]> git.saurik.com Git - apple/xnu.git/blob - bsd/netinet/ip_output.c
xnu-2422.115.4.tar.gz
[apple/xnu.git] / bsd / netinet / ip_output.c
1 /*
2 * Copyright (c) 2000-2013 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*
29 * Copyright (c) 1982, 1986, 1988, 1990, 1993
30 * The Regents of the University of California. All rights reserved.
31 *
32 * Redistribution and use in source and binary forms, with or without
33 * modification, are permitted provided that the following conditions
34 * are met:
35 * 1. Redistributions of source code must retain the above copyright
36 * notice, this list of conditions and the following disclaimer.
37 * 2. Redistributions in binary form must reproduce the above copyright
38 * notice, this list of conditions and the following disclaimer in the
39 * documentation and/or other materials provided with the distribution.
40 * 3. All advertising materials mentioning features or use of this software
41 * must display the following acknowledgement:
42 * This product includes software developed by the University of
43 * California, Berkeley and its contributors.
44 * 4. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
61 */
62 /*
63 * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
64 * support for mandatory and extensible security protections. This notice
65 * is included in support of clause 2.2 (b) of the Apple Public License,
66 * Version 2.0.
67 */
68
69 #define _IP_VHL
70
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/kernel.h>
74 #include <sys/malloc.h>
75 #include <sys/mbuf.h>
76 #include <sys/protosw.h>
77 #include <sys/socket.h>
78 #include <sys/socketvar.h>
79 #include <kern/locks.h>
80 #include <sys/sysctl.h>
81 #include <sys/mcache.h>
82 #include <sys/kdebug.h>
83
84 #include <machine/endian.h>
85 #include <pexpert/pexpert.h>
86 #include <mach/sdt.h>
87
88 #include <libkern/OSAtomic.h>
89 #include <libkern/OSByteOrder.h>
90
91 #include <net/if.h>
92 #include <net/if_dl.h>
93 #include <net/if_types.h>
94 #include <net/route.h>
95 #include <net/ntstat.h>
96 #include <net/net_osdep.h>
97 #include <net/dlil.h>
98
99 #include <netinet/in.h>
100 #include <netinet/in_systm.h>
101 #include <netinet/ip.h>
102 #include <netinet/in_pcb.h>
103 #include <netinet/in_var.h>
104 #include <netinet/ip_var.h>
105 #include <netinet/kpi_ipfilter_var.h>
106
107 #if CONFIG_MACF_NET
108 #include <security/mac_framework.h>
109 #endif /* CONFIG_MACF_NET */
110
111 #define DBG_LAYER_BEG NETDBG_CODE(DBG_NETIP, 1)
112 #define DBG_LAYER_END NETDBG_CODE(DBG_NETIP, 3)
113 #define DBG_FNC_IP_OUTPUT NETDBG_CODE(DBG_NETIP, (1 << 8) | 1)
114 #define DBG_FNC_IPSEC4_OUTPUT NETDBG_CODE(DBG_NETIP, (2 << 8) | 1)
115
116 #if IPSEC
117 #include <netinet6/ipsec.h>
118 #include <netkey/key.h>
119 #if IPSEC_DEBUG
120 #include <netkey/key_debug.h>
121 #else
122 #define KEYDEBUG(lev, arg)
123 #endif
124 #endif /* IPSEC */
125
126 #if IPFIREWALL
127 #include <netinet/ip_fw.h>
128 #if IPDIVERT
129 #include <netinet/ip_divert.h>
130 #endif /* IPDIVERT */
131 #endif /* IPFIREWALL */
132
133 #if DUMMYNET
134 #include <netinet/ip_dummynet.h>
135 #endif
136
137 #if PF
138 #include <net/pfvar.h>
139 #endif /* PF */
140
141 #if IPFIREWALL_FORWARD && IPFIREWALL_FORWARD_DEBUG
142 #define print_ip(a) \
143 printf("%ld.%ld.%ld.%ld", (ntohl(a.s_addr) >> 24) & 0xFF, \
144 (ntohl(a.s_addr) >> 16) & 0xFF, \
145 (ntohl(a.s_addr) >> 8) & 0xFF, \
146 (ntohl(a.s_addr)) & 0xFF);
147 #endif /* IPFIREWALL_FORWARD && IPFIREWALL_FORWARD_DEBUG */
148
149 u_short ip_id;
150
151 static void ip_out_cksum_stats(int, u_int32_t);
152 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
153 static int ip_optcopy(struct ip *, struct ip *);
154 static int ip_pcbopts(int, struct mbuf **, struct mbuf *);
155 static void imo_trace(struct ip_moptions *, int);
156 static void ip_mloopback(struct ifnet *, struct ifnet *, struct mbuf *,
157 struct sockaddr_in *, int);
158 static struct ifaddr *in_selectsrcif(struct ip *, struct route *, unsigned int);
159
160 extern struct ip_linklocal_stat ip_linklocal_stat;
161
162 /* temporary: for testing */
163 #if IPSEC
164 extern int ipsec_bypass;
165 #endif
166
167 static int ip_maxchainsent = 0;
168 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxchainsent,
169 CTLFLAG_RW | CTLFLAG_LOCKED, &ip_maxchainsent, 0,
170 "use dlil_output_list");
171 #if DEBUG
172 static int forge_ce = 0;
173 SYSCTL_INT(_net_inet_ip, OID_AUTO, forge_ce,
174 CTLFLAG_RW | CTLFLAG_LOCKED, &forge_ce, 0,
175 "Forge ECN CE");
176 #endif /* DEBUG */
177
178 static int ip_select_srcif_debug = 0;
179 SYSCTL_INT(_net_inet_ip, OID_AUTO, select_srcif_debug,
180 CTLFLAG_RW | CTLFLAG_LOCKED, &ip_select_srcif_debug, 0,
181 "log source interface selection debug info");
182
183 #define IMO_TRACE_HIST_SIZE 32 /* size of trace history */
184
185 /* For gdb */
186 __private_extern__ unsigned int imo_trace_hist_size = IMO_TRACE_HIST_SIZE;
187
188 struct ip_moptions_dbg {
189 struct ip_moptions imo; /* ip_moptions */
190 u_int16_t imo_refhold_cnt; /* # of IMO_ADDREF */
191 u_int16_t imo_refrele_cnt; /* # of IMO_REMREF */
192 /*
193 * Alloc and free callers.
194 */
195 ctrace_t imo_alloc;
196 ctrace_t imo_free;
197 /*
198 * Circular lists of IMO_ADDREF and IMO_REMREF callers.
199 */
200 ctrace_t imo_refhold[IMO_TRACE_HIST_SIZE];
201 ctrace_t imo_refrele[IMO_TRACE_HIST_SIZE];
202 };
203
204 #if DEBUG
205 static unsigned int imo_debug = 1; /* debugging (enabled) */
206 #else
207 static unsigned int imo_debug; /* debugging (disabled) */
208 #endif /* !DEBUG */
209 static unsigned int imo_size; /* size of zone element */
210 static struct zone *imo_zone; /* zone for ip_moptions */
211
212 #define IMO_ZONE_MAX 64 /* maximum elements in zone */
213 #define IMO_ZONE_NAME "ip_moptions" /* zone name */
214
215 /*
216 * IP output. The packet in mbuf chain m contains a skeletal IP
217 * header (with len, off, ttl, proto, tos, src, dst).
218 * The mbuf chain containing the packet will be freed.
219 * The mbuf opt, if present, will not be freed.
220 */
221 int
222 ip_output(struct mbuf *m0, struct mbuf *opt, struct route *ro, int flags,
223 struct ip_moptions *imo, struct ip_out_args *ipoa)
224 {
225 return (ip_output_list(m0, 0, opt, ro, flags, imo, ipoa));
226 }
227
228 /*
229 * IP output. The packet in mbuf chain m contains a skeletal IP
230 * header (with len, off, ttl, proto, tos, src, dst).
231 * The mbuf chain containing the packet will be freed.
232 * The mbuf opt, if present, will not be freed.
233 *
234 * Route ro MUST be non-NULL; if ro->ro_rt is valid, route lookup would be
235 * skipped and ro->ro_rt would be used. Otherwise the result of route
236 * lookup is stored in ro->ro_rt.
237 *
238 * In the IP forwarding case, the packet will arrive with options already
239 * inserted, so must have a NULL opt pointer.
