2 * Copyright (c) 2000 Apple Computer, Inc. All rights reserved.
4 * @APPLE_LICENSE_HEADER_START@
6 * The contents of this file constitute Original Code as defined in and
7 * are subject to the Apple Public Source License Version 1.1 (the
8 * "License"). You may not use this file except in compliance with the
9 * License. Please obtain a copy of the License at
10 * http://www.apple.com/publicsource and read it before using this file.
12 * This Original Code and all software distributed under the License are
13 * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER
14 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
15 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the
17 * License for the specific language governing rights and limitations
20 * @APPLE_LICENSE_HEADER_END@
22 /* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */
24 * Copyright (c) 1994 Christopher G. Demetriou
25 * Copyright (c) 1982, 1986, 1989, 1993
26 * The Regents of the University of California. All rights reserved.
27 * (c) UNIX System Laboratories, Inc.
28 * All or some portions of this file are derived from material licensed
29 * to the University of California by American Telephone and Telegraph
30 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
31 * the permission of UNIX System Laboratories, Inc.
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
41 * 3. All advertising materials mentioning features or use of this software
42 * must display the following acknowledgement:
43 * This product includes software developed by the University of
44 * California, Berkeley and its contributors.
45 * 4. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61 * The NEXTSTEP Software License Agreement specifies the terms
62 * and conditions for redistribution.
64 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94
70 * Bach: The Design of the UNIX Operating System (Prentice Hall, 1986)
71 * Leffler, et al.: The Design and Implementation of the 4.3BSD
72 * UNIX Operating System (Addison Welley, 1989)
74 #define ZALLOC_METADATA 1
76 #include <sys/param.h>
77 #include <sys/systm.h>
80 #include <sys/vnode.h>
81 #include <sys/mount.h>
82 #include <sys/trace.h>
83 #include <sys/malloc.h>
84 #include <sys/resourcevar.h>
85 #include <miscfs/specfs/specdev.h>
87 #include <vm/vm_pageout.h>
89 #include <kern/assert.h>
90 #endif /* DIAGNOSTIC */
91 #include <kern/task.h>
92 #include <kern/zalloc.h>
94 #include <sys/kdebug.h>
96 extern void bufqinc(int q
);
97 extern void bufqdec(int q
);
98 extern void bufq_balance_thread_init();
100 extern void reassignbuf(struct buf
*, struct vnode
*);
101 static struct buf
*getnewbuf(int slpflag
, int slptimeo
, int *queue
);
103 extern int niobuf
; /* The number of IO buffer headers for cluster IO */
107 struct proc
*traceproc
;
108 int tracewhich
, tracebuf
[TRCSIZ
];
110 char traceflags
[TR_NFLAGS
];
114 * Definitions for the buffer hash lists.
116 #define BUFHASH(dvp, lbn) \
117 (&bufhashtbl[((long)(dvp) / sizeof(*(dvp)) + (int)(lbn)) & bufhash])
118 LIST_HEAD(bufhashhdr
, buf
) *bufhashtbl
, invalhash
;
121 /* Definitions for the buffer stats. */
122 struct bufstats bufstats
;
125 * Insq/Remq for the buffer hash lists.
128 #define binshash(bp, dp) LIST_INSERT_HEAD(dp, bp, b_hash)
129 #define bremhash(bp) LIST_REMOVE(bp, b_hash)
133 TAILQ_HEAD(ioqueue
, buf
) iobufqueue
;
134 TAILQ_HEAD(bqueues
, buf
) bufqueues
[BQUEUES
];
139 * Insq/Remq for the buffer free lists.
141 #define binsheadfree(bp, dp, whichq) do { \
142 TAILQ_INSERT_HEAD(dp, bp, b_freelist); \
144 (bp)->b_whichq = whichq; \
145 (bp)->b_timestamp = time.tv_sec; \
148 #define binstailfree(bp, dp, whichq) do { \
149 TAILQ_INSERT_TAIL(dp, bp, b_freelist); \
151 (bp)->b_whichq = whichq; \
152 (bp)->b_timestamp = time.tv_sec; \
155 #define BHASHENTCHECK(bp) \
156 if ((bp)->b_hash.le_prev != (struct buf **)0xdeadbeef) \
157 panic("%x: b_hash.le_prev is not deadbeef", (bp));
159 #define BLISTNONE(bp) \
160 (bp)->b_hash.le_next = (struct buf *)0; \
161 (bp)->b_hash.le_prev = (struct buf **)0xdeadbeef;
163 simple_lock_data_t bufhashlist_slock
; /* lock on buffer hash list */
166 * Time in seconds before a buffer on a list is
167 * considered as a stale buffer
169 #define LRU_IS_STALE 120 /* default value for the LRU */
170 #define AGE_IS_STALE 60 /* default value for the AGE */
171 #define META_IS_STALE 180 /* default value for the BQ_META */
173 int lru_is_stale
= LRU_IS_STALE
;
174 int age_is_stale
= AGE_IS_STALE
;
175 int meta_is_stale
= META_IS_STALE
;
179 blistenterhead(struct bufhashhdr
* head
, struct buf
* bp
)
181 if ((bp
->b_hash
.le_next
= (head
)->lh_first
) != NULL
)
182 (head
)->lh_first
->b_hash
.le_prev
= &(bp
)->b_hash
.le_next
;
183 (head
)->lh_first
= bp
;
184 bp
->b_hash
.le_prev
= &(head
)->lh_first
;
185 if (bp
->b_hash
.le_prev
== (struct buf
**)0xdeadbeef)
186 panic("blistenterhead: le_prev is deadbeef");
193 binshash(struct buf
*bp
, struct bufhashhdr
*dp
)
199 simple_lock(&bufhashlist_slock
);
201 if(incore(bp
->b_vp
, bp
->b_lblkno
)) {
202 panic("adding to queue already existing element");
208 for(; nbp
!= NULL
; nbp
= nbp
->b_hash
.le_next
) {
210 panic("buf already in hashlist");
214 LIST_INSERT_HEAD(dp
, bp
, b_hash
);
216 blistenterhead(dp
, bp
);
218 simple_unlock(&bufhashlist_slock
);
222 bremhash(struct buf
*bp
)
226 simple_lock(&bufhashlist_slock
);
227 if (bp
->b_hash
.le_prev
== (struct buf
**)0xdeadbeef)
228 panic("bremhash le_prev is deadbeef");
229 if (bp
->b_hash
.le_next
== bp
)
230 panic("bremhash: next points to self");
232 if (bp
->b_hash
.le_next
!= NULL
)
233 bp
->b_hash
.le_next
->b_hash
.le_prev
= bp
->b_hash
.le_prev
;
234 *bp
->b_hash
.le_prev
= (bp
)->b_hash
.le_next
;
235 simple_unlock(&bufhashlist_slock
);
242 * Remove a buffer from the free list it's on
248 struct bqueues
*dp
= NULL
;
252 * We only calculate the head of the freelist when removing
253 * the last element of the list as that is the only time that
254 * it is needed (e.g. to reset the tail pointer).
256 * NB: This makes an assumption about how tailq's are implemented.
258 if (bp
->b_freelist
.tqe_next
== NULL
) {
259 for (dp
= bufqueues
; dp
< &bufqueues
[BQUEUES
]; dp
++)
260 if (dp
->tqh_last
== &bp
->b_freelist
.tqe_next
)
262 if (dp
== &bufqueues
[BQUEUES
])
263 panic("bremfree: lost tail");
265 TAILQ_REMOVE(dp
, bp
, b_freelist
);
266 whichq
= bp
->b_whichq
;
272 static __inline__
void
273 bufhdrinit(struct buf
*bp
)
275 bzero((char *)bp
, sizeof *bp
);
277 bp
->b_rcred
= NOCRED
;
278 bp
->b_wcred
= NOCRED
;
279 bp
->b_vnbufs
.le_next
= NOLIST
;
280 bp
->b_flags
= B_INVAL
;
286 * Initialize buffers and hash links for buffers.
