2 * Copyright (c) 2000-2007 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
28 /* Copyright (c) 1995, 1997 Apple Computer, Inc. All Rights Reserved */
30 * Copyright (c) 1982, 1986, 1989, 1991, 1993
31 * The Regents of the University of California. All rights reserved.
32 * (c) UNIX System Laboratories, Inc.
33 * All or some portions of this file are derived from material licensed
34 * to the University of California by American Telephone and Telegraph
35 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
36 * the permission of UNIX System Laboratories, Inc.
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. All advertising materials mentioning features or use of this software
47 * must display the following acknowledgement:
48 * This product includes software developed by the University of
49 * California, Berkeley and its contributors.
50 * 4. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66 * @(#)kern_fork.c 8.8 (Berkeley) 2/14/95
69 * NOTICE: This file was modified by McAfee Research in 2004 to introduce
70 * support for mandatory and extensible security protections. This notice
71 * is included in support of clause 2.2 (b) of the Apple Public License,
75 * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
76 * support for mandatory and extensible security protections. This notice
77 * is included in support of clause 2.2 (b) of the Apple Public License,
81 #include <kern/assert.h>
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/filedesc.h>
85 #include <sys/kernel.h>
86 #include <sys/malloc.h>
87 #include <sys/proc_internal.h>
88 #include <sys/kauth.h>
90 #include <sys/resourcevar.h>
91 #include <sys/vnode_internal.h>
92 #include <sys/file_internal.h>
94 #include <sys/codesign.h>
95 #include <sys/sysproto.h>
97 /* Do not include dtrace.h, it redefines kmem_[alloc/free] */
98 extern void dtrace_fasttrap_fork(proc_t
, proc_t
);
99 extern void (*dtrace_helpers_fork
)(proc_t
, proc_t
);
100 extern void dtrace_lazy_dofs_duplicate(proc_t
, proc_t
);
102 #include <sys/dtrace_ptss.h>
105 #include <security/audit/audit.h>
107 #include <mach/mach_types.h>
108 #include <kern/kern_types.h>
109 #include <kern/kalloc.h>
110 #include <kern/mach_param.h>
111 #include <kern/task.h>
112 #include <kern/thread.h>
113 #include <kern/thread_call.h>
114 #include <kern/zalloc.h>
116 #include <machine/spl.h>
119 #include <security/mac.h>
120 #include <security/mac_mach_internal.h>
123 #include <vm/vm_map.h>
124 #include <vm/vm_protos.h>
125 #include <vm/vm_shared_region.h>
127 #include <sys/shm_internal.h> /* for shmfork() */
128 #include <mach/task.h> /* for thread_create() */
129 #include <mach/thread_act.h> /* for thread_resume() */
133 #if CONFIG_MEMORYSTATUS
134 #include <sys/kern_memorystatus.h>
137 /* XXX routines which should have Mach prototypes, but don't */
138 void thread_set_parent(thread_t parent
, int pid
);
139 extern void act_thread_catt(void *ctx
);
140 void thread_set_child(thread_t child
, int pid
);
141 void *act_thread_csave(void);
144 thread_t
cloneproc(task_t
, proc_t
, int, int);
145 proc_t
forkproc(proc_t
);
146 void forkproc_free(proc_t
);
147 thread_t
fork_create_child(task_t parent_task
, proc_t child
, int inherit_memory
, int is64bit
);
148 void proc_vfork_begin(proc_t parent_proc
);
149 void proc_vfork_end(proc_t parent_proc
);
151 #define DOFORK 0x1 /* fork() system call */
152 #define DOVFORK 0x2 /* vfork() system call */
157 * Description: start a vfork on a process
159 * Parameters: parent_proc process (re)entering vfork state
163 * Notes: Although this function increments a count, a count in
164 * excess of 1 is not currently supported. According to the
165 * POSIX standard, calling anything other than execve() or
166 * _exit() following a vfork(), including calling vfork()
167 * itself again, will result in undefined behaviour
170 proc_vfork_begin(proc_t parent_proc
)
172 proc_lock(parent_proc
);
173 parent_proc
->p_lflag
|= P_LVFORK
;
174 parent_proc
->p_vforkcnt
++;
175 proc_unlock(parent_proc
);
181 * Description: stop a vfork on a process
183 * Parameters: parent_proc process leaving vfork state
187 * Notes: Decrements the count; currently, reentrancy of vfork()
188 * is unsupported on the current process
191 proc_vfork_end(proc_t parent_proc
)
193 proc_lock(parent_proc
);
194 parent_proc
->p_vforkcnt
--;
195 if (parent_proc
->p_vforkcnt
< 0)
196 panic("vfork cnt is -ve");
197 if (parent_proc
->p_vforkcnt
== 0)
198 parent_proc
->p_lflag
&= ~P_LVFORK
;
199 proc_unlock(parent_proc
);
206 * Description: vfork system call
208 * Parameters: void [no arguments]
210 * Retval: 0 (to child process)
211 * !0 pid of child (to parent process)
212 * -1 error (see "Returns:")
214 * Returns: EAGAIN Administrative limit reached
215 * EINVAL vfork() called during vfork()
216 * ENOMEM Failed to allocate new process
218 * Note: After a successful call to this function, the parent process
219 * has its task, thread, and uthread lent to the child process,
220 * and control is returned to the caller; if this function is
221 * invoked as a system call, the return is to user space, and
222 * is effectively running on the child process.
224 * Subsequent calls that operate on process state are permitted,
225 * though discouraged, and will operate on the child process; any
226 * operations on the task, thread, or uthread will result in
227 * changes in the parent state, and, if inheritable, the child
228 * state, when a task, thread, and uthread are realized for the
229 * child process at execve() time, will also be effected. Given
230 * this, it's recemmended that people use the posix_spawn() call
233 * BLOCK DIAGRAM OF VFORK
237 * ,----------------. ,-------------.
239 * | parent_thread | ------> | parent_task |
241 * `----------------' `-------------'
242 * uthread | ^ bsd_info | ^
243 * v | vc_thread v | task
244 * ,----------------. ,-------------.
246 * | parent_uthread | <.list. | parent_proc | <-- current_proc()
248 * `----------------' `-------------'
255 * ,----------------. ,-------------.