240 */
241 int
242 ip_output_list(struct mbuf *m0, int packetchain, struct mbuf *opt,
243 struct route *ro, int flags, struct ip_moptions *imo,
244 struct ip_out_args *ipoa)
245 {
246 struct ip *ip;
247 struct ifnet *ifp = NULL; /* not refcnt'd */
248 struct mbuf *m = m0, *prevnxt = NULL, **mppn = &prevnxt;
249 int hlen = sizeof (struct ip);
250 int len = 0, error = 0;
251 struct sockaddr_in *dst = NULL;
252 struct in_ifaddr *ia = NULL, *src_ia = NULL;
253 struct in_addr pkt_dst;
254 struct ipf_pktopts *ippo = NULL;
255 ipfilter_t inject_filter_ref = NULL;
256 struct mbuf *packetlist;
257 uint32_t sw_csum, pktcnt = 0, scnt = 0, bytecnt = 0;
258 unsigned int ifscope = IFSCOPE_NONE;
259 struct flowadv *adv = NULL;
260 #if IPSEC
261 struct socket *so = NULL;
262 struct secpolicy *sp = NULL;
263 #endif /* IPSEC */
264 #if IPFIREWALL
265 int ipfwoff;
266 struct sockaddr_in *next_hop_from_ipfwd_tag = NULL;
267 #endif /* IPFIREWALL */
268 #if IPFIREWALL || DUMMYNET
269 struct m_tag *tag;
270 #endif /* IPFIREWALL || DUMMYNET */
271 #if DUMMYNET
272 struct ip_out_args saved_ipoa;
273 struct sockaddr_in dst_buf;
274 #endif /* DUMMYNET */
275 struct {
276 #if IPSEC
277 struct ipsec_output_state ipsec_state;
278 #endif /* IPSEC */
279 #if IPFIREWALL || DUMMYNET
280 struct ip_fw_args args;
281 #endif /* IPFIREWALL || DUMMYNET */
282 #if IPFIREWALL_FORWARD
283 struct route sro_fwd;
284 #endif /* IPFIREWALL_FORWARD */
285 #if DUMMYNET
286 struct route saved_route;
287 #endif /* DUMMYNET */
288 struct ipf_pktopts ipf_pktopts;
289 } ipobz;
290 #define ipsec_state ipobz.ipsec_state
291 #define args ipobz.args
292 #define sro_fwd ipobz.sro_fwd
293 #define saved_route ipobz.saved_route
294 #define ipf_pktopts ipobz.ipf_pktopts
295 union {
296 struct {
297 boolean_t select_srcif : 1; /* set once */
298 boolean_t srcbound : 1; /* set once */
299 boolean_t nocell : 1; /* set once */
300 boolean_t isbroadcast : 1;
301 boolean_t didfilter : 1;
302 #if IPFIREWALL_FORWARD
303 boolean_t fwd_rewrite_src : 1;
304 #endif /* IPFIREWALL_FORWARD */
305 };
306 uint32_t raw;
307 } ipobf = { .raw = 0 };
308
309 KERNEL_DEBUG(DBG_FNC_IP_OUTPUT | DBG_FUNC_START, 0, 0, 0, 0, 0);
310
311 VERIFY(m0->m_flags & M_PKTHDR);
312 packetlist = m0;
313
314 /* zero out {ipsec_state, args, sro_fwd, saved_route, ipf_pktops} */
315 bzero(&ipobz, sizeof (ipobz));
316 ippo = &ipf_pktopts;
317
318 #if IPFIREWALL || DUMMYNET
319 if (SLIST_EMPTY(&m0->m_pkthdr.tags))
320 goto ipfw_tags_done;
321
322 /* Grab info from mtags prepended to the chain */
323 #if DUMMYNET
324 if ((tag = m_tag_locate(m0, KERNEL_MODULE_TAG_ID,
325 KERNEL_TAG_TYPE_DUMMYNET, NULL)) != NULL) {
326 struct dn_pkt_tag *dn_tag;
327
328 dn_tag = (struct dn_pkt_tag *)(tag+1);
329 args.fwa_ipfw_rule = dn_tag->dn_ipfw_rule;
330 args.fwa_pf_rule = dn_tag->dn_pf_rule;
331 opt = NULL;
332 saved_route = dn_tag->dn_ro;
333 ro = &saved_route;
334
335 imo = NULL;
336 bcopy(&dn_tag->dn_dst, &dst_buf, sizeof (dst_buf));
337 dst = &dst_buf;
338 ifp = dn_tag->dn_ifp;
339 flags = dn_tag->dn_flags;
340 if ((dn_tag->dn_flags & IP_OUTARGS)) {
341 saved_ipoa = dn_tag->dn_ipoa;
342 ipoa = &saved_ipoa;
343 }
344
345 m_tag_delete(m0, tag);
346 }
347 #endif /* DUMMYNET */
348
349 #if IPDIVERT
350 if ((tag = m_tag_locate(m0, KERNEL_MODULE_TAG_ID,
351 KERNEL_TAG_TYPE_DIVERT, NULL)) != NULL) {
352 struct divert_tag *div_tag;
353
354 div_tag = (struct divert_tag *)(tag+1);
355 args.fwa_divert_rule = div_tag->cookie;
356
357 m_tag_delete(m0, tag);
358 }
359 #endif /* IPDIVERT */
360
361 #if IPFIREWALL
362 if ((tag = m_tag_locate(m0, KERNEL_MODULE_TAG_ID,
363 KERNEL_TAG_TYPE_IPFORWARD, NULL)) != NULL) {
364 struct ip_fwd_tag *ipfwd_tag;
365
366 ipfwd_tag = (struct ip_fwd_tag *)(tag+1);
367 next_hop_from_ipfwd_tag = ipfwd_tag->next_hop;
368
369 m_tag_delete(m0, tag);
370 }
371 #endif /* IPFIREWALL */
372
373 ipfw_tags_done:
374 #endif /* IPFIREWALL || DUMMYNET */
375
376 m = m0;
377 m->m_pkthdr.pkt_flags &= ~(PKTF_LOOP|PKTF_IFAINFO);
378
379 #if IPSEC
380 if (ipsec_bypass == 0 && !(flags & IP_NOIPSEC)) {
381 /* If packet is bound to an interface, check bound policies */
382 if ((flags & IP_OUTARGS) && (ipoa != NULL) &&
383 (ipoa->ipoa_flags & IPOAF_BOUND_IF) &&
384 ipoa->ipoa_boundif != IFSCOPE_NONE) {
385 if (ipsec4_getpolicybyinterface(m, IPSEC_DIR_OUTBOUND,
386 &flags, ipoa, &sp) != 0)
387 goto bad;
388 }
389 }
390 #endif /* IPSEC */
391
392 VERIFY(ro != NULL);
393
394 if (ip_doscopedroute && (flags & IP_OUTARGS)) {
395 /*
396 * In the forwarding case, only the ifscope value is used,
397 * as source interface selection doesn't take place.
398 */
399 if ((ipobf.select_srcif = (!(flags & IP_FORWARDING) &&
400 (ipoa->ipoa_flags & IPOAF_SELECT_SRCIF)))) {
401 ipf_pktopts.ippo_flags |= IPPOF_SELECT_SRCIF;
402 }
403
404 if ((ipoa->ipoa_flags & IPOAF_BOUND_IF) &&
405 ipoa->ipoa_boundif != IFSCOPE_NONE) {
406 ifscope = ipoa->ipoa_boundif;
407 ipf_pktopts.ippo_flags |=
408 (IPPOF_BOUND_IF | (ifscope << IPPOF_SHIFT_IFSCOPE));
409 }
410
411 /* double negation needed for bool bit field */
412 ipobf.srcbound = !!(ipoa->ipoa_flags & IPOAF_BOUND_SRCADDR);
413 if (ipobf.srcbound)
414 ipf_pktopts.ippo_flags |= IPPOF_BOUND_SRCADDR;
415 } else {
416 ipobf.select_srcif = FALSE;
417 ipobf.srcbound = FALSE;
418 ifscope = IFSCOPE_NONE;
419 if (flags & IP_OUTARGS) {
420 ipoa->ipoa_boundif = IFSCOPE_NONE;
421 ipoa->ipoa_flags &= ~(IPOAF_SELECT_SRCIF |
422 IPOAF_BOUND_IF | IPOAF_BOUND_SRCADDR);
423 }
424 }
425
426 if ((flags & IP_OUTARGS) && (ipoa->ipoa_flags & IPOAF_NO_CELLULAR)) {
427 ipobf.nocell = TRUE;
428 ipf_pktopts.ippo_flags |= IPPOF_NO_IFT_CELLULAR;
429 }
430
431 if (flags & IP_OUTARGS) {
432 adv = &ipoa->ipoa_flowadv;
433 adv->code = FADV_SUCCESS;
434 ipoa->ipoa_retflags = 0;
435 }
436
437 #if DUMMYNET
438 if (args.fwa_ipfw_rule != NULL || args.fwa_pf_rule != NULL) {
439 /* dummynet already saw us */
440 ip = mtod(m, struct ip *);
441 hlen = IP_VHL_HL(ip->ip_vhl) << 2;
442 pkt_dst = ip->ip_dst;
443 if (ro->ro_rt != NULL) {
444 RT_LOCK_SPIN(ro->ro_rt);
445 ia = (struct in_ifaddr *)ro->ro_rt->rt_ifa;
446 if (ia) {
447 /* Become a regular mutex */
448 RT_CONVERT_LOCK(ro->ro_rt);
449 IFA_ADDREF(&ia->ia_ifa);
450 }
451 RT_UNLOCK(ro->ro_rt);
452 }
453 #if IPSEC
454 if (ipsec_bypass == 0 && !(flags & IP_NOIPSEC)) {
455 so = ipsec_getsocket(m);
456 (void) ipsec_setsocket(m, NULL);
457 }
458 #endif /* IPSEC */
459 #if IPFIREWALL
460 if (args.fwa_ipfw_rule != NULL)
461 goto skip_ipsec;
462 #endif /* IPFIREWALL */
463 if (args.fwa_pf_rule != NULL)
464 goto sendit;
465 }
466 #endif /* DUMMYNET */
467
468 #if IPSEC
469 if (ipsec_bypass == 0 && !(flags & IP_NOIPSEC)) {
470 so = ipsec_getsocket(m);
471 (void) ipsec_setsocket(m, NULL);
472 }
473 #endif /* IPSEC */
474
475 loopit:
476 ipobf.isbroadcast = FALSE;
477 ipobf.didfilter = FALSE;
478 #if IPFIREWALL_FORWARD
479 ipobf.fwd_rewrite_src = FALSE;
480 #endif /* IPFIREWALL_FORWARD */
481
482 VERIFY(m->m_flags & M_PKTHDR);
483 /*
484 * No need to proccess packet twice if we've already seen it.
485 */
486 if (!SLIST_EMPTY(&m->m_pkthdr.tags))
487 inject_filter_ref = ipf_get_inject_filter(m);
488 else
489 inject_filter_ref = NULL;
490
491 if (opt) {
492 m = ip_insertoptions(m, opt, &len);
493 hlen = len;
494 /* Update the chain */
495 if (m != m0) {
496 if (m0 == packetlist)
497 packetlist = m;
498 m0 = m;
499 }
500 }
501 ip = mtod(m, struct ip *);
502
503 #if IPFIREWALL
504 /*
505 * rdar://8542331
506 *
507 * When dealing with a packet chain, we need to reset "next_hop"
508 * because "dst" may have been changed to the gateway address below
509 * for the previous packet of the chain. This could cause the route
510 * to be inavertandly changed to the route to the gateway address
511 * (instead of the route to the destination).
