]> git.saurik.com Git - apple/xnu.git/blob - osfmk/i386/rtclock.c
xnu-344.2.tar.gz
[apple/xnu.git] / osfmk / i386 / rtclock.c
1 /*
2 * Copyright (c) 2000 Apple Computer, Inc. All rights reserved.
3 *
4 * @APPLE_LICENSE_HEADER_START@
5 *
6 * The contents of this file constitute Original Code as defined in and
7 * are subject to the Apple Public Source License Version 1.1 (the
8 * "License"). You may not use this file except in compliance with the
9 * License. Please obtain a copy of the License at
10 * http://www.apple.com/publicsource and read it before using this file.
11 *
12 * This Original Code and all software distributed under the License are
13 * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER
14 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
15 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the
17 * License for the specific language governing rights and limitations
18 * under the License.
19 *
20 * @APPLE_LICENSE_HEADER_END@
21 */
22 /*
23 * @OSF_COPYRIGHT@
24 */
25
26 /*
27 * File: i386/rtclock.c
28 * Purpose: Routines for handling the machine dependent
29 * real-time clock. This clock is generated by
30 * the Intel 8254 Programmable Interval Timer.
31 */
32
33 #include <cpus.h>
34 #include <platforms.h>
35 #include <mp_v1_1.h>
36 #include <mach_kdb.h>
37 #include <kern/cpu_number.h>
38 #include <kern/cpu_data.h>
39 #include <kern/clock.h>
40 #include <kern/macro_help.h>
41 #include <kern/misc_protos.h>
42 #include <kern/spl.h>
43 #include <machine/mach_param.h> /* HZ */
44 #include <mach/vm_prot.h>
45 #include <vm/pmap.h>
46 #include <vm/vm_kern.h> /* for kernel_map */
47 #include <i386/ipl.h>
48 #include <i386/pit.h>
49 #include <i386/pio.h>
50 #include <i386/misc_protos.h>
51 #include <i386/rtclock_entries.h>
52 #include <i386/hardclock_entries.h>
53
54 int sysclk_config(void);
55
56 int sysclk_init(void);
57
58 kern_return_t sysclk_gettime(
59 mach_timespec_t *cur_time);
60
61 kern_return_t sysclk_getattr(
62 clock_flavor_t flavor,
63 clock_attr_t attr,
64 mach_msg_type_number_t *count);
65
66 kern_return_t sysclk_setattr(
67 clock_flavor_t flavor,
68 clock_attr_t attr,
69 mach_msg_type_number_t count);
70
71 void sysclk_setalarm(
72 mach_timespec_t *alarm_time);
73
74 extern void (*IOKitRegisterInterruptHook)(void *, int irq, int isclock);
75
76 /*
77 * Inlines to get timestamp counter value.
78 */
79
80 static inline void rdtsc_hilo(uint32_t *hi, uint32_t *lo) {
81 asm volatile("rdtsc": "=a" (*lo), "=d" (*hi));
82 }
83
84 static inline uint64_t rdtsc_64(void) {
85 uint64_t result;
86 asm volatile("rdtsc": "=A" (result));
87 return result;
88 }
89
90 /*
91 * Lists of clock routines.
92 */
93 struct clock_ops sysclk_ops = {
94 sysclk_config, sysclk_init,
95 sysclk_gettime, 0,
96 sysclk_getattr, sysclk_setattr,
97 sysclk_setalarm,
98 };
99
100 int calend_config(void);
101
102 int calend_init(void);
103
104 kern_return_t calend_gettime(
105 mach_timespec_t *cur_time);
106
107 kern_return_t calend_settime(
108 mach_timespec_t *cur_time);
109
110 kern_return_t calend_getattr(
111 clock_flavor_t flavor,
112 clock_attr_t attr,
113 mach_msg_type_number_t *count);
114
115 struct clock_ops calend_ops = {
116 calend_config, calend_init,
117 calend_gettime, calend_settime,
118 calend_getattr, 0,
119 0,
120 };
121
122 /* local data declarations */
123 mach_timespec_t *RtcTime = (mach_timespec_t *)0;
124 mach_timespec_t *RtcAlrm;
125 clock_res_t RtcDelt;
126
127 /* global data declarations */
128 struct {
129 uint64_t abstime;
130
131 mach_timespec_t time;
132 mach_timespec_t alarm_time; /* time of next alarm */
133
134 mach_timespec_t calend_offset;
135 boolean_t calend_is_set;
136
137 uint64_t timer_deadline;
138 boolean_t timer_is_set;
139 clock_timer_func_t timer_expire;
140
141 clock_res_t new_ires; /* pending new resolution (nano ) */
142 clock_res_t intr_nsec; /* interrupt resolution (nano) */
143
144 decl_simple_lock_data(,lock) /* real-time clock device lock */
145 } rtclock;
146
147 unsigned int clknum; /* clks per second */
148 unsigned int new_clknum; /* pending clknum */
149 unsigned int time_per_clk; /* time per clk in ZHZ */
150 unsigned int clks_per_int; /* clks per interrupt */
151 unsigned int clks_per_int_99;
152 int rtc_intr_count; /* interrupt counter */
153 int rtc_intr_hertz; /* interrupts per HZ */
154 int rtc_intr_freq; /* interrupt frequency */
155 int rtc_print_lost_tick; /* print lost tick */
156
157 uint32_t rtc_cyc_per_sec; /* processor cycles per seconds */
158 uint32_t rtc_last_int_tsc_lo; /* tsc values saved per interupt */
159 uint32_t rtc_last_int_tsc_hi;
160
161 /*
162 * Macros to lock/unlock real-time clock device.
