]> git.saurik.com Git - apple/xnu.git/blob - osfmk/i386/rtclock.c
xnu-2422.115.4.tar.gz
[apple/xnu.git] / osfmk / i386 / rtclock.c
1 /*
2 * Copyright (c) 2000-2012 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*
29 * @OSF_COPYRIGHT@
30 */
31
32 /*
33 * File: i386/rtclock.c
34 * Purpose: Routines for handling the machine dependent
35 * real-time clock. Historically, this clock is
36 * generated by the Intel 8254 Programmable Interval
37 * Timer, but local apic timers are now used for
38 * this purpose with the master time reference being
39 * the cpu clock counted by the timestamp MSR.
40 */
41
42 #include <platforms.h>
43
44 #include <mach/mach_types.h>
45
46 #include <kern/cpu_data.h>
47 #include <kern/cpu_number.h>
48 #include <kern/clock.h>
49 #include <kern/host_notify.h>
50 #include <kern/macro_help.h>
51 #include <kern/misc_protos.h>
52 #include <kern/spl.h>
53 #include <kern/assert.h>
54 #include <kern/timer_queue.h>
55 #include <mach/vm_prot.h>
56 #include <vm/pmap.h>
57 #include <vm/vm_kern.h> /* for kernel_map */
58 #include <architecture/i386/pio.h>
59 #include <i386/machine_cpu.h>
60 #include <i386/cpuid.h>
61 #include <i386/cpu_threads.h>
62 #include <i386/mp.h>
63 #include <i386/machine_routines.h>
64 #include <i386/pal_routines.h>
65 #include <i386/proc_reg.h>
66 #include <i386/misc_protos.h>
67 #include <pexpert/pexpert.h>
68 #include <machine/limits.h>
69 #include <machine/commpage.h>
70 #include <sys/kdebug.h>
71 #include <i386/tsc.h>
72 #include <i386/rtclock_protos.h>
73 #define UI_CPUFREQ_ROUNDING_FACTOR 10000000
74
75 int rtclock_config(void);
76
77 int rtclock_init(void);
78
79 uint64_t tsc_rebase_abs_time = 0;
80
81 static void rtc_set_timescale(uint64_t cycles);
82 static uint64_t rtc_export_speed(uint64_t cycles);
83
84 void
85 rtc_timer_start(void)
86 {
87 /*
88 * Force a complete re-evaluation of timer deadlines.
89 */
90 x86_lcpu()->rtcDeadline = EndOfAllTime;
91 timer_resync_deadlines();
92 }
93
94 static inline uint32_t
95 _absolutetime_to_microtime(uint64_t abstime, clock_sec_t *secs, clock_usec_t *microsecs)
96 {
97 uint32_t remain;
98 *secs = abstime / (uint64_t)NSEC_PER_SEC;
99 remain = (uint32_t)(abstime % (uint64_t)NSEC_PER_SEC);
100 *microsecs = remain / NSEC_PER_USEC;
101 return remain;
102 }
103
104 static inline void
105 _absolutetime_to_nanotime(uint64_t abstime, clock_sec_t *secs, clock_usec_t *nanosecs)
106 {
107 *secs = abstime / (uint64_t)NSEC_PER_SEC;
108 *nanosecs = (clock_usec_t)(abstime % (uint64_t)NSEC_PER_SEC);
109 }
110
111 /*
112 * Configure the real-time clock device. Return success (1)
113 * or failure (0).
114 */
115
116 int
117 rtclock_config(void)
118 {
119 /* nothing to do */
120 return (1);
121 }
122
123
124 /*
125 * Nanotime/mach_absolutime_time
126 * -----------------------------
127 * The timestamp counter (TSC) - which counts cpu clock cycles and can be read
128 * efficiently by the kernel and in userspace - is the reference for all timing.
129 * The cpu clock rate is platform-dependent and may stop or be reset when the
130 * processor is napped/slept. As a result, nanotime is the software abstraction
131 * used to maintain a monotonic clock, adjusted from an outside reference as needed.
132 *
133 * The kernel maintains nanotime information recording:
134 * - the ratio of tsc to nanoseconds
135 * with this ratio expressed as a 32-bit scale and shift
136 * (power of 2 divider);
137 * - { tsc_base, ns_base } pair of corresponding timestamps.