512 */
513 args.fwa_next_hop = next_hop_from_ipfwd_tag;
514 pkt_dst = args.fwa_next_hop ? args.fwa_next_hop->sin_addr : ip->ip_dst;
515 #else /* !IPFIREWALL */
516 pkt_dst = ip->ip_dst;
517 #endif /* !IPFIREWALL */
518
519 /*
520 * We must not send if the packet is destined to network zero.
521 * RFC1122 3.2.1.3 (a) and (b).
522 */
523 if (IN_ZERONET(ntohl(pkt_dst.s_addr))) {
524 error = EHOSTUNREACH;
525 goto bad;
526 }
527
528 /*
529 * Fill in IP header.
530 */
531 if (!(flags & (IP_FORWARDING|IP_RAWOUTPUT))) {
532 ip->ip_vhl = IP_MAKE_VHL(IPVERSION, hlen >> 2);
533 ip->ip_off &= IP_DF;
534 ip->ip_id = ip_randomid();
535 OSAddAtomic(1, &ipstat.ips_localout);
536 } else {
537 hlen = IP_VHL_HL(ip->ip_vhl) << 2;
538 }
539
540 #if DEBUG
541 /* For debugging, we let the stack forge congestion */
542 if (forge_ce != 0 &&
543 ((ip->ip_tos & IPTOS_ECN_MASK) == IPTOS_ECN_ECT1 ||
544 (ip->ip_tos & IPTOS_ECN_MASK) == IPTOS_ECN_ECT0)) {
545 ip->ip_tos = (ip->ip_tos & ~IPTOS_ECN_MASK) | IPTOS_ECN_CE;
546 forge_ce--;
547 }
548 #endif /* DEBUG */
549
550 KERNEL_DEBUG(DBG_LAYER_BEG, ip->ip_dst.s_addr, ip->ip_src.s_addr,
551 ip->ip_p, ip->ip_off, ip->ip_len);
552
553 dst = SIN(&ro->ro_dst);
554
555 /*
556 * If there is a cached route,
557 * check that it is to the same destination
558 * and is still up. If not, free it and try again.
559 * The address family should also be checked in case of sharing the
560 * cache with IPv6.
561 */
562
563 if (ro->ro_rt != NULL) {
564 if (ROUTE_UNUSABLE(ro) && ip->ip_src.s_addr != INADDR_ANY &&
565 !(flags & (IP_ROUTETOIF | IP_FORWARDING))) {
566 src_ia = ifa_foraddr(ip->ip_src.s_addr);
567 if (src_ia == NULL) {
568 error = EADDRNOTAVAIL;
569 goto bad;
570 }
571 IFA_REMREF(&src_ia->ia_ifa);
572 src_ia = NULL;
573 }
574 /*
575 * Test rt_flags without holding rt_lock for performance
576 * reasons; if the route is down it will hopefully be
577 * caught by the layer below (since it uses this route
578 * as a hint) or during the next transmit.
579 */
580 if (ROUTE_UNUSABLE(ro) || dst->sin_family != AF_INET ||
581 dst->sin_addr.s_addr != pkt_dst.s_addr)
582 ROUTE_RELEASE(ro);
583
584 /*
585 * If we're doing source interface selection, we may not
586 * want to use this route; only synch up the generation
587 * count otherwise.
588 */
589 if (!ipobf.select_srcif && ro->ro_rt != NULL &&
590 RT_GENID_OUTOFSYNC(ro->ro_rt))
591 RT_GENID_SYNC(ro->ro_rt);
592 }
593 if (ro->ro_rt == NULL) {
594 bzero(dst, sizeof (*dst));
595 dst->sin_family = AF_INET;
596 dst->sin_len = sizeof (*dst);
597 dst->sin_addr = pkt_dst;
598 }
599 /*
600 * If routing to interface only,
601 * short circuit routing lookup.
602 */
603 if (flags & IP_ROUTETOIF) {
604 if (ia != NULL)
605 IFA_REMREF(&ia->ia_ifa);
606 if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst)))) == NULL) {
607 ia = ifatoia(ifa_ifwithnet(sintosa(dst)));
608 if (ia == NULL) {
609 OSAddAtomic(1, &ipstat.ips_noroute);
610 error = ENETUNREACH;
611 goto bad;
612 }
613 }
614 ifp = ia->ia_ifp;
615 ip->ip_ttl = 1;
616 ipobf.isbroadcast = in_broadcast(dst->sin_addr, ifp);
617 /*
618 * For consistency with other cases below. Loopback
619 * multicast case is handled separately by ip_mloopback().
620 */
621 if ((ifp->if_flags & IFF_LOOPBACK) &&
622 !IN_MULTICAST(ntohl(pkt_dst.s_addr))) {
623 m->m_pkthdr.rcvif = ifp;
624 ip_setsrcifaddr_info(m, ifp->if_index, NULL);
625 ip_setdstifaddr_info(m, ifp->if_index, NULL);
626 }
627 } else if (IN_MULTICAST(ntohl(pkt_dst.s_addr)) &&
628 imo != NULL && (ifp = imo->imo_multicast_ifp) != NULL) {
629 /*
630 * Bypass the normal routing lookup for multicast
631 * packets if the interface is specified.
632 */
633 ipobf.isbroadcast = FALSE;
634 if (ia != NULL)
635 IFA_REMREF(&ia->ia_ifa);
636
637 /* Macro takes reference on ia */
638 IFP_TO_IA(ifp, ia);
639 } else {
640 struct ifaddr *ia0 = NULL;
641 boolean_t cloneok = FALSE;
642 /*
643 * Perform source interface selection; the source IP address
644 * must belong to one of the addresses of the interface used
645 * by the route. For performance reasons, do this only if
646 * there is no route, or if the routing table has changed,
647 * or if we haven't done source interface selection on this
648 * route (for this PCB instance) before.
649 */
650 if (ipobf.select_srcif &&
651 ip->ip_src.s_addr != INADDR_ANY && (ROUTE_UNUSABLE(ro) ||
652 !(ro->ro_flags & ROF_SRCIF_SELECTED))) {
653 /* Find the source interface */
654 ia0 = in_selectsrcif(ip, ro, ifscope);
655
656 /*
657 * If the source address belongs to a cellular interface
658 * and the caller forbids our using interfaces of such
659 * type, pretend that there is no route.
660 */
661 if (ipobf.nocell && ia0 != NULL &&
662 IFNET_IS_CELLULAR(ia0->ifa_ifp)) {
663 IFA_REMREF(ia0);
664 ia0 = NULL;
665 error = EHOSTUNREACH;
666 if (flags & IP_OUTARGS)
667 ipoa->ipoa_retflags |= IPOARF_IFDENIED;
668 goto bad;
669 }
670
671 /*
672 * If the source address is spoofed (in the case of
673 * IP_RAWOUTPUT on an unbounded socket), or if this
674 * is destined for local/loopback, just let it go out
675 * using the interface of the route. Otherwise,
676 * there's no interface having such an address,
677 * so bail out.
678 */
679 if (ia0 == NULL && (!(flags & IP_RAWOUTPUT) ||
680 ipobf.srcbound) && ifscope != lo_ifp->if_index) {
681 error = EADDRNOTAVAIL;
682 goto bad;
683 }
684
685 /*
686 * If the caller didn't explicitly specify the scope,
687 * pick it up from the source interface. If the cached
688 * route was wrong and was blown away as part of source
689 * interface selection, don't mask out RTF_PRCLONING
690 * since that route may have been allocated by the ULP,
691 * unless the IP header was created by the caller or
692 * the destination is IPv4 LLA. The check for the
693 * latter is needed because IPv4 LLAs are never scoped
694 * in the current implementation, and we don't want to
695 * replace the resolved IPv4 LLA route with one whose
696 * gateway points to that of the default gateway on
697 * the primary interface of the system.
698 */
699 if (ia0 != NULL) {
700 if (ifscope == IFSCOPE_NONE)
701 ifscope = ia0->ifa_ifp->if_index;
702 cloneok = (!(flags & IP_RAWOUTPUT) &&
703 !(IN_LINKLOCAL(ntohl(ip->ip_dst.s_addr))));
704 }
705 }
706
707 /*
708 * If this is the case, we probably don't want to allocate
709 * a protocol-cloned route since we didn't get one from the
710 * ULP. This lets TCP do its thing, while not burdening
711 * forwarding or ICMP with the overhead of cloning a route.
712 * Of course, we still want to do any cloning requested by
713 * the link layer, as this is probably required in all cases
714 * for correct operation (as it is for ARP).
715 */
716 if (ro->ro_rt == NULL) {
717 unsigned long ign = RTF_PRCLONING;
718 /*
719 * We make an exception here: if the destination
720 * address is INADDR_BROADCAST, allocate a protocol-
721 * cloned host route so that we end up with a route
722 * marked with the RTF_BROADCAST flag. Otherwise,
723 * we would end up referring to the default route,
724 * instead of creating a cloned host route entry.
725 * That would introduce inconsistencies between ULPs
726 * that allocate a route and those that don't. The
727 * RTF_BROADCAST route is important since we'd want
728 * to send out undirected IP broadcast packets using
729 * link-level broadcast address. Another exception
730 * is for ULP-created routes that got blown away by
731 * source interface selection (see above).
732 *
733 * These exceptions will no longer be necessary when
734 * the RTF_PRCLONING scheme is no longer present.
735 */
736 if (cloneok || dst->sin_addr.s_addr == INADDR_BROADCAST)
737 ign &= ~RTF_PRCLONING;
738
739 /*
740 * Loosen the route lookup criteria if the ifscope
741 * corresponds to the loopback interface; this is
742 * needed to support Application Layer Gateways
743 * listening on loopback, in conjunction with packet
744 * filter redirection rules. The final source IP
745 * address will be rewritten by the packet filter
746 * prior to the RFC1122 loopback check below.
747 */
748 if (ifscope == lo_ifp->if_index)
749 rtalloc_ign(ro, ign);
750 else
751 rtalloc_scoped_ign(ro, ign, ifscope);
752
753 /*
754 * If the route points to a cellular interface and the
755 * caller forbids our using interfaces of such type,
756 * pretend that there is no route.
