]> git.saurik.com Git - apple/xnu.git/blob - bsd/kern/kern_resource.c
xnu-2422.90.20.tar.gz
[apple/xnu.git] / bsd / kern / kern_resource.c
1 /*
2 * Copyright (c) 2000-2008 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /* Copyright (c) 1995, 1997 Apple Computer, Inc. All Rights Reserved */
29 /*-
30 * Copyright (c) 1982, 1986, 1991, 1993
31 * The Regents of the University of California. All rights reserved.
32 * (c) UNIX System Laboratories, Inc.
33 * All or some portions of this file are derived from material licensed
34 * to the University of California by American Telephone and Telegraph
35 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
36 * the permission of UNIX System Laboratories, Inc.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. All advertising materials mentioning features or use of this software
47 * must display the following acknowledgement:
48 * This product includes software developed by the University of
49 * California, Berkeley and its contributors.
50 * 4. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 * @(#)kern_resource.c 8.5 (Berkeley) 1/21/94
67 */
68 /*
69 * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
70 * support for mandatory and extensible security protections. This notice
71 * is included in support of clause 2.2 (b) of the Apple Public License,
72 * Version 2.0.
73 */
74
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/sysctl.h>
78 #include <sys/kernel.h>
79 #include <sys/file_internal.h>
80 #include <sys/resourcevar.h>
81 #include <sys/malloc.h>
82 #include <sys/proc_internal.h>
83 #include <sys/kauth.h>
84 #include <machine/spl.h>
85
86 #include <sys/mount_internal.h>
87 #include <sys/sysproto.h>
88
89 #include <security/audit/audit.h>
90
91 #include <machine/vmparam.h>
92
93 #include <mach/mach_types.h>
94 #include <mach/time_value.h>
95 #include <mach/task.h>
96 #include <mach/task_info.h>
97 #include <mach/vm_map.h>
98 #include <mach/mach_vm.h>
99 #include <mach/thread_act.h> /* for thread_policy_set( ) */
100 #include <kern/lock.h>
101 #include <kern/thread.h>
102
103 #include <kern/task.h>
104 #include <kern/clock.h> /* for absolutetime_to_microtime() */
105 #include <netinet/in.h> /* for TRAFFIC_MGT_SO_* */
106 #include <sys/socketvar.h> /* for struct socket */
107
108 #include <vm/vm_map.h>
109
110 #include <kern/assert.h>
111 #include <sys/resource.h>
112
113 int donice(struct proc *curp, struct proc *chgp, int n);
114 int dosetrlimit(struct proc *p, u_int which, struct rlimit *limp);
115 int uthread_get_background_state(uthread_t);
116 static void do_background_socket(struct proc *p, thread_t thread, int priority);
117 static int do_background_thread(struct proc *curp, thread_t thread, int priority);
118 static int do_background_proc(struct proc *curp, struct proc *targetp, int priority);
119 static int get_background_proc(struct proc *curp, struct proc *targetp, int *priority);
120 void proc_apply_task_networkbg_internal(proc_t, thread_t);
121 void proc_restore_task_networkbg_internal(proc_t, thread_t);
122 int proc_pid_rusage(int pid, int flavor, user_addr_t buf, int32_t *retval);
123 void gather_rusage_info_v2(proc_t p, struct rusage_info_v2 *ru, int flavor);
124 int fill_task_rusage_v2(task_t task, struct rusage_info_v2 *ri);
125 static void rusage_info_v2_to_v0(struct rusage_info_v0 *ri_v0, struct rusage_info_v2 *ri_v2);
126 static void rusage_info_v2_to_v1(struct rusage_info_v1 *ri_v1, struct rusage_info_v2 *ri_v2);
127
128 int proc_get_rusage(proc_t p, int flavor, user_addr_t buffer, __unused int is_zombie);
129
130 rlim_t maxdmap = MAXDSIZ; /* XXX */
131 rlim_t maxsmap = MAXSSIZ - PAGE_SIZE; /* XXX */
132
133 /*
134 * Limits on the number of open files per process, and the number
135 * of child processes per process.
136 *
137 * Note: would be in kern/subr_param.c in FreeBSD.
138 */
139 __private_extern__ int maxfilesperproc = OPEN_MAX; /* per-proc open files limit */
140
141 SYSCTL_INT(_kern, KERN_MAXPROCPERUID, maxprocperuid, CTLFLAG_RW | CTLFLAG_LOCKED,
142 &maxprocperuid, 0, "Maximum processes allowed per userid" );
143
144 SYSCTL_INT(_kern, KERN_MAXFILESPERPROC, maxfilesperproc, CTLFLAG_RW | CTLFLAG_LOCKED,
145 &maxfilesperproc, 0, "Maximum files allowed open per process" );
146
147 /* Args and fn for proc_iteration callback used in setpriority */
148 struct puser_nice_args {
149 proc_t curp;
150 int prio;
151 id_t who;
152 int * foundp;
153 int * errorp;
154 };
155 static int puser_donice_callback(proc_t p, void * arg);
156
157
158 /* Args and fn for proc_iteration callback used in setpriority */
159 struct ppgrp_nice_args {
160 proc_t curp;
161 int prio;
162 int * foundp;
163 int * errorp;
164 };
165 static int ppgrp_donice_callback(proc_t p, void * arg);
166
167 /*
168 * Resource controls and accounting.