257 * ,----> | parent_thread | ------> | parent_task |
259 * | `----------------' `-------------'
260 * | uthread | ^ bsd_info | ^
261 * | v | vc_thread v | task
262 * | ,----------------. ,-------------.
264 * | | parent_uthread | <.list. | parent_proc |
266 * | `----------------' `-------------'
269 * | ,----------------.
271 * p_vforkact | child_proc | <-- current_proc()
276 vfork(proc_t parent_proc
, __unused
struct vfork_args
*uap
, int32_t *retval
)
278 thread_t child_thread
;
281 if ((err
= fork1(parent_proc
, &child_thread
, PROC_CREATE_VFORK
)) != 0) {
284 uthread_t ut
= get_bsdthread_info(current_thread());
285 proc_t child_proc
= ut
->uu_proc
;
287 retval
[0] = child_proc
->p_pid
;
288 retval
[1] = 1; /* flag child return for user space */
291 * Drop the signal lock on the child which was taken on our
292 * behalf by forkproc()/cloneproc() to prevent signals being
293 * received by the child in a partially constructed state.
295 proc_signalend(child_proc
, 0);
296 proc_transend(child_proc
, 0);
298 proc_knote(parent_proc
, NOTE_FORK
| child_proc
->p_pid
);
299 DTRACE_PROC1(create
, proc_t
, child_proc
);
300 ut
->uu_flag
&= ~UT_VFORKING
;
310 * Description: common code used by all new process creation other than the
311 * bootstrap of the initial process on the system
313 * Parameters: parent_proc parent process of the process being
314 * child_threadp pointer to location to receive the
315 * Mach thread_t of the child process
317 * kind kind of creation being requested
319 * Notes: Permissable values for 'kind':
321 * PROC_CREATE_FORK Create a complete process which will
322 * return actively running in both the
323 * parent and the child; the child copies
324 * the parent address space.
325 * PROC_CREATE_SPAWN Create a complete process which will
326 * return actively running in the parent
327 * only after returning actively running
328 * in the child; the child address space
329 * is newly created by an image activator,
330 * after which the child is run.
331 * PROC_CREATE_VFORK Creates a partial process which will
332 * borrow the parent task, thread, and
333 * uthread to return running in the child;
334 * the child address space and other parts
335 * are lazily created at execve() time, or
336 * the child is terminated, and the parent
337 * does not actively run until that
340 * At first it may seem strange that we return the child thread
341 * address rather than process structure, since the process is
342 * the only part guaranteed to be "new"; however, since we do
343 * not actualy adjust other references between Mach and BSD (see
344 * the block diagram above the implementation of vfork()), this
345 * is the only method which guarantees us the ability to get
346 * back to the other information.
349 fork1(proc_t parent_proc
, thread_t
*child_threadp
, int kind
)
351 thread_t parent_thread
= (thread_t
)current_thread();
352 uthread_t parent_uthread
= (uthread_t
)get_bsdthread_info(parent_thread
);
353 proc_t child_proc
= NULL
; /* set in switch, but compiler... */
354 thread_t child_thread
= NULL
;
361 * Although process entries are dynamically created, we still keep
362 * a global limit on the maximum number we will create. Don't allow
363 * a nonprivileged user to use the last process; don't let root
364 * exceed the limit. The variable nprocs is the current number of
365 * processes, maxproc is the limit.
367 uid
= kauth_getruid();
369 if ((nprocs
>= maxproc
- 1 && uid
!= 0) || nprocs
>= maxproc
) {
377 * Increment the count of procs running with this uid. Don't allow
378 * a nonprivileged user to exceed their current limit, which is
379 * always less than what an rlim_t can hold.
380 * (locking protection is provided by list lock held in chgproccnt)
382 count
= chgproccnt(uid
, 1);
384 (rlim_t
)count
> parent_proc
->p_rlimit
[RLIMIT_NPROC
].rlim_cur
) {
391 * Determine if MAC policies applied to the process will allow
392 * it to fork. This is an advisory-only check.
394 err
= mac_proc_check_fork(parent_proc
);
401 case PROC_CREATE_VFORK
:
403 * Prevent a vfork while we are in vfork(); we should
404 * also likely preventing a fork here as well, and this
405 * check should then be outside the switch statement,
406 * since the proc struct contents will copy from the
407 * child and the tash/thread/uthread from the parent in
408 * that case. We do not support vfork() in vfork()
409 * because we don't have to; the same non-requirement
410 * is true of both fork() and posix_spawn() and any
411 * call other than execve() amd _exit(), but we've
412 * been historically lenient, so we continue to be so
415 * <rdar://6640521> Probably a source of random panics
417 if (parent_uthread
->uu_flag
& UT_VFORK
) {
418 printf("fork1 called within vfork by %s\n", parent_proc
->p_comm
);
424 * Flag us in progress; if we chose to support vfork() in
425 * vfork(), we would chain our parent at this point (in
426 * effect, a stack push). We don't, since we actually want
427 * to disallow everything not specified in the standard
429 proc_vfork_begin(parent_proc
);
431 /* The newly created process comes with signal lock held */
432 if ((child_proc
= forkproc(parent_proc
)) == NULL
) {
433 /* Failed to allocate new process */
434 proc_vfork_end(parent_proc
);
439 // XXX BEGIN: wants to move to be common code (and safe)
442 * allow policies to associate the credential/label that
443 * we referenced from the parent ... with the child
444 * JMM - this really isn't safe, as we can drop that
445 * association without informing the policy in other
446 * situations (keep long enough to get policies changed)
448 mac_cred_label_associate_fork(child_proc
->p_ucred
, child_proc
);
452 * Propogate change of PID - may get new cred if auditing.
454 * NOTE: This has no effect in the vfork case, since
455 * child_proc->task != current_task(), but we duplicate it
456 * because this is probably, ultimately, wrong, since we
457 * will be running in the "child" which is the parent task
458 * with the wrong token until we get to the execve() or
459 * _exit() call; a lot of "undefined" can happen before
462 * <rdar://6640530> disallow everything but exeve()/_exit()?
464 set_security_token(child_proc
);
466 AUDIT_ARG(pid
, child_proc
->p_pid
);
468 // XXX END: wants to move to be common code (and safe)
471 * BORROW PARENT TASK, THREAD, UTHREAD FOR CHILD
473 * Note: this is where we would "push" state instead of setting
474 * it for nested vfork() support (see proc_vfork_end() for
475 * description if issues here).