757 */
758 if (ipobf.nocell && ro->ro_rt != NULL) {
759 RT_LOCK_SPIN(ro->ro_rt);
760 if (IFNET_IS_CELLULAR(ro->ro_rt->rt_ifp)) {
761 RT_UNLOCK(ro->ro_rt);
762 ROUTE_RELEASE(ro);
763 if (flags & IP_OUTARGS) {
764 ipoa->ipoa_retflags |=
765 IPOARF_IFDENIED;
766 }
767 } else {
768 RT_UNLOCK(ro->ro_rt);
769 }
770 }
771 }
772
773 if (ro->ro_rt == NULL) {
774 OSAddAtomic(1, &ipstat.ips_noroute);
775 error = EHOSTUNREACH;
776 if (ia0 != NULL) {
777 IFA_REMREF(ia0);
778 ia0 = NULL;
779 }
780 goto bad;
781 }
782
783 if (ia != NULL)
784 IFA_REMREF(&ia->ia_ifa);
785 RT_LOCK_SPIN(ro->ro_rt);
786 ia = ifatoia(ro->ro_rt->rt_ifa);
787 if (ia != NULL) {
788 /* Become a regular mutex */
789 RT_CONVERT_LOCK(ro->ro_rt);
790 IFA_ADDREF(&ia->ia_ifa);
791 }
792 /*
793 * Note: ia_ifp may not be the same as rt_ifp; the latter
794 * is what we use for determining outbound i/f, mtu, etc.
795 */
796 ifp = ro->ro_rt->rt_ifp;
797 ro->ro_rt->rt_use++;
798 if (ro->ro_rt->rt_flags & RTF_GATEWAY) {
799 dst = SIN(ro->ro_rt->rt_gateway);
800 }
801 if (ro->ro_rt->rt_flags & RTF_HOST) {
802 /* double negation needed for bool bit field */
803 ipobf.isbroadcast =
804 !!(ro->ro_rt->rt_flags & RTF_BROADCAST);
805 } else {
806 /* Become a regular mutex */
807 RT_CONVERT_LOCK(ro->ro_rt);
808 ipobf.isbroadcast = in_broadcast(dst->sin_addr, ifp);
809 }
810 /*
811 * For consistency with IPv6, as well as to ensure that
812 * IP_RECVIF is set correctly for packets that are sent
813 * to one of the local addresses. ia (rt_ifa) would have
814 * been fixed up by rt_setif for local routes. This
815 * would make it appear as if the packet arrives on the
816 * interface which owns the local address. Loopback
817 * multicast case is handled separately by ip_mloopback().
818 */
819 if (ia != NULL && (ifp->if_flags & IFF_LOOPBACK) &&
820 !IN_MULTICAST(ntohl(pkt_dst.s_addr))) {
821 uint32_t srcidx;
822
823 m->m_pkthdr.rcvif = ia->ia_ifa.ifa_ifp;
824
825 if (ia0 != NULL)
826 srcidx = ia0->ifa_ifp->if_index;
827 else if ((ro->ro_flags & ROF_SRCIF_SELECTED) &&
828 ro->ro_srcia != NULL)
829 srcidx = ro->ro_srcia->ifa_ifp->if_index;
830 else
831 srcidx = 0;
832
833 ip_setsrcifaddr_info(m, srcidx, NULL);
834 ip_setdstifaddr_info(m, 0, ia);
835 }
836 RT_UNLOCK(ro->ro_rt);
837 if (ia0 != NULL) {
838 IFA_REMREF(ia0);
839 ia0 = NULL;
840 }
841 }
842
843 if (IN_MULTICAST(ntohl(pkt_dst.s_addr))) {
844 struct ifnet *srcifp = NULL;
845 struct in_multi *inm;
846 u_int32_t vif;
847 u_int8_t ttl = IP_DEFAULT_MULTICAST_TTL;
848 u_int8_t loop = IP_DEFAULT_MULTICAST_LOOP;
849
850 m->m_flags |= M_MCAST;
851 /*
852 * IP destination address is multicast. Make sure "dst"
853 * still points to the address in "ro". (It may have been
854 * changed to point to a gateway address, above.)
855 */
856 dst = SIN(&ro->ro_dst);
857 /*
858 * See if the caller provided any multicast options
859 */
860 if (imo != NULL) {
861 IMO_LOCK(imo);
862 vif = imo->imo_multicast_vif;
863 ttl = imo->imo_multicast_ttl;
864 loop = imo->imo_multicast_loop;
865 if (!(flags & IP_RAWOUTPUT))
866 ip->ip_ttl = ttl;
867 if (imo->imo_multicast_ifp != NULL)
868 ifp = imo->imo_multicast_ifp;
869 IMO_UNLOCK(imo);
870 #if MROUTING
871 if (vif != -1 && (!(flags & IP_RAWOUTPUT) ||
872 ip->ip_src.s_addr == INADDR_ANY))
873 ip->ip_src.s_addr = ip_mcast_src(vif);
874 #endif /* MROUTING */
875 } else if (!(flags & IP_RAWOUTPUT)) {
876 vif = -1;
877 ip->ip_ttl = ttl;
878 }
879 /*
880 * Confirm that the outgoing interface supports multicast.
881 */
882 if (imo == NULL || vif == -1) {
883 if (!(ifp->if_flags & IFF_MULTICAST)) {
884 OSAddAtomic(1, &ipstat.ips_noroute);
885 error = ENETUNREACH;
886 goto bad;
887 }
888 }
889 /*
890 * If source address not specified yet, use address
891 * of outgoing interface.
892 */
893 if (ip->ip_src.s_addr == INADDR_ANY) {
894 struct in_ifaddr *ia1;
895 lck_rw_lock_shared(in_ifaddr_rwlock);
896 TAILQ_FOREACH(ia1, &in_ifaddrhead, ia_link) {
897 IFA_LOCK_SPIN(&ia1->ia_ifa);
898 if (ia1->ia_ifp == ifp) {
899 ip->ip_src = IA_SIN(ia1)->sin_addr;
900 srcifp = ifp;
901 IFA_UNLOCK(&ia1->ia_ifa);
902 break;
903 }
904 IFA_UNLOCK(&ia1->ia_ifa);
905 }
906 lck_rw_done(in_ifaddr_rwlock);
907 if (ip->ip_src.s_addr == INADDR_ANY) {
908 error = ENETUNREACH;
909 goto bad;
910 }
911 }
912
913 in_multihead_lock_shared();
914 IN_LOOKUP_MULTI(&pkt_dst, ifp, inm);
915 in_multihead_lock_done();
916 if (inm != NULL && (imo == NULL || loop)) {
917 /*
918 * If we belong to the destination multicast group
919 * on the outgoing interface, and the caller did not
920 * forbid loopback, loop back a copy.
921 */
922 if (!TAILQ_EMPTY(&ipv4_filters)) {
923 struct ipfilter *filter;
924 int seen = (inject_filter_ref == NULL);
925
926 if (imo != NULL) {
927 ipf_pktopts.ippo_flags |=
928 IPPOF_MCAST_OPTS;
929 ipf_pktopts.ippo_mcast_ifnet = ifp;
930 ipf_pktopts.ippo_mcast_ttl = ttl;
931 ipf_pktopts.ippo_mcast_loop = loop;
932 }
933
934 ipf_ref();
935
936 /*
937 * 4135317 - always pass network byte
938 * order to filter
939 */
940 #if BYTE_ORDER != BIG_ENDIAN
941 HTONS(ip->ip_len);
942 HTONS(ip->ip_off);
943 #endif
944 TAILQ_FOREACH(filter, &ipv4_filters, ipf_link) {
945 if (seen == 0) {
946 if ((struct ipfilter *)
947 inject_filter_ref == filter)
948 seen = 1;
949 } else if (filter->ipf_filter.
950 ipf_output != NULL) {
951 errno_t result;
952 result = filter->ipf_filter.
953 ipf_output(filter->
954 ipf_filter.cookie,
955 (mbuf_t *)&m, ippo);
956 if (result == EJUSTRETURN) {
957 ipf_unref();
958 INM_REMREF(inm);
959 goto done;
960 }
961 if (result != 0) {
962 ipf_unref();
963 INM_REMREF(inm);
964 goto bad;
965 }
966 }
967 }
968
969 /* set back to host byte order */
970 ip = mtod(m, struct ip *);
971 #if BYTE_ORDER != BIG_ENDIAN
972 NTOHS(ip->ip_len);
973 NTOHS(ip->ip_off);
974 #endif
975 ipf_unref();
976 ipobf.didfilter = TRUE;
977 }
978 ip_mloopback(srcifp, ifp, m, dst, hlen);
979 }
980 #if MROUTING
981 else {
982 /*
983 * If we are acting as a multicast router, perform
984 * multicast forwarding as if the packet had just
985 * arrived on the interface to which we are about
986 * to send. The multicast forwarding function
987 * recursively calls this function, using the
988 * IP_FORWARDING flag to prevent infinite recursion.
989 *
990 * Multicasts that are looped back by ip_mloopback(),
991 * above, will be forwarded by the ip_input() routine,
992 * if necessary.
993 */
994 if (ip_mrouter && !(flags & IP_FORWARDING)) {
995 /*
996 * Check if rsvp daemon is running. If not,
997 * don't set ip_moptions. This ensures that
998 * the packet is multicast and not just sent
999 * down one link as prescribed by rsvpd.
1000 */
1001 if (!rsvp_on)
1002 imo = NULL;
1003 if (ip_mforward(ip, ifp, m, imo) != 0) {
1004 m_freem(m);
1005 if (inm != NULL)
1006 INM_REMREF(inm);
1007 OSAddAtomic(1, &ipstat.ips_cantforward);
1008 goto done;
1009 }
1010 }
1011 }
1012 #endif /* MROUTING */
1013 if (inm != NULL)
1014 INM_REMREF(inm);
1015 /*
1016 * Multicasts with a time-to-live of zero may be looped-
1017 * back, above, but must not be transmitted on a network.