169 */
170 int
171 getpriority(struct proc *curp, struct getpriority_args *uap, int32_t *retval)
172 {
173 struct proc *p;
174 int low = PRIO_MAX + 1;
175 kauth_cred_t my_cred;
176 int refheld = 0;
177 int error = 0;
178
179 /* would also test (uap->who < 0), but id_t is unsigned */
180 if (uap->who > 0x7fffffff)
181 return (EINVAL);
182
183 switch (uap->which) {
184
185 case PRIO_PROCESS:
186 if (uap->who == 0) {
187 p = curp;
188 low = p->p_nice;
189 } else {
190 p = proc_find(uap->who);
191 if (p == 0)
192 break;
193 low = p->p_nice;
194 proc_rele(p);
195
196 }
197 break;
198
199 case PRIO_PGRP: {
200 struct pgrp *pg = PGRP_NULL;
201
202 if (uap->who == 0) {
203 /* returns the pgrp to ref */
204 pg = proc_pgrp(curp);
205 } else if ((pg = pgfind(uap->who)) == PGRP_NULL) {
206 break;
207 }
208 /* No need for iteration as it is a simple scan */
209 pgrp_lock(pg);
210 for (p = pg->pg_members.lh_first; p != 0; p = p->p_pglist.le_next) {
211 if (p->p_nice < low)
212 low = p->p_nice;
213 }
214 pgrp_unlock(pg);
215 pg_rele(pg);
216 break;
217 }
218
219 case PRIO_USER:
220 if (uap->who == 0)
221 uap->who = kauth_cred_getuid(kauth_cred_get());
222
223 proc_list_lock();
224
225 for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
226 my_cred = kauth_cred_proc_ref(p);
227 if (kauth_cred_getuid(my_cred) == uap->who &&
228 p->p_nice < low)
229 low = p->p_nice;
230 kauth_cred_unref(&my_cred);
231 }
232
233 proc_list_unlock();
234
235 break;
236
237 case PRIO_DARWIN_THREAD:
238 /* we currently only support the current thread */
239 if (uap->who != 0)
240 return (EINVAL);
241
242 low = proc_get_task_policy(current_task(), current_thread(), TASK_POLICY_INTERNAL, TASK_POLICY_DARWIN_BG);
243
244 break;
245
246 case PRIO_DARWIN_PROCESS:
247 if (uap->who == 0) {
248 p = curp;
249 } else {
250 p = proc_find(uap->who);
251 if (p == PROC_NULL)
252 break;
253 refheld = 1;
254 }
255
256 error = get_background_proc(curp, p, &low);
257
258 if (refheld)
259 proc_rele(p);
260 if (error)
261 return (error);
262 break;
263
264 default:
265 return (EINVAL);
266 }
267 if (low == PRIO_MAX + 1)
268 return (ESRCH);
269 *retval = low;
270 return (0);
271 }
272
273 /* call back function used for proc iteration in PRIO_USER */
274 static int
275 puser_donice_callback(proc_t p, void * arg)
276 {
277 int error, n;
278 struct puser_nice_args * pun = (struct puser_nice_args *)arg;
279 kauth_cred_t my_cred;
280
281 my_cred = kauth_cred_proc_ref(p);
282 if (kauth_cred_getuid(my_cred) == pun->who) {
283 error = donice(pun->curp, p, pun->prio);
284 if (pun->errorp != NULL)
285 *pun->errorp = error;
286 if (pun->foundp != NULL) {
287 n = *pun->foundp;
288 *pun->foundp = n+1;
289 }
290 }
291 kauth_cred_unref(&my_cred);
292
293 return(PROC_RETURNED);
294 }
295
296 /* call back function used for proc iteration in PRIO_PGRP */
297 static int
298 ppgrp_donice_callback(proc_t p, void * arg)
299 {
300 int error;
301 struct ppgrp_nice_args * pun = (struct ppgrp_nice_args *)arg;
302 int n;
303
304 error = donice(pun->curp, p, pun->prio);
305 if (pun->errorp != NULL)
306 *pun->errorp = error;
307 if (pun->foundp!= NULL) {
308 n = *pun->foundp;
309 *pun->foundp = n+1;
310 }
311
312 return(PROC_RETURNED);
313 }
314
315 /*
316 * Returns: 0 Success
317 * EINVAL
318 * ESRCH
319 * donice:EPERM
320 * donice:EACCES
321 */
322 /* ARGSUSED */
323 int
324 setpriority(struct proc *curp, struct setpriority_args *uap, __unused int32_t *retval)
325 {
326 struct proc *p;
327 int found = 0, error = 0;
328 int refheld = 0;
329
330 AUDIT_ARG(cmd, uap->which);
331 AUDIT_ARG(owner, uap->who, 0);
332 AUDIT_ARG(value32, uap->prio);
333
334 /* would also test (uap->who < 0), but id_t is unsigned */
335 if (uap->who > 0x7fffffff)
336 return (EINVAL);
337
338 switch (uap->which) {
339
340 case PRIO_PROCESS:
341 if (uap->who == 0)
342 p = curp;
343 else {
344 p = proc_find(uap->who);
345 if (p == 0)
346 break;
347 refheld = 1;
348 }
349 error = donice(curp, p, uap->prio);
350 found++;
351 if (refheld != 0)
352 proc_rele(p);
353 break;
354
355 case PRIO_PGRP: {
356 struct pgrp *pg = PGRP_NULL;
357 struct ppgrp_nice_args ppgrp;
358
359 if (uap->who == 0) {
360 pg = proc_pgrp(curp);
361 } else if ((pg = pgfind(uap->who)) == PGRP_NULL)
362 break;
363
364 ppgrp.curp = curp;
365 ppgrp.prio = uap->prio;
366 ppgrp.foundp = &found;
367 ppgrp.errorp = &error;
368
369 /* PGRP_DROPREF drops the reference on process group */
370 pgrp_iterate(pg, PGRP_DROPREF, ppgrp_donice_callback, (void *)&ppgrp, NULL, NULL);
371
372 break;
373 }
374
375 case PRIO_USER: {
376 struct puser_nice_args punice;
377
378 if (uap->who == 0)
379 uap->who = kauth_cred_getuid(kauth_cred_get());
380
381 punice.curp = curp;
382 punice.prio = uap->prio;
383 punice.who = uap->who;
384 punice.foundp = &found;
385 error = 0;
386 punice.errorp = &error;
387 proc_iterate(PROC_ALLPROCLIST, puser_donice_callback, (void *)&punice, NULL, NULL);
388
389 break;
390 }
391
392 case PRIO_DARWIN_THREAD: {
393 /* we currently only support the current thread */
394 if (uap->who != 0)
395 return (EINVAL);
396
397 error = do_background_thread(curp, current_thread(), uap->prio);
398 found++;
399 break;
400 }
401
402 case PRIO_DARWIN_PROCESS: {
403 if (uap->who == 0)
404 p = curp;
405 else {
406 p = proc_find(uap->who);
407 if (p == 0)
408 break;
409 refheld = 1;
410 }
411
412 error = do_background_proc(curp, p, uap->prio);
413
414 found++;
415 if (refheld != 0)
416 proc_rele(p);
417 break;
418 }
419
420 default:
421 return (EINVAL);
422 }
423 if (found == 0)
424 return (ESRCH);
425 return (error);
426 }
427
428
429 /*
430 * Returns: 0 Success
431 * EPERM
432 * EACCES
433 * mac_check_proc_sched:???