163 */
164 #define LOCK_RTC(s) \
165 MACRO_BEGIN \
166 (s) = splclock(); \
167 simple_lock(&rtclock.lock); \
168 MACRO_END
169
170 #define UNLOCK_RTC(s) \
171 MACRO_BEGIN \
172 simple_unlock(&rtclock.lock); \
173 splx(s); \
174 MACRO_END
175
176 /*
177 * i8254 control. ** MONUMENT **
178 *
179 * The i8254 is a traditional PC device with some arbitrary characteristics.
180 * Basically, it is a register that counts at a fixed rate and can be
181 * programmed to generate an interrupt every N counts. The count rate is
182 * clknum counts per second (see pit.h), historically 1193167 we believe.
183 * Various constants are computed based on this value, and we calculate
184 * them at init time for execution efficiency. To obtain sufficient
185 * accuracy, some of the calculation are most easily done in floating
186 * point and then converted to int.
187 *
188 * We want an interrupt every 10 milliseconds, approximately. The count
189 * which will do that is clks_per_int. However, that many counts is not
190 * *exactly* 10 milliseconds; it is a bit more or less depending on
191 * roundoff. The actual time per tick is calculated and saved in
192 * rtclock.intr_nsec, and it is that value which is added to the time
193 * register on each tick.
194 *
195 * The i8254 counter can be read between interrupts in order to determine
196 * the time more accurately. The counter counts down from the preset value
197 * toward 0, and we have to handle the case where the counter has been
198 * reset just before being read and before the interrupt has been serviced.
199 * Given a count since the last interrupt, the time since then is given
200 * by (count * time_per_clk). In order to minimize integer truncation,
201 * we perform this calculation in an arbitrary unit of time which maintains
202 * the maximum precision, i.e. such that one tick is 1.0e9 of these units,
203 * or close to the precision of a 32-bit int. We then divide by this unit
204 * (which doesn't lose precision) to get nanoseconds. For notation
205 * purposes, this unit is defined as ZHZ = zanoseconds per nanosecond.
206 *
207 * This sequence to do all this is in sysclk_gettime. For efficiency, this
208 * sequence also needs the value that the counter will have if it has just
209 * overflowed, so we precompute that also. ALSO, certain platforms
210 * (specifically the DEC XL5100) have been observed to have problem
211 * with latching the counter, and they occasionally (say, one out of
212 * 100,000 times) return a bogus value. Hence, the present code reads
213 * the counter twice and checks for a consistent pair of values.
214 *
215 * Some attributes of the rt clock can be changed, including the
216 * interrupt resolution. We default to the minimum resolution (10 ms),
217 * but allow a finer resolution to be requested. The assumed frequency
218 * of the clock can also be set since it appears that the actual
219 * frequency of real-world hardware can vary from the nominal by
220 * 200 ppm or more. When the frequency is set, the values above are
221 * recomputed and we continue without resetting or changing anything else.
222 */
223 #define RTC_MINRES (NSEC_PER_SEC / HZ) /* nsec per tick */
224 #define RTC_MAXRES (RTC_MINRES / 20) /* nsec per tick */
225 #define ZANO (1000000000)
226 #define ZHZ (ZANO / (NSEC_PER_SEC / HZ))
227 #define READ_8254(val) { \
228 outb(PITCTL_PORT, PIT_C0); \
229 (val) = inb(PITCTR0_PORT); \
230 (val) |= inb(PITCTR0_PORT) << 8 ; }
231
232 /*
233 * Calibration delay counts.
234 */
235 unsigned int delaycount = 100;
236 unsigned int microdata = 50;
237
238 /*
239 * Forward decl.
240 */
241
242 extern int measure_delay(int us);
243 void rtc_setvals( unsigned int, clock_res_t );
244
245 static void rtc_set_cyc_per_sec();
246
247 /*
248 * Initialize non-zero clock structure values.