138 *
139 * The tuple {tsc_base, ns_base, scale, shift} is exported in the commpage
140 * for the userspace nanotime routine to read.
141 *
142 * All of the routines which update the nanotime data are non-reentrant. This must
143 * be guaranteed by the caller.
144 */
145 static inline void
146 rtc_nanotime_set_commpage(pal_rtc_nanotime_t *rntp)
147 {
148 commpage_set_nanotime(rntp->tsc_base, rntp->ns_base, rntp->scale, rntp->shift);
149 }
150
151 /*
152 * rtc_nanotime_init:
153 *
154 * Intialize the nanotime info from the base time.
155 */
156 static inline void
157 _rtc_nanotime_init(pal_rtc_nanotime_t *rntp, uint64_t base)
158 {
159 uint64_t tsc = rdtsc64();
160
161 _pal_rtc_nanotime_store(tsc, base, rntp->scale, rntp->shift, rntp);
162 }
163
164 static void
165 rtc_nanotime_init(uint64_t base)
166 {
167 _rtc_nanotime_init(&pal_rtc_nanotime_info, base);
168 rtc_nanotime_set_commpage(&pal_rtc_nanotime_info);
169 }
170
171 /*
172 * rtc_nanotime_init_commpage:
173 *
174 * Call back from the commpage initialization to
175 * cause the commpage data to be filled in once the
176 * commpages have been created.
177 */
178 void
179 rtc_nanotime_init_commpage(void)
180 {
181 spl_t s = splclock();
182
183 rtc_nanotime_set_commpage(&pal_rtc_nanotime_info);
184 splx(s);
185 }
186
187 /*
188 * rtc_nanotime_read:
189 *
190 * Returns the current nanotime value, accessable from any
191 * context.
192 */
193 static inline uint64_t
194 rtc_nanotime_read(void)
195 {
196 return _rtc_nanotime_read(&pal_rtc_nanotime_info);
197 }
198
199 /*
200 * rtc_clock_napped:
201 *
202 * Invoked from power management when we exit from a low C-State (>= C4)
203 * and the TSC has stopped counting. The nanotime data is updated according
204 * to the provided value which represents the new value for nanotime.
205 */
206 void
207 rtc_clock_napped(uint64_t base, uint64_t tsc_base)
208 {
209 pal_rtc_nanotime_t *rntp = &pal_rtc_nanotime_info;
210 uint64_t oldnsecs;
211 uint64_t newnsecs;
212 uint64_t tsc;
213
214 assert(!ml_get_interrupts_enabled());
215 tsc = rdtsc64();
216 oldnsecs = rntp->ns_base + _rtc_tsc_to_nanoseconds(tsc - rntp->tsc_base, rntp);
217 newnsecs = base + _rtc_tsc_to_nanoseconds(tsc - tsc_base, rntp);
218
219 /*
220 * Only update the base values if time using the new base values
221 * is later than the time using the old base values.
222 */
223 if (oldnsecs < newnsecs) {
224 _pal_rtc_nanotime_store(tsc_base, base, rntp->scale, rntp->shift, rntp);
225 rtc_nanotime_set_commpage(rntp);
226 }
227 }
228
229 /*
230 * Invoked from power management to correct the SFLM TSC entry drift problem:
231 * a small delta is added to the tsc_base. This is equivalent to nudgin time
232 * backwards. We require this to be on the order of a TSC quantum which won't
233 * cause callers of mach_absolute_time() to see time going backwards!
234 */
235 void
236 rtc_clock_adjust(uint64_t tsc_base_delta)
237 {
238 pal_rtc_nanotime_t *rntp = &pal_rtc_nanotime_info;
239
240 assert(!ml_get_interrupts_enabled());
241 assert(tsc_base_delta < 100ULL); /* i.e. it's small */
242 _rtc_nanotime_adjust(tsc_base_delta, rntp);
243 rtc_nanotime_set_commpage(rntp);
244 }
245
246 void
247 rtc_clock_stepping(__unused uint32_t new_frequency,
248 __unused uint32_t old_frequency)
249 {
250 panic("rtc_clock_stepping unsupported");
251 }
252
253 void
254 rtc_clock_stepped(__unused uint32_t new_frequency,
255 __unused uint32_t old_frequency)
256 {
257 panic("rtc_clock_stepped unsupported");
258 }
259
260 /*
261 * rtc_sleep_wakeup:
262 *
263 * Invoked from power management when we have awoken from a sleep (S3)
264 * and the TSC has been reset, or from Deep Idle (S0) sleep when the TSC
265 * has progressed. The nanotime data is updated based on the passed-in value.