434 */
435 int
436 donice(struct proc *curp, struct proc *chgp, int n)
437 {
438 int error = 0;
439 kauth_cred_t ucred;
440 kauth_cred_t my_cred;
441
442 ucred = kauth_cred_proc_ref(curp);
443 my_cred = kauth_cred_proc_ref(chgp);
444
445 if (suser(ucred, NULL) && kauth_cred_getruid(ucred) &&
446 kauth_cred_getuid(ucred) != kauth_cred_getuid(my_cred) &&
447 kauth_cred_getruid(ucred) != kauth_cred_getuid(my_cred)) {
448 error = EPERM;
449 goto out;
450 }
451 if (n > PRIO_MAX)
452 n = PRIO_MAX;
453 if (n < PRIO_MIN)
454 n = PRIO_MIN;
455 if (n < chgp->p_nice && suser(ucred, &curp->p_acflag)) {
456 error = EACCES;
457 goto out;
458 }
459 #if CONFIG_MACF
460 error = mac_proc_check_sched(curp, chgp);
461 if (error)
462 goto out;
463 #endif
464 proc_lock(chgp);
465 chgp->p_nice = n;
466 proc_unlock(chgp);
467 (void)resetpriority(chgp);
468 out:
469 kauth_cred_unref(&ucred);
470 kauth_cred_unref(&my_cred);
471 return (error);
472 }
473
474 static int
475 get_background_proc(struct proc *curp, struct proc *targetp, int *priority)
476 {
477 int external = 0;
478 int error = 0;
479 kauth_cred_t ucred, target_cred;
480
481 ucred = kauth_cred_get();
482 target_cred = kauth_cred_proc_ref(targetp);
483
484 if (!kauth_cred_issuser(ucred) && kauth_cred_getruid(ucred) &&
485 kauth_cred_getuid(ucred) != kauth_cred_getuid(target_cred) &&
486 kauth_cred_getruid(ucred) != kauth_cred_getuid(target_cred)) {
487 error = EPERM;
488 goto out;
489 }
490
491 external = (curp == targetp) ? TASK_POLICY_INTERNAL : TASK_POLICY_EXTERNAL;
492
493 *priority = proc_get_task_policy(current_task(), THREAD_NULL, external, TASK_POLICY_DARWIN_BG);
494
495 out:
496 kauth_cred_unref(&target_cred);
497 return (error);
498 }
499
500 static int
501 do_background_proc(struct proc *curp, struct proc *targetp, int priority)
502 {
503 #if !CONFIG_MACF
504 #pragma unused(curp)
505 #endif
506 int error = 0;
507 kauth_cred_t ucred;
508 kauth_cred_t target_cred;
509 int external;
510 int flavor;
511 int enable;
512
513 ucred = kauth_cred_get();
514 target_cred = kauth_cred_proc_ref(targetp);
515
516 if (!kauth_cred_issuser(ucred) && kauth_cred_getruid(ucred) &&
517 kauth_cred_getuid(ucred) != kauth_cred_getuid(target_cred) &&
518 kauth_cred_getruid(ucred) != kauth_cred_getuid(target_cred))
519 {
520 error = EPERM;
521 goto out;
522 }
523
524 #if CONFIG_MACF
525 error = mac_proc_check_sched(curp, targetp);
526 if (error)
527 goto out;
528 #endif
529
530 external = (curp == targetp) ? TASK_POLICY_INTERNAL : TASK_POLICY_EXTERNAL;
531
532 switch (priority) {
533 case PRIO_DARWIN_NONUI:
534 flavor = TASK_POLICY_GPU_DENY;
535 enable = TASK_POLICY_ENABLE;
536 break;
537 case PRIO_DARWIN_BG:
538 flavor = TASK_POLICY_DARWIN_BG;
539 enable = TASK_POLICY_ENABLE;
540 break;
541 default:
542 /*
543 * DARWIN_BG and GPU_DENY disable are overloaded,
544 * so we need to turn them both off at the same time
545 *
546 * TODO: It would be nice to fail if priority != 0
547 */
548 flavor = TASK_POLICY_DARWIN_BG_AND_GPU;
549 enable = TASK_POLICY_DISABLE;
550 break;
551 }
552
553 proc_set_task_policy(proc_task(targetp), THREAD_NULL, external, flavor, enable);
554
555 out:
556 kauth_cred_unref(&target_cred);
557 return (error);
558 }
559
560 static void
561 do_background_socket(struct proc *p, thread_t thread, int priority)
562 {
563 #if SOCKETS
564 struct filedesc *fdp;
565 struct fileproc *fp;
566 int i;
567
568 if (priority == PRIO_DARWIN_BG) {
569 /*
570 * For PRIO_DARWIN_PROCESS (thread is NULL), simply mark
571 * the sockets with the background flag. There's nothing
572 * to do here for the PRIO_DARWIN_THREAD case.
573 */
574 if (thread == THREAD_NULL) {
575 proc_fdlock(p);
576 fdp = p->p_fd;
577
578 for (i = 0; i < fdp->fd_nfiles; i++) {
579 struct socket *sockp;
580
581 fp = fdp->fd_ofiles[i];
582 if (fp == NULL || (fdp->fd_ofileflags[i] & UF_RESERVED) != 0 ||
583 FILEGLOB_DTYPE(fp->f_fglob) != DTYPE_SOCKET) {
584 continue;
585 }
586 sockp = (struct socket *)fp->f_fglob->fg_data;
587 socket_set_traffic_mgt_flags(sockp, TRAFFIC_MGT_SO_BACKGROUND);
588 sockp->so_background_thread = NULL;
589 }
590 proc_fdunlock(p);
591 }
592
593 } else {
594
595 /* disable networking IO throttle.
596 * NOTE - It is a known limitation of the current design that we
597 * could potentially clear TRAFFIC_MGT_SO_BACKGROUND bit for
598 * sockets created by other threads within this process.
599 */
600 proc_fdlock(p);
601 fdp = p->p_fd;
602 for ( i = 0; i < fdp->fd_nfiles; i++ ) {
603 struct socket *sockp;
604
605 fp = fdp->fd_ofiles[ i ];
606 if ( fp == NULL || (fdp->fd_ofileflags[ i ] & UF_RESERVED) != 0 ||
607 FILEGLOB_DTYPE(fp->f_fglob) != DTYPE_SOCKET ) {
608 continue;
609 }
610 sockp = (struct socket *)fp->f_fglob->fg_data;
611 /* skip if only clearing this thread's sockets */
612 if ((thread) && (sockp->so_background_thread != thread)) {
613 continue;
614 }
615 socket_clear_traffic_mgt_flags(sockp, TRAFFIC_MGT_SO_BACKGROUND);
616 sockp->so_background_thread = NULL;
617 }
618 proc_fdunlock(p);
619 }
620 #else
621 #pragma unused(p, thread, priority)
622 #endif
623 }
624
625
626 /*
627 * do_background_thread
628 * Returns: 0 Success
629 * EPERM Tried to background while in vfork
630 * XXX - todo - does this need a MACF hook?
631 */
632 static int
633 do_background_thread(struct proc *curp, thread_t thread, int priority)
634 {
635 struct uthread *ut;
636 int enable, external;
637
638 ut = get_bsdthread_info(thread);
639
640 /* Backgrounding is unsupported for threads in vfork */
641 if ((ut->uu_flag & UT_VFORK) != 0)
642 return(EPERM);
643
644 /* TODO: Fail if someone passes something besides 0 or PRIO_DARWIN_BG */
645 enable = (priority == PRIO_DARWIN_BG) ? TASK_POLICY_ENABLE : TASK_POLICY_DISABLE;
646 external = (current_thread() == thread) ? TASK_POLICY_INTERNAL : TASK_POLICY_EXTERNAL;
647
648 proc_set_task_policy_thread(curp->task, thread_tid(thread), external,
649 TASK_POLICY_DARWIN_BG, enable);
650
651 return(0);
652 }
653
654
655 /*
656 * Returns: 0 Success
657 * copyin:EFAULT
658 * dosetrlimit:
659 */
660 /* ARGSUSED */
661 int
662 setrlimit(struct proc *p, struct setrlimit_args *uap, __unused int32_t *retval)
663 {
664 struct rlimit alim;
665 int error;
666
667 if ((error = copyin(uap->rlp, (caddr_t)&alim,
668 sizeof (struct rlimit))))
669 return (error);
670
671 return (dosetrlimit(p, uap->which, &alim));
672 }
673
674 /*
675 * Returns: 0 Success
676 * EINVAL
677 * ENOMEM Cannot copy limit structure
678 * suser:EPERM
679 *
680 * Notes: EINVAL is returned both for invalid arguments, and in the
681 * case that the current usage (e.g. RLIMIT_STACK) is already
682 * in excess of the requested limit.