249 */
250 void
251 rtc_setvals(
252 unsigned int new_clknum,
253 clock_res_t new_ires
254 )
255 {
256 unsigned int timeperclk;
257 unsigned int scale0;
258 unsigned int scale1;
259 unsigned int res;
260
261 clknum = new_clknum;
262 rtc_intr_freq = (NSEC_PER_SEC / new_ires);
263 rtc_intr_hertz = rtc_intr_freq / HZ;
264 clks_per_int = (clknum + (rtc_intr_freq / 2)) / rtc_intr_freq;
265 clks_per_int_99 = clks_per_int - clks_per_int/100;
266
267 /*
268 * The following calculations are done with scaling integer operations
269 * in order that the integer results are accurate to the lsb.
270 */
271 timeperclk = div_scale(ZANO, clknum, &scale0); /* 838.105647 nsec */
272
273 time_per_clk = mul_scale(ZHZ, timeperclk, &scale1); /* 83810 */
274 if (scale0 > scale1)
275 time_per_clk >>= (scale0 - scale1);
276 else if (scale0 < scale1)
277 panic("rtc_clock: time_per_clk overflow\n");
278
279 /*
280 * Notice that rtclock.intr_nsec is signed ==> use unsigned int res
281 */
282 res = mul_scale(clks_per_int, timeperclk, &scale1); /* 10000276 */
283 if (scale0 > scale1)
284 rtclock.intr_nsec = res >> (scale0 - scale1);
285 else
286 panic("rtc_clock: rtclock.intr_nsec overflow\n");
287
288 rtc_intr_count = 1;
289 RtcDelt = rtclock.intr_nsec/2;
290 }
291
292 /*
293 * Configure the real-time clock device. Return success (1)
294 * or failure (0).
295 */
296
297 int
298 sysclk_config(void)
299 {
300 int RtcFlag;
301 int pic;
302
303 #if NCPUS > 1
304 mp_disable_preemption();
305 if (cpu_number() != master_cpu) {
306 mp_enable_preemption();
307 return(1);
308 }
309 mp_enable_preemption();
310 #endif
311 /*
312 * Setup device.
313 */
314 #if MP_V1_1
315 {
316 extern boolean_t mp_v1_1_initialized;
317 if (mp_v1_1_initialized)
318 pic = 2;
319 else
320 pic = 0;
321 }
322 #else
323 pic = 0; /* FIXME .. interrupt registration moved to AppleIntelClock */
324 #endif
325
326
327 /*
328 * We should attempt to test the real-time clock
329 * device here. If it were to fail, we should panic
330 * the system.
331 */
332 RtcFlag = /* test device */1;
333 printf("realtime clock configured\n");
334
335 simple_lock_init(&rtclock.lock, ETAP_NO_TRACE);
336 return (RtcFlag);
337 }
338
339 /*
340 * Initialize the real-time clock device. Return success (1)
341 * or failure (0). Since the real-time clock is required to
342 * provide canonical mapped time, we allocate a page to keep
343 * the clock time value. In addition, various variables used
344 * to support the clock are initialized. Note: the clock is
345 * not started until rtclock_reset is called.
346 */
347 int
348 sysclk_init(void)
349 {
350 vm_offset_t *vp;
351 #if NCPUS > 1
352 mp_disable_preemption();
353 if (cpu_number() != master_cpu) {
354 mp_enable_preemption();
355 return(1);
356 }
357 mp_enable_preemption();
358 #endif
359
360 RtcTime = &rtclock.time;
361 rtc_setvals( CLKNUM, RTC_MINRES ); /* compute constants */
362 rtc_set_cyc_per_sec(); /* compute number of tsc beats per second */
363 return (1);
364 }
365
366 static volatile unsigned int last_ival = 0;
367
368 /*
369 * Get the clock device time. This routine is responsible
370 * for converting the device's machine dependent time value
371 * into a canonical mach_timespec_t value.
372 */
373 kern_return_t
374 sysclk_gettime(
375 mach_timespec_t *cur_time) /* OUT */
376 {
377 mach_timespec_t itime = {0, 0};
378 unsigned int val, val2;
379 int s;
380
381 if (!RtcTime) {
382 /* Uninitialized */
383 cur_time->tv_nsec = 0;
384 cur_time->tv_sec = 0;
385 return (KERN_SUCCESS);
386 }
387
388 /*
389 * Inhibit interrupts. Determine the incremental
390 * time since the last interrupt. (This could be
391 * done in assembler for a bit more speed).