291 register struct buf
*bp
;
292 register struct bqueues
*dp
;
296 static void bufzoneinit();
297 static void bcleanbuf_thread_init();
299 /* Initialize the buffer queues ('freelists') and the hash table */
300 for (dp
= bufqueues
; dp
< &bufqueues
[BQUEUES
]; dp
++)
302 bufhashtbl
= hashinit(nbuf
, M_CACHE
, &bufhash
);
304 simple_lock_init(&bufhashlist_slock
);
306 metabuf
= nbuf
/8; /* reserved for meta buf */
308 /* Initialize the buffer headers */
309 for (i
= 0; i
< nbuf
; i
++) {
314 * metabuf buffer headers on the meta-data list and
315 * rest of the buffer headers on the empty list
323 dp
= &bufqueues
[whichq
];
324 binsheadfree(bp
, dp
, whichq
);
325 binshash(bp
, &invalhash
);
328 for (; i
< nbuf
+ niobuf
; i
++) {
331 binsheadfree(bp
, &iobufqueue
, -1);
334 printf("using %d buffer headers and %d cluster IO buffer headers\n",
337 /* Set up zones used by the buffer cache */
340 /* start the bcleanbuf() thread */
341 bcleanbuf_thread_init();
344 /* create a thread to do dynamic buffer queue balancing */
345 bufq_balance_thread_init();
351 bio_doread(vp
, blkno
, size
, cred
, async
, queuetype
)
359 register struct buf
*bp
;
360 struct proc
*p
= current_proc();
362 bp
= getblk(vp
, blkno
, size
, 0, 0, queuetype
);
365 * If buffer does not have data valid, start a read.
366 * Note that if buffer is B_INVAL, getblk() won't return it.
367 * Therefore, it's valid if it's I/O has completed or been delayed.
369 if (!ISSET(bp
->b_flags
, (B_DONE
| B_DELWRI
))) {
370 /* Start I/O for the buffer (keeping credentials). */
371 SET(bp
->b_flags
, B_READ
| async
);
372 if (cred
!= NOCRED
&& bp
->b_rcred
== NOCRED
) {
374 * NFS has embedded ucred.
375 * Can not crhold() here as that causes zone corruption
377 bp
->b_rcred
= crdup(cred
);
381 trace(TR_BREADMISS
, pack(vp
, size
), blkno
);
383 /* Pay for the read. */
385 p
->p_stats
->p_ru
.ru_inblock
++; /* XXX */
390 trace(TR_BREADHIT
, pack(vp
, size
), blkno
);
396 * This algorithm described in Bach (p.54).
399 bread(vp
, blkno
, size
, cred
, bpp
)
406 register struct buf
*bp
;
408 /* Get buffer for block. */
409 bp
= *bpp
= bio_doread(vp
, blkno
, size
, cred
, 0, BLK_READ
);
411 /* Wait for the read to complete, and return result. */
412 return (biowait(bp
));
416 * Read a disk block. [bread() for meta-data]
417 * This algorithm described in Bach (p.54).
420 meta_bread(vp
, blkno
, size
, cred
, bpp
)
427 register struct buf
*bp
;
429 /* Get buffer for block. */
430 bp
= *bpp
= bio_doread(vp
, blkno
, size
, cred
, 0, BLK_META
);
432 /* Wait for the read to complete, and return result. */
433 return (biowait(bp
));
437 * Read-ahead multiple disk blocks. The first is sync, the rest async.
438 * Trivial modification to the breada algorithm presented in Bach (p.55).
441 breadn(vp
, blkno
, size
, rablks
, rasizes
, nrablks
, cred
, bpp
)
443 daddr_t blkno
; int size
;
444 daddr_t rablks
[]; int rasizes
[];
449 register struct buf
*bp
;
452 bp
= *bpp
= bio_doread(vp
, blkno
, size
, cred
, 0, BLK_READ
);
455 * For each of the read-ahead blocks, start a read, if necessary.
457 for (i
= 0; i
< nrablks
; i
++) {
458 /* If it's in the cache, just go on to next one. */
459 if (incore(vp
, rablks
[i
]))
462 /* Get a buffer for the read-ahead block */
463 (void) bio_doread(vp
, rablks
[i
], rasizes
[i
], cred
, B_ASYNC
, BLK_READ
);
466 /* Otherwise, we had to start a read for it; wait until it's valid. */
467 return (biowait(bp
));
471 * Read with single-block read-ahead. Defined in Bach (p.55), but
472 * implemented as a call to breadn().
473 * XXX for compatibility with old file systems.
476 breada(vp
, blkno
, size
, rablkno
, rabsize
, cred
, bpp
)
478 daddr_t blkno
; int size
;
479 daddr_t rablkno
; int rabsize
;
484 return (breadn(vp
, blkno
, size
, &rablkno
, &rabsize
, 1, cred
, bpp
));
488 * Block write. Described in Bach (p.56)
494 int rv
, sync
, wasdelayed
;
495 struct proc
*p
= current_proc();
500 struct vnode
*vp
= bp
->b_vp
;
502 /* Remember buffer type, to switch on it later. */
503 sync
= !ISSET(bp
->b_flags
, B_ASYNC
);
504 wasdelayed
= ISSET(bp
->b_flags
, B_DELWRI
);
505 CLR(bp
->b_flags
, (B_READ
| B_DONE
| B_ERROR
| B_DELWRI
));
509 * If not synchronous, pay for the I/O operation and make
510 * sure the buf is on the correct vnode queue. We have
511 * to do this now, because if we don't, the vnode may not
512 * be properly notified that its I/O has completed.
518 p
->p_stats
->p_ru
.ru_oublock
++; /* XXX */
521 trace(TR_BWRITE
, pack(vp
, bp
->b_bcount
), bp
->b_lblkno
);
523 /* Initiate disk write. Make sure the appropriate party is charged. */
524 SET(bp
->b_flags
, B_WRITEINPROG
);
531 * If I/O was synchronous, wait for it to complete.
536 * Pay for the I/O operation, if it's not been paid for, and
537 * make sure it's on the correct vnode queue. (async operatings
538 * were payed for above.)
544 p
->p_stats
->p_ru
.ru_oublock
++; /* XXX */
546 /* Release the buffer. */
557 struct vop_bwrite_args
*ap
;
559 return (bwrite(ap
->a_bp
));
565 * The buffer is marked dirty, but is not queued for I/O.
566 * This routine should be used when the buffer is expected
567 * to be modified again soon, typically a small write that
568 * partially fills a buffer.
570 * NB: magnetic tapes cannot be delayed; they must be
571 * written in the order that the writes are requested.
573 * Described in Leffler, et al. (pp. 208-213).
579 struct proc
*p
= current_proc();
585 * If the block hasn't been seen before:
586 * (1) Mark it as having been seen,
587 * (2) Charge for the write.