1018 * Also, multicasts addressed to the loopback interface
1019 * are not sent -- the above call to ip_mloopback() will
1020 * loop back a copy if this host actually belongs to the
1021 * destination group on the loopback interface.
1022 */
1023 if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) {
1024 m_freem(m);
1025 goto done;
1026 }
1027
1028 goto sendit;
1029 }
1030 /*
1031 * If source address not specified yet, use address
1032 * of outgoing interface.
1033 */
1034 if (ip->ip_src.s_addr == INADDR_ANY) {
1035 IFA_LOCK_SPIN(&ia->ia_ifa);
1036 ip->ip_src = IA_SIN(ia)->sin_addr;
1037 IFA_UNLOCK(&ia->ia_ifa);
1038 #if IPFIREWALL_FORWARD
1039 /*
1040 * Keep note that we did this - if the firewall changes
1041 * the next-hop, our interface may change, changing the
1042 * default source IP. It's a shame so much effort happens
1043 * twice. Oh well.
1044 */
1045 ipobf.fwd_rewrite_src = TRUE;
1046 #endif /* IPFIREWALL_FORWARD */
1047 }
1048
1049 /*
1050 * Look for broadcast address and
1051 * and verify user is allowed to send
1052 * such a packet.
1053 */
1054 if (ipobf.isbroadcast) {
1055 if (!(ifp->if_flags & IFF_BROADCAST)) {
1056 error = EADDRNOTAVAIL;
1057 goto bad;
1058 }
1059 if (!(flags & IP_ALLOWBROADCAST)) {
1060 error = EACCES;
1061 goto bad;
1062 }
1063 /* don't allow broadcast messages to be fragmented */
1064 if ((u_short)ip->ip_len > ifp->if_mtu) {
1065 error = EMSGSIZE;
1066 goto bad;
1067 }
1068 m->m_flags |= M_BCAST;
1069 } else {
1070 m->m_flags &= ~M_BCAST;
1071 }
1072
1073 sendit:
1074 #if PF
1075 /* Invoke outbound packet filter */
1076 if (PF_IS_ENABLED) {
1077 int rc;
1078
1079 m0 = m; /* Save for later */
1080 #if DUMMYNET
1081 args.fwa_m = m;
1082 args.fwa_next_hop = dst;
1083 args.fwa_oif = ifp;
1084 args.fwa_ro = ro;
1085 args.fwa_dst = dst;
1086 args.fwa_oflags = flags;
1087 if (flags & IP_OUTARGS)
1088 args.fwa_ipoa = ipoa;
1089 rc = pf_af_hook(ifp, mppn, &m, AF_INET, FALSE, &args);
1090 #else /* DUMMYNET */
1091 rc = pf_af_hook(ifp, mppn, &m, AF_INET, FALSE, NULL);
1092 #endif /* DUMMYNET */
1093 if (rc != 0 || m == NULL) {
1094 /* Move to the next packet */
1095 m = *mppn;
1096
1097 /* Skip ahead if first packet in list got dropped */
1098 if (packetlist == m0)
1099 packetlist = m;
1100
1101 if (m != NULL) {
1102 m0 = m;
1103 /* Next packet in the chain */
1104 goto loopit;
1105 } else if (packetlist != NULL) {
1106 /* No more packet; send down the chain */
1107 goto sendchain;
1108 }
1109 /* Nothing left; we're done */
1110 goto done;
1111 }
1112 m0 = m;
1113 ip = mtod(m, struct ip *);
1114 pkt_dst = ip->ip_dst;
1115 hlen = IP_VHL_HL(ip->ip_vhl) << 2;
1116 }
1117 #endif /* PF */
1118 /*
1119 * Force IP TTL to 255 following draft-ietf-zeroconf-ipv4-linklocal.txt
1120 */
1121 if (IN_LINKLOCAL(ntohl(ip->ip_src.s_addr)) ||
1122 IN_LINKLOCAL(ntohl(ip->ip_dst.s_addr))) {
1123 ip_linklocal_stat.iplls_out_total++;
1124 if (ip->ip_ttl != MAXTTL) {
1125 ip_linklocal_stat.iplls_out_badttl++;
1126 ip->ip_ttl = MAXTTL;
1127 }
1128 }
1129
1130 if (!ipobf.didfilter && !TAILQ_EMPTY(&ipv4_filters)) {
1131 struct ipfilter *filter;
1132 int seen = (inject_filter_ref == NULL);
1133 ipf_pktopts.ippo_flags &= ~IPPOF_MCAST_OPTS;
1134
1135 /*
1136 * Check that a TSO frame isn't passed to a filter.
1137 * This could happen if a filter is inserted while
1138 * TCP is sending the TSO packet.
1139 */
1140 if (m->m_pkthdr.csum_flags & CSUM_TSO_IPV4) {
1141 error = EMSGSIZE;
1142 goto bad;
1143 }
1144
1145 ipf_ref();
1146
1147 /* 4135317 - always pass network byte order to filter */
1148 #if BYTE_ORDER != BIG_ENDIAN
1149 HTONS(ip->ip_len);
1150 HTONS(ip->ip_off);
1151 #endif
1152 TAILQ_FOREACH(filter, &ipv4_filters, ipf_link) {
1153 if (seen == 0) {
1154 if ((struct ipfilter *)inject_filter_ref ==
1155 filter)
1156 seen = 1;
1157 } else if (filter->ipf_filter.ipf_output) {
1158 errno_t result;
1159 result = filter->ipf_filter.
1160 ipf_output(filter->ipf_filter.cookie,
1161 (mbuf_t *)&m, ippo);
1162 if (result == EJUSTRETURN) {
1163 ipf_unref();
1164 goto done;
1165 }
1166 if (result != 0) {
1167 ipf_unref();
1168 goto bad;
1169 }
1170 }
1171 }
1172 /* set back to host byte order */
1173 ip = mtod(m, struct ip *);
1174 #if BYTE_ORDER != BIG_ENDIAN
1175 NTOHS(ip->ip_len);
1176 NTOHS(ip->ip_off);
1177 #endif
1178 ipf_unref();
1179 }
1180
1181 #if IPSEC
1182 /* temporary for testing only: bypass ipsec alltogether */
1183
1184 if (ipsec_bypass != 0 || (flags & IP_NOIPSEC))
1185 goto skip_ipsec;
1186
1187 KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT | DBG_FUNC_START, 0, 0, 0, 0, 0);
1188
1189 /* May have been set above if packet was bound */
1190 if (sp == NULL) {
1191 /* get SP for this packet */
1192 if (so == NULL)
1193 sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND,
1194 flags, &error);
1195 else
1196 sp = ipsec4_getpolicybysock(m, IPSEC_DIR_OUTBOUND,
1197 so, &error);
1198
1199 if (sp == NULL) {
1200 IPSEC_STAT_INCREMENT(ipsecstat.out_inval);
1201 KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT | DBG_FUNC_END,
1202 0, 0, 0, 0, 0);
1203 goto bad;
1204 }
1205 }
1206
1207 error = 0;
1208
1209 /* check policy */
1210 switch (sp->policy) {
1211 case IPSEC_POLICY_DISCARD:
1212 case IPSEC_POLICY_GENERATE:
1213 /*
1214 * This packet is just discarded.
1215 */
1216 IPSEC_STAT_INCREMENT(ipsecstat.out_polvio);
1217 KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT | DBG_FUNC_END,
1218 1, 0, 0, 0, 0);
1219 goto bad;
1220
1221 case IPSEC_POLICY_BYPASS:
1222 case IPSEC_POLICY_NONE:
1223 /* no need to do IPsec. */
1224 KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT | DBG_FUNC_END,
1225 2, 0, 0, 0, 0);
1226 goto skip_ipsec;
1227
1228 case IPSEC_POLICY_IPSEC:
1229 if (sp->req == NULL) {
1230 /* acquire a policy */
1231 error = key_spdacquire(sp);
1232 KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT | DBG_FUNC_END,
1233 3, 0, 0, 0, 0);
1234 goto bad;
1235 }
1236 if (sp->ipsec_if) {
1237 /* Verify the redirect to ipsec interface */
1238 if (sp->ipsec_if == ifp) {
1239 /* Set policy for mbuf */
1240 m->m_pkthdr.ipsec_policy = sp->id;
1241 goto skip_ipsec;
1242 }
1243 goto bad;
1244 }
1245 break;
1246
1247 case IPSEC_POLICY_ENTRUST:
1248 default:
1249 printf("ip_output: Invalid policy found. %d\n", sp->policy);
1250 }
1251 {
1252 ipsec_state.m = m;
1253 if (flags & IP_ROUTETOIF) {
1254 bzero(&ipsec_state.ro, sizeof (ipsec_state.ro));
1255 } else {
1256 route_copyout(&ipsec_state.ro, ro, sizeof (ipsec_state.ro));
1257 }
1258 ipsec_state.dst = SA(dst);
1259
1260 ip->ip_sum = 0;
1261
1262 /*
1263 * XXX
1264 * delayed checksums are not currently compatible with IPsec
1265 */
1266 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA)
1267 in_delayed_cksum(m);
1268
1269 #if BYTE_ORDER != BIG_ENDIAN
1270 HTONS(ip->ip_len);
1271 HTONS(ip->ip_off);
1272 #endif
1273
1274 DTRACE_IP6(send, struct mbuf *, m, struct inpcb *, NULL,
1275 struct ip *, ip, struct ifnet *, ifp,
1276 struct ip *, ip, struct ip6_hdr *, NULL);
1277
1278 error = ipsec4_output(&ipsec_state, sp, flags);
1279
1280 m0 = m = ipsec_state.m;
1281
1282 #if DUMMYNET
1283 /*
1284 * If we're about to use the route in ipsec_state
1285 * and this came from dummynet, cleaup now.