392 */
393 LOCK_RTC(s);
394 do {
395 READ_8254(val); /* read clock */
396 READ_8254(val2); /* read clock */
397 } while ( val2 > val || val2 < val - 10 );
398 if ( val > clks_per_int_99 ) {
399 outb( 0x0a, 0x20 ); /* see if interrupt pending */
400 if ( inb( 0x20 ) & 1 )
401 itime.tv_nsec = rtclock.intr_nsec; /* yes, add a tick */
402 }
403 itime.tv_nsec += ((clks_per_int - val) * time_per_clk) / ZHZ;
404 if ( itime.tv_nsec < last_ival ) {
405 if (rtc_print_lost_tick)
406 printf( "rtclock: missed clock interrupt.\n" );
407 }
408 last_ival = itime.tv_nsec;
409 cur_time->tv_sec = rtclock.time.tv_sec;
410 cur_time->tv_nsec = rtclock.time.tv_nsec;
411 UNLOCK_RTC(s);
412 ADD_MACH_TIMESPEC(cur_time, ((mach_timespec_t *)&itime));
413 return (KERN_SUCCESS);
414 }
415
416 kern_return_t
417 sysclk_gettime_internal(
418 mach_timespec_t *cur_time) /* OUT */
419 {
420 mach_timespec_t itime = {0, 0};
421 unsigned int val, val2;
422
423 if (!RtcTime) {
424 /* Uninitialized */
425 cur_time->tv_nsec = 0;
426 cur_time->tv_sec = 0;
427 return (KERN_SUCCESS);
428 }
429
430 /*
431 * Inhibit interrupts. Determine the incremental
432 * time since the last interrupt. (This could be
433 * done in assembler for a bit more speed).
434 */
435 do {
436 READ_8254(val); /* read clock */
437 READ_8254(val2); /* read clock */
438 } while ( val2 > val || val2 < val - 10 );
439 if ( val > clks_per_int_99 ) {
440 outb( 0x0a, 0x20 ); /* see if interrupt pending */
441 if ( inb( 0x20 ) & 1 )
442 itime.tv_nsec = rtclock.intr_nsec; /* yes, add a tick */
443 }
444 itime.tv_nsec += ((clks_per_int - val) * time_per_clk) / ZHZ;
445 if ( itime.tv_nsec < last_ival ) {
446 if (rtc_print_lost_tick)
447 printf( "rtclock: missed clock interrupt.\n" );
448 }
449 last_ival = itime.tv_nsec;
450 cur_time->tv_sec = rtclock.time.tv_sec;
451 cur_time->tv_nsec = rtclock.time.tv_nsec;
452 ADD_MACH_TIMESPEC(cur_time, ((mach_timespec_t *)&itime));
453 return (KERN_SUCCESS);
454 }
455
456 /*
457 * Get the clock device time when ALL interrupts are already disabled.
458 * Same as above except for turning interrupts off and on.
459 * This routine is responsible for converting the device's machine dependent
460 * time value into a canonical mach_timespec_t value.
461 */
462 void
463 sysclk_gettime_interrupts_disabled(
464 mach_timespec_t *cur_time) /* OUT */
465 {
466 mach_timespec_t itime = {0, 0};
467 unsigned int val;
468
469 if (!RtcTime) {
470 /* Uninitialized */
471 cur_time->tv_nsec = 0;
472 cur_time->tv_sec = 0;
473 return;
474 }
475
476 simple_lock(&rtclock.lock);
477
478 /*
479 * Copy the current time knowing that we cant be interrupted
480 * between the two longwords and so dont need to use MTS_TO_TS
481 */
482 READ_8254(val); /* read clock */
483 if ( val > clks_per_int_99 ) {
484 outb( 0x0a, 0x20 ); /* see if interrupt pending */
485 if ( inb( 0x20 ) & 1 )
486 itime.tv_nsec = rtclock.intr_nsec; /* yes, add a tick */
487 }
488 itime.tv_nsec += ((clks_per_int - val) * time_per_clk) / ZHZ;
489 if ( itime.tv_nsec < last_ival ) {
490 if (rtc_print_lost_tick)
491 printf( "rtclock: missed clock interrupt.\n" );
492 }
493 last_ival = itime.tv_nsec;
494 cur_time->tv_sec = rtclock.time.tv_sec;
495 cur_time->tv_nsec = rtclock.time.tv_nsec;
496 ADD_MACH_TIMESPEC(cur_time, ((mach_timespec_t *)&itime));
497
498 simple_unlock(&rtclock.lock);
499 }
500
501 // utility routine
502 // Code to calculate how many processor cycles are in a second...