588 * (3) Make sure it's on its vnode's correct block list,
590 if (!ISSET(bp
->b_flags
, B_DELWRI
)) {
591 SET(bp
->b_flags
, B_DELWRI
);
593 p
->p_stats
->p_ru
.ru_oublock
++; /* XXX */
595 reassignbuf(bp
, bp
->b_vp
);
599 /* If this is a tape block, write it the block now. */
600 if (ISSET(bp
->b_flags
, B_TAPE
)) {
606 /* Otherwise, the "write" is done, so mark and release the buffer. */
607 SET(bp
->b_flags
, B_DONE
);
612 * Asynchronous block write; just an asynchronous bwrite().
619 SET(bp
->b_flags
, B_ASYNC
);
624 * Release a buffer on to the free lists.
625 * Described in Bach (p. 46).
631 struct bqueues
*bufq
;
635 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 388)) | DBG_FUNC_START
,
636 bp
->b_lblkno
* PAGE_SIZE
, (int)bp
, (int)bp
->b_data
,
639 trace(TR_BRELSE
, pack(bp
->b_vp
, bp
->b_bufsize
), bp
->b_lblkno
);
641 /* IO is done. Cleanup the UPL state */
642 if (!ISSET(bp
->b_flags
, B_META
)
643 && UBCINFOEXISTS(bp
->b_vp
) && bp
->b_bufsize
) {
648 if ( !ISSET(bp
->b_flags
, B_PAGELIST
)) {
649 if ( !ISSET(bp
->b_flags
, B_INVAL
)) {
650 kret
= ubc_create_upl(bp
->b_vp
,
651 ubc_blktooff(bp
->b_vp
, bp
->b_lblkno
),
656 if (kret
!= KERN_SUCCESS
)
657 panic("brelse: Failed to get pagelists");
659 upl_ubc_alias_set(upl
, bp
, 5);
660 #endif /* UBC_DEBUG */
664 upl
= bp
->b_pagelist
;
665 kret
= ubc_upl_unmap(upl
);
667 if (kret
!= KERN_SUCCESS
)
668 panic("kernel_upl_unmap failed");
672 if (bp
->b_flags
& (B_ERROR
| B_INVAL
)) {
673 if (bp
->b_flags
& (B_READ
| B_INVAL
))
674 upl_flags
= UPL_ABORT_DUMP_PAGES
;
677 ubc_upl_abort(upl
, upl_flags
);
679 if (ISSET(bp
->b_flags
, B_NEEDCOMMIT
))
680 upl_flags
= UPL_COMMIT_CLEAR_DIRTY
;
681 else if (ISSET(bp
->b_flags
, B_DELWRI
| B_WASDIRTY
))
682 upl_flags
= UPL_COMMIT_SET_DIRTY
;
684 upl_flags
= UPL_COMMIT_CLEAR_DIRTY
;
685 ubc_upl_commit_range(upl
, 0, bp
->b_bufsize
, upl_flags
|
686 UPL_COMMIT_INACTIVATE
| UPL_COMMIT_FREE_ON_EMPTY
);
689 CLR(bp
->b_flags
, B_PAGELIST
);
694 if(ISSET(bp
->b_flags
, B_PAGELIST
))
695 panic("brelse: pagelist set for non VREG; vp=%x", bp
->b_vp
);
698 /* Wake up any processes waiting for any buffer to become free. */
704 /* Wake up any proceeses waiting for _this_ buffer to become free. */
705 if (ISSET(bp
->b_flags
, B_WANTED
)) {
706 CLR(bp
->b_flags
, B_WANTED
);
710 /* Block disk interrupts. */
714 * Determine which queue the buffer should be on, then put it there.
717 /* If it's locked, don't report an error; try again later. */
718 if (ISSET(bp
->b_flags
, (B_LOCKED
|B_ERROR
)) == (B_LOCKED
|B_ERROR
))
719 CLR(bp
->b_flags
, B_ERROR
);
721 /* If it's not cacheable, or an error, mark it invalid. */
722 if (ISSET(bp
->b_flags
, (B_NOCACHE
|B_ERROR
)))
723 SET(bp
->b_flags
, B_INVAL
);
725 if ((bp
->b_bufsize
<= 0) || ISSET(bp
->b_flags
, B_INVAL
)) {
727 * If it's invalid or empty, dissociate it from its vnode
728 * and put on the head of the appropriate queue.
732 CLR(bp
->b_flags
, B_DELWRI
);
733 if (bp
->b_bufsize
<= 0)
734 whichq
= BQ_EMPTY
; /* no data */
736 whichq
= BQ_AGE
; /* invalid data */
738 bufq
= &bufqueues
[whichq
];
739 binsheadfree(bp
, bufq
, whichq
);
742 * It has valid data. Put it on the end of the appropriate
743 * queue, so that it'll stick around for as long as possible.
745 if (ISSET(bp
->b_flags
, B_LOCKED
))
746 whichq
= BQ_LOCKED
; /* locked in core */
747 else if (ISSET(bp
->b_flags
, B_META
))
748 whichq
= BQ_META
; /* meta-data */
749 else if (ISSET(bp
->b_flags
, B_AGE
))
750 whichq
= BQ_AGE
; /* stale but valid data */
752 whichq
= BQ_LRU
; /* valid data */
754 bufq
= &bufqueues
[whichq
];
755 binstailfree(bp
, bufq
, whichq
);
758 /* Unlock the buffer. */
759 CLR(bp
->b_flags
, (B_AGE
| B_ASYNC
| B_BUSY
| B_NOCACHE
));
761 /* Allow disk interrupts. */
764 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 388)) | DBG_FUNC_END
,
765 (int)bp
, (int)bp
->b_data
, bp
->b_flags
, 0, 0);
769 * Determine if a block is in the cache.
770 * Just look on what would be its hash chain. If it's there, return
771 * a pointer to it, unless it's marked invalid. If it's marked invalid,
772 * we normally don't return the buffer, unless the caller explicitly
783 bp
= BUFHASH(vp
, blkno
)->lh_first
;
785 /* Search hash chain */
786 for (; bp
!= NULL
; bp
= bp
->b_hash
.le_next
, bufseen
++) {
787 if (bp
->b_lblkno
== blkno
&& bp
->b_vp
== vp
&&
788 !ISSET(bp
->b_flags
, B_INVAL
))
791 panic("walked more than nbuf in incore");
799 /* XXX FIXME -- Update the comment to reflect the UBC changes (please) -- */
801 * Get a block of requested size that is associated with
802 * a given vnode and block offset. If it is found in the
803 * block cache, mark it as having been found, make it busy
804 * and return it. Otherwise, return an empty block of the
805 * correct size. It is up to the caller to insure that the
806 * cached blocks be of the correct size.