477 child_proc
->task
= parent_proc
->task
;
479 child_proc
->p_lflag
|= P_LINVFORK
;
480 child_proc
->p_vforkact
= parent_thread
;
481 child_proc
->p_stat
= SRUN
;
484 * Until UT_VFORKING is cleared at the end of the vfork
485 * syscall, the process identity of this thread is slightly
488 * As long as UT_VFORK and it's associated field (uu_proc)
489 * is set, current_proc() will always return the child process.
491 * However dtrace_proc_selfpid() returns the parent pid to
492 * ensure that e.g. the proc:::create probe actions accrue
493 * to the parent. (Otherwise the child magically seems to
494 * have created itself!)
496 parent_uthread
->uu_flag
|= UT_VFORK
| UT_VFORKING
;
497 parent_uthread
->uu_proc
= child_proc
;
498 parent_uthread
->uu_userstate
= (void *)act_thread_csave();
499 parent_uthread
->uu_vforkmask
= parent_uthread
->uu_sigmask
;
501 /* temporarily drop thread-set-id state */
502 if (parent_uthread
->uu_flag
& UT_SETUID
) {
503 parent_uthread
->uu_flag
|= UT_WASSETUID
;
504 parent_uthread
->uu_flag
&= ~UT_SETUID
;
507 /* blow thread state information */
508 /* XXX is this actually necessary, given syscall return? */
509 thread_set_child(parent_thread
, child_proc
->p_pid
);
511 child_proc
->p_acflag
= AFORK
; /* forked but not exec'ed */
514 * Preserve synchronization semantics of vfork. If
515 * waiting for child to exec or exit, set P_PPWAIT
516 * on child, and sleep on our proc (in case of exit).
518 child_proc
->p_lflag
|= P_LPPWAIT
;
519 pinsertchild(parent_proc
, child_proc
); /* set visible */
523 case PROC_CREATE_SPAWN
:
525 * A spawned process differs from a forked process in that
526 * the spawned process does not carry around the parents
527 * baggage with regard to address space copying, dtrace,
534 case PROC_CREATE_FORK
:
536 * When we clone the parent process, we are going to inherit
537 * its task attributes and memory, since when we fork, we
538 * will, in effect, create a duplicate of it, with only minor
539 * differences. Contrarily, spawned processes do not inherit.
541 if ((child_thread
= cloneproc(parent_proc
->task
, parent_proc
, spawn
? FALSE
: TRUE
, FALSE
)) == NULL
) {
542 /* Failed to create thread */
547 /* copy current thread state into the child thread (only for fork) */
549 thread_dup(child_thread
);
552 /* child_proc = child_thread->task->proc; */
553 child_proc
= (proc_t
)(get_bsdtask_info(get_threadtask(child_thread
)));
555 // XXX BEGIN: wants to move to be common code (and safe)
558 * allow policies to associate the credential/label that
559 * we referenced from the parent ... with the child
560 * JMM - this really isn't safe, as we can drop that
561 * association without informing the policy in other
562 * situations (keep long enough to get policies changed)
564 mac_cred_label_associate_fork(child_proc
->p_ucred
, child_proc
);
568 * Propogate change of PID - may get new cred if auditing.
570 * NOTE: This has no effect in the vfork case, since
571 * child_proc->task != current_task(), but we duplicate it
572 * because this is probably, ultimately, wrong, since we
573 * will be running in the "child" which is the parent task
574 * with the wrong token until we get to the execve() or
575 * _exit() call; a lot of "undefined" can happen before
578 * <rdar://6640530> disallow everything but exeve()/_exit()?
580 set_security_token(child_proc
);
582 AUDIT_ARG(pid
, child_proc
->p_pid
);
584 // XXX END: wants to move to be common code (and safe)
587 * Blow thread state information; this is what gives the child
588 * process its "return" value from a fork() call.
590 * Note: this should probably move to fork() proper, since it
591 * is not relevent to spawn, and the value won't matter
592 * until we resume the child there. If you are in here
593 * refactoring code, consider doing this at the same time.
595 thread_set_child(child_thread
, child_proc
->p_pid
);
597 child_proc
->p_acflag
= AFORK
; /* forked but not exec'ed */
599 // <rdar://6598155> dtrace code cleanup needed
602 * This code applies to new processes who are copying the task
603 * and thread state and address spaces of their parent process.
606 // <rdar://6598155> call dtrace specific function here instead of all this...
608 * APPLE NOTE: Solaris does a sprlock() and drops the
609 * proc_lock here. We're cheating a bit and only taking
610 * the p_dtrace_sprlock lock. A full sprlock would
611 * task_suspend the parent.
613 lck_mtx_lock(&parent_proc
->p_dtrace_sprlock
);
616 * Remove all DTrace tracepoints from the child process. We
617 * need to do this _before_ duplicating USDT providers since
618 * any associated probes may be immediately enabled.
620 if (parent_proc
->p_dtrace_count
> 0) {
621 dtrace_fasttrap_fork(parent_proc
, child_proc
);
624 lck_mtx_unlock(&parent_proc
->p_dtrace_sprlock
);
627 * Duplicate any lazy dof(s). This must be done while NOT
628 * holding the parent sprlock! Lock ordering is
629 * dtrace_dof_mode_lock, then sprlock. It is imperative we
630 * always call dtrace_lazy_dofs_duplicate, rather than null
631 * check and call if !NULL. If we NULL test, during lazy dof
632 * faulting we can race with the faulting code and proceed
633 * from here to beyond the helpers copy. The lazy dof
634 * faulting will then fail to copy the helpers to the child
637 dtrace_lazy_dofs_duplicate(parent_proc
, child_proc
);
640 * Duplicate any helper actions and providers. The SFORKING
641 * we set above informs the code to enable USDT probes that
642 * sprlock() may fail because the child is being forked.
645 * APPLE NOTE: As best I can tell, Apple's sprlock() equivalent
646 * never fails to find the child. We do not set SFORKING.