1286 */
1287 if (ro == &saved_route &&
1288 (!(flags & IP_ROUTETOIF) || ipsec_state.tunneled))
1289 ROUTE_RELEASE(ro);
1290 #endif /* DUMMYNET */
1291
1292 if (flags & IP_ROUTETOIF) {
1293 /*
1294 * if we have tunnel mode SA, we may need to ignore
1295 * IP_ROUTETOIF.
1296 */
1297 if (ipsec_state.tunneled) {
1298 flags &= ~IP_ROUTETOIF;
1299 ro = &ipsec_state.ro;
1300 }
1301 } else {
1302 ro = &ipsec_state.ro;
1303 }
1304 dst = SIN(ipsec_state.dst);
1305 if (error) {
1306 /* mbuf is already reclaimed in ipsec4_output. */
1307 m0 = NULL;
1308 switch (error) {
1309 case EHOSTUNREACH:
1310 case ENETUNREACH:
1311 case EMSGSIZE:
1312 case ENOBUFS:
1313 case ENOMEM:
1314 break;
1315 default:
1316 printf("ip4_output (ipsec): error code %d\n", error);
1317 /* FALLTHRU */
1318 case ENOENT:
1319 /* don't show these error codes to the user */
1320 error = 0;
1321 break;
1322 }
1323 KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT | DBG_FUNC_END,
1324 4, 0, 0, 0, 0);
1325 goto bad;
1326 }
1327 }
1328
1329 /* be sure to update variables that are affected by ipsec4_output() */
1330 ip = mtod(m, struct ip *);
1331
1332 #ifdef _IP_VHL
1333 hlen = IP_VHL_HL(ip->ip_vhl) << 2;
1334 #else /* !_IP_VHL */
1335 hlen = ip->ip_hl << 2;
1336 #endif /* !_IP_VHL */
1337 /* Check that there wasn't a route change and src is still valid */
1338 if (ROUTE_UNUSABLE(ro)) {
1339 ROUTE_RELEASE(ro);
1340 VERIFY(src_ia == NULL);
1341 if (ip->ip_src.s_addr != INADDR_ANY &&
1342 !(flags & (IP_ROUTETOIF | IP_FORWARDING)) &&
1343 (src_ia = ifa_foraddr(ip->ip_src.s_addr)) == NULL) {
1344 error = EADDRNOTAVAIL;
1345 KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT | DBG_FUNC_END,
1346 5, 0, 0, 0, 0);
1347 goto bad;
1348 }
1349 if (src_ia != NULL) {
1350 IFA_REMREF(&src_ia->ia_ifa);
1351 src_ia = NULL;
1352 }
1353 }
1354
1355 if (ro->ro_rt == NULL) {
1356 if (!(flags & IP_ROUTETOIF)) {
1357 printf("%s: can't update route after "
1358 "IPsec processing\n", __func__);
1359 error = EHOSTUNREACH; /* XXX */
1360 KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT | DBG_FUNC_END,
1361 6, 0, 0, 0, 0);
1362 goto bad;
1363 }
1364 } else {
1365 if (ia != NULL)
1366 IFA_REMREF(&ia->ia_ifa);
1367 RT_LOCK_SPIN(ro->ro_rt);
1368 ia = ifatoia(ro->ro_rt->rt_ifa);
1369 if (ia != NULL) {
1370 /* Become a regular mutex */
1371 RT_CONVERT_LOCK(ro->ro_rt);
1372 IFA_ADDREF(&ia->ia_ifa);
1373 }
1374 ifp = ro->ro_rt->rt_ifp;
1375 RT_UNLOCK(ro->ro_rt);
1376 }
1377
1378 /* make it flipped, again. */
1379 #if BYTE_ORDER != BIG_ENDIAN
1380 NTOHS(ip->ip_len);
1381 NTOHS(ip->ip_off);
1382 #endif
1383 KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT | DBG_FUNC_END,
1384 7, 0xff, 0xff, 0xff, 0xff);
1385
1386 /* Pass to filters again */
1387 if (!TAILQ_EMPTY(&ipv4_filters)) {
1388 struct ipfilter *filter;
1389
1390 ipf_pktopts.ippo_flags &= ~IPPOF_MCAST_OPTS;
1391
1392 /*
1393 * Check that a TSO frame isn't passed to a filter.
1394 * This could happen if a filter is inserted while
1395 * TCP is sending the TSO packet.
1396 */
1397 if (m->m_pkthdr.csum_flags & CSUM_TSO_IPV4) {
1398 error = EMSGSIZE;
1399 goto bad;
1400 }
1401
1402 ipf_ref();
1403
1404 /* 4135317 - always pass network byte order to filter */
1405 #if BYTE_ORDER != BIG_ENDIAN
1406 HTONS(ip->ip_len);
1407 HTONS(ip->ip_off);
1408 #endif
1409 TAILQ_FOREACH(filter, &ipv4_filters, ipf_link) {
1410 if (filter->ipf_filter.ipf_output) {
1411 errno_t result;
1412 result = filter->ipf_filter.
1413 ipf_output(filter->ipf_filter.cookie,
1414 (mbuf_t *)&m, ippo);
1415 if (result == EJUSTRETURN) {
1416 ipf_unref();
1417 goto done;
1418 }
1419 if (result != 0) {
1420 ipf_unref();
1421 goto bad;
1422 }
1423 }
1424 }
1425 /* set back to host byte order */
1426 ip = mtod(m, struct ip *);
1427 #if BYTE_ORDER != BIG_ENDIAN
1428 NTOHS(ip->ip_len);
1429 NTOHS(ip->ip_off);
1430 #endif
1431 ipf_unref();
1432 }
1433 skip_ipsec:
1434 #endif /* IPSEC */
1435
1436 #if IPFIREWALL
1437 /*
1438 * Check with the firewall...
1439 * but not if we are already being fwd'd from a firewall.
1440 */
1441 if (fw_enable && IPFW_LOADED && !args.fwa_next_hop) {
1442 struct sockaddr_in *old = dst;
1443
1444 args.fwa_m = m;
1445 args.fwa_next_hop = dst;
1446 args.fwa_oif = ifp;
1447 ipfwoff = ip_fw_chk_ptr(&args);
1448 m = args.fwa_m;
1449 dst = args.fwa_next_hop;
1450
1451 /*
1452 * On return we must do the following:
1453 * IP_FW_PORT_DENY_FLAG -> drop the pkt (XXX new)
1454 * 1<=off<= 0xffff -> DIVERT
1455 * (off & IP_FW_PORT_DYNT_FLAG) -> send to a DUMMYNET pipe
1456 * (off & IP_FW_PORT_TEE_FLAG) -> TEE the packet
1457 * dst != old -> IPFIREWALL_FORWARD
1458 * off==0, dst==old -> accept
1459 * If some of the above modules is not compiled in, then
1460 * we should't have to check the corresponding condition
1461 * (because the ipfw control socket should not accept
1462 * unsupported rules), but better play safe and drop
1463 * packets in case of doubt.
1464 */
1465 m0 = m;
1466 if ((ipfwoff & IP_FW_PORT_DENY_FLAG) || m == NULL) {
1467 if (m)
1468 m_freem(m);
1469 error = EACCES;
1470 goto done;
1471 }
1472 ip = mtod(m, struct ip *);
1473
1474 if (ipfwoff == 0 && dst == old) { /* common case */
1475 goto pass;
1476 }
1477 #if DUMMYNET
1478 if (DUMMYNET_LOADED && (ipfwoff & IP_FW_PORT_DYNT_FLAG) != 0) {
1479 /*
1480 * pass the pkt to dummynet. Need to include
1481 * pipe number, m, ifp, ro, dst because these are
1482 * not recomputed in the next pass.
1483 * All other parameters have been already used and
1484 * so they are not needed anymore.
1485 * XXX note: if the ifp or ro entry are deleted
1486 * while a pkt is in dummynet, we are in trouble!
1487 */
1488 args.fwa_ro = ro;
1489 args.fwa_dst = dst;
1490 args.fwa_oflags = flags;
1491 if (flags & IP_OUTARGS)
1492 args.fwa_ipoa = ipoa;
1493
1494 error = ip_dn_io_ptr(m, ipfwoff & 0xffff, DN_TO_IP_OUT,
1495 &args, DN_CLIENT_IPFW);
1496 goto done;
1497 }
1498 #endif /* DUMMYNET */
1499 #if IPDIVERT
1500 if (ipfwoff != 0 && (ipfwoff & IP_FW_PORT_DYNT_FLAG) == 0) {
1501 struct mbuf *clone = NULL;
1502
1503 /* Clone packet if we're doing a 'tee' */
1504 if ((ipfwoff & IP_FW_PORT_TEE_FLAG) != 0)
1505 clone = m_dup(m, M_DONTWAIT);
1506 /*
1507 * XXX
1508 * delayed checksums are not currently compatible
1509 * with divert sockets.
1510 */
1511 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA)
1512 in_delayed_cksum(m);
1513
1514 /* Restore packet header fields to original values */
1515
1516 #if BYTE_ORDER != BIG_ENDIAN
1517 HTONS(ip->ip_len);
1518 HTONS(ip->ip_off);
1519 #endif
1520
1521 /* Deliver packet to divert input routine */
1522 divert_packet(m, 0, ipfwoff & 0xffff,
1523 args.fwa_divert_rule);
1524
1525 /* If 'tee', continue with original packet */
1526 if (clone != NULL) {
1527 m0 = m = clone;
1528 ip = mtod(m, struct ip *);
1529 goto pass;
1530 }
1531 goto done;
1532 }
1533 #endif /* IPDIVERT */
1534 #if IPFIREWALL_FORWARD
1535 /*
1536 * Here we check dst to make sure it's directly reachable on
1537 * the interface we previously thought it was.
1538 * If it isn't (which may be likely in some situations) we have
1539 * to re-route it (ie, find a route for the next-hop and the
1540 * associated interface) and set them here. This is nested
1541 * forwarding which in most cases is undesirable, except where
1542 * such control is nigh impossible. So we do it here.
1543 * And I'm babbling.
