1568 blob
->csb_base_offset
== macho_offset
&&
1569 blob
->csb_blob_offset
== lcp
->dataoff
&&
1570 blob
->csb_mem_size
== lcp
->datasize
) {
1572 * we already have a blob for this vnode and cputype
1573 * and its at the same offset in Mach-O. Optimize to
1574 * not reload, revalidate, and compare the blob hashes.
1575 * Security will not be compromised, but we might miss
1576 * out on some messagetracer info about the differences
1583 blob_size
= lcp
->datasize
;
1584 kr
= ubc_cs_blob_allocate(&addr
, &blob_size
);
1585 if (kr
!= KERN_SUCCESS
) {
1591 error
= vn_rdwr(UIO_READ
,
1595 macho_offset
+ lcp
->dataoff
,
1601 if (error
|| resid
!= 0) {
1606 if (ubc_cs_blob_add(vp
,
1615 /* ubc_cs_blob_add() has consumed "addr" */
1619 #if CHECK_CS_VALIDATION_BITMAP
1620 ubc_cs_validation_bitmap_allocate( vp
);
1623 blob
= ubc_cs_blob_get(vp
, cputype
, -1);
1627 if (result
&& ret
== LOAD_SUCCESS
) {
1628 result
->csflags
|= blob
->csb_flags
;
1631 ubc_cs_blob_deallocate(addr
, blob_size
);
1639 #if CONFIG_CODE_DECRYPTION
1641 static load_return_t
1643 struct encryption_info_command
*eip
,
1649 cpu_subtype_t cpusubtype
)
1652 pager_crypt_info_t crypt_info
;
1653 const char * cryptname
= 0;
1657 struct segment_command_64
*seg64
;
1658 struct segment_command
*seg32
;
1659 vm_map_offset_t map_offset
, map_size
;
1662 if (eip
->cmdsize
< sizeof(*eip
)) return LOAD_BADMACHO
;
1664 switch(eip
->cryptid
) {
1666 /* not encrypted, just an empty load command */
1667 return LOAD_SUCCESS
;
1669 cryptname
="com.apple.unfree";
1672 /* some random cryptid that you could manually put into
1673 * your binary if you want NULL */
1674 cryptname
="com.apple.null";
1677 return LOAD_BADMACHO
;
1680 if (map
== VM_MAP_NULL
) return (LOAD_SUCCESS
);
1681 if (NULL
== text_crypter_create
) return LOAD_FAILURE
;
1683 MALLOC_ZONE(vpath
, char *, MAXPATHLEN
, M_NAMEI
, M_WAITOK
);
1684 if(vpath
== NULL
) return LOAD_FAILURE
;
1687 result
= vn_getpath(vp
, vpath
, &len
);
1689 FREE_ZONE(vpath
, MAXPATHLEN
, M_NAMEI
);
1690 return LOAD_FAILURE
;
1693 /* set up decrypter first */
1694 crypt_file_data_t crypt_data
= {
1697 .cpusubtype
= cpusubtype
};
1698 kr
=text_crypter_create(&crypt_info
, cryptname
, (void*)&crypt_data
);
1699 FREE_ZONE(vpath
, MAXPATHLEN
, M_NAMEI
);
1702 printf("set_code_unprotect: unable to create decrypter %s, kr=%d\n",
1704 if (kr
== kIOReturnNotPrivileged
) {
1705 /* text encryption returned decryption failure */
1706 return(LOAD_DECRYPTFAIL
);
1708 return LOAD_RESOURCE
;
1711 /* this is terrible, but we have to rescan the load commands to find the
1712 * virtual address of this encrypted stuff. This code is gonna look like
1713 * the dyld source one day... */
1714 struct mach_header
*header
= (struct mach_header
*)addr
;
1715 size_t mach_header_sz
= sizeof(struct mach_header
);
1716 if (header
->magic
== MH_MAGIC_64
||
1717 header
->magic
== MH_CIGAM_64
) {
1718 mach_header_sz
= sizeof(struct mach_header_64
);
1720 offset
= mach_header_sz
;
1721 uint32_t ncmds
= header
->ncmds
;
1724 * Get a pointer to the command.
1726 struct load_command
*lcp
= (struct load_command
*)(addr
+ offset
);
1727 offset
+= lcp
->cmdsize
;
1731 seg64
= (struct segment_command_64
*)lcp
;
1732 if ((seg64
->fileoff
<= eip
->cryptoff
) &&
1733 (seg64
->fileoff
+seg64
->filesize
>=
1734 eip
->cryptoff
+eip
->cryptsize
)) {
1735 map_offset
= seg64
->vmaddr
+ eip
->cryptoff
- seg64
->fileoff
+ slide
;
1736 map_size
= eip
->cryptsize
;
1740 seg32
= (struct segment_command
*)lcp
;
1741 if ((seg32
->fileoff
<= eip
->cryptoff
) &&
1742 (seg32
->fileoff
+seg32
->filesize
>=
1743 eip
->cryptoff
+eip
->cryptsize
)) {
1744 map_offset
= seg32
->vmaddr
+ eip
->cryptoff
- seg32
->fileoff
+ slide
;
1745 map_size
= eip
->cryptsize
;
1751 /* if we get here, did not find anything */
1752 return LOAD_BADMACHO
;
1755 /* now remap using the decrypter */
1756 kr
= vm_map_apple_protected(map
, map_offset
, map_offset
+map_size
, &crypt_info
);
1758 printf("set_code_unprotect(): mapping failed with %x\n", kr
);
1759 crypt_info
.crypt_end(crypt_info
.crypt_ops
);
1760 return LOAD_PROTECT
;
1763 return LOAD_SUCCESS
;
1769 * This routine exists to support the load_dylinker().
