]> git.saurik.com Git - apple/xnu.git/blob - osfmk/i386/cpu_topology.c
xnu-2422.115.4.tar.gz
[apple/xnu.git] / osfmk / i386 / cpu_topology.c
1 /*
2 * Copyright (c) 2007-2010 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28
29 #include <mach/machine.h>
30 #include <mach/processor.h>
31 #include <kern/kalloc.h>
32 #include <i386/cpu_affinity.h>
33 #include <i386/cpu_topology.h>
34 #include <i386/cpu_threads.h>
35 #include <i386/machine_cpu.h>
36 #include <i386/lock.h>
37 #include <i386/cpu_data.h>
38 #include <i386/lapic.h>
39 #include <i386/machine_routines.h>
40
41 __private_extern__ void qsort(
42 void * array,
43 size_t nmembers,
44 size_t member_size,
45 int (*)(const void *, const void *));
46
47 static int lapicid_cmp(const void *x, const void *y);
48 static x86_affinity_set_t *find_cache_affinity(x86_cpu_cache_t *L2_cachep);
49
50 x86_affinity_set_t *x86_affinities = NULL;
51 static int x86_affinity_count = 0;
52
53 /*
54 * cpu_topology_sort() is called after all processors have been registered
55 * but before any non-boot processor id started.
56 * We establish canonical logical processor numbering - logical cpus must be
57 * contiguous, zero-based and assigned in physical (local apic id) order.
58 * This step is required because the discovery/registration order is
59 * non-deterministic - cores are registered in differing orders over boots.
60 * Enforcing canonical numbering simplifies identification
61 * of processors - in particular, for stopping/starting from CHUD.
62 */
63 void
64 cpu_topology_sort(int ncpus)
65 {
66 int i;
67 boolean_t istate;
68 processor_t lprim = NULL;
69
70 assert(machine_info.physical_cpu == 1);
71 assert(machine_info.logical_cpu == 1);
72 assert(master_cpu == 0);
73 assert(cpu_number() == 0);
74 assert(cpu_datap(0)->cpu_number == 0);
75
76 /* Lights out for this */
77 istate = ml_set_interrupts_enabled(FALSE);
78
79 if (topo_dbg) {
80 TOPO_DBG("cpu_topology_start() %d cpu%s registered\n",
81 ncpus, (ncpus > 1) ? "s" : "");
82 for (i = 0; i < ncpus; i++) {
83 cpu_data_t *cpup = cpu_datap(i);
84 TOPO_DBG("\tcpu_data[%d]:%p local apic 0x%x\n",
85 i, (void *) cpup, cpup->cpu_phys_number);
86 }
87 }
88
89 /*
90 * Re-order the cpu_data_ptr vector sorting by physical id.
91 * Skip the boot processor, it's required to be correct.
92 */
93 if (ncpus > 1) {
94 qsort((void *) &cpu_data_ptr[1],
95 ncpus - 1,
96 sizeof(cpu_data_t *),
97 lapicid_cmp);
98 }
99 if (topo_dbg) {
100 TOPO_DBG("cpu_topology_start() after sorting:\n");
101 for (i = 0; i < ncpus; i++) {
102 cpu_data_t *cpup = cpu_datap(i);
103 TOPO_DBG("\tcpu_data[%d]:%p local apic 0x%x\n",
104 i, (void *) cpup, cpup->cpu_phys_number);
105 }
106 }
107
108 /*
109 * Finalize logical numbers and map kept by the lapic code.
110 */
111 for (i = 0; i < ncpus; i++) {
112 cpu_data_t *cpup = cpu_datap(i);
113
114 if (cpup->cpu_number != i) {
115 kprintf("cpu_datap(%d):%p local apic id 0x%x "
116 "remapped from %d\n",
117 i, cpup, cpup->cpu_phys_number,
118 cpup->cpu_number);
119 }
120 cpup->cpu_number = i;
121 lapic_cpu_map(cpup->cpu_phys_number, i);
122 x86_set_logical_topology(&cpup->lcpu, cpup->cpu_phys_number, i);
123 }
124
125 x86_validate_topology();
126
127 ml_set_interrupts_enabled(istate);
128 TOPO_DBG("cpu_topology_start() LLC is L%d\n", topoParms.LLCDepth + 1);
129
130 /*
131 * Let the CPU Power Management know that the topology is stable.
132 */
133 topoParms.stable = TRUE;
134 pmCPUStateInit();
135
136 /*
137 * Iterate over all logical cpus finding or creating the affinity set
138 * for their LLC cache. Each affinity set possesses a processor set
139 * into which each logical processor is added.