648 if (parent_proc
->p_dtrace_helpers
!= NULL
&& dtrace_helpers_fork
) {
649 (*dtrace_helpers_fork
)(parent_proc
, child_proc
);
653 #endif /* CONFIG_DTRACE */
658 panic("fork1 called with unknown kind %d", kind
);
663 /* return the thread pointer to the caller */
664 *child_threadp
= child_thread
;
668 * In the error case, we return a 0 value for the returned pid (but
669 * it is ignored in the trampoline due to the error return); this
670 * is probably not necessary.
673 (void)chgproccnt(uid
, -1);
683 * Description: "Return" to parent vfork thread() following execve/_exit;
684 * this is done by reassociating the parent process structure
685 * with the task, thread, and uthread.
687 * Refer to the ASCII art above vfork() to figure out the
688 * state we're undoing.
690 * Parameters: child_proc Child process
691 * retval System call return value array
692 * rval Return value to present to parent
696 * Notes: The caller resumes or exits the parent, as appropriate, after
697 * calling this function.
700 vfork_return(proc_t child_proc
, int32_t *retval
, int rval
)
702 task_t parent_task
= get_threadtask(child_proc
->p_vforkact
);
703 proc_t parent_proc
= get_bsdtask_info(parent_task
);
704 thread_t th
= current_thread();
705 uthread_t uth
= get_bsdthread_info(th
);
707 act_thread_catt(uth
->uu_userstate
);
709 /* clear vfork state in parent proc structure */
710 proc_vfork_end(parent_proc
);
712 /* REPATRIATE PARENT TASK, THREAD, UTHREAD */
713 uth
->uu_userstate
= 0;
714 uth
->uu_flag
&= ~UT_VFORK
;
715 /* restore thread-set-id state */
716 if (uth
->uu_flag
& UT_WASSETUID
) {
717 uth
->uu_flag
|= UT_SETUID
;
718 uth
->uu_flag
&= UT_WASSETUID
;
721 uth
->uu_sigmask
= uth
->uu_vforkmask
;
723 proc_lock(child_proc
);
724 child_proc
->p_lflag
&= ~P_LINVFORK
;
725 child_proc
->p_vforkact
= 0;
726 proc_unlock(child_proc
);
728 thread_set_parent(th
, rval
);
732 retval
[1] = 0; /* mark parent */
740 * Description: Common operations associated with the creation of a child
743 * Parameters: parent_task parent task
744 * child_proc child process
745 * inherit_memory TRUE, if the parents address space is
746 * to be inherited by the child
747 * is64bit TRUE, if the child being created will
748 * be associated with a 64 bit process
749 * rather than a 32 bit process
751 * Note: This code is called in the fork() case, from the execve() call
752 * graph, if implementing an execve() following a vfork(), from
753 * the posix_spawn() call graph (which implicitly includes a
754 * vfork() equivalent call, and in the system bootstrap case.
756 * It creates a new task and thread (and as a side effect of the
757 * thread creation, a uthread), which is then associated with the
758 * process 'child'. If the parent process address space is to
759 * be inherited, then a flag indicates that the newly created
760 * task should inherit this from the child task.
762 * As a special concession to bootstrapping the initial process
763 * in the system, it's possible for 'parent_task' to be TASK_NULL;
764 * in this case, 'inherit_memory' MUST be FALSE.
767 fork_create_child(task_t parent_task
, proc_t child_proc
, int inherit_memory
, int is64bit
)
769 thread_t child_thread
= NULL
;
771 kern_return_t result
;
773 /* Create a new task for the child process */
774 result
= task_create_internal(parent_task
,
778 if (result
!= KERN_SUCCESS
) {
779 printf("%s: task_create_internal failed. Code: %d\n",
784 /* Set the child process task to the new task */
785 child_proc
->task
= child_task
;
787 /* Set child task process to child proc */
788 set_bsdtask_info(child_task
, child_proc
);
790 /* Propagate CPU limit timer from parent */
791 if (timerisset(&child_proc
->p_rlim_cpu
))
792 task_vtimer_set(child_task
, TASK_VTIMER_RLIM
);
794 /* Set/clear 64 bit vm_map flag */
796 vm_map_set_64bit(get_task_map(child_task
));
798 vm_map_set_32bit(get_task_map(child_task
));
801 /* Update task for MAC framework */
802 /* valid to use p_ucred as child is still not running ... */
803 mac_task_label_update_cred(child_proc
->p_ucred
, child_task
);
807 * Set child process BSD visible scheduler priority if nice value
808 * inherited from parent
810 if (child_proc
->p_nice
!= 0)
811 resetpriority(child_proc
);
813 /* Create a new thread for the child process */
814 result
= thread_create(child_task
, &child_thread
);
815 if (result
!= KERN_SUCCESS
) {
816 printf("%s: thread_create failed. Code: %d\n",
818 task_deallocate(child_task
);
823 * Tag thread as being the first thread in its task.
825 thread_set_tag(child_thread
, THREAD_TAG_MAINTHREAD
);
828 thread_yield_internal(1);
830 return(child_thread
);
837 * Description: fork system call.
839 * Parameters: parent Parent process to fork
840 * uap (void) [unused]
841 * retval Return value
844 * EAGAIN Resource unavailable, try again
846 * Notes: Attempts to create a new child process which inherits state
847 * from the parent process. If successful, the call returns
848 * having created an initially suspended child process with an
849 * extra Mach task and thread reference, for which the thread
850 * is initially suspended. Until we resume the child process,
851 * it is not yet running.
853 * The return information to the child is contained in the
854 * thread state structure of the new child, and does not
855 * become visible to the child through a normal return process,
856 * since it never made the call into the kernel itself in the
859 * After resuming the thread, this function returns directly to
860 * the parent process which invoked the fork() system call.
862 * Important: The child thread_resume occurs before the parent returns;
863 * depending on scheduling latency, this means that it is not
864 * deterministic as to whether the parent or child is scheduled
865 * to run first. It is entirely possible that the child could
866 * run to completion prior to the parent running.
869 fork(proc_t parent_proc
, __unused
struct fork_args
*uap
, int32_t *retval
)
871 thread_t child_thread
;
874 retval
[1] = 0; /* flag parent return for user space */
876 if ((err
= fork1(parent_proc
, &child_thread
, PROC_CREATE_FORK
)) == 0) {
880 /* Return to the parent */
881 child_proc
= (proc_t
)get_bsdthreadtask_info(child_thread
);
882 retval
[0] = child_proc
->p_pid
;
885 * Drop the signal lock on the child which was taken on our
886 * behalf by forkproc()/cloneproc() to prevent signals being
887 * received by the child in a partially constructed state.