809 getblk(vp
, blkno
, size
, slpflag
, slptimeo
, operation
)
810 register struct vnode
*vp
;
812 int size
, slpflag
, slptimeo
, operation
;
822 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 386)) | DBG_FUNC_START
,
823 blkno
* PAGE_SIZE
, size
, operation
, 0, 0);
827 if (bp
= incore(vp
, blkno
)) {
828 /* Found in the Buffer Cache */
829 if (ISSET(bp
->b_flags
, B_BUSY
)) {
835 SET(bp
->b_flags
, B_WANTED
);
836 bufstats
.bufs_busyincore
++;
837 err
= tsleep(bp
, slpflag
| (PRIBIO
+ 1), "getblk",
841 * Callers who call with PCATCH or timeout are
842 * willing to deal with the NULL pointer
844 if (err
&& ((slpflag
& PCATCH
) ||
845 ((err
== EWOULDBLOCK
) && slptimeo
)))
852 /* pagein operation must not use getblk */
853 panic("getblk: pagein for incore busy buffer");
859 /* pageout operation must not use getblk */
860 panic("getblk: pageout for incore busy buffer");
866 panic("getblk: %d unknown operation 1", operation
);
872 SET(bp
->b_flags
, (B_BUSY
| B_CACHE
));
874 bufstats
.bufs_incore
++;
878 if (ISSET(bp
->b_flags
, B_PAGELIST
))
879 panic("pagelist buffer is not busy");
884 if (UBCISVALID(bp
->b_vp
) && bp
->b_bufsize
) {
885 kret
= ubc_create_upl(vp
,
886 ubc_blktooff(vp
, bp
->b_lblkno
),
891 if (kret
!= KERN_SUCCESS
)
892 panic("Failed to get pagelists");
894 SET(bp
->b_flags
, B_PAGELIST
);
895 bp
->b_pagelist
= upl
;
897 if (!upl_valid_page(pl
, 0)) {
898 if (vp
->v_tag
!= VT_NFS
)
899 panic("getblk: incore buffer without valid page");
900 CLR(bp
->b_flags
, B_CACHE
);
903 if (upl_dirty_page(pl
, 0))
904 SET(bp
->b_flags
, B_WASDIRTY
);
906 CLR(bp
->b_flags
, B_WASDIRTY
);
908 kret
= ubc_upl_map(upl
, (vm_address_t
*)&(bp
->b_data
));
909 if (kret
!= KERN_SUCCESS
) {
910 panic("getblk: ubc_upl_map() failed with (%d)",
913 if (bp
->b_data
== 0) panic("ubc_upl_map mapped 0");
919 * VM is not involved in IO for the meta data
920 * buffer already has valid data
923 panic("bp->b_data null incore buf=%x", bp
);
928 panic("getblk: paging operation 1");
932 panic("getblk: %d unknown operation 2", operation
);
937 } else { /* not incore() */
938 int queue
= BQ_EMPTY
; /* Start with no preference */
941 if ((operation
== BLK_META
) || (UBCINVALID(vp
)) ||
942 !(UBCINFOEXISTS(vp
))) {
943 operation
= BLK_META
;
945 if ((bp
= getnewbuf(slpflag
, slptimeo
, &queue
)) == NULL
)
947 if (incore(vp
, blkno
)) {
948 SET(bp
->b_flags
, B_INVAL
);
949 binshash(bp
, &invalhash
);
955 * if it is meta, the queue may be set to other
956 * type so reset as well as mark it to be B_META
957 * so that when buffer is released it will goto META queue
958 * Also, if the vnode is not VREG, then it is META
960 if (operation
== BLK_META
) {
961 SET(bp
->b_flags
, B_META
);
965 * Insert in the hash so that incore() can find it
967 binshash(bp
, BUFHASH(vp
, blkno
));
973 /* buffer data is invalid */
977 panic("bp->b_data is not nul; %x",bp
);
978 kret
= kmem_alloc(kernel_map
,
979 &bp
->b_data
, bp
->b_bufsize
);
980 if (kret
!= KERN_SUCCESS
)
981 panic("getblk: kmem_alloc() returned %d", kret
);
982 #endif /* ZALLOC_METADATA */
985 panic("bp->b_data is null %x",bp
);
987 bp
->b_blkno
= bp
->b_lblkno
= blkno
;
990 bufstats
.bufs_miss
++;
993 panic("b_data is 0: 2");
995 /* wakeup the buffer */
996 CLR(bp
->b_flags
, B_WANTED
);
1003 if (ISSET(bp
->b_flags
, B_PAGELIST
))
1004 panic("B_PAGELIST in bp=%x",bp
);
1006 kret
= ubc_create_upl(vp
,
1007 ubc_blktooff(vp
, blkno
),
1012 if (kret
!= KERN_SUCCESS
)
1013 panic("Failed to get pagelists");
1016 upl_ubc_alias_set(upl
, bp
, 4);
1017 #endif /* UBC_DEBUG */
1018 bp
->b_blkno
= bp
->b_lblkno
= blkno
;
1019 bp
->b_pagelist
= upl
;
1021 SET(bp
->b_flags
, B_PAGELIST
);
1023 if (upl_valid_page(pl
, 0)) {
1024 SET(bp
->b_flags
, B_CACHE
| B_DONE
);
1025 bufstats
.bufs_vmhits
++;
1027 pagedirty
= upl_dirty_page(pl
, 0);
1030 SET(bp
->b_flags
, B_WASDIRTY
);
1032 if (vp
->v_tag
== VT_NFS
) {
1039 f_offset
= ubc_blktooff(vp
, blkno
);
1041 if (f_offset
> vp
->v_ubcinfo
->ui_size
) {
1042 CLR(bp
->b_flags
, (B_CACHE
|B_DONE
|B_WASDIRTY
));
1046 valid_size
= min(((unsigned int)(vp
->v_ubcinfo
->ui_size
- f_offset
)), PAGE_SIZE
);
1047 bp
->b_validend
= valid_size
;
1050 bp
->b_dirtyend
= valid_size
;
1054 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 386)) | DBG_FUNC_NONE
,
1055 bp
->b_validend
, bp
->b_dirtyend
,
1056 (int)vp
->v_ubcinfo
->ui_size
, 0, 0);
1064 bp
->b_validend
= bp
->b_bcount
;
1065 bp
->b_dirtyend
= bp
->b_bcount
;
1068 bp
->b_validend
= bp
->b_bcount
;
1072 if (error
= VOP_BMAP(vp
, bp
->b_lblkno
, NULL
, &bp
->b_blkno
, NULL
)) {
1073 panic("VOP_BMAP failed in getblk");
1076 * XXX: We probably should invalidate the VM Page
1078 bp
->b_error
= error
;
1079 SET(bp
->b_flags
, (B_ERROR
| B_INVAL
));
1080 /* undo B_DONE that was set before upl_commit() */
1081 CLR(bp
->b_flags
, B_DONE
);
1086 bufstats
.bufs_miss
++;
1088 kret
= ubc_upl_map(upl
, (vm_address_t
*)&(bp
->b_data
));
1089 if (kret
!= KERN_SUCCESS
) {
1090 panic("getblk: ubc_upl_map() "
1091 "failed with (%d)", kret
);
1093 if (bp
->b_data
== 0) panic("kernel_upl_map mapped 0");
1103 panic("getblk: paging operation 2");
1106 panic("getblk: %d unknown operation 3", operation
);
1112 if (bp
->b_data
== NULL
)
1113 panic("getblk: bp->b_addr is null");
1115 if (bp
->b_bufsize
& 0xfff) {
1117 if (ISSET(bp
->b_flags
, B_META
) && (bp
->b_bufsize
& 0x1ff))
1118 #endif /* ZALLOC_METADATA */
1119 panic("getblk: bp->b_bufsize = %d", bp
->b_bufsize
);
1122 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 386)) | DBG_FUNC_END
,
1123 (int)bp
, (int)bp
->b_data
, bp
->b_flags
, 3, 0);
1129 * Get an empty, disassociated buffer of given size.