503
504 static void
505 rtc_set_cyc_per_sec()
506 {
507
508 int x, y;
509 uint64_t cycles;
510 uint32_t c[15]; // array for holding sampled cycle counts
511 mach_timespec_t tst[15]; // array for holding time values. NOTE for some reason tv_sec not work
512
513 for (x=0; x<15; x++) { // quick sample 15 times
514 tst[x].tv_sec = 0;
515 tst[x].tv_nsec = 0;
516 sysclk_gettime_internal(&tst[x]);
517 rdtsc_hilo(&y, &c[x]);
518 }
519 y = 0;
520 cycles = 0;
521 for (x=0; x<14; x++) {
522 // simple formula really. calculate the numerator as the number of elapsed processor
523 // cycles * 1000 to adjust for the resolution we want. The denominator is the
524 // elapsed "real" time in nano-seconds. The result will be the processor speed in
525 // Mhz. any overflows will be discarded before they are added
526 if ((c[x+1] > c[x]) && (tst[x+1].tv_nsec > tst[x].tv_nsec)) {
527 cycles += ((uint64_t)(c[x+1]-c[x]) * NSEC_PER_SEC ) / (uint64_t)(tst[x+1].tv_nsec - tst[x].tv_nsec); // elapsed nsecs
528 y +=1;
529 }
530 }
531 if (y>0) { // we got more than 1 valid sample. This also takes care of the case of if the clock isn't running
532 cycles = cycles / y; // calc our average
533 }
534 rtc_cyc_per_sec = cycles;
535 rdtsc_hilo(&rtc_last_int_tsc_hi, &rtc_last_int_tsc_lo);
536 }
537
538 static
539 natural_t
540 get_uptime_cycles(void)
541 {
542 // get the time since the last interupt based on the processors TSC ignoring the
543 // RTC for speed
544
545 uint32_t a,d,intermediate_lo,intermediate_hi,result;
546 uint64_t newTime;
547
548 rdtsc_hilo(&d, &a);
549 if (d != rtc_last_int_tsc_hi) {
550 newTime = d-rtc_last_int_tsc_hi;
551 newTime = (newTime<<32) + (a-rtc_last_int_tsc_lo);
552 result = newTime;
553 } else {
554 result = a-rtc_last_int_tsc_lo;
555 }
556 __asm__ volatile ( " mul %3 ": "=eax" (intermediate_lo), "=edx" (intermediate_hi): "a"(result), "d"(NSEC_PER_SEC) );
557 __asm__ volatile ( " div %3": "=eax" (result): "eax"(intermediate_lo), "edx" (intermediate_hi), "ecx" (rtc_cyc_per_sec) );
558 return result;
559 }
560
561
562 /*
563 * Get clock device attributes.
564 */
565 kern_return_t
566 sysclk_getattr(
567 clock_flavor_t flavor,
568 clock_attr_t attr, /* OUT */
569 mach_msg_type_number_t *count) /* IN/OUT */
570 {
571 spl_t s;
572
573 if (*count != 1)
574 return (KERN_FAILURE);
575 switch (flavor) {
576
577 case CLOCK_GET_TIME_RES: /* >0 res */
578 #if (NCPUS == 1 || (MP_V1_1 && 0))
579 LOCK_RTC(s);
580 *(clock_res_t *) attr = 1000;
581 UNLOCK_RTC(s);
582 break;
583 #endif /* (NCPUS == 1 || (MP_V1_1 && 0)) && AT386 */
584 case CLOCK_ALARM_CURRES: /* =0 no alarm */
585 LOCK_RTC(s);
586 *(clock_res_t *) attr = rtclock.intr_nsec;
587 UNLOCK_RTC(s);
588 break;
589
590 case CLOCK_ALARM_MAXRES:
591 *(clock_res_t *) attr = RTC_MAXRES;
592 break;
593
594 case CLOCK_ALARM_MINRES:
595 *(clock_res_t *) attr = RTC_MINRES;
596 break;
597
598 default:
599 return (KERN_INVALID_VALUE);
600 }
601 return (KERN_SUCCESS);
602 }
603
604 /*
605 * Set clock device attributes.
606 */
607 kern_return_t
608 sysclk_setattr(
609 clock_flavor_t flavor,
610 clock_attr_t attr, /* IN */
611 mach_msg_type_number_t count) /* IN */
612 {
613 spl_t s;
614 int freq;
615 int adj;
616 clock_res_t new_ires;
617
618 if (count != 1)
619 return (KERN_FAILURE);
620 switch (flavor) {
621
622 case CLOCK_GET_TIME_RES:
623 case CLOCK_ALARM_MAXRES:
624 case CLOCK_ALARM_MINRES:
625 return (KERN_FAILURE);
626
627 case CLOCK_ALARM_CURRES:
628 new_ires = *(clock_res_t *) attr;
629
630 /*
631 * The new resolution must be within the predetermined
632 * range. If the desired resolution cannot be achieved
633 * to within 0.1%, an error is returned.
634 */
635 if (new_ires < RTC_MAXRES || new_ires > RTC_MINRES)
636 return (KERN_INVALID_VALUE);
637 freq = (NSEC_PER_SEC / new_ires);
638 adj = (((clknum % freq) * new_ires) / clknum);
639 if (adj > (new_ires / 1000))
640 return (KERN_INVALID_VALUE);
641 /*
642 * Record the new alarm resolution which will take effect
643 * on the next HZ aligned clock tick.