889 proc_signalend(child_proc
, 0);
890 proc_transend(child_proc
, 0);
892 /* flag the fork has occurred */
893 proc_knote(parent_proc
, NOTE_FORK
| child_proc
->p_pid
);
894 DTRACE_PROC1(create
, proc_t
, child_proc
);
896 /* "Return" to the child */
897 (void)thread_resume(child_thread
);
899 /* drop the extra references we got during the creation */
900 if ((child_task
= (task_t
)get_threadtask(child_thread
)) != NULL
) {
901 task_deallocate(child_task
);
903 thread_deallocate(child_thread
);
913 * Description: Create a new process from a specified process.
915 * Parameters: parent_task The parent task to be cloned, or
916 * TASK_NULL is task characteristics
917 * are not to be inherited
918 * be cloned, or TASK_NULL if the new
919 * task is not to inherit the VM
920 * characteristics of the parent
921 * parent_proc The parent process to be cloned
922 * inherit_memory True if the child is to inherit
923 * memory from the parent; if this is
924 * non-NULL, then the parent_task must
926 * memstat_internal Whether to track the process in the
927 * jetsam priority list (if configured)
929 * Returns: !NULL pointer to new child thread
930 * NULL Failure (unspecified)
932 * Note: On return newly created child process has signal lock held
933 * to block delivery of signal to it if called with lock set.
934 * fork() code needs to explicity remove this lock before
935 * signals can be delivered
937 * In the case of bootstrap, this function can be called from
938 * bsd_utaskbootstrap() in order to bootstrap the first process;
939 * the net effect is to provide a uthread structure for the
940 * kernel process associated with the kernel task.
942 * XXX: Tristating using the value parent_task as the major key
943 * and inherit_memory as the minor key is something we should
944 * refactor later; we owe the current semantics, ultimately,
945 * to the semantics of task_create_internal. For now, we will
946 * live with this being somewhat awkward.
949 cloneproc(task_t parent_task
, proc_t parent_proc
, int inherit_memory
, int memstat_internal
)
951 #if !CONFIG_MEMORYSTATUS
952 #pragma unused(memstat_internal)
956 thread_t child_thread
= NULL
;
958 if ((child_proc
= forkproc(parent_proc
)) == NULL
) {
959 /* Failed to allocate new process */
963 child_thread
= fork_create_child(parent_task
, child_proc
, inherit_memory
, (parent_task
== TASK_NULL
) ? FALSE
: (parent_proc
->p_flag
& P_LP64
));
965 if (child_thread
== NULL
) {
967 * Failed to create thread; now we must deconstruct the new
968 * process previously obtained from forkproc().
970 forkproc_free(child_proc
);
974 child_task
= get_threadtask(child_thread
);
975 if (parent_proc
->p_flag
& P_LP64
) {
976 task_set_64bit(child_task
, TRUE
);
977 OSBitOrAtomic(P_LP64
, (UInt32
*)&child_proc
->p_flag
);
979 task_set_64bit(child_task
, FALSE
);
980 OSBitAndAtomic(~((uint32_t)P_LP64
), (UInt32
*)&child_proc
->p_flag
);
983 #if CONFIG_MEMORYSTATUS
984 if (memstat_internal
) {
986 child_proc
->p_memstat_state
|= P_MEMSTAT_INTERNAL
;
991 /* make child visible */
992 pinsertchild(parent_proc
, child_proc
);
995 * Make child runnable, set start time.
997 child_proc
->p_stat
= SRUN
;
999 return(child_thread
);
1004 * Destroy a process structure that resulted from a call to forkproc(), but
1005 * which must be returned to the system because of a subsequent failure
1006 * preventing it from becoming active.
1008 * Parameters: p The incomplete process from forkproc()
1012 * Note: This function should only be used in an error handler following
1013 * a call to forkproc().
1015 * Operations occur in reverse order of those in forkproc().
1018 forkproc_free(proc_t p
)
1021 /* We held signal and a transition locks; drop them */
1022 proc_signalend(p
, 0);
1023 proc_transend(p
, 0);
1026 * If we have our own copy of the resource limits structure, we
1027 * need to free it. If it's a shared copy, we need to drop our
1030 proc_limitdrop(p
, 0);
1034 /* Need to drop references to the shared memory segment(s), if any */
1037 * Use shmexec(): we have no address space, so no mappings
1039 * XXX Yes, the routine is badly named.
1045 /* Need to undo the effects of the fdcopy(), if any */
1049 * Drop the reference on a text vnode pointer, if any
1050 * XXX This code is broken in forkproc(); see <rdar://4256419>;
1051 * XXX if anyone ever uses this field, we will be extremely unhappy.
1054 vnode_rele(p
->p_textvp
);
1058 /* Stop the profiling clock */
1061 /* Update the audit session proc count */
1062 AUDIT_SESSION_PROCEXIT(p
);
1064 /* Release the credential reference */
1065 kauth_cred_unref(&p
->p_ucred
);
1068 /* Decrement the count of processes in the system */
1072 thread_call_free(p
->p_rcall
);
1074 /* Free allocated memory */
1075 FREE_ZONE(p
->p_sigacts
, sizeof *p
->p_sigacts
, M_SIGACTS
);
1076 FREE_ZONE(p
->p_stats
, sizeof *p
->p_stats
, M_PSTATS
);
1077 proc_checkdeadrefs(p
);
1078 FREE_ZONE(p
, sizeof *p
, M_PROC
);
1085 * Description: Create a new process structure, given a parent process
1088 * Parameters: parent_proc The parent process
1090 * Returns: !NULL The new process structure
1091 * NULL Error (insufficient free memory)
1093 * Note: When successful, the newly created process structure is
1094 * partially initialized; if a caller needs to deconstruct the
1095 * returned structure, they must call forkproc_free() to do so.