683 */
684 int
685 dosetrlimit(struct proc *p, u_int which, struct rlimit *limp)
686 {
687 struct rlimit *alimp;
688 int error;
689 kern_return_t kr;
690 int posix = (which & _RLIMIT_POSIX_FLAG) ? 1 : 0;
691
692 /* Mask out POSIX flag, saved above */
693 which &= ~_RLIMIT_POSIX_FLAG;
694
695 if (which >= RLIM_NLIMITS)
696 return (EINVAL);
697
698 alimp = &p->p_rlimit[which];
699 if (limp->rlim_cur > limp->rlim_max)
700 return EINVAL;
701
702 if (limp->rlim_cur > alimp->rlim_max ||
703 limp->rlim_max > alimp->rlim_max)
704 if ((error = suser(kauth_cred_get(), &p->p_acflag))) {
705 return (error);
706 }
707
708 proc_limitblock(p);
709
710 if ((error = proc_limitreplace(p)) != 0) {
711 proc_limitunblock(p);
712 return(error);
713 }
714
715 alimp = &p->p_rlimit[which];
716
717 switch (which) {
718
719 case RLIMIT_CPU:
720 if (limp->rlim_cur == RLIM_INFINITY) {
721 task_vtimer_clear(p->task, TASK_VTIMER_RLIM);
722 timerclear(&p->p_rlim_cpu);
723 }
724 else {
725 task_absolutetime_info_data_t tinfo;
726 mach_msg_type_number_t count;
727 struct timeval ttv, tv;
728 clock_sec_t tv_sec;
729 clock_usec_t tv_usec;
730
731 count = TASK_ABSOLUTETIME_INFO_COUNT;
732 task_info(p->task, TASK_ABSOLUTETIME_INFO,
733 (task_info_t)&tinfo, &count);
734 absolutetime_to_microtime(tinfo.total_user + tinfo.total_system,
735 &tv_sec, &tv_usec);
736 ttv.tv_sec = tv_sec;
737 ttv.tv_usec = tv_usec;
738
739 tv.tv_sec = (limp->rlim_cur > __INT_MAX__ ? __INT_MAX__ : limp->rlim_cur);
740 tv.tv_usec = 0;
741 timersub(&tv, &ttv, &p->p_rlim_cpu);
742
743 timerclear(&tv);
744 if (timercmp(&p->p_rlim_cpu, &tv, >))
745 task_vtimer_set(p->task, TASK_VTIMER_RLIM);
746 else {
747 task_vtimer_clear(p->task, TASK_VTIMER_RLIM);
748
749 timerclear(&p->p_rlim_cpu);
750
751 psignal(p, SIGXCPU);
752 }
753 }
754 break;
755
756 case RLIMIT_DATA:
757 if (limp->rlim_cur > maxdmap)
758 limp->rlim_cur = maxdmap;
759 if (limp->rlim_max > maxdmap)
760 limp->rlim_max = maxdmap;
761 break;
762
763 case RLIMIT_STACK:
764 /* Disallow illegal stack size instead of clipping */
765 if (limp->rlim_cur > maxsmap ||
766 limp->rlim_max > maxsmap) {
767 if (posix) {
768 error = EINVAL;
769 goto out;
770 }
771 else {
772 /*
773 * 4797860 - workaround poorly written installers by
774 * doing previous implementation (< 10.5) when caller
775 * is non-POSIX conforming.
776 */
777 if (limp->rlim_cur > maxsmap)
778 limp->rlim_cur = maxsmap;
779 if (limp->rlim_max > maxsmap)
780 limp->rlim_max = maxsmap;
781 }
782 }
783
784 /*
785 * Stack is allocated to the max at exec time with only
786 * "rlim_cur" bytes accessible. If stack limit is going
787 * up make more accessible, if going down make inaccessible.
788 */
789 if (limp->rlim_cur > alimp->rlim_cur) {
790 user_addr_t addr;
791 user_size_t size;
792
793 /* grow stack */
794 size = round_page_64(limp->rlim_cur);
795 size -= round_page_64(alimp->rlim_cur);
796
797 addr = p->user_stack - round_page_64(limp->rlim_cur);
798 kr = mach_vm_protect(current_map(),
799 addr, size,
800 FALSE, VM_PROT_DEFAULT);
801 if (kr != KERN_SUCCESS) {
802 error = EINVAL;
803 goto out;
804 }
805 } else if (limp->rlim_cur < alimp->rlim_cur) {
806 user_addr_t addr;
807 user_size_t size;
808 user_addr_t cur_sp;
809
810 /* shrink stack */
811
812 /*
813 * First check if new stack limit would agree
814 * with current stack usage.
815 * Get the current thread's stack pointer...
816 */
817 cur_sp = thread_adjuserstack(current_thread(),
818 0);
819 if (cur_sp <= p->user_stack &&
820 cur_sp > (p->user_stack -
821 round_page_64(alimp->rlim_cur))) {
822 /* stack pointer is in main stack */
823 if (cur_sp <= (p->user_stack -
824 round_page_64(limp->rlim_cur))) {
825 /*
826 * New limit would cause
827 * current usage to be invalid:
828 * reject new limit.
829 */
830 error = EINVAL;
831 goto out;
832 }
833 } else {
834 /* not on the main stack: reject */
835 error = EINVAL;
836 goto out;
837 }
838
839 size = round_page_64(alimp->rlim_cur);
840 size -= round_page_64(limp->rlim_cur);
841
842 addr = p->user_stack - round_page_64(alimp->rlim_cur);
843
844 kr = mach_vm_protect(current_map(),
845 addr, size,
846 FALSE, VM_PROT_NONE);
847 if (kr != KERN_SUCCESS) {
848 error = EINVAL;
849 goto out;
850 }
851 } else {
852 /* no change ... */
853 }
854 break;
855
856 case RLIMIT_NOFILE:
857 /*
858 * Only root can set the maxfiles limits, as it is
859 * systemwide resource. If we are expecting POSIX behavior,
860 * instead of clamping the value, return EINVAL. We do this
861 * because historically, people have been able to attempt to
862 * set RLIM_INFINITY to get "whatever the maximum is".
863 */
864 if ( kauth_cred_issuser(kauth_cred_get()) ) {
865 if (limp->rlim_cur != alimp->rlim_cur &&
866 limp->rlim_cur > (rlim_t)maxfiles) {
867 if (posix) {
868 error = EINVAL;
869 goto out;
870 }
871 limp->rlim_cur = maxfiles;
872 }
873 if (limp->rlim_max != alimp->rlim_max &&
874 limp->rlim_max > (rlim_t)maxfiles)
875 limp->rlim_max = maxfiles;
876 }
877 else {
878 if (limp->rlim_cur != alimp->rlim_cur &&
879 limp->rlim_cur > (rlim_t)maxfilesperproc) {
880 if (posix) {
881 error = EINVAL;
882 goto out;
883 }
884 limp->rlim_cur = maxfilesperproc;
885 }
886 if (limp->rlim_max != alimp->rlim_max &&
887 limp->rlim_max > (rlim_t)maxfilesperproc)
888 limp->rlim_max = maxfilesperproc;
889 }
890 break;
891
892 case RLIMIT_NPROC:
893 /*
894 * Only root can set to the maxproc limits, as it is
895 * systemwide resource; all others are limited to
896 * maxprocperuid (presumably less than maxproc).
897 */
898 if ( kauth_cred_issuser(kauth_cred_get()) ) {
899 if (limp->rlim_cur > (rlim_t)maxproc)
900 limp->rlim_cur = maxproc;
901 if (limp->rlim_max > (rlim_t)maxproc)
902 limp->rlim_max = maxproc;
903 }
904 else {
905 if (limp->rlim_cur > (rlim_t)maxprocperuid)
906 limp->rlim_cur = maxprocperuid;
907 if (limp->rlim_max > (rlim_t)maxprocperuid)
908 limp->rlim_max = maxprocperuid;
909 }
910 break;
911
912 case RLIMIT_MEMLOCK:
913 /*
914 * Tell the Mach VM layer about the new limit value.