644 */
645 LOCK_RTC(s);
646 if ( freq != rtc_intr_freq ) {
647 rtclock.new_ires = new_ires;
648 new_clknum = clknum;
649 }
650 UNLOCK_RTC(s);
651 return (KERN_SUCCESS);
652
653 default:
654 return (KERN_INVALID_VALUE);
655 }
656 }
657
658 /*
659 * Set next alarm time for the clock device. This call
660 * always resets the time to deliver an alarm for the
661 * clock.
662 */
663 void
664 sysclk_setalarm(
665 mach_timespec_t *alarm_time)
666 {
667 spl_t s;
668
669 LOCK_RTC(s);
670 rtclock.alarm_time = *alarm_time;
671 RtcAlrm = &rtclock.alarm_time;
672 UNLOCK_RTC(s);
673 }
674
675 /*
676 * Configure the calendar clock.
677 */
678 int
679 calend_config(void)
680 {
681 return bbc_config();
682 }
683
684 /*
685 * Initialize calendar clock.
686 */
687 int
688 calend_init(void)
689 {
690 return (1);
691 }
692
693 /*
694 * Get the current clock time.
695 */
696 kern_return_t
697 calend_gettime(
698 mach_timespec_t *cur_time) /* OUT */
699 {
700 spl_t s;
701
702 LOCK_RTC(s);
703 if (!rtclock.calend_is_set) {
704 UNLOCK_RTC(s);
705 return (KERN_FAILURE);
706 }
707
708 (void) sysclk_gettime_internal(cur_time);
709 ADD_MACH_TIMESPEC(cur_time, &rtclock.calend_offset);
710 UNLOCK_RTC(s);
711
712 return (KERN_SUCCESS);
713 }
714
715 /*
716 * Set the current clock time.
717 */
718 kern_return_t
719 calend_settime(
720 mach_timespec_t *new_time)
721 {
722 mach_timespec_t curr_time;
723 spl_t s;
724
725 LOCK_RTC(s);
726 (void) sysclk_gettime_internal(&curr_time);
727 rtclock.calend_offset = *new_time;
728 SUB_MACH_TIMESPEC(&rtclock.calend_offset, &curr_time);
729 rtclock.calend_is_set = TRUE;
730 UNLOCK_RTC(s);
731
732 (void) bbc_settime(new_time);
733
734 return (KERN_SUCCESS);
735 }
736
737 /*
738 * Get clock device attributes.
739 */
740 kern_return_t
741 calend_getattr(
742 clock_flavor_t flavor,
743 clock_attr_t attr, /* OUT */
744 mach_msg_type_number_t *count) /* IN/OUT */
745 {
746 spl_t s;
747
748 if (*count != 1)
749 return (KERN_FAILURE);
750 switch (flavor) {
751
752 case CLOCK_GET_TIME_RES: /* >0 res */
753 #if (NCPUS == 1 || (MP_V1_1 && 0))
754 LOCK_RTC(s);
755 *(clock_res_t *) attr = 1000;
756 UNLOCK_RTC(s);
757 break;
758 #else /* (NCPUS == 1 || (MP_V1_1 && 0)) && AT386 */
759 LOCK_RTC(s);
760 *(clock_res_t *) attr = rtclock.intr_nsec;
761 UNLOCK_RTC(s);
762 break;
763 #endif /* (NCPUS == 1 || (MP_V1_1 && 0)) && AT386 */
764
765 case CLOCK_ALARM_CURRES: /* =0 no alarm */
766 case CLOCK_ALARM_MINRES:
767 case CLOCK_ALARM_MAXRES:
768 *(clock_res_t *) attr = 0;
769 break;
770
771 default:
772 return (KERN_INVALID_VALUE);
773 }
774 return (KERN_SUCCESS);
775 }
776
777 void
778 clock_adjust_calendar(
779 clock_res_t nsec)
780 {
781 spl_t s;
782
783 LOCK_RTC(s);
784 if (rtclock.calend_is_set)
785 ADD_MACH_TIMESPEC_NSEC(&rtclock.calend_offset, nsec);
786 UNLOCK_RTC(s);
787 }
788
789 void
790 clock_initialize_calendar(void)
791 {
792 mach_timespec_t bbc_time, curr_time;
793 spl_t s;
794
795 if (bbc_gettime(&bbc_time) != KERN_SUCCESS)
796 return;
797
798 LOCK_RTC(s);
799 if (!rtclock.calend_is_set) {
800 (void) sysclk_gettime_internal(&curr_time);
801 rtclock.calend_offset = bbc_time;
802 SUB_MACH_TIMESPEC(&rtclock.calend_offset, &curr_time);
803 rtclock.calend_is_set = TRUE;
804 }
805 UNLOCK_RTC(s);
806 }
807
808 mach_timespec_t
809 clock_get_calendar_offset(void)
810 {
811 mach_timespec_t result = MACH_TIMESPEC_ZERO;
812 spl_t s;
813
814 LOCK_RTC(s);
815 if (rtclock.calend_is_set)
816 result = rtclock.calend_offset;
817 UNLOCK_RTC(s);
818
819 return (result);
820 }
821
822 void
823 clock_timebase_info(
824 mach_timebase_info_t info)
825 {
826 spl_t s;
827
828 LOCK_RTC(s);
829 info->numer = info->denom = 1;
830 UNLOCK_RTC(s);
831 }
832
833 void
834 clock_set_timer_deadline(
835 uint64_t deadline)
836 {
837 spl_t s;
838
839 LOCK_RTC(s);
840 rtclock.timer_deadline = deadline;
841 rtclock.timer_is_set = TRUE;
842 UNLOCK_RTC(s);
843 }
844
845 void
846 clock_set_timer_func(
847 clock_timer_func_t func)
848 {
849 spl_t s;
850
851 LOCK_RTC(s);
852 if (rtclock.timer_expire == NULL)
853 rtclock.timer_expire = func;
854 UNLOCK_RTC(s);
855 }
856
857 \f
858
859 /*
860 * Load the count register and start the clock.