1098 forkproc(proc_t parent_proc
)
1100 proc_t child_proc
; /* Our new process */
1101 static int nextpid
= 0, pidwrap
= 0, nextpidversion
= 0;
1102 static uint64_t nextuniqueid
= 0;
1104 struct session
*sessp
;
1105 uthread_t parent_uthread
= (uthread_t
)get_bsdthread_info(current_thread());
1107 MALLOC_ZONE(child_proc
, proc_t
, sizeof *child_proc
, M_PROC
, M_WAITOK
);
1108 if (child_proc
== NULL
) {
1109 printf("forkproc: M_PROC zone exhausted\n");
1112 /* zero it out as we need to insert in hash */
1113 bzero(child_proc
, sizeof *child_proc
);
1115 MALLOC_ZONE(child_proc
->p_stats
, struct pstats
*,
1116 sizeof *child_proc
->p_stats
, M_PSTATS
, M_WAITOK
);
1117 if (child_proc
->p_stats
== NULL
) {
1118 printf("forkproc: M_SUBPROC zone exhausted (p_stats)\n");
1119 FREE_ZONE(child_proc
, sizeof *child_proc
, M_PROC
);
1123 MALLOC_ZONE(child_proc
->p_sigacts
, struct sigacts
*,
1124 sizeof *child_proc
->p_sigacts
, M_SIGACTS
, M_WAITOK
);
1125 if (child_proc
->p_sigacts
== NULL
) {
1126 printf("forkproc: M_SUBPROC zone exhausted (p_sigacts)\n");
1127 FREE_ZONE(child_proc
->p_stats
, sizeof *child_proc
->p_stats
, M_PSTATS
);
1128 FREE_ZONE(child_proc
, sizeof *child_proc
, M_PROC
);
1133 /* allocate a callout for use by interval timers */
1134 child_proc
->p_rcall
= thread_call_allocate((thread_call_func_t
)realitexpire
, child_proc
);
1135 if (child_proc
->p_rcall
== NULL
) {
1136 FREE_ZONE(child_proc
->p_sigacts
, sizeof *child_proc
->p_sigacts
, M_SIGACTS
);
1137 FREE_ZONE(child_proc
->p_stats
, sizeof *child_proc
->p_stats
, M_PSTATS
);
1138 FREE_ZONE(child_proc
, sizeof *child_proc
, M_PROC
);
1145 * Find an unused PID.
1153 * If the process ID prototype has wrapped around,
1154 * restart somewhat above 0, as the low-numbered procs
1155 * tend to include daemons that don't exit.
1157 if (nextpid
>= PID_MAX
) {
1163 /* if the pid stays in hash both for zombie and runniing state */
1164 if (pfind_locked(nextpid
) != PROC_NULL
) {
1169 if (pgfind_internal(nextpid
) != PGRP_NULL
) {
1173 if (session_find_internal(nextpid
) != SESSION_NULL
) {
1179 child_proc
->p_pid
= nextpid
;
1180 child_proc
->p_idversion
= nextpidversion
++;
1181 /* kernel process is handcrafted and not from fork, so start from 1 */
1182 child_proc
->p_uniqueid
= ++nextuniqueid
;
1184 if (child_proc
->p_pid
!= 0) {
1185 if (pfind_locked(child_proc
->p_pid
) != PROC_NULL
)
1186 panic("proc in the list already\n");
1189 /* Insert in the hash */
1190 child_proc
->p_listflag
|= (P_LIST_INHASH
| P_LIST_INCREATE
);
1191 LIST_INSERT_HEAD(PIDHASH(child_proc
->p_pid
), child_proc
, p_hash
);
1196 * We've identified the PID we are going to use; initialize the new
1197 * process structure.
1199 child_proc
->p_stat
= SIDL
;
1200 child_proc
->p_pgrpid
= PGRPID_DEAD
;
1203 * The zero'ing of the proc was at the allocation time due to need
1204 * for insertion to hash. Copy the section that is to be copied
1205 * directly from the parent.
1207 bcopy(&parent_proc
->p_startcopy
, &child_proc
->p_startcopy
,
1208 (unsigned) ((caddr_t
)&child_proc
->p_endcopy
- (caddr_t
)&child_proc
->p_startcopy
));
1211 * Some flags are inherited from the parent.
1212 * Duplicate sub-structures as needed.
1213 * Increase reference counts on shared objects.
1214 * The p_stats and p_sigacts substructs are set in vm_fork.
1216 child_proc
->p_flag
= (parent_proc
->p_flag
& (P_LP64
| P_TRANSLATED
| P_AFFINITY
| P_DISABLE_ASLR
| P_DELAYIDLESLEEP
));
1217 if (parent_proc
->p_flag
& P_PROFIL
)
1218 startprofclock(child_proc
);
1220 child_proc
->p_vfs_iopolicy
= (parent_proc
->p_vfs_iopolicy
& (P_VFS_IOPOLICY_FORCE_HFS_CASE_SENSITIVITY
));
1223 * Note that if the current thread has an assumed identity, this
1224 * credential will be granted to the new process.