1136 int queue
= BQ_EMPTY
;
1137 #if !ZALLOC_METADATA
1139 vm_size_t desired_size
= roundup(size
, CLBYTES
);
1141 if (desired_size
> MAXBSIZE
)
1142 panic("geteblk: buffer larger than MAXBSIZE requested");
1143 #endif /* ZALLOC_METADATA */
1145 while ((bp
= getnewbuf(0, 0, &queue
)) == 0)
1148 SET(bp
->b_flags
, (B_META
|B_INVAL
));
1150 SET(bp
->b_flags
, B_INVAL
);
1151 #endif /* ZALLOC_METADATA */
1154 assert(queue
== BQ_EMPTY
);
1155 #endif /* DIAGNOSTIC */
1156 /* XXX need to implement logic to deal with other queues */
1158 #if !ZALLOC_METADATA
1159 /* Empty buffer - allocate pages */
1160 kret
= kmem_alloc_aligned(kernel_map
, &bp
->b_data
, desired_size
);
1161 if (kret
!= KERN_SUCCESS
)
1162 panic("geteblk: kmem_alloc_aligned returned %d", kret
);
1163 #endif /* ZALLOC_METADATA */
1165 binshash(bp
, &invalhash
);
1167 bufstats
.bufs_eblk
++;
1174 * Zones for the meta data buffers
1178 #define MAXMETA 4096
1180 struct meta_zone_entry
{
1187 struct meta_zone_entry meta_zones
[] = {
1188 {NULL
, (MINMETA
* 1), 128 * (MINMETA
* 1), "buf.512" },
1189 {NULL
, (MINMETA
* 2), 64 * (MINMETA
* 2), "buf.1024" },
1190 {NULL
, (MINMETA
* 3), 16 * (MINMETA
* 3), "buf.1536" },
1191 {NULL
, (MINMETA
* 4), 16 * (MINMETA
* 4), "buf.2048" },
1192 {NULL
, (MINMETA
* 5), 16 * (MINMETA
* 5), "buf.2560" },
1193 {NULL
, (MINMETA
* 6), 16 * (MINMETA
* 6), "buf.3072" },
1194 {NULL
, (MINMETA
* 7), 16 * (MINMETA
* 7), "buf.3584" },
1195 {NULL
, (MINMETA
* 8), 512 * (MINMETA
* 8), "buf.4096" },
1196 {NULL
, 0, 0, "" } /* End */
1198 #endif /* ZALLOC_METADATA */
1200 zone_t buf_hdr_zone
;
1204 * Initialize the meta data zones
1212 for (i
= 0; meta_zones
[i
].mz_size
!= 0; i
++) {
1213 meta_zones
[i
].mz_zone
=
1214 zinit(meta_zones
[i
].mz_size
,
1215 meta_zones
[i
].mz_max
,
1217 meta_zones
[i
].mz_name
);
1219 #endif /* ZALLOC_METADATA */
1220 buf_hdr_zone
= zinit(sizeof(struct buf
), 32, PAGE_SIZE
, "buf headers");
1225 getbufzone(size_t size
)
1230 panic("getbufzone: incorect size = %d", size
);
1232 i
= (size
/ 512) - 1;
1233 return (meta_zones
[i
].mz_zone
);
1235 #endif /* ZALLOC_METADATA */
1238 * With UBC, there is no need to expand / shrink the file data
1239 * buffer. The VM uses the same pages, hence no waste.
1240 * All the file data buffers can have one size.
1241 * In fact expand / shrink would be an expensive operation.
1243 * Only exception to this is meta-data buffers. Most of the
1244 * meta data operations are smaller than PAGE_SIZE. Having the
1245 * meta-data buffers grow and shrink as needed, optimizes use
1246 * of the kernel wired memory.
1254 vm_size_t desired_size
;
1256 desired_size
= roundup(size
, CLBYTES
);
1258 if(desired_size
< PAGE_SIZE
)
1259 desired_size
= PAGE_SIZE
;
1260 if (desired_size
> MAXBSIZE
)
1261 panic("allocbuf: buffer larger than MAXBSIZE requested");
1264 if (ISSET(bp
->b_flags
, B_META
)) {
1267 size_t nsize
= roundup(size
, MINMETA
);
1270 vm_offset_t elem
= (vm_offset_t
)bp
->b_data
;
1272 if (ISSET(bp
->b_flags
, B_ZALLOC
))
1273 if (bp
->b_bufsize
<= MAXMETA
) {
1274 if (bp
->b_bufsize
< nsize
) {
1275 /* reallocate to a bigger size */
1276 desired_size
= nsize
;
1278 zprev
= getbufzone(bp
->b_bufsize
);
1279 z
= getbufzone(nsize
);
1280 bp
->b_data
= (caddr_t
)zalloc(z
);
1282 panic("allocbuf: zalloc() returned NULL");
1283 bcopy(elem
, bp
->b_data
, bp
->b_bufsize
);
1286 desired_size
= bp
->b_bufsize
;
1289 panic("allocbuf: B_ZALLOC set incorrectly");
1291 if (bp
->b_bufsize
< desired_size
) {
1292 /* reallocate to a bigger size */
1293 kret
= kmem_alloc(kernel_map
, &bp
->b_data
, desired_size
);
1294 if (kret
!= KERN_SUCCESS
)
1295 panic("allocbuf: kmem_alloc() returned %d", kret
);
1297 panic("allocbuf: null b_data");
1298 bcopy(elem
, bp
->b_data
, bp
->b_bufsize
);
1299 kmem_free(kernel_map
, elem
, bp
->b_bufsize
);
1301 desired_size
= bp
->b_bufsize
;
1304 /* new allocation */
1305 if (nsize
<= MAXMETA
) {
1306 desired_size
= nsize
;
1307 z
= getbufzone(nsize
);
1308 bp
->b_data
= (caddr_t
)zalloc(z
);
1310 panic("allocbuf: zalloc() returned NULL 2");
1311 SET(bp
->b_flags
, B_ZALLOC
);
1313 kret
= kmem_alloc(kernel_map
, &bp
->b_data
, desired_size
);
1314 if (kret
!= KERN_SUCCESS
)
1315 panic("allocbuf: kmem_alloc() 2 returned %d", kret
);
1317 panic("allocbuf: null b_data 2");
1322 if (ISSET(bp
->b_flags
, B_META
) && (bp
->b_data
== 0))
1323 panic("allocbuf: bp->b_data is NULL");
1324 #endif /* ZALLOC_METADATA */
1326 bp
->b_bufsize
= desired_size
;
1327 bp
->b_bcount
= size
;
1331 * Get a new buffer from one of the free lists.
1333 * Request for a queue is passes in. The queue from which the buffer was taken
1334 * from is returned. Out of range queue requests get BQ_EMPTY. Request for
1335 * BQUEUE means no preference. Use heuristics in that case.
1336 * Heuristics is as follows:
1337 * Try BQ_AGE, BQ_LRU, BQ_EMPTY, BQ_META in that order.
1338 * If none available block till one is made available.
1339 * If buffers available on both BQ_AGE and BQ_LRU, check the timestamps.
1340 * Pick the most stale buffer.
1341 * If found buffer was marked delayed write, start the async. write
1342 * and restart the search.
1343 * Initialize the fields and disassociate the buffer from the vnode.
1344 * Remove the buffer from the hash. Return the buffer and the queue
1345 * on which it was found.