1544 */
1545 if (ipfwoff == 0 && old != dst) {
1546 struct in_ifaddr *ia_fw;
1547 struct route *ro_fwd = &sro_fwd;
1548
1549 #if IPFIREWALL_FORWARD_DEBUG
1550 printf("IPFIREWALL_FORWARD: New dst ip: ");
1551 print_ip(dst->sin_addr);
1552 printf("\n");
1553 #endif /* IPFIREWALL_FORWARD_DEBUG */
1554 /*
1555 * We need to figure out if we have been forwarded
1556 * to a local socket. If so then we should somehow
1557 * "loop back" to ip_input, and get directed to the
1558 * PCB as if we had received this packet. This is
1559 * because it may be dificult to identify the packets
1560 * you want to forward until they are being output
1561 * and have selected an interface. (e.g. locally
1562 * initiated packets) If we used the loopback inteface,
1563 * we would not be able to control what happens
1564 * as the packet runs through ip_input() as
1565 * it is done through a ISR.
1566 */
1567 lck_rw_lock_shared(in_ifaddr_rwlock);
1568 TAILQ_FOREACH(ia_fw, &in_ifaddrhead, ia_link) {
1569 /*
1570 * If the addr to forward to is one
1571 * of ours, we pretend to
1572 * be the destination for this packet.
1573 */
1574 IFA_LOCK_SPIN(&ia_fw->ia_ifa);
1575 if (IA_SIN(ia_fw)->sin_addr.s_addr ==
1576 dst->sin_addr.s_addr) {
1577 IFA_UNLOCK(&ia_fw->ia_ifa);
1578 break;
1579 }
1580 IFA_UNLOCK(&ia_fw->ia_ifa);
1581 }
1582 lck_rw_done(in_ifaddr_rwlock);
1583 if (ia_fw) {
1584 /* tell ip_input "dont filter" */
1585 struct m_tag *fwd_tag;
1586 struct ip_fwd_tag *ipfwd_tag;
1587
1588 fwd_tag = m_tag_create(KERNEL_MODULE_TAG_ID,
1589 KERNEL_TAG_TYPE_IPFORWARD,
1590 sizeof (*ipfwd_tag), M_NOWAIT, m);
1591 if (fwd_tag == NULL) {
1592 error = ENOBUFS;
1593 goto bad;
1594 }
1595
1596 ipfwd_tag = (struct ip_fwd_tag *)(fwd_tag+1);
1597 ipfwd_tag->next_hop = args.fwa_next_hop;
1598
1599 m_tag_prepend(m, fwd_tag);
1600
1601 if (m->m_pkthdr.rcvif == NULL)
1602 m->m_pkthdr.rcvif = lo_ifp;
1603
1604 #if BYTE_ORDER != BIG_ENDIAN
1605 HTONS(ip->ip_len);
1606 HTONS(ip->ip_off);
1607 #endif
1608 mbuf_outbound_finalize(m, PF_INET, 0);
1609
1610 /*
1611 * we need to call dlil_output to run filters
1612 * and resync to avoid recursion loops.
1613 */
1614 if (lo_ifp) {
1615 dlil_output(lo_ifp, PF_INET, m, NULL,
1616 SA(dst), 0, adv);
1617 } else {
1618 printf("%s: no loopback ifp for "
1619 "forwarding!!!\n", __func__);
1620 }
1621 goto done;
1622 }
1623 /*
1624 * Some of the logic for this was nicked from above.
1625 *
1626 * This rewrites the cached route in a local PCB.
1627 * Is this what we want to do?
1628 */
1629 ROUTE_RELEASE(ro_fwd);
1630 bcopy(dst, &ro_fwd->ro_dst, sizeof (*dst));
1631
1632 rtalloc_ign(ro_fwd, RTF_PRCLONING);
1633
1634 if (ro_fwd->ro_rt == NULL) {
1635 OSAddAtomic(1, &ipstat.ips_noroute);
1636 error = EHOSTUNREACH;
1637 goto bad;
1638 }
1639
1640 RT_LOCK_SPIN(ro_fwd->ro_rt);
1641 ia_fw = ifatoia(ro_fwd->ro_rt->rt_ifa);
1642 if (ia_fw != NULL) {
1643 /* Become a regular mutex */
1644 RT_CONVERT_LOCK(ro_fwd->ro_rt);
1645 IFA_ADDREF(&ia_fw->ia_ifa);
1646 }
1647 ifp = ro_fwd->ro_rt->rt_ifp;
1648 ro_fwd->ro_rt->rt_use++;
1649 if (ro_fwd->ro_rt->rt_flags & RTF_GATEWAY)
1650 dst = SIN(ro_fwd->ro_rt->rt_gateway);
1651 if (ro_fwd->ro_rt->rt_flags & RTF_HOST) {
1652 /* double negation needed for bool bit field */
1653 ipobf.isbroadcast =
1654 !!(ro_fwd->ro_rt->rt_flags & RTF_BROADCAST);
1655 } else {
1656 /* Become a regular mutex */
1657 RT_CONVERT_LOCK(ro_fwd->ro_rt);
1658 ipobf.isbroadcast =
1659 in_broadcast(dst->sin_addr, ifp);
1660 }
1661 RT_UNLOCK(ro_fwd->ro_rt);
1662 ROUTE_RELEASE(ro);
1663 ro->ro_rt = ro_fwd->ro_rt;
1664 ro_fwd->ro_rt = NULL;
1665 dst = SIN(&ro_fwd->ro_dst);
1666
1667 /*
1668 * If we added a default src ip earlier,
1669 * which would have been gotten from the-then
1670 * interface, do it again, from the new one.
1671 */
1672 if (ia_fw != NULL) {
1673 if (ipobf.fwd_rewrite_src) {
1674 IFA_LOCK_SPIN(&ia_fw->ia_ifa);
1675 ip->ip_src = IA_SIN(ia_fw)->sin_addr;
1676 IFA_UNLOCK(&ia_fw->ia_ifa);
1677 }
1678 IFA_REMREF(&ia_fw->ia_ifa);
1679 }
1680 goto pass;
1681 }
1682 #endif /* IPFIREWALL_FORWARD */
1683 /*
1684 * if we get here, none of the above matches, and
1685 * we have to drop the pkt
1686 */
1687 m_freem(m);
1688 error = EACCES; /* not sure this is the right error msg */
1689 goto done;
1690 }
1691
1692 pass:
1693 #endif /* IPFIREWALL */
1694
1695 /* 127/8 must not appear on wire - RFC1122 */
1696 if (!(ifp->if_flags & IFF_LOOPBACK) &&
1697 ((ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
1698 (ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET)) {
1699 OSAddAtomic(1, &ipstat.ips_badaddr);
1700 m_freem(m);
1701 error = EADDRNOTAVAIL;
1702 goto done;
1703 }
1704
1705 ip_output_checksum(ifp, m, (IP_VHL_HL(ip->ip_vhl) << 2),
1706 ip->ip_len, &sw_csum);
1707
1708 /*
1709 * If small enough for interface, or the interface will take
1710 * care of the fragmentation for us, can just send directly.
1711 */
1712 if ((u_short)ip->ip_len <= ifp->if_mtu || TSO_IPV4_OK(ifp, m) ||
1713 (!(ip->ip_off & IP_DF) && (ifp->if_hwassist & CSUM_FRAGMENT))) {
1714 #if BYTE_ORDER != BIG_ENDIAN
1715 HTONS(ip->ip_len);
1716 HTONS(ip->ip_off);
1717 #endif
1718
1719 ip->ip_sum = 0;
1720 if (sw_csum & CSUM_DELAY_IP) {
1721 ip->ip_sum = ip_cksum_hdr_out(m, hlen);
1722 sw_csum &= ~CSUM_DELAY_IP;
1723 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_IP;
1724 }
1725
1726 #if IPSEC
1727 /* clean ipsec history once it goes out of the node */
1728 if (ipsec_bypass == 0 && !(flags & IP_NOIPSEC))
1729 ipsec_delaux(m);
1730 #endif /* IPSEC */
1731 if ((m->m_pkthdr.csum_flags & CSUM_TSO_IPV4) &&
1732 (m->m_pkthdr.tso_segsz > 0))
1733 scnt += m->m_pkthdr.len / m->m_pkthdr.tso_segsz;
1734 else
1735 scnt++;
1736
1737 if (packetchain == 0) {
1738 if (ro->ro_rt != NULL && nstat_collect)
1739 nstat_route_tx(ro->ro_rt, scnt,
1740 m->m_pkthdr.len, 0);
1741
1742 error = dlil_output(ifp, PF_INET, m, ro->ro_rt,
1743 SA(dst), 0, adv);
1744 scnt = 0;
1745 goto done;
1746 } else {
1747 /*
1748 * packet chaining allows us to reuse the
1749 * route for all packets
1750 */
1751 bytecnt += m->m_pkthdr.len;
1752 mppn = &m->m_nextpkt;
1753 m = m->m_nextpkt;
1754 if (m == NULL) {
1755 #if PF
1756 sendchain:
1757 #endif /* PF */
1758 if (pktcnt > ip_maxchainsent)
1759 ip_maxchainsent = pktcnt;
1760 if (ro->ro_rt != NULL && nstat_collect)
1761 nstat_route_tx(ro->ro_rt, scnt,
1762 bytecnt, 0);
1763
1764 error = dlil_output(ifp, PF_INET, packetlist,
1765 ro->ro_rt, SA(dst), 0, adv);
1766 pktcnt = 0;
1767 scnt = 0;
1768 bytecnt = 0;
1769 goto done;
1770
1771 }
1772 m0 = m;
1773 pktcnt++;
1774 goto loopit;
1775 }
1776 }
1777 /*
1778 * Too large for interface; fragment if possible.
1779 * Must be able to put at least 8 bytes per fragment.
1780 * Balk when DF bit is set or the interface didn't support TSO.
1781 */
1782 if ((ip->ip_off & IP_DF) || pktcnt > 0 ||
1783 (m->m_pkthdr.csum_flags & CSUM_TSO_IPV4)) {
1784 error = EMSGSIZE;
1785 /*
1786 * This case can happen if the user changed the MTU
1787 * of an interface after enabling IP on it. Because
1788 * most netifs don't keep track of routes pointing to
1789 * them, there is no way for one to update all its
1790 * routes when the MTU is changed.