1226 child_proc
->p_ucred
= kauth_cred_get_with_ref();
1227 /* update cred on proc */
1228 PROC_UPDATE_CREDS_ONPROC(child_proc
);
1229 /* update audit session proc count */
1230 AUDIT_SESSION_PROCNEW(child_proc
);
1232 #if CONFIG_FINE_LOCK_GROUPS
1233 lck_mtx_init(&child_proc
->p_mlock
, proc_mlock_grp
, proc_lck_attr
);
1234 lck_mtx_init(&child_proc
->p_fdmlock
, proc_fdmlock_grp
, proc_lck_attr
);
1236 lck_mtx_init(&child_proc
->p_dtrace_sprlock
, proc_lck_grp
, proc_lck_attr
);
1238 lck_spin_init(&child_proc
->p_slock
, proc_slock_grp
, proc_lck_attr
);
1239 #else /* !CONFIG_FINE_LOCK_GROUPS */
1240 lck_mtx_init(&child_proc
->p_mlock
, proc_lck_grp
, proc_lck_attr
);
1241 lck_mtx_init(&child_proc
->p_fdmlock
, proc_lck_grp
, proc_lck_attr
);
1243 lck_mtx_init(&child_proc
->p_dtrace_sprlock
, proc_lck_grp
, proc_lck_attr
);
1245 lck_spin_init(&child_proc
->p_slock
, proc_lck_grp
, proc_lck_attr
);
1246 #endif /* !CONFIG_FINE_LOCK_GROUPS */
1247 klist_init(&child_proc
->p_klist
);
1249 if (child_proc
->p_textvp
!= NULLVP
) {
1250 /* bump references to the text vnode */
1251 /* Need to hold iocount across the ref call */
1252 if (vnode_getwithref(child_proc
->p_textvp
) == 0) {
1253 error
= vnode_ref(child_proc
->p_textvp
);
1254 vnode_put(child_proc
->p_textvp
);
1256 child_proc
->p_textvp
= NULLVP
;
1261 * Copy the parents per process open file table to the child; if
1262 * there is a per-thread current working directory, set the childs
1263 * per-process current working directory to that instead of the
1266 * XXX may fail to copy descriptors to child
1268 child_proc
->p_fd
= fdcopy(parent_proc
, parent_uthread
->uu_cdir
);
1271 if (parent_proc
->vm_shm
) {
1272 /* XXX may fail to attach shm to child */
1273 (void)shmfork(parent_proc
, child_proc
);
1277 * inherit the limit structure to child
1279 proc_limitfork(parent_proc
, child_proc
);
1281 if (child_proc
->p_limit
->pl_rlimit
[RLIMIT_CPU
].rlim_cur
!= RLIM_INFINITY
) {
1282 uint64_t rlim_cur
= child_proc
->p_limit
->pl_rlimit
[RLIMIT_CPU
].rlim_cur
;
1283 child_proc
->p_rlim_cpu
.tv_sec
= (rlim_cur
> __INT_MAX__
) ? __INT_MAX__
: rlim_cur
;
1286 /* Intialize new process stats, including start time */
1287 /* <rdar://6640543> non-zeroed portion contains garbage AFAICT */
1288 bzero(child_proc
->p_stats
, sizeof(*child_proc
->p_stats
));
1289 microtime_with_abstime(&child_proc
->p_start
, &child_proc
->p_stats
->ps_start
);
1291 if (parent_proc
->p_sigacts
!= NULL
)
1292 (void)memcpy(child_proc
->p_sigacts
,
1293 parent_proc
->p_sigacts
, sizeof *child_proc
->p_sigacts
);
1295 (void)memset(child_proc
->p_sigacts
, 0, sizeof *child_proc
->p_sigacts
);
1297 sessp
= proc_session(parent_proc
);
1298 if (sessp
->s_ttyvp
!= NULL
&& parent_proc
->p_flag
& P_CONTROLT
)
1299 OSBitOrAtomic(P_CONTROLT
, &child_proc
->p_flag
);
1300 session_rele(sessp
);
1303 * block all signals to reach the process.
1304 * no transition race should be occuring with the child yet,
1305 * but indicate that the process is in (the creation) transition.
1307 proc_signalstart(child_proc
, 0);
1308 proc_transstart(child_proc
, 0);
1310 child_proc
->p_pcaction
= (parent_proc
->p_pcaction
) & P_PCMAX
;
1311 TAILQ_INIT(&child_proc
->p_uthlist
);
1312 TAILQ_INIT(&child_proc
->p_aio_activeq
);
1313 TAILQ_INIT(&child_proc
->p_aio_doneq
);
1315 /* Inherit the parent flags for code sign */
1316 child_proc
->p_csflags
= (parent_proc
->p_csflags
& ~CS_KILLED
);
1319 * All processes have work queue locks; cleaned up by
1320 * reap_child_locked()
1322 workqueue_init_lock(child_proc
);
1325 * Copy work queue information
1327 * Note: This should probably only happen in the case where we are
1328 * creating a child that is a copy of the parent; since this
1329 * routine is called in the non-duplication case of vfork()
1330 * or posix_spawn(), then this information should likely not
1333 * <rdar://6640553> Work queue pointers that no longer point to code
1335 child_proc
->p_wqthread
= parent_proc
->p_wqthread
;
1336 child_proc
->p_threadstart
= parent_proc
->p_threadstart
;
1337 child_proc
->p_pthsize
= parent_proc
->p_pthsize
;
1338 child_proc
->p_targconc
= parent_proc
->p_targconc
;
1339 if ((parent_proc
->p_lflag
& P_LREGISTER
) != 0) {
1340 child_proc
->p_lflag
|= P_LREGISTER
;
1342 child_proc
->p_dispatchqueue_offset
= parent_proc
->p_dispatchqueue_offset
;
1343 child_proc
->p_dispatchqueue_serialno_offset
= parent_proc
->p_dispatchqueue_serialno_offset
;
1345 pth_proc_hashinit(child_proc
);
1349 child_proc
->p_lctx
= NULL
;
1350 /* Add new process to login context (if any). */
1351 if (parent_proc
->p_lctx
!= NULL
) {
1353 * <rdar://6640564> This should probably be delayed in the
1354 * vfork() or posix_spawn() cases.
1356 LCTX_LOCK(parent_proc
->p_lctx
);
1357 enterlctx(child_proc
, parent_proc
->p_lctx
, 0);
1361 #if CONFIG_MEMORYSTATUS
1362 /* Memorystatus + jetsam init */
1363 child_proc
->p_memstat_state
= 0;
1364 child_proc
->p_memstat_effectivepriority
= JETSAM_PRIORITY_DEFAULT
;
1365 child_proc
->p_memstat_requestedpriority
= JETSAM_PRIORITY_DEFAULT
;
1366 child_proc
->p_memstat_userdata
= 0;
1368 child_proc
->p_memstat_suspendedfootprint
= 0;
1370 child_proc
->p_memstat_dirty
= 0;
1371 child_proc
->p_memstat_idledeadline
= 0;
1372 #endif /* CONFIG_MEMORYSTATUS */
1381 lck_mtx_lock(&p
->p_mlock
);
1385 proc_unlock(proc_t p
)
1387 lck_mtx_unlock(&p
->p_mlock
);
1391 proc_spinlock(proc_t p
)
1393 lck_spin_lock(&p
->p_slock
);
1397 proc_spinunlock(proc_t p
)
1399 lck_spin_unlock(&p
->p_slock
);
1403 proc_list_lock(void)
1405 lck_mtx_lock(proc_list_mlock
);
1409 proc_list_unlock(void)
1411 lck_mtx_unlock(proc_list_mlock
);
1414 #include <kern/zalloc.h>
1416 struct zone
*uthread_zone
;
1417 static int uthread_zone_inited
= 0;
1420 uthread_zone_init(void)
1422 if (!uthread_zone_inited
) {
1423 uthread_zone
= zinit(sizeof(struct uthread
),
1424 thread_max
* sizeof(struct uthread
),
1425 THREAD_CHUNK
* sizeof(struct uthread
),
1427 uthread_zone_inited
= 1;
1432 uthread_alloc(task_t task
, thread_t thread
, int noinherit
)
1436 uthread_t uth_parent
;
1439 if (!uthread_zone_inited
)
1440 uthread_zone_init();
1442 ut
= (void *)zalloc(uthread_zone
);
1443 bzero(ut
, sizeof(struct uthread
));
1445 p
= (proc_t
) get_bsdtask_info(task
);
1446 uth
= (uthread_t
)ut
;
1447 uth
->uu_thread
= thread
;
1450 * Thread inherits credential from the creating thread, if both
1451 * are in the same task.