140 */
141 TOPO_DBG("cpu_topology_start() creating affinity sets:\n");
142 for (i = 0; i < ncpus; i++) {
143 cpu_data_t *cpup = cpu_datap(i);
144 x86_lcpu_t *lcpup = cpu_to_lcpu(i);
145 x86_cpu_cache_t *LLC_cachep;
146 x86_affinity_set_t *aset;
147
148 LLC_cachep = lcpup->caches[topoParms.LLCDepth];
149 assert(LLC_cachep->type == CPU_CACHE_TYPE_UNIF);
150 aset = find_cache_affinity(LLC_cachep);
151 if (aset == NULL) {
152 aset = (x86_affinity_set_t *) kalloc(sizeof(*aset));
153 if (aset == NULL)
154 panic("cpu_topology_start() failed aset alloc");
155 aset->next = x86_affinities;
156 x86_affinities = aset;
157 aset->num = x86_affinity_count++;
158 aset->cache = LLC_cachep;
159 aset->pset = (i == master_cpu) ?
160 processor_pset(master_processor) :
161 pset_create(pset_node_root());
162 if (aset->pset == PROCESSOR_SET_NULL)
163 panic("cpu_topology_start: pset_create");
164 TOPO_DBG("\tnew set %p(%d) pset %p for cache %p\n",
165 aset, aset->num, aset->pset, aset->cache);
166 }
167
168 TOPO_DBG("\tprocessor_init set %p(%d) lcpup %p(%d) cpu %p processor %p\n",
169 aset, aset->num, lcpup, lcpup->cpu_num, cpup, cpup->cpu_processor);
170
171 if (i != master_cpu)
172 processor_init(cpup->cpu_processor, i, aset->pset);
173
174 if (lcpup->core->num_lcpus > 1) {
175 if (lcpup->lnum == 0)
176 lprim = cpup->cpu_processor;
177
178 processor_meta_init(cpup->cpu_processor, lprim);
179 }
180 }
181 }
182
183 /* We got a request to start a CPU. Check that this CPU is within the
184 * max cpu limit set before we do.
185 */
186 kern_return_t
187 cpu_topology_start_cpu( int cpunum )
188 {
189 int ncpus = machine_info.max_cpus;
190 int i = cpunum;
191
192 /* Decide whether to start a CPU, and actually start it */
193 TOPO_DBG("cpu_topology_start() processor_start():\n");
194 if( i < ncpus)
195 {
196 TOPO_DBG("\tlcpu %d\n", cpu_datap(i)->cpu_number);
197 processor_start(cpu_datap(i)->cpu_processor);
198 return KERN_SUCCESS;
199 }
200 else
201 return KERN_FAILURE;
202 }
203
204 static int
205 lapicid_cmp(const void *x, const void *y)
206 {
207 cpu_data_t *cpu_x = *((cpu_data_t **)(uintptr_t)x);
208 cpu_data_t *cpu_y = *((cpu_data_t **)(uintptr_t)y);
209
210 TOPO_DBG("lapicid_cmp(%p,%p) (%d,%d)\n",
211 x, y, cpu_x->cpu_phys_number, cpu_y->cpu_phys_number);
212 if (cpu_x->cpu_phys_number < cpu_y->cpu_phys_number)
213 return -1;
214 if (cpu_x->cpu_phys_number == cpu_y->cpu_phys_number)
215 return 0;
216 return 1;
217 }
218
219 static x86_affinity_set_t *
220 find_cache_affinity(x86_cpu_cache_t *l2_cachep)
221 {
222 x86_affinity_set_t *aset;
223
224 for (aset = x86_affinities; aset != NULL; aset = aset->next) {
225 if (l2_cachep == aset->cache)
226 break;
227 }
228 return aset;
229 }
230
231 int
232 ml_get_max_affinity_sets(void)
233 {
234 return x86_affinity_count;
235 }
236
237 processor_set_t
238 ml_affinity_to_pset(uint32_t affinity_num)
239 {
240 x86_affinity_set_t *aset;
241
242 for (aset = x86_affinities; aset != NULL; aset = aset->next) {
243 if (affinity_num == aset->num)
244 break;
245 }
246 return (aset == NULL) ? PROCESSOR_SET_NULL : aset->pset;
247 }
248
249 uint64_t
250 ml_cpu_cache_size(unsigned int level)
251 {
252 x86_cpu_cache_t *cachep;
253
254 if (level == 0) {
255 return machine_info.max_mem;
256 } else if ( 1 <= level && level <= MAX_CACHE_DEPTH) {
257 cachep = current_cpu_datap()->lcpu.caches[level-1];
258 return cachep ? cachep->cache_size : 0;
259 } else {
260 return 0;
261 }
262 }
263
264 uint64_t
265 ml_cpu_cache_sharing(unsigned int level)
266 {
267 x86_cpu_cache_t *cachep;
268
269 if (level == 0) {
270 return machine_info.max_cpus;
271 } else if ( 1 <= level && level <= MAX_CACHE_DEPTH) {
272 cachep = current_cpu_datap()->lcpu.caches[level-1];
273 return cachep ? cachep->nlcpus : 0;
274 } else {
275 return 0;
276 }
277 }
278