915 */
916
917 vm_map_set_user_wire_limit(current_map(), limp->rlim_cur);
918 break;
919
920 } /* switch... */
921 proc_lock(p);
922 *alimp = *limp;
923 proc_unlock(p);
924 error = 0;
925 out:
926 proc_limitunblock(p);
927 return (error);
928 }
929
930 /* ARGSUSED */
931 int
932 getrlimit(struct proc *p, struct getrlimit_args *uap, __unused int32_t *retval)
933 {
934 struct rlimit lim;
935
936 /*
937 * Take out flag now in case we need to use it to trigger variant
938 * behaviour later.
939 */
940 uap->which &= ~_RLIMIT_POSIX_FLAG;
941
942 if (uap->which >= RLIM_NLIMITS)
943 return (EINVAL);
944 proc_limitget(p, uap->which, &lim);
945 return (copyout((caddr_t)&lim,
946 uap->rlp, sizeof (struct rlimit)));
947 }
948
949 /*
950 * Transform the running time and tick information in proc p into user,
951 * system, and interrupt time usage.
952 */
953 /* No lock on proc is held for this.. */
954 void
955 calcru(struct proc *p, struct timeval *up, struct timeval *sp, struct timeval *ip)
956 {
957 task_t task;
958
959 timerclear(up);
960 timerclear(sp);
961 if (ip != NULL)
962 timerclear(ip);
963
964 task = p->task;
965 if (task) {
966 mach_task_basic_info_data_t tinfo;
967 task_thread_times_info_data_t ttimesinfo;
968 task_events_info_data_t teventsinfo;
969 mach_msg_type_number_t task_info_count, task_ttimes_count;
970 mach_msg_type_number_t task_events_count;
971 struct timeval ut,st;
972
973 task_info_count = MACH_TASK_BASIC_INFO_COUNT;
974 task_info(task, MACH_TASK_BASIC_INFO,
975 (task_info_t)&tinfo, &task_info_count);
976 ut.tv_sec = tinfo.user_time.seconds;
977 ut.tv_usec = tinfo.user_time.microseconds;
978 st.tv_sec = tinfo.system_time.seconds;
979 st.tv_usec = tinfo.system_time.microseconds;
980 timeradd(&ut, up, up);
981 timeradd(&st, sp, sp);
982
983 task_ttimes_count = TASK_THREAD_TIMES_INFO_COUNT;
984 task_info(task, TASK_THREAD_TIMES_INFO,
985 (task_info_t)&ttimesinfo, &task_ttimes_count);
986
987 ut.tv_sec = ttimesinfo.user_time.seconds;
988 ut.tv_usec = ttimesinfo.user_time.microseconds;
989 st.tv_sec = ttimesinfo.system_time.seconds;
990 st.tv_usec = ttimesinfo.system_time.microseconds;
991 timeradd(&ut, up, up);
992 timeradd(&st, sp, sp);
993
994 task_events_count = TASK_EVENTS_INFO_COUNT;
995 task_info(task, TASK_EVENTS_INFO,
996 (task_info_t)&teventsinfo, &task_events_count);
997
998 /*
999 * No need to lock "p": this does not need to be
1000 * completely consistent, right ?
1001 */
1002 p->p_stats->p_ru.ru_minflt = (teventsinfo.faults -
1003 teventsinfo.pageins);
1004 p->p_stats->p_ru.ru_majflt = teventsinfo.pageins;
1005 p->p_stats->p_ru.ru_nivcsw = (teventsinfo.csw -
1006 p->p_stats->p_ru.ru_nvcsw);
1007 if (p->p_stats->p_ru.ru_nivcsw < 0)
1008 p->p_stats->p_ru.ru_nivcsw = 0;
1009
1010 p->p_stats->p_ru.ru_maxrss = tinfo.resident_size_max;
1011 }
1012 }
1013
1014 __private_extern__ void munge_user64_rusage(struct rusage *a_rusage_p, struct user64_rusage *a_user_rusage_p);
1015 __private_extern__ void munge_user32_rusage(struct rusage *a_rusage_p, struct user32_rusage *a_user_rusage_p);
1016
1017 /* ARGSUSED */
1018 int
1019 getrusage(struct proc *p, struct getrusage_args *uap, __unused int32_t *retval)
1020 {
1021 struct rusage *rup, rubuf;
1022 struct user64_rusage rubuf64;
1023 struct user32_rusage rubuf32;
1024 size_t retsize = sizeof(rubuf); /* default: 32 bits */
1025 caddr_t retbuf = (caddr_t)&rubuf; /* default: 32 bits */
1026 struct timeval utime;
1027 struct timeval stime;
1028
1029
1030 switch (uap->who) {
1031 case RUSAGE_SELF:
1032 calcru(p, &utime, &stime, NULL);
1033 proc_lock(p);
1034 rup = &p->p_stats->p_ru;
1035 rup->ru_utime = utime;
1036 rup->ru_stime = stime;
1037
1038 rubuf = *rup;
1039 proc_unlock(p);
1040
1041 break;
1042
1043 case RUSAGE_CHILDREN:
1044 proc_lock(p);
1045 rup = &p->p_stats->p_cru;
1046 rubuf = *rup;
1047 proc_unlock(p);
1048 break;
1049
1050 default:
1051 return (EINVAL);
1052 }
1053 if (IS_64BIT_PROCESS(p)) {
1054 retsize = sizeof(rubuf64);
1055 retbuf = (caddr_t)&rubuf64;
1056 munge_user64_rusage(&rubuf, &rubuf64);
1057 } else {
1058 retsize = sizeof(rubuf32);
1059 retbuf = (caddr_t)&rubuf32;
1060 munge_user32_rusage(&rubuf, &rubuf32);
1061 }
1062
1063 return (copyout(retbuf, uap->rusage, retsize));
1064 }
1065
1066 void
1067 ruadd(struct rusage *ru, struct rusage *ru2)
1068 {
1069 long *ip, *ip2;
1070 long i;
1071
1072 timeradd(&ru->ru_utime, &ru2->ru_utime, &ru->ru_utime);
1073 timeradd(&ru->ru_stime, &ru2->ru_stime, &ru->ru_stime);
1074 if (ru->ru_maxrss < ru2->ru_maxrss)
1075 ru->ru_maxrss = ru2->ru_maxrss;
1076 ip = &ru->ru_first; ip2 = &ru2->ru_first;
1077 for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--)
1078 *ip++ += *ip2++;
1079 }
1080
1081 /*
1082 * Add the rusage stats of child in parent.
1083 *
1084 * It adds rusage statistics of child process and statistics of all its
1085 * children to its parent.
1086 *
1087 * Note: proc lock of parent should be held while calling this function.