861 */
862 #define RTCLOCK_RESET() { \
863 outb(PITCTL_PORT, PIT_C0|PIT_NDIVMODE|PIT_READMODE); \
864 outb(PITCTR0_PORT, (clks_per_int & 0xff)); \
865 outb(PITCTR0_PORT, (clks_per_int >> 8)); \
866 }
867
868 /*
869 * Reset the clock device. This causes the realtime clock
870 * device to reload its mode and count value (frequency).
871 * Note: the CPU should be calibrated
872 * before starting the clock for the first time.
873 */
874
875 void
876 rtclock_reset(void)
877 {
878 int s;
879
880 #if NCPUS > 1 && !(MP_V1_1 && 0)
881 mp_disable_preemption();
882 if (cpu_number() != master_cpu) {
883 mp_enable_preemption();
884 return;
885 }
886 mp_enable_preemption();
887 #endif /* NCPUS > 1 && AT386 && !MP_V1_1 */
888 LOCK_RTC(s);
889 RTCLOCK_RESET();
890 UNLOCK_RTC(s);
891 }
892
893 /*
894 * Real-time clock device interrupt. Called only on the
895 * master processor. Updates the clock time and upcalls
896 * into the higher level clock code to deliver alarms.
897 */
898 int
899 rtclock_intr(void)
900 {
901 uint64_t abstime;
902 mach_timespec_t clock_time;
903 int i;
904 spl_t s;
905
906 /*
907 * Update clock time. Do the update so that the macro
908 * MTS_TO_TS() for reading the mapped time works (e.g.
909 * update in order: mtv_csec, mtv_time.tv_nsec, mtv_time.tv_sec).
910 */
911 LOCK_RTC(s);
912 rdtsc_hilo(&rtc_last_int_tsc_hi, &rtc_last_int_tsc_lo);
913 i = rtclock.time.tv_nsec + rtclock.intr_nsec;
914 if (i < NSEC_PER_SEC)
915 rtclock.time.tv_nsec = i;
916 else {
917 rtclock.time.tv_nsec = i - NSEC_PER_SEC;
918 rtclock.time.tv_sec++;
919 }
920 /* note time now up to date */
921 last_ival = 0;
922
923 rtclock.abstime += rtclock.intr_nsec;
924 abstime = rtclock.abstime;
925 if ( rtclock.timer_is_set &&
926 rtclock.timer_deadline <= abstime ) {
927 rtclock.timer_is_set = FALSE;
928 UNLOCK_RTC(s);
929
930 (*rtclock.timer_expire)(abstime);
931
932 LOCK_RTC(s);
933 }
934
935 /*
936 * Perform alarm clock processing if needed. The time
937 * passed up is incremented by a half-interrupt tick
938 * to trigger alarms closest to their desired times.
939 * The clock_alarm_intr() routine calls sysclk_setalrm()
940 * before returning if later alarms are pending.
941 */
942
943 if (RtcAlrm && (RtcAlrm->tv_sec < RtcTime->tv_sec ||
944 (RtcAlrm->tv_sec == RtcTime->tv_sec &&
945 RtcDelt >= RtcAlrm->tv_nsec - RtcTime->tv_nsec))) {
946 clock_time.tv_sec = 0;
947 clock_time.tv_nsec = RtcDelt;
948 ADD_MACH_TIMESPEC (&clock_time, RtcTime);
949 RtcAlrm = 0;
950 UNLOCK_RTC(s);
951 /*
952 * Call clock_alarm_intr() without RTC-lock.
953 * The lock ordering is always CLOCK-lock
954 * before RTC-lock.