266 *
267 * The caller must guarantee non-reentrancy.
268 */
269 void
270 rtc_sleep_wakeup(
271 uint64_t base)
272 {
273 /* Set fixed configuration for lapic timers */
274 rtc_timer->config();
275
276 /*
277 * Reset nanotime.
278 * The timestamp counter will have been reset
279 * but nanotime (uptime) marches onward.
280 */
281 rtc_nanotime_init(base);
282 }
283
284 /*
285 * Initialize the real-time clock device.
286 * In addition, various variables used to support the clock are initialized.
287 */
288 int
289 rtclock_init(void)
290 {
291 uint64_t cycles;
292
293 assert(!ml_get_interrupts_enabled());
294
295 if (cpu_number() == master_cpu) {
296
297 assert(tscFreq);
298 rtc_set_timescale(tscFreq);
299
300 /*
301 * Adjust and set the exported cpu speed.
302 */
303 cycles = rtc_export_speed(tscFreq);
304
305 /*
306 * Set min/max to actual.
307 * ACPI may update these later if speed-stepping is detected.
308 */
309 gPEClockFrequencyInfo.cpu_frequency_min_hz = cycles;
310 gPEClockFrequencyInfo.cpu_frequency_max_hz = cycles;
311
312 rtc_timer_init();
313 clock_timebase_init();
314 ml_init_lock_timeout();
315 ml_init_delay_spin_threshold(10);
316 }
317
318 /* Set fixed configuration for lapic timers */
319 rtc_timer->config();
320 rtc_timer_start();
321
322 return (1);
323 }
324
325 // utility routine
326 // Code to calculate how many processor cycles are in a second...
327
328 static void
329 rtc_set_timescale(uint64_t cycles)
330 {
331 pal_rtc_nanotime_t *rntp = &pal_rtc_nanotime_info;
332 uint32_t shift = 0;
333
334 /* the "scale" factor will overflow unless cycles>SLOW_TSC_THRESHOLD */
335
336 while ( cycles <= SLOW_TSC_THRESHOLD) {
337 shift++;
338 cycles <<= 1;
339 }
340
341 if ( shift != 0 )
342 printf("Slow TSC, rtc_nanotime.shift == %d\n", shift);
343
344 rntp->scale = (uint32_t)(((uint64_t)NSEC_PER_SEC << 32) / cycles);
345
346 rntp->shift = shift;
347
348 /*
349 * On some platforms, the TSC is not reset at warm boot. But the
350 * rebase time must be relative to the current boot so we can't use
351 * mach_absolute_time(). Instead, we convert the TSC delta since boot
352 * to nanoseconds.
353 */
354 if (tsc_rebase_abs_time == 0)
355 tsc_rebase_abs_time = _rtc_tsc_to_nanoseconds(
356 rdtsc64() - tsc_at_boot, rntp);
357
358 rtc_nanotime_init(0);
359 }
360
361 static uint64_t
362 rtc_export_speed(uint64_t cyc_per_sec)
363 {
364 uint64_t cycles;
365
366 /* Round: */
367 cycles = ((cyc_per_sec + (UI_CPUFREQ_ROUNDING_FACTOR/2))
368 / UI_CPUFREQ_ROUNDING_FACTOR)
369 * UI_CPUFREQ_ROUNDING_FACTOR;
370
371 /*
372 * Set current measured speed.