1088 */
1089 void
1090 update_rusage_info_child(struct rusage_info_child *ri, struct rusage_info_v2 *ri2)
1091 {
1092 ri->ri_child_user_time += (ri2->ri_user_time +
1093 ri2->ri_child_user_time);
1094 ri->ri_child_system_time += (ri2->ri_system_time +
1095 ri2->ri_child_system_time);
1096 ri->ri_child_pkg_idle_wkups += (ri2->ri_pkg_idle_wkups +
1097 ri2->ri_child_pkg_idle_wkups);
1098 ri->ri_child_interrupt_wkups += (ri2->ri_interrupt_wkups +
1099 ri2->ri_child_interrupt_wkups);
1100 ri->ri_child_pageins += (ri2->ri_pageins +
1101 ri2->ri_child_pageins);
1102 ri->ri_child_elapsed_abstime += ((ri2->ri_proc_exit_abstime -
1103 ri2->ri_proc_start_abstime) + ri2->ri_child_elapsed_abstime);
1104 }
1105
1106 void
1107 proc_limitget(proc_t p, int which, struct rlimit * limp)
1108 {
1109 proc_list_lock();
1110 limp->rlim_cur = p->p_rlimit[which].rlim_cur;
1111 limp->rlim_max = p->p_rlimit[which].rlim_max;
1112 proc_list_unlock();
1113 }
1114
1115
1116 void
1117 proc_limitdrop(proc_t p, int exiting)
1118 {
1119 struct plimit * freelim = NULL;
1120 struct plimit * freeoldlim = NULL;
1121
1122 proc_list_lock();
1123
1124 if (--p->p_limit->pl_refcnt == 0) {
1125 freelim = p->p_limit;
1126 p->p_limit = NULL;
1127 }
1128 if ((exiting != 0) && (p->p_olimit != NULL) && (--p->p_olimit->pl_refcnt == 0)) {
1129 freeoldlim = p->p_olimit;
1130 p->p_olimit = NULL;
1131 }
1132
1133 proc_list_unlock();
1134 if (freelim != NULL)
1135 FREE_ZONE(freelim, sizeof *p->p_limit, M_PLIMIT);
1136 if (freeoldlim != NULL)
1137 FREE_ZONE(freeoldlim, sizeof *p->p_olimit, M_PLIMIT);
1138 }
1139
1140
1141 void
1142 proc_limitfork(proc_t parent, proc_t child)
1143 {
1144 proc_list_lock();
1145 child->p_limit = parent->p_limit;
1146 child->p_limit->pl_refcnt++;
1147 child->p_olimit = NULL;
1148 proc_list_unlock();
1149 }
1150
1151 void
1152 proc_limitblock(proc_t p)
1153 {
1154 proc_lock(p);
1155 while (p->p_lflag & P_LLIMCHANGE) {
1156 p->p_lflag |= P_LLIMWAIT;
1157 msleep(&p->p_olimit, &p->p_mlock, 0, "proc_limitblock", NULL);
1158 }
1159 p->p_lflag |= P_LLIMCHANGE;
1160 proc_unlock(p);
1161
1162 }
1163
1164
1165 void
1166 proc_limitunblock(proc_t p)
1167 {
1168 proc_lock(p);
1169 p->p_lflag &= ~P_LLIMCHANGE;
1170 if (p->p_lflag & P_LLIMWAIT) {
1171 p->p_lflag &= ~P_LLIMWAIT;
1172 wakeup(&p->p_olimit);
1173 }
1174 proc_unlock(p);
1175 }
1176
1177 /* This is called behind serialization provided by proc_limitblock/unlbock */
1178 int
1179 proc_limitreplace(proc_t p)
1180 {
1181 struct plimit *copy;
1182
1183
1184 proc_list_lock();
1185
1186 if (p->p_limit->pl_refcnt == 1) {
1187 proc_list_unlock();
1188 return(0);
1189 }
1190
1191 proc_list_unlock();
1192
1193 MALLOC_ZONE(copy, struct plimit *,
1194 sizeof(struct plimit), M_PLIMIT, M_WAITOK);
1195 if (copy == NULL) {
1196 return(ENOMEM);
1197 }
1198
1199 proc_list_lock();
1200 bcopy(p->p_limit->pl_rlimit, copy->pl_rlimit,
1201 sizeof(struct rlimit) * RLIM_NLIMITS);
1202 copy->pl_refcnt = 1;
1203 /* hang on to reference to old till process exits */
1204 p->p_olimit = p->p_limit;
1205 p->p_limit = copy;
1206 proc_list_unlock();
1207
1208 return(0);
1209 }
1210
1211 /*
1212 * iopolicysys
1213 *
1214 * Description: System call MUX for use in manipulating I/O policy attributes of the current process or thread
1215 *
1216 * Parameters: cmd Policy command
1217 * arg Pointer to policy arguments
1218 *
1219 * Returns: 0 Success
1220 * EINVAL Invalid command or invalid policy arguments
1221 *
1222 */
1223
1224 static int
1225 iopolicysys_disk(struct proc *p, int cmd, int scope, int policy, struct _iopol_param_t *iop_param);
1226 static int
1227 iopolicysys_vfs(struct proc *p, int cmd, int scope, int policy, struct _iopol_param_t *iop_param);
1228
1229 int
1230 iopolicysys(struct proc *p, struct iopolicysys_args *uap, __unused int32_t *retval)
1231 {
1232 int error = 0;
1233 struct _iopol_param_t iop_param;
1234
1235 if ((error = copyin(uap->arg, &iop_param, sizeof(iop_param))) != 0)
1236 goto out;
1237
1238 switch (iop_param.iop_iotype) {
1239 case IOPOL_TYPE_DISK:
1240 error = iopolicysys_disk(p, uap->cmd, iop_param.iop_scope, iop_param.iop_policy, &iop_param);
1241 if (error)
1242 goto out;
1243 break;
1244 case IOPOL_TYPE_VFS_HFS_CASE_SENSITIVITY:
1245 error = iopolicysys_vfs(p, uap->cmd, iop_param.iop_scope, iop_param.iop_policy, &iop_param);
1246 if (error)
1247 goto out;
1248 break;
1249 default:
1250 error = EINVAL;
1251 goto out;
1252 }
1253
1254 /* Individual iotype handlers are expected to update iop_param, if requested with a GET command */
1255 if (uap->cmd == IOPOL_CMD_GET) {
1256 error = copyout((caddr_t)&iop_param, uap->arg, sizeof(iop_param));
1257 if (error)
1258 goto out;
1259 }
1260
1261 out:
1262 return (error);
1263 }
1264
1265 static int
1266 iopolicysys_disk(struct proc *p __unused, int cmd, int scope, int policy, struct _iopol_param_t *iop_param)
1267 {
1268 int error = 0;
1269 thread_t thread;
1270 int policy_flavor;
1271
1272 /* Validate scope */
1273 switch (scope) {
1274 case IOPOL_SCOPE_PROCESS:
1275 thread = THREAD_NULL;
1276 policy_flavor = TASK_POLICY_IOPOL;