1771 * This routine has its own, separate, understanding of the FAT file format,
1772 * which is terrifically unfortunate.
1779 struct mach_header
*mach_header
,
1782 struct macho_data
*data
,
1787 vfs_context_t ctx
= vfs_context_current();
1788 proc_t p
= vfs_context_proc(ctx
);
1789 kauth_cred_t kerncred
;
1790 struct nameidata
*ndp
= &data
->__nid
;
1792 struct fat_arch fat_arch
;
1795 union macho_vnode_header
*header
= &data
->__header
;
1796 off_t fsize
= (off_t
)0;
1799 * Capture the kernel credential for use in the actual read of the
1800 * file, since the user doing the execution may have execute rights
1801 * but not read rights, but to exec something, we have to either map
1802 * or read it into the new process address space, which requires
1803 * read rights. This is to deal with lack of common credential
1804 * serialization code which would treat NOCRED as "serialize 'root'".
1806 kerncred
= vfs_context_ucred(vfs_context_kernel());
1808 /* init the namei data to point the file user's program name */
1809 NDINIT(ndp
, LOOKUP
, OP_OPEN
, FOLLOW
| LOCKLEAF
, UIO_SYSSPACE
, CAST_USER_ADDR_T(path
), ctx
);
1811 if ((error
= namei(ndp
)) != 0) {
1812 if (error
== ENOENT
) {
1813 error
= LOAD_ENOENT
;
1815 error
= LOAD_FAILURE
;
1822 /* check for regular file */
1823 if (vp
->v_type
!= VREG
) {
1824 error
= LOAD_PROTECT
;
1829 if ((error
= vnode_size(vp
, &fsize
, ctx
)) != 0) {
1830 error
= LOAD_FAILURE
;
1834 /* Check mount point */
1835 if (vp
->v_mount
->mnt_flag
& MNT_NOEXEC
) {
1836 error
= LOAD_PROTECT
;
1841 if ((error
= vnode_authorize(vp
, NULL
, KAUTH_VNODE_EXECUTE
| KAUTH_VNODE_READ_DATA
, ctx
)) != 0) {
1842 error
= LOAD_PROTECT
;
1846 /* try to open it */
1847 if ((error
= VNOP_OPEN(vp
, FREAD
, ctx
)) != 0) {
1848 error
= LOAD_PROTECT
;
1852 if ((error
= vn_rdwr(UIO_READ
, vp
, (caddr_t
)header
, sizeof (*header
), 0,
1853 UIO_SYSSPACE
, IO_NODELOCKED
, kerncred
, &resid
, p
)) != 0) {
1854 error
= LOAD_IOERROR
;
1858 if (header
->mach_header
.magic
== MH_MAGIC
||
1859 header
->mach_header
.magic
== MH_MAGIC_64
) {
1861 } else if (header
->fat_header
.magic
== FAT_MAGIC
||
1862 header
->fat_header
.magic
== FAT_CIGAM
) {
1865 error
= LOAD_BADMACHO
;
1870 /* Look up our architecture in the fat file. */
1871 error
= fatfile_getarch_with_bits(vp
, archbits
,
1872 (vm_offset_t
)(&header
->fat_header
), &fat_arch
);
1873 if (error
!= LOAD_SUCCESS
)
1876 /* Read the Mach-O header out of it */
1877 error
= vn_rdwr(UIO_READ
, vp
, (caddr_t
)&header
->mach_header
,
1878 sizeof (header
->mach_header
), fat_arch
.offset
,
1879 UIO_SYSSPACE
, IO_NODELOCKED
, kerncred
, &resid
, p
);
1881 error
= LOAD_IOERROR
;
1885 /* Is this really a Mach-O? */
1886 if (header
->mach_header
.magic
!= MH_MAGIC
&&
1887 header
->mach_header
.magic
!= MH_MAGIC_64
) {
1888 error
= LOAD_BADMACHO
;
1892 *file_offset
= fat_arch
.offset
;
1893 *macho_size
= fat_arch
.size
;
1896 * Force get_macho_vnode() to fail if the architecture bits
1897 * do not match the expected architecture bits. This in
1898 * turn causes load_dylinker() to fail for the same reason,
1899 * so it ensures the dynamic linker and the binary are in
1900 * lock-step. This is potentially bad, if we ever add to
1901 * the CPU_ARCH_* bits any bits that are desirable but not
1902 * required, since the dynamic linker might work, but we will
1903 * refuse to load it because of this check.
1905 if ((cpu_type_t
)(header
->mach_header
.cputype
& CPU_ARCH_MASK
) != archbits
) {
1906 error
= LOAD_BADARCH
;
1911 *macho_size
= fsize
;
1914 *mach_header
= header
->mach_header
;
1917 ubc_setsize(vp
, fsize
);
1921 (void) VNOP_CLOSE(vp
, FREAD
, ctx
);