373 */
374 if (cycles >= 0x100000000ULL) {
375 gPEClockFrequencyInfo.cpu_clock_rate_hz = 0xFFFFFFFFUL;
376 } else {
377 gPEClockFrequencyInfo.cpu_clock_rate_hz = (unsigned long)cycles;
378 }
379 gPEClockFrequencyInfo.cpu_frequency_hz = cycles;
380
381 kprintf("[RTCLOCK] frequency %llu (%llu)\n", cycles, cyc_per_sec);
382 return(cycles);
383 }
384
385 void
386 clock_get_system_microtime(
387 clock_sec_t *secs,
388 clock_usec_t *microsecs)
389 {
390 uint64_t now = rtc_nanotime_read();
391
392 _absolutetime_to_microtime(now, secs, microsecs);
393 }
394
395 void
396 clock_get_system_nanotime(
397 clock_sec_t *secs,
398 clock_nsec_t *nanosecs)
399 {
400 uint64_t now = rtc_nanotime_read();
401
402 _absolutetime_to_nanotime(now, secs, nanosecs);
403 }
404
405 void
406 clock_gettimeofday_set_commpage(
407 uint64_t abstime,
408 uint64_t epoch,
409 uint64_t offset,
410 clock_sec_t *secs,
411 clock_usec_t *microsecs)
412 {
413 uint64_t now = abstime + offset;
414 uint32_t remain;
415
416 remain = _absolutetime_to_microtime(now, secs, microsecs);
417
418 *secs += (clock_sec_t)epoch;
419
420 commpage_set_timestamp(abstime - remain, *secs);
421 }
422
423 void
424 clock_timebase_info(
425 mach_timebase_info_t info)
426 {
427 info->numer = info->denom = 1;
428 }
429
430 /*
431 * Real-time clock device interrupt.
432 */
433 void
434 rtclock_intr(
435 x86_saved_state_t *tregs)
436 {
437 uint64_t rip;
438 boolean_t user_mode = FALSE;
439
440 assert(get_preemption_level() > 0);
441 assert(!ml_get_interrupts_enabled());
442
443 if (is_saved_state64(tregs) == TRUE) {
444 x86_saved_state64_t *regs;
445
446 regs = saved_state64(tregs);
447
448 if (regs->isf.cs & 0x03)
449 user_mode = TRUE;
450 rip = regs->isf.rip;
451 } else {
452 x86_saved_state32_t *regs;
453
454 regs = saved_state32(tregs);
455
456 if (regs->cs & 0x03)
457 user_mode = TRUE;
458 rip = regs->eip;
459 }
460
461 /* call the generic etimer */
462 timer_intr(user_mode, rip);
463 }
464
465
466 /*
467 * Request timer pop from the hardware
468 */
469
470 uint64_t
471 setPop(
472 uint64_t time)
473 {
474 uint64_t now;
475 uint64_t pop;
476
477 /* 0 and EndOfAllTime are special-cases for "clear the timer" */
478 if (time == 0 || time == EndOfAllTime ) {
479 time = EndOfAllTime;
480 now = 0;
481 pop = rtc_timer->set(0, 0);
482 } else {
483 now = rtc_nanotime_read(); /* The time in nanoseconds */
484 pop = rtc_timer->set(time, now);
485 }
486
487 /* Record requested and actual deadlines set */
488 x86_lcpu()->rtcDeadline = time;
489 x86_lcpu()->rtcPop = pop;
490
491 return pop - now;
492 }
493
494 uint64_t
495 mach_absolute_time(void)
496 {
497 return rtc_nanotime_read();
498 }
499
500 void
501 clock_interval_to_absolutetime_interval(
502 uint32_t interval,
503 uint32_t scale_factor,
504 uint64_t *result)
505 {
506 *result = (uint64_t)interval * scale_factor;
507 }
508
509 void
510 absolutetime_to_microtime(
511 uint64_t abstime,
512 clock_sec_t *secs,
513 clock_usec_t *microsecs)
514 {
515 _absolutetime_to_microtime(abstime, secs, microsecs);
516 }
517
518 void
519 absolutetime_to_nanotime(
520 uint64_t abstime,
521 clock_sec_t *secs,
522 clock_nsec_t *nanosecs)
523 {
524 _absolutetime_to_nanotime(abstime, secs, nanosecs);
525 }
526
527 void
528 nanotime_to_absolutetime(
529 clock_sec_t secs,
530 clock_nsec_t nanosecs,
531 uint64_t *result)
532 {
533 *result = ((uint64_t)secs * NSEC_PER_SEC) + nanosecs;
534 }
535
536 void
537 absolutetime_to_nanoseconds(
538 uint64_t abstime,
539 uint64_t *result)
540 {
541 *result = abstime;
542 }
543
544 void
545 nanoseconds_to_absolutetime(
546 uint64_t nanoseconds,
547 uint64_t *result)
548 {
549 *result = nanoseconds;
550 }
551
552 void
553 machine_delay_until(
554 uint64_t interval,
555 uint64_t deadline)
556 {
557 (void)interval;
558 while (mach_absolute_time() < deadline) {
559 cpu_pause();
560 }
561 }