1277 break;
1278
1279 case IOPOL_SCOPE_THREAD:
1280 thread = current_thread();
1281 policy_flavor = TASK_POLICY_IOPOL;
1282 break;
1283
1284 case IOPOL_SCOPE_DARWIN_BG:
1285 thread = THREAD_NULL;
1286 policy_flavor = TASK_POLICY_DARWIN_BG_IOPOL;
1287 break;
1288
1289 default:
1290 error = EINVAL;
1291 goto out;
1292 }
1293
1294 /* Validate policy */
1295 if (cmd == IOPOL_CMD_SET) {
1296 switch (policy) {
1297 case IOPOL_DEFAULT:
1298 if (scope == IOPOL_SCOPE_DARWIN_BG) {
1299 /* the current default BG throttle level is UTILITY */
1300 policy = IOPOL_UTILITY;
1301 } else {
1302 policy = IOPOL_IMPORTANT;
1303 }
1304 break;
1305 case IOPOL_UTILITY:
1306 /* fall-through */
1307 case IOPOL_THROTTLE:
1308 /* These levels are OK */
1309 break;
1310 case IOPOL_IMPORTANT:
1311 /* fall-through */
1312 case IOPOL_STANDARD:
1313 /* fall-through */
1314 case IOPOL_PASSIVE:
1315 if (scope == IOPOL_SCOPE_DARWIN_BG) {
1316 /* These levels are invalid for BG */
1317 error = EINVAL;
1318 goto out;
1319 } else {
1320 /* OK for other scopes */
1321 }
1322 break;
1323 default:
1324 error = EINVAL;
1325 goto out;
1326 }
1327 }
1328
1329 /* Perform command */
1330 switch(cmd) {
1331 case IOPOL_CMD_SET:
1332 proc_set_task_policy(current_task(), thread,
1333 TASK_POLICY_INTERNAL, policy_flavor,
1334 policy);
1335 break;
1336 case IOPOL_CMD_GET:
1337 policy = proc_get_task_policy(current_task(), thread,
1338 TASK_POLICY_INTERNAL, policy_flavor);
1339
1340 iop_param->iop_policy = policy;
1341 break;
1342 default:
1343 error = EINVAL; /* unknown command */
1344 break;
1345 }
1346
1347 out:
1348 return (error);
1349 }
1350
1351 static int
1352 iopolicysys_vfs(struct proc *p, int cmd, int scope, int policy, struct _iopol_param_t *iop_param)
1353 {
1354 int error = 0;
1355
1356 /* Validate scope */
1357 switch (scope) {
1358 case IOPOL_SCOPE_PROCESS:
1359 /* Only process OK */
1360 break;
1361 default:
1362 error = EINVAL;
1363 goto out;
1364 }
1365
1366 /* Validate policy */
1367 if (cmd == IOPOL_CMD_SET) {
1368 switch (policy) {
1369 case IOPOL_VFS_HFS_CASE_SENSITIVITY_DEFAULT:
1370 /* fall-through */
1371 case IOPOL_VFS_HFS_CASE_SENSITIVITY_FORCE_CASE_SENSITIVE:
1372 /* These policies are OK */
1373 break;
1374 default:
1375 error = EINVAL;
1376 goto out;
1377 }
1378 }
1379
1380 /* Perform command */
1381 switch(cmd) {
1382 case IOPOL_CMD_SET:
1383 if (0 == kauth_cred_issuser(kauth_cred_get())) {
1384 error = EPERM;
1385 goto out;
1386 }
1387
1388 switch (policy) {
1389 case IOPOL_VFS_HFS_CASE_SENSITIVITY_DEFAULT:
1390 OSBitAndAtomic16(~((uint32_t)P_VFS_IOPOLICY_FORCE_HFS_CASE_SENSITIVITY), &p->p_vfs_iopolicy);
1391 break;
1392 case IOPOL_VFS_HFS_CASE_SENSITIVITY_FORCE_CASE_SENSITIVE:
1393 OSBitOrAtomic16((uint32_t)P_VFS_IOPOLICY_FORCE_HFS_CASE_SENSITIVITY, &p->p_vfs_iopolicy);
1394 break;
1395 default:
1396 error = EINVAL;
1397 goto out;
1398 }
1399
1400 break;
1401 case IOPOL_CMD_GET:
1402 iop_param->iop_policy = (p->p_vfs_iopolicy & P_VFS_IOPOLICY_FORCE_HFS_CASE_SENSITIVITY)
1403 ? IOPOL_VFS_HFS_CASE_SENSITIVITY_FORCE_CASE_SENSITIVE
1404 : IOPOL_VFS_HFS_CASE_SENSITIVITY_DEFAULT;
1405 break;
1406 default:
1407 error = EINVAL; /* unknown command */
1408 break;
1409 }
1410
1411 out:
1412 return (error);
1413 }
1414
1415 /* BSD call back function for task_policy */
1416 void proc_apply_task_networkbg(void * bsd_info, thread_t thread, int bg);
1417
1418 void
1419 proc_apply_task_networkbg(void * bsd_info, thread_t thread, int bg)
1420 {
1421 proc_t p = PROC_NULL;
1422 proc_t curp = (proc_t)bsd_info;
1423 pid_t pid;
1424 int prio = (bg ? PRIO_DARWIN_BG : 0);
1425
1426 pid = curp->p_pid;
1427 p = proc_find(pid);
1428 if (p != PROC_NULL) {
1429 do_background_socket(p, thread, prio);
1430 proc_rele(p);
1431 }
1432 }
1433
1434 void
1435 gather_rusage_info_v2(proc_t p, struct rusage_info_v2 *ru, int flavor)
1436 {
1437 struct rusage_info_child *ri_child;
1438
1439 assert(p->p_stats != NULL);
1440 switch(flavor) {
1441 case RUSAGE_INFO_V2:
1442 ru->ri_diskio_bytesread = p->p_stats->ri_diskiobytes.ri_bytesread;
1443 ru->ri_diskio_byteswritten = p->p_stats->ri_diskiobytes.ri_byteswritten;
1444 /* fall through */
1445
1446 case RUSAGE_INFO_V1:
1447 /*
1448 * p->p_stats->ri_child statistics are protected under proc lock.
1449 */
1450 proc_lock(p);
1451
1452 ri_child = &(p->p_stats->ri_child);
1453 ru->ri_child_user_time = ri_child->ri_child_user_time;
1454 ru->ri_child_system_time = ri_child->ri_child_system_time;
1455 ru->ri_child_pkg_idle_wkups = ri_child->ri_child_pkg_idle_wkups;
1456 ru->ri_child_interrupt_wkups = ri_child->ri_child_interrupt_wkups;
1457 ru->ri_child_pageins = ri_child->ri_child_pageins;
1458 ru->ri_child_elapsed_abstime = ri_child->ri_child_elapsed_abstime;
1459
1460 proc_unlock(p);
1461 /* fall through */
1462
1463 case RUSAGE_INFO_V0:
1464 proc_getexecutableuuid(p, (unsigned char *)&ru->ri_uuid, sizeof (ru->ri_uuid));
1465 fill_task_rusage_v2(p->task, ru);
1466 ru->ri_proc_start_abstime = p->p_stats->ps_start;
1467 }
1468 }
1469
1470 /*
1471 * Temporary function to copy value from rusage_info_v2 to rusage_info_v0.