1349 getnewbuf(slpflag
, slptimeo
, queue
)
1350 int slpflag
, slptimeo
;
1353 register struct buf
*bp
;
1354 register struct buf
*lru_bp
;
1355 register struct buf
*age_bp
;
1356 register struct buf
*meta_bp
;
1357 register int age_time
, lru_time
, bp_time
, meta_time
;
1360 int req
= *queue
; /* save it for restarts */
1365 /* invalid request gets empty queue */
1366 if ((*queue
> BQUEUES
) || (*queue
< 0)
1367 || (*queue
== BQ_LAUNDRY
) || (*queue
== BQ_LOCKED
))
1370 /* (*queue == BQUEUES) means no preference */
1371 if (*queue
!= BQUEUES
) {
1372 /* Try for the requested queue first */
1373 bp
= bufqueues
[*queue
].tqh_first
;
1378 /* Unable to use requested queue */
1379 age_bp
= bufqueues
[BQ_AGE
].tqh_first
;
1380 lru_bp
= bufqueues
[BQ_LRU
].tqh_first
;
1381 meta_bp
= bufqueues
[BQ_META
].tqh_first
;
1383 if (!age_bp
&& !lru_bp
&& !meta_bp
) { /* Unavailble on AGE or LRU */
1384 /* Try the empty list first */
1385 bp
= bufqueues
[BQ_EMPTY
].tqh_first
;
1391 /* Create a new temparory buffer header */
1392 bp
= (struct buf
*)zalloc(buf_hdr_zone
);
1397 binshash(bp
, &invalhash
);
1398 SET(bp
->b_flags
, B_HDRALLOC
);
1400 binsheadfree(bp
, &bufqueues
[BQ_EMPTY
], BQ_EMPTY
);
1405 /* Log this error condition */
1406 printf("getnewbuf: No useful buffers");
1408 /* wait for a free buffer of any kind */
1410 bufstats
.bufs_sleeps
++;
1411 tsleep(&needbuffer
, slpflag
|(PRIBIO
+1), "getnewbuf", slptimeo
);
1416 /* Buffer available either on AGE or LRU or META */
1420 /* Buffer available either on AGE or LRU */
1424 } else if (!lru_bp
) {
1427 } else { /* buffer available on both AGE and LRU */
1428 age_time
= time
.tv_sec
- age_bp
->b_timestamp
;
1429 lru_time
= time
.tv_sec
- lru_bp
->b_timestamp
;
1430 if ((age_time
< 0) || (lru_time
< 0)) { /* time set backwards */
1434 * we should probably re-timestamp eveything in the
1435 * queues at this point with the current time
1438 if ((lru_time
>= lru_is_stale
) && (age_time
< age_is_stale
)) {
1448 if (!bp
) { /* Neither on AGE nor on LRU */
1451 } else if (meta_bp
) {
1452 bp_time
= time
.tv_sec
- bp
->b_timestamp
;
1453 meta_time
= time
.tv_sec
- meta_bp
->b_timestamp
;
1455 if (!(bp_time
< 0) && !(meta_time
< 0)) {
1456 /* time not set backwards */
1458 bp_is_stale
= (*queue
== BQ_LRU
) ?
1459 lru_is_stale
: age_is_stale
;
1461 if ((meta_time
>= meta_is_stale
) &&
1462 (bp_time
< bp_is_stale
)) {
1470 panic("getnewbuf: null bp");
1473 if (bp
->b_hash
.le_prev
== (struct buf
**)0xdeadbeef)
1474 panic("getnewbuf: le_prev is deadbeef");
1476 if(ISSET(bp
->b_flags
, B_BUSY
))
1477 panic("getnewbuf reusing BUSY buf");
1480 if (bcleanbuf(bp
)) {
1481 /* bawrite() issued, buffer not ready */
1489 #include <mach/mach_types.h>
1490 #include <mach/memory_object_types.h>
1494 * Returns 0 is buffer is ready to use,
1495 * Returns 1 if issued a bawrite() to indicate
1496 * that the buffer is not ready.
1499 bcleanbuf(struct buf
*bp
)
1506 /* Remove from the queue */
1509 /* Buffer is no longer on free lists. */
1510 SET(bp
->b_flags
, B_BUSY
);
1512 if (bp
->b_hash
.le_prev
== (struct buf
**)0xdeadbeef)
1513 panic("bcleanbuf: le_prev is deadbeef");
1516 * If buffer was a delayed write, start the IO by queuing
1517 * it on the LAUNDRY queue, and return 1
1519 if (ISSET(bp
->b_flags
, B_DELWRI
)) {
1521 binstailfree(bp
, &bufqueues
[BQ_LAUNDRY
], BQ_LAUNDRY
);
1523 wakeup(&blaundrycnt
);
1534 if (ISSET(bp
->b_flags
, B_META
)) {
1536 vm_offset_t elem
= (vm_offset_t
)bp
->b_data
;
1538 panic("bcleanbuf: NULL bp->b_data B_META buffer");
1540 if (ISSET(bp
->b_flags
, B_ZALLOC
)) {
1541 if (bp
->b_bufsize
<= MAXMETA
) {
1544 z
= getbufzone(bp
->b_bufsize
);
1545 bp
->b_data
= (caddr_t
)0xdeadbeef;
1547 CLR(bp
->b_flags
, B_ZALLOC
);
1549 panic("bcleanbuf: B_ZALLOC set incorrectly");
1551 bp
->b_data
= (caddr_t
)0xdeadbeef;
1552 kmem_free(kernel_map
, elem
, bp
->b_bufsize
);
1555 if (bp
->b_data
== 0)
1556 panic("bcleanbuf: bp->b_data == NULL for B_META buffer");
1558 kmem_free(kernel_map
, bp
->b_data
, bp
->b_bufsize
);
1559 #endif /* ZALLOC_METADATA */
1562 trace(TR_BRELSE
, pack(bp
->b_vp
, bp
->b_bufsize
), bp
->b_lblkno
);
1564 /* disassociate us from our vnode, if we had one... */
1567 /* clear out various other fields */
1570 bp
->b_flags
= B_BUSY
;
1572 bp
->b_blkno
= bp
->b_lblkno
= 0;
1577 bp
->b_dirtyoff
= bp
->b_dirtyend
= 0;
1578 bp
->b_validoff
= bp
->b_validend
= 0;
1580 /* nuke any credentials we were holding */
1582 if (cred
!= NOCRED
) {
1583 bp
->b_rcred
= NOCRED
;
1587 if (cred
!= NOCRED
) {
1588 bp
->b_wcred
= NOCRED
;
1597 * Wait for operations on the buffer to complete.
1598 * When they do, extract and return the I/O's error value.
1605 upl_page_info_t
*pl
;
1610 while (!ISSET(bp
->b_flags
, B_DONE
))
1611 tsleep(bp
, PRIBIO
+ 1, "biowait", 0);
1614 /* check for interruption of I/O (e.g. via NFS), then errors. */
1615 if (ISSET(bp
->b_flags
, B_EINTR
)) {
1616 CLR(bp
->b_flags
, B_EINTR
);
1618 } else if (ISSET(bp
->b_flags
, B_ERROR
))
1619 return (bp
->b_error
? bp
->b_error
: EIO
);
1625 * Mark I/O complete on a buffer.
1627 * If a callback has been requested, e.g. the pageout
1628 * daemon, do so. Otherwise, awaken waiting processes.
1630 * [ Leffler, et al., says on p.247:
1631 * "This routine wakes up the blocked process, frees the buffer
1632 * for an asynchronous write, or, for a request by the pagedaemon
1633 * process, invokes a procedure specified in the buffer structure" ]
1635 * In real life, the pagedaemon (or other system processes) wants
1636 * to do async stuff to, and doesn't want the buffer brelse()'d.
1637 * (for swap pager, that puts swap buffers on the free lists (!!!),
1638 * for the vn device, that puts malloc'd buffers on the free lists!)