1453 * If the creating thread has no credential or is from another
1454 * task we can leave the new thread credential NULL. If it needs
1455 * one later, it will be lazily assigned from the task's process.
1457 uth_parent
= (uthread_t
)get_bsdthread_info(current_thread());
1458 if ((noinherit
== 0) && task
== current_task() &&
1459 uth_parent
!= NULL
&&
1460 IS_VALID_CRED(uth_parent
->uu_ucred
)) {
1462 * XXX The new thread is, in theory, being created in context
1463 * XXX of parent thread, so a direct reference to the parent
1466 kauth_cred_ref(uth_parent
->uu_ucred
);
1467 uth
->uu_ucred
= uth_parent
->uu_ucred
;
1468 /* the credential we just inherited is an assumed credential */
1469 if (uth_parent
->uu_flag
& UT_SETUID
)
1470 uth
->uu_flag
|= UT_SETUID
;
1472 /* sometimes workqueue threads are created out task context */
1473 if ((task
!= kernel_task
) && (p
!= PROC_NULL
))
1474 uth
->uu_ucred
= kauth_cred_proc_ref(p
);
1476 uth
->uu_ucred
= NOCRED
;
1480 if ((task
!= kernel_task
) && p
) {
1483 if (noinherit
!= 0) {
1484 /* workq threads will not inherit masks */
1485 uth
->uu_sigmask
= ~workq_threadmask
;
1486 } else if (uth_parent
) {
1487 if (uth_parent
->uu_flag
& UT_SAS_OLDMASK
)
1488 uth
->uu_sigmask
= uth_parent
->uu_oldmask
;
1490 uth
->uu_sigmask
= uth_parent
->uu_sigmask
;
1492 uth
->uu_context
.vc_thread
= thread
;
1493 TAILQ_INSERT_TAIL(&p
->p_uthlist
, uth
, uu_list
);
1497 if (p
->p_dtrace_ptss_pages
!= NULL
) {
1498 uth
->t_dtrace_scratch
= dtrace_ptss_claim_entry(p
);
1502 mac_thread_label_init(uth
);
1511 * This routine frees all the BSD context in uthread except the credential.
1512 * It does not free the uthread structure as well
1515 uthread_cleanup(task_t task
, void *uthread
, void * bsd_info
)
1517 struct _select
*sel
;
1518 uthread_t uth
= (uthread_t
)uthread
;
1519 proc_t p
= (proc_t
)bsd_info
;
1522 if (uth
->uu_lowpri_window
|| uth
->uu_throttle_info
) {
1524 * task is marked as a low priority I/O type
1525 * and we've somehow managed to not dismiss the throttle
1526 * through the normal exit paths back to user space...
1527 * no need to throttle this thread since its going away
1528 * but we do need to update our bookeeping w/r to throttled threads
1530 * Calling this routine will clean up any throttle info reference
1531 * still inuse by the thread.
1533 throttle_lowpri_io(0);
1536 * Per-thread audit state should never last beyond system
1537 * call return. Since we don't audit the thread creation/
1538 * removal, the thread state pointer should never be
1539 * non-NULL when we get here.
1541 assert(uth
->uu_ar
== NULL
);
1543 sel
= &uth
->uu_select
;
1544 /* cleanup the select bit space */
1546 FREE(sel
->ibits
, M_TEMP
);
1547 FREE(sel
->obits
, M_TEMP
);
1552 vnode_rele(uth
->uu_cdir
);
1553 uth
->uu_cdir
= NULLVP
;
1556 if (uth
->uu_allocsize
&& uth
->uu_wqset
){
1557 kfree(uth
->uu_wqset
, uth
->uu_allocsize
);
1558 uth
->uu_allocsize
= 0;
1562 if(uth
->pth_name
!= NULL
)
1564 kfree(uth
->pth_name
, MAXTHREADNAMESIZE
);
1567 if ((task
!= kernel_task
) && p
) {
1569 if (((uth
->uu_flag
& UT_VFORK
) == UT_VFORK
) && (uth
->uu_proc
!= PROC_NULL
)) {
1570 vfork_exit_internal(uth
->uu_proc
, 0, 1);
1573 * Remove the thread from the process list and
1574 * transfer [appropriate] pending signals to the process.
1576 if (get_bsdtask_info(task
) == p
) {
1578 TAILQ_REMOVE(&p
->p_uthlist
, uth
, uu_list
);
1579 p
->p_siglist
|= (uth
->uu_siglist
& execmask
& (~p
->p_sigignore
| sigcantmask
));
1583 struct dtrace_ptss_page_entry
*tmpptr
= uth
->t_dtrace_scratch
;
1584 uth
->t_dtrace_scratch
= NULL
;
1585 if (tmpptr
!= NULL
) {
1586 dtrace_ptss_release_entry(p
, tmpptr
);
1590 mac_thread_label_destroy(uth
);
1595 /* This routine releases the credential stored in uthread */
1597 uthread_cred_free(void *uthread
)
1599 uthread_t uth
= (uthread_t
)uthread
;
1601 /* and free the uthread itself */
1602 if (IS_VALID_CRED(uth
->uu_ucred
)) {
1603 kauth_cred_t oldcred
= uth
->uu_ucred
;
1604 uth
->uu_ucred
= NOCRED
;
1605 kauth_cred_unref(&oldcred
);
1609 /* This routine frees the uthread structure held in thread structure */
1611 uthread_zone_free(void *uthread
)
1613 /* and free the uthread itself */
1614 zfree(uthread_zone
, uthread
);