1472 */
1473 static void
1474 rusage_info_v2_to_v0(struct rusage_info_v0 *ri_v0, struct rusage_info_v2 *ri_v2)
1475 {
1476 memcpy(&ri_v0->ri_uuid[0], &ri_v2->ri_uuid[0], sizeof(ri_v0->ri_uuid));
1477 ri_v0->ri_user_time = ri_v2->ri_user_time;
1478 ri_v0->ri_system_time = ri_v2->ri_system_time;
1479 ri_v0->ri_pkg_idle_wkups = ri_v2->ri_pkg_idle_wkups;
1480 ri_v0->ri_interrupt_wkups = ri_v2->ri_interrupt_wkups;
1481 ri_v0->ri_pageins = ri_v2->ri_pageins;
1482 ri_v0->ri_wired_size = ri_v2->ri_wired_size;
1483 ri_v0->ri_resident_size = ri_v2->ri_resident_size;
1484 ri_v0->ri_phys_footprint = ri_v2->ri_phys_footprint;
1485 ri_v0->ri_proc_start_abstime = ri_v2->ri_proc_start_abstime;
1486 ri_v0->ri_proc_exit_abstime = ri_v2->ri_proc_exit_abstime;
1487 }
1488
1489 static void
1490 rusage_info_v2_to_v1(struct rusage_info_v1 *ri_v1, struct rusage_info_v2 *ri_v2)
1491 {
1492 memcpy(&ri_v1->ri_uuid[0], &ri_v2->ri_uuid[0], sizeof(ri_v1->ri_uuid));
1493 ri_v1->ri_user_time = ri_v2->ri_user_time;
1494 ri_v1->ri_system_time = ri_v2->ri_system_time;
1495 ri_v1->ri_pkg_idle_wkups = ri_v2->ri_pkg_idle_wkups;
1496 ri_v1->ri_interrupt_wkups = ri_v2->ri_interrupt_wkups;
1497 ri_v1->ri_pageins = ri_v2->ri_pageins;
1498 ri_v1->ri_wired_size = ri_v2->ri_wired_size;
1499 ri_v1->ri_resident_size = ri_v2->ri_resident_size;
1500 ri_v1->ri_phys_footprint = ri_v2->ri_phys_footprint;
1501 ri_v1->ri_proc_start_abstime = ri_v2->ri_proc_start_abstime;
1502 ri_v1->ri_proc_exit_abstime = ri_v2->ri_proc_exit_abstime;
1503 ri_v1->ri_child_user_time = ri_v2->ri_child_user_time;
1504 ri_v1->ri_child_system_time = ri_v2->ri_child_system_time;
1505 ri_v1->ri_child_pkg_idle_wkups = ri_v2->ri_child_pkg_idle_wkups;
1506 ri_v1->ri_child_interrupt_wkups = ri_v2->ri_child_interrupt_wkups;
1507 ri_v1->ri_child_pageins = ri_v2->ri_child_pageins;
1508 ri_v1->ri_child_elapsed_abstime = ri_v2->ri_child_elapsed_abstime;
1509 }
1510
1511 int
1512 proc_get_rusage(proc_t p, int flavor, user_addr_t buffer, __unused int is_zombie)
1513 {
1514 struct rusage_info_v0 ri_v0;
1515 struct rusage_info_v1 ri_v1;
1516 struct rusage_info_v2 ri_v2;
1517
1518 int error = 0;
1519
1520 switch (flavor) {
1521 case RUSAGE_INFO_V0:
1522 /*
1523 * If task is still alive, collect info from the live task itself.
1524 * Otherwise, look to the cached info in the zombie proc.
1525 */
1526 if (p->p_ru == NULL) {
1527 gather_rusage_info_v2(p, &ri_v2, flavor);
1528 ri_v2.ri_proc_exit_abstime = 0;
1529 rusage_info_v2_to_v0(&ri_v0, &ri_v2);
1530 } else {
1531 rusage_info_v2_to_v0(&ri_v0, &p->p_ru->ri);
1532 }
1533 error = copyout(&ri_v0, buffer, sizeof (ri_v0));
1534 break;
1535
1536 case RUSAGE_INFO_V1:
1537 /*
1538 * If task is still alive, collect info from the live task itself.
1539 * Otherwise, look to the cached info in the zombie proc.
1540 */
1541 if (p->p_ru == NULL) {
1542 gather_rusage_info_v2(p, &ri_v2, flavor);
1543 ri_v2.ri_proc_exit_abstime = 0;
1544 rusage_info_v2_to_v1(&ri_v1, &ri_v2);
1545 } else {
1546 rusage_info_v2_to_v1(&ri_v1, &p->p_ru->ri);
1547 }
1548 error = copyout(&ri_v1, buffer, sizeof (ri_v1));
1549 break;
1550
1551 case RUSAGE_INFO_V2:
1552 /*
1553 * If task is still alive, collect info from the live task itself.
1554 * Otherwise, look to the cached info in the zombie proc.
1555 */
1556 if (p->p_ru == NULL) {
1557 gather_rusage_info_v2(p, &ri_v2, flavor);
1558 ri_v2.ri_proc_exit_abstime = 0;
1559 } else {
1560 ri_v2 = p->p_ru->ri;
1561 }
1562 error = copyout(&ri_v2, buffer, sizeof (ri_v2));
1563 break;
1564
1565 default:
1566 error = EINVAL;
1567 break;
1568 }
1569
1570 return (error);
1571 }
1572
1573 static int
1574 mach_to_bsd_rv(int mach_rv)
1575 {
1576 int bsd_rv = 0;
1577
1578 switch (mach_rv) {
1579 case KERN_SUCCESS:
1580 bsd_rv = 0;
1581 break;
1582 case KERN_INVALID_ARGUMENT:
1583 bsd_rv = EINVAL;
1584 break;
1585 default:
1586 panic("unknown error %#x", mach_rv);
1587 }
1588
1589 return bsd_rv;
1590 }
1591
1592 /*
1593 * Resource limit controls
1594 *
1595 * uap->flavor available flavors:
1596 *
1597 * RLIMIT_WAKEUPS_MONITOR
1598 */
1599 int
1600 proc_rlimit_control(__unused struct proc *p, struct proc_rlimit_control_args *uap, int32_t *retval)
1601 {
1602 proc_t targetp;
1603 int error = 0;
1604 struct proc_rlimit_control_wakeupmon wakeupmon_args;
1605 uint32_t cpumon_flags;
1606 kauth_cred_t my_cred, target_cred;
1607
1608 *retval = 0;
1609
1610 if ((targetp = proc_find(uap->pid)) == PROC_NULL) {
1611 *retval = -1;
1612 return (ESRCH);
1613 }
1614
1615 my_cred = kauth_cred_get();
1616 target_cred = kauth_cred_proc_ref(targetp);
1617
1618 if (!kauth_cred_issuser(my_cred) && kauth_cred_getruid(my_cred) &&
1619 kauth_cred_getuid(my_cred) != kauth_cred_getuid(target_cred) &&
1620 kauth_cred_getruid(my_cred) != kauth_cred_getuid(target_cred)) {
1621 proc_rele(targetp);
1622 kauth_cred_unref(&target_cred);
1623 *retval = -1;
1624 error = EACCES;
1625 return (error);
1626 }
1627
1628 switch (uap->flavor) {
1629 case RLIMIT_WAKEUPS_MONITOR:
1630 if ((error = copyin(uap->arg, &wakeupmon_args, sizeof (wakeupmon_args))) != 0) {
1631 break;
1632 }
1633 if ((error = mach_to_bsd_rv(task_wakeups_monitor_ctl(targetp->task, &wakeupmon_args.wm_flags,
1634 &wakeupmon_args.wm_rate))) != 0) {
1635 break;
1636 }
1637 error = copyout(&wakeupmon_args, uap->arg, sizeof (wakeupmon_args));
1638 break;
1639 case RLIMIT_CPU_USAGE_MONITOR:
1640 cpumon_flags = uap->arg; // XXX temporarily stashing flags in argp (12592127)
1641 error = mach_to_bsd_rv(task_cpu_usage_monitor_ctl(targetp->task, &cpumon_flags));
1642 break;
1643 default:
1644 error = EINVAL;
1645 break;
1646 }
1647
1648 proc_rele(targetp);
1649 kauth_cred_unref(&target_cred);
1650
1651 if (error != 0) {
1652 *retval = -1;
1653 }
1654
1655 /*
1656 * Return value from this function becomes errno to userland caller.
1657 * *retval is what the system call invocation returns.
1658 */
1659 return (error);
1660 }