1644 boolean_t funnel_state
;
1647 funnel_state
= thread_funnel_set(kernel_flock
, TRUE
);
1649 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 387)) | DBG_FUNC_START
,
1650 (int)bp
, (int)bp
->b_data
, bp
->b_flags
, 0, 0);
1652 if (ISSET(bp
->b_flags
, B_DONE
))
1653 panic("biodone already");
1654 SET(bp
->b_flags
, B_DONE
); /* note that it's done */
1656 * I/O was done, so don't believe
1657 * the DIRTY state from VM anymore
1659 CLR(bp
->b_flags
, B_WASDIRTY
);
1661 if (!ISSET(bp
->b_flags
, B_READ
) && !ISSET(bp
->b_flags
, B_RAW
))
1662 vwakeup(bp
); /* wake up reader */
1664 if (ISSET(bp
->b_flags
, B_CALL
)) { /* if necessary, call out */
1665 CLR(bp
->b_flags
, B_CALL
); /* but note callout done */
1666 (*bp
->b_iodone
)(bp
);
1667 } else if (ISSET(bp
->b_flags
, B_ASYNC
)) /* if async, release it */
1669 else { /* or just wakeup the buffer */
1670 CLR(bp
->b_flags
, B_WANTED
);
1674 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 387)) | DBG_FUNC_END
,
1675 (int)bp
, (int)bp
->b_data
, bp
->b_flags
, 0, 0);
1677 thread_funnel_set(kernel_flock
, funnel_state
);
1681 * Return a count of buffers on the "locked" queue.
1686 register struct buf
*bp
;
1689 for (bp
= bufqueues
[BQ_LOCKED
].tqh_first
; bp
;
1690 bp
= bp
->b_freelist
.tqe_next
)
1696 * Return a count of 'busy' buffers. Used at the time of shutdown.
1699 count_busy_buffers()
1701 register struct buf
*bp
;
1702 register int nbusy
= 0;
1704 for (bp
= &buf
[nbuf
]; --bp
>= buf
; )
1705 if ((bp
->b_flags
& (B_BUSY
|B_INVAL
)) == B_BUSY
)
1710 #if 1 /*DIAGNOSTIC */
1712 * Print out statistics on the current allocation of the buffer pool.
1713 * Can be enabled to print out on every ``sync'' by setting "syncprt"
1714 * in vfs_syscalls.c using sysctl.
1720 register struct buf
*bp
;
1721 register struct bqueues
*dp
;
1722 int counts
[MAXBSIZE
/CLBYTES
+1];
1723 static char *bname
[BQUEUES
] =
1724 { "LOCKED", "LRU", "AGE", "EMPTY", "META", "LAUNDRY" };
1726 for (dp
= bufqueues
, i
= 0; dp
< &bufqueues
[BQUEUES
]; dp
++, i
++) {
1728 for (j
= 0; j
<= MAXBSIZE
/CLBYTES
; j
++)
1731 for (bp
= dp
->tqh_first
; bp
; bp
= bp
->b_freelist
.tqe_next
) {
1732 counts
[bp
->b_bufsize
/CLBYTES
]++;
1736 printf("%s: total-%d", bname
[i
], count
);
1737 for (j
= 0; j
<= MAXBSIZE
/CLBYTES
; j
++)
1739 printf(", %d-%d", j
* CLBYTES
, counts
[j
]);
1743 #endif /* DIAGNOSTIC */
1745 #define NRESERVEDIOBUFS 16
1748 alloc_io_buf(vp
, priv
)
1752 register struct buf
*bp
;
1757 while (niobuf
- NRESERVEDIOBUFS
< bufstats
.bufs_iobufinuse
&& !priv
) {
1759 bufstats
.bufs_iobufsleeps
++;
1760 (void) tsleep(&need_iobuffer
, (PRIBIO
+1), "alloc_io_buf", 0);
1763 while ((bp
= iobufqueue
.tqh_first
) == NULL
) {
1765 bufstats
.bufs_iobufsleeps
++;
1766 (void) tsleep(&need_iobuffer
, (PRIBIO
+1), "alloc_io_buf1", 0);
1769 TAILQ_REMOVE(&iobufqueue
, bp
, b_freelist
);
1770 bp
->b_timestamp
= 0;
1772 /* clear out various fields */
1773 bp
->b_flags
= B_BUSY
;
1774 bp
->b_blkno
= bp
->b_lblkno
= 0;
1782 if (vp
->v_type
== VBLK
|| vp
->v_type
== VCHR
)
1783 bp
->b_dev
= vp
->v_rdev
;
1786 bufstats
.bufs_iobufinuse
++;
1787 if (bufstats
.bufs_iobufinuse
> bufstats
.bufs_iobufmax
)
1788 bufstats
.bufs_iobufmax
= bufstats
.bufs_iobufinuse
;
1801 /* put buffer back on the head of the iobufqueue */
1803 bp
->b_flags
= B_INVAL
;
1805 binsheadfree(bp
, &iobufqueue
, -1);
1807 /* Wake up any processes waiting for any buffer to become free. */
1808 if (need_iobuffer
) {
1810 wakeup(&need_iobuffer
);
1812 bufstats
.bufs_iobufinuse
--;
1817 /* not hookedup yet */
1819 /* XXX move this to a separate file */
1821 * Dynamic Scaling of the Buffer Queues
1824 typedef long long blsize_t
;
1826 blsize_t MAXNBUF
; /* initialize to (mem_size / PAGE_SIZE) */
1827 /* Global tunable limits */
1828 blsize_t nbufh
; /* number of buffer headers */
1829 blsize_t nbuflow
; /* minimum number of buffer headers required */
1830 blsize_t nbufhigh
; /* maximum number of buffer headers allowed */
1831 blsize_t nbuftarget
; /* preferred number of buffer headers */
1836 * 1. 0 < nbuflow <= nbufh <= nbufhigh
1837 * 2. nbufhigh <= MAXNBUF
1838 * 3. 0 < nbuflow <= nbuftarget <= nbufhigh
1839 * 4. nbufh can not be set by sysctl().
1842 /* Per queue tunable limits */
1845 blsize_t bl_nlow
; /* minimum number of buffer headers required */
1846 blsize_t bl_num
; /* number of buffer headers on the queue */
1847 blsize_t bl_nlhigh
; /* maximum number of buffer headers allowed */
1848 blsize_t bl_target
; /* preferred number of buffer headers */
1849 long bl_stale
; /* Seconds after which a buffer is considered stale */
1855 * 1. 0 <= bl_nlow <= bl_num <= bl_nlhigh
1856 * 2. bl_nlhigh <= MAXNBUF
1857 * 3. bufqlim[BQ_META].bl_nlow != 0
1858 * 4. bufqlim[BQ_META].bl_nlow > (number of possible concurrent
1859 * file system IO operations)
1860 * 5. bl_num can not be set by sysctl().
1861 * 6. bl_nhigh <= nbufhigh
1867 * Defining it blsize_t as long permits 2^31 buffer headers per queue.
1868 * Which can describe (2^31 * PAGE_SIZE) memory per queue.
1870 * These limits are exported to by means of sysctl().
1871 * It was decided to define blsize_t as a 64 bit quantity.
1872 * This will make sure that we will not be required to change it
1873 * as long as we do not exceed 64 bit address space for the kernel.
1875 * low and high numbers parameters initialized at compile time
1876 * and boot arguments can be used to override them. sysctl()
1877 * would not change the value. sysctl() can get all the values
1878 * but can set only target. num is the current level.
1880 * Advantages of having a "bufqscan" thread doing the balancing are,
1881 * Keep enough bufs on BQ_EMPTY.
1882 * getnewbuf() by default will always select a buffer from the BQ_EMPTY.
1883 * getnewbuf() perfoms best if a buffer was found there.
1884 * Also this minimizes the possibility of starting IO
1885 * from getnewbuf(). That's a performance win, too.
1887 * Localize complex logic [balancing as well as time aging]
1890 * Simplify getnewbuf() logic by elimination of time aging code.