955 */
956 clock_alarm_intr(SYSTEM_CLOCK, &clock_time);
957 LOCK_RTC(s);
958 }
959
960 /*
961 * On a HZ-tick boundary: return 0 and adjust the clock
962 * alarm resolution (if requested). Otherwise return a
963 * non-zero value.
964 */
965 if ((i = --rtc_intr_count) == 0) {
966 if (rtclock.new_ires) {
967 rtc_setvals(new_clknum, rtclock.new_ires);
968 RTCLOCK_RESET(); /* lock clock register */
969 rtclock.new_ires = 0;
970 }
971 rtc_intr_count = rtc_intr_hertz;
972 }
973 UNLOCK_RTC(s);
974 return (i);
975 }
976
977 void
978 clock_get_uptime(
979 uint64_t *result)
980 {
981 uint32_t ticks;
982 spl_t s;
983
984 LOCK_RTC(s);
985 ticks = get_uptime_cycles();
986 *result = rtclock.abstime;
987 UNLOCK_RTC(s);
988
989 *result += ticks;
990 }
991
992 void
993 clock_interval_to_deadline(
994 uint32_t interval,
995 uint32_t scale_factor,
996 uint64_t *result)
997 {
998 uint64_t abstime;
999
1000 clock_get_uptime(result);
1001
1002 clock_interval_to_absolutetime_interval(interval, scale_factor, &abstime);
1003
1004 *result += abstime;
1005 }
1006
1007 void
1008 clock_interval_to_absolutetime_interval(
1009 uint32_t interval,
1010 uint32_t scale_factor,
1011 uint64_t *result)
1012 {
1013 *result = (uint64_t)interval * scale_factor;
1014 }
1015
1016 void
1017 clock_absolutetime_interval_to_deadline(
1018 uint64_t abstime,
1019 uint64_t *result)
1020 {
1021 clock_get_uptime(result);
1022
1023 *result += abstime;
1024 }
1025
1026 void
1027 absolutetime_to_nanoseconds(
1028 uint64_t abstime,
1029 uint64_t *result)
1030 {
1031 *result = abstime;
1032 }
1033
1034 void
1035 nanoseconds_to_absolutetime(
1036 uint64_t nanoseconds,
1037 uint64_t *result)
1038 {
1039 *result = nanoseconds;
1040 }
1041
1042 /*
1043 * measure_delay(microseconds)
1044 *
1045 * Measure elapsed time for delay calls
1046 * Returns microseconds.
1047 *
1048 * Microseconds must not be too large since the counter (short)
1049 * will roll over. Max is about 13 ms. Values smaller than 1 ms are ok.
1050 * This uses the assumed frequency of the rt clock which is emperically
1051 * accurate to only about 200 ppm.
1052 */
1053
1054 int
1055 measure_delay(
1056 int us)
1057 {
1058 unsigned int lsb, val;
1059
1060 outb(PITCTL_PORT, PIT_C0|PIT_NDIVMODE|PIT_READMODE);
1061 outb(PITCTR0_PORT, 0xff); /* set counter to max value */
1062 outb(PITCTR0_PORT, 0xff);
1063 delay(us);
1064 outb(PITCTL_PORT, PIT_C0);
1065 lsb = inb(PITCTR0_PORT);
1066 val = (inb(PITCTR0_PORT) << 8) | lsb;
1067 val = 0xffff - val;
1068 val *= 1000000;
1069 val /= CLKNUM;
1070 return(val);
1071 }
1072
1073 /*
1074 * calibrate_delay(void)
1075 *
1076 * Adjust delaycount. Called from startup before clock is started
1077 * for normal interrupt generation.
1078 */
1079
1080 void
1081 calibrate_delay(void)
1082 {
1083 unsigned val;
1084 int prev = 0;
1085 register int i;
1086
1087 printf("adjusting delay count: %d", delaycount);
1088 for (i=0; i<10; i++) {
1089 prev = delaycount;
1090 /*
1091 * microdata must not be too large since measure_timer
1092 * will not return accurate values if the counter (short)
1093 * rolls over
1094 */
1095 val = measure_delay(microdata);
1096 if (val == 0) {
1097 delaycount *= 2;
1098 } else {
1099 delaycount *= microdata;
1100 delaycount += val-1; /* round up to upper us */
1101 delaycount /= val;
1102 }
1103 if (delaycount <= 0)
1104 delaycount = 1;
1105 if (delaycount != prev)
1106 printf(" %d", delaycount);
1107 }
1108 printf("\n");
1109 }
1110
1111 #if MACH_KDB
1112 void
1113 test_delay(void);
1114
1115 void
1116 test_delay(void)
1117 {
1118 register i;
1119
1120 for (i = 0; i < 10; i++)
1121 printf("%d, %d\n", i, measure_delay(i));
1122 for (i = 10; i <= 100; i+=10)
1123 printf("%d, %d\n", i, measure_delay(i));
1124 }
1125 #endif /* MACH_KDB */