1896 * The goal of the dynamic scaling of the buffer queues to to keep
1897 * the size of the LRU close to bl_target. Buffers on a queue would
1900 * There would be a thread which will be responsible for "balancing"
1901 * the buffer cache queues.
1903 * The scan order would be: AGE, LRU, META, EMPTY.
1906 long bufqscanwait
= 0;
1908 extern void bufqscan_thread();
1909 extern int balancebufq(int q
);
1910 extern int btrimempty(int n
);
1911 extern int initbufqscan(void);
1912 extern int nextbufq(int q
);
1913 extern void buqlimprt(int all
);
1916 bufq_balance_thread_init()
1919 if (bufqscanwait
++ == 0) {
1922 /* Initalize globals */
1923 MAXNBUF
= (mem_size
/ PAGE_SIZE
);
1925 nbuflow
= min(nbufh
, 100);
1926 nbufhigh
= min(MAXNBUF
, max(nbufh
, 2048));
1927 nbuftarget
= (mem_size
>> 5) / PAGE_SIZE
;
1928 nbuftarget
= max(nbuflow
, nbuftarget
);
1929 nbuftarget
= min(nbufhigh
, nbuftarget
);
1932 * Initialize the bufqlim
1936 bufqlim
[BQ_LOCKED
].bl_nlow
= 0;
1937 bufqlim
[BQ_LOCKED
].bl_nlhigh
= 32;
1938 bufqlim
[BQ_LOCKED
].bl_target
= 0;
1939 bufqlim
[BQ_LOCKED
].bl_stale
= 30;
1942 bufqlim
[BQ_LRU
].bl_nlow
= 0;
1943 bufqlim
[BQ_LRU
].bl_nlhigh
= nbufhigh
/4;
1944 bufqlim
[BQ_LRU
].bl_target
= nbuftarget
/4;
1945 bufqlim
[BQ_LRU
].bl_stale
= LRU_IS_STALE
;
1948 bufqlim
[BQ_AGE
].bl_nlow
= 0;
1949 bufqlim
[BQ_AGE
].bl_nlhigh
= nbufhigh
/4;
1950 bufqlim
[BQ_AGE
].bl_target
= nbuftarget
/4;
1951 bufqlim
[BQ_AGE
].bl_stale
= AGE_IS_STALE
;
1954 bufqlim
[BQ_EMPTY
].bl_nlow
= 0;
1955 bufqlim
[BQ_EMPTY
].bl_nlhigh
= nbufhigh
/4;
1956 bufqlim
[BQ_EMPTY
].bl_target
= nbuftarget
/4;
1957 bufqlim
[BQ_EMPTY
].bl_stale
= 600000;
1960 bufqlim
[BQ_META
].bl_nlow
= 0;
1961 bufqlim
[BQ_META
].bl_nlhigh
= nbufhigh
/4;
1962 bufqlim
[BQ_META
].bl_target
= nbuftarget
/4;
1963 bufqlim
[BQ_META
].bl_stale
= META_IS_STALE
;
1966 bufqlim
[BQ_LOCKED
].bl_nlow
= 0;
1967 bufqlim
[BQ_LOCKED
].bl_nlhigh
= 32;
1968 bufqlim
[BQ_LOCKED
].bl_target
= 0;
1969 bufqlim
[BQ_LOCKED
].bl_stale
= 30;
1974 /* create worker thread */
1975 kernel_thread(kernel_task
, bufqscan_thread
);
1978 /* The workloop for the buffer balancing thread */
1982 boolean_t funnel_state
;
1985 funnel_state
= thread_funnel_set(kernel_flock
, TRUE
);
1989 int q
; /* buffer queue to process */
1991 for (q
= initbufqscan(); q
; ) {
1992 moretodo
|= balancebufq(q
);
2001 (void)tsleep((void *)&bufqscanwait
, PRIBIO
, "bufqscanwait", 60 * hz
);
2005 (void) thread_funnel_set(kernel_flock
, FALSE
);
2008 /* Seed for the buffer queue balancing */
2012 /* Start with AGE queue */
2016 /* Pick next buffer queue to balance */
2020 int order
[] = { BQ_AGE
, BQ_LRU
, BQ_META
, BQ_EMPTY
, 0 };
2027 /* function to balance the buffer queues */
2035 /* reject invalid q */
2036 if ((q
< 0) || (q
>= BQUEUES
))
2039 /* LOCKED or LAUNDRY queue MUST not be balanced */
2040 if ((q
== BQ_LOCKED
) || (q
== BQ_LAUNDRY
))
2043 n
= (bufqlim
[q
].bl_num
- bufqlim
[q
].bl_target
);
2045 /* If queue has less than target nothing more to do */
2050 /* Balance only a small amount (12.5%) at a time */
2054 /* EMPTY queue needs special handling */
2055 if (q
== BQ_EMPTY
) {
2056 moretodo
|= btrimempty(n
);
2060 for (; n
> 0; n
--) {
2061 struct buf
*bp
= bufqueues
[q
].tqh_first
;
2065 /* check if it's stale */
2066 if ((time
.tv_sec
- bp
->b_timestamp
) > bufqlim
[q
].bl_stale
) {
2067 if (bcleanbuf(bp
)) {
2068 /* bawrite() issued, bp not ready */
2071 /* release the cleaned buffer to BQ_EMPTY */
2072 SET(bp
->b_flags
, B_INVAL
);
2088 * When struct buf are allocated dynamically, this would
2089 * reclaim upto 'n' struct buf from the empty queue.
2098 if ((q
< 0) || (q
>= BQUEUES
))
2101 bufqlim
[q
].bl_num
++;
2108 if ((q
< 0) || (q
>= BQUEUES
))
2111 bufqlim
[q
].bl_num
--;
2119 static char *bname
[BQUEUES
] =
2120 { "LOCKED", "LRU", "AGE", "EMPTY", "META", "LAUNDRY" };
2123 for (i
= 0; i
< BQUEUES
; i
++) {
2124 printf("%s : ", bname
[i
]);
2125 printf("min = %d, ", (long)bufqlim
[i
].bl_nlow
);
2126 printf("cur = %d, ", (long)bufqlim
[i
].bl_num
);
2127 printf("max = %d, ", (long)bufqlim
[i
].bl_nlhigh
);
2128 printf("target = %d, ", (long)bufqlim
[i
].bl_target
);
2129 printf("stale after %d seconds\n", bufqlim
[i
].bl_stale
);
2132 for (i
= 0; i
< BQUEUES
; i
++) {
2133 printf("%s : ", bname
[i
]);
2134 printf("cur = %d, ", (long)bufqlim
[i
].bl_num
);
2139 * If the getnewbuf() calls bcleanbuf() on the same thread
2140 * there is a potential for stack overrun and deadlocks.
2141 * So we always handoff the work to worker thread for completion
2145 bcleanbuf_thread_init()
2147 static void bcleanbuf_thread();
2149 /* create worker thread */
2150 kernel_thread(kernel_task
, bcleanbuf_thread
);
2156 boolean_t funnel_state
;
2159 funnel_state
= thread_funnel_set(kernel_flock
, TRUE
);
2162 while (blaundrycnt
== 0)
2163 (void)tsleep((void *)&blaundrycnt
, PRIBIO
, "blaundry", 60 * hz
);
2164 bp
= TAILQ_FIRST(&bufqueues
[BQ_LAUNDRY
]);
2165 /* Remove from the queue */
2173 (void) thread_funnel_set(kernel_flock
, funnel_state
);