1791 */
1792 if (ro->ro_rt) {
1793 RT_LOCK_SPIN(ro->ro_rt);
1794 if ((ro->ro_rt->rt_flags & (RTF_UP | RTF_HOST)) &&
1795 !(ro->ro_rt->rt_rmx.rmx_locks & RTV_MTU) &&
1796 (ro->ro_rt->rt_rmx.rmx_mtu > ifp->if_mtu)) {
1797 ro->ro_rt->rt_rmx.rmx_mtu = ifp->if_mtu;
1798 }
1799 RT_UNLOCK(ro->ro_rt);
1800 }
1801 if (pktcnt > 0) {
1802 m0 = packetlist;
1803 }
1804 OSAddAtomic(1, &ipstat.ips_cantfrag);
1805 goto bad;
1806 }
1807
1808 error = ip_fragment(m, ifp, ifp->if_mtu, sw_csum);
1809 if (error != 0) {
1810 m0 = m = NULL;
1811 goto bad;
1812 }
1813
1814 KERNEL_DEBUG(DBG_LAYER_END, ip->ip_dst.s_addr,
1815 ip->ip_src.s_addr, ip->ip_p, ip->ip_off, ip->ip_len);
1816
1817 for (m = m0; m; m = m0) {
1818 m0 = m->m_nextpkt;
1819 m->m_nextpkt = 0;
1820 #if IPSEC
1821 /* clean ipsec history once it goes out of the node */
1822 if (ipsec_bypass == 0 && !(flags & IP_NOIPSEC))
1823 ipsec_delaux(m);
1824 #endif /* IPSEC */
1825 if (error == 0) {
1826 if ((packetchain != 0) && (pktcnt > 0)) {
1827 panic("%s: mix of packet in packetlist is "
1828 "wrong=%p", __func__, packetlist);
1829 /* NOTREACHED */
1830 }
1831 if (ro->ro_rt != NULL && nstat_collect) {
1832 nstat_route_tx(ro->ro_rt, 1,
1833 m->m_pkthdr.len, 0);
1834 }
1835 error = dlil_output(ifp, PF_INET, m, ro->ro_rt,
1836 SA(dst), 0, adv);
1837 } else {
1838 m_freem(m);
1839 }
1840 }
1841
1842 if (error == 0)
1843 OSAddAtomic(1, &ipstat.ips_fragmented);
1844
1845 done:
1846 if (ia != NULL) {
1847 IFA_REMREF(&ia->ia_ifa);
1848 ia = NULL;
1849 }
1850 #if IPSEC
1851 ROUTE_RELEASE(&ipsec_state.ro);
1852 if (sp != NULL) {
1853 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1854 printf("DP ip_output call free SP:%x\n", sp));
1855 key_freesp(sp, KEY_SADB_UNLOCKED);
1856 }
1857 #endif /* IPSEC */
1858 #if DUMMYNET
1859 ROUTE_RELEASE(&saved_route);
1860 #endif /* DUMMYNET */
1861 #if IPFIREWALL_FORWARD
1862 ROUTE_RELEASE(&sro_fwd);
1863 #endif /* IPFIREWALL_FORWARD */
1864
1865 KERNEL_DEBUG(DBG_FNC_IP_OUTPUT | DBG_FUNC_END, error, 0, 0, 0, 0);
1866 return (error);
1867 bad:
1868 m_freem(m0);
1869 goto done;
1870
1871 #undef ipsec_state
1872 #undef args
1873 #undef sro_fwd
1874 #undef saved_route
1875 #undef ipf_pktopts
1876 }
1877
1878 int
1879 ip_fragment(struct mbuf *m, struct ifnet *ifp, unsigned long mtu, int sw_csum)
1880 {
1881 struct ip *ip, *mhip;
1882 int len, hlen, mhlen, firstlen, off, error = 0;
1883 struct mbuf **mnext = &m->m_nextpkt, *m0;
1884 int nfrags = 1;
1885
1886 ip = mtod(m, struct ip *);
1887 #ifdef _IP_VHL
1888 hlen = IP_VHL_HL(ip->ip_vhl) << 2;
1889 #else /* !_IP_VHL */
1890 hlen = ip->ip_hl << 2;
1891 #endif /* !_IP_VHL */
1892
1893 firstlen = len = (mtu - hlen) &~ 7;
1894 if (len < 8) {
1895 m_freem(m);
1896 return (EMSGSIZE);
1897 }
1898
1899 /*
1900 * if the interface will not calculate checksums on
1901 * fragmented packets, then do it here.
1902 */
1903 if ((m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) &&
1904 !(ifp->if_hwassist & CSUM_IP_FRAGS))
1905 in_delayed_cksum(m);
1906
1907 /*
1908 * Loop through length of segment after first fragment,
1909 * make new header and copy data of each part and link onto chain.
1910 */
1911 m0 = m;
1912 mhlen = sizeof (struct ip);
1913 for (off = hlen + len; off < (u_short)ip->ip_len; off += len) {
1914 MGETHDR(m, M_DONTWAIT, MT_HEADER); /* MAC-OK */
1915 if (m == NULL) {
1916 error = ENOBUFS;
1917 OSAddAtomic(1, &ipstat.ips_odropped);
1918 goto sendorfree;
1919 }
1920 m->m_flags |= (m0->m_flags & M_MCAST) | M_FRAG;
1921 m->m_data += max_linkhdr;
1922 mhip = mtod(m, struct ip *);
1923 *mhip = *ip;
1924 if (hlen > sizeof (struct ip)) {
1925 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
1926 mhip->ip_vhl = IP_MAKE_VHL(IPVERSION, mhlen >> 2);
1927 }
1928 m->m_len = mhlen;
1929 mhip->ip_off = ((off - hlen) >> 3) + (ip->ip_off & ~IP_MF);
1930 if (ip->ip_off & IP_MF)
1931 mhip->ip_off |= IP_MF;
1932 if (off + len >= (u_short)ip->ip_len)
1933 len = (u_short)ip->ip_len - off;
1934 else
1935 mhip->ip_off |= IP_MF;
1936 mhip->ip_len = htons((u_short)(len + mhlen));
1937 m->m_next = m_copy(m0, off, len);
1938 if (m->m_next == NULL) {
1939 (void) m_free(m);
1940 error = ENOBUFS; /* ??? */
1941 OSAddAtomic(1, &ipstat.ips_odropped);
1942 goto sendorfree;
1943 }
1944 m->m_pkthdr.len = mhlen + len;
1945 m->m_pkthdr.rcvif = NULL;
1946 m->m_pkthdr.csum_flags = m0->m_pkthdr.csum_flags;
1947
1948 M_COPY_CLASSIFIER(m, m0);
1949 M_COPY_PFTAG(m, m0);
1950
1951 #if CONFIG_MACF_NET
1952 mac_netinet_fragment(m0, m);
1953 #endif /* CONFIG_MACF_NET */
1954
1955 #if BYTE_ORDER != BIG_ENDIAN
1956 HTONS(mhip->ip_off);
1957 #endif
1958
1959 mhip->ip_sum = 0;
1960 if (sw_csum & CSUM_DELAY_IP) {
1961 mhip->ip_sum = ip_cksum_hdr_out(m, mhlen);
1962 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_IP;
1963 }
1964 *mnext = m;
1965 mnext = &m->m_nextpkt;
1966 nfrags++;
1967 }
1968 OSAddAtomic(nfrags, &ipstat.ips_ofragments);
1969
1970 /* set first/last markers for fragment chain */
1971 m->m_flags |= M_LASTFRAG;
1972 m0->m_flags |= M_FIRSTFRAG | M_FRAG;
1973 m0->m_pkthdr.csum_data = nfrags;
1974
1975 /*
1976 * Update first fragment by trimming what's been copied out
1977 * and updating header, then send each fragment (in order).
1978 */
1979 m = m0;
1980 m_adj(m, hlen + firstlen - (u_short)ip->ip_len);
1981 m->m_pkthdr.len = hlen + firstlen;
1982 ip->ip_len = htons((u_short)m->m_pkthdr.len);
1983 ip->ip_off |= IP_MF;
1984
1985 #if BYTE_ORDER != BIG_ENDIAN
1986 HTONS(ip->ip_off);
1987 #endif
1988
1989 ip->ip_sum = 0;
1990 if (sw_csum & CSUM_DELAY_IP) {
1991 ip->ip_sum = ip_cksum_hdr_out(m, hlen);
1992 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_IP;
1993 }
1994 sendorfree:
1995 if (error)
1996 m_freem_list(m0);
1997
1998 return (error);
1999 }
2000
2001 static void
2002 ip_out_cksum_stats(int proto, u_int32_t len)
2003 {
2004 switch (proto) {
2005 case IPPROTO_TCP:
2006 tcp_out_cksum_stats(len);
2007 break;
2008 case IPPROTO_UDP:
2009 udp_out_cksum_stats(len);
2010 break;
2011 default:
2012 /* keep only TCP or UDP stats for now */
2013 break;
2014 }
2015 }
2016
2017 /*
2018 * Process a delayed payload checksum calculation (outbound path.)
2019 *
2020 * hoff is the number of bytes beyond the mbuf data pointer which
2021 * points to the IP header.
2022 *
2023 * Returns a bitmask representing all the work done in software.
2024 */
2025 uint32_t
2026 in_finalize_cksum(struct mbuf *m, uint32_t hoff, uint32_t csum_flags)
2027 {
2028 unsigned char buf[15 << 2] __attribute__((aligned(8)));
2029 struct ip *ip;
2030 uint32_t offset, _hlen, mlen, hlen, len, sw_csum;
2031 uint16_t csum, ip_len;
2032
2033 _CASSERT(sizeof (csum) == sizeof (uint16_t));
2034 VERIFY(m->m_flags & M_PKTHDR);
2035
2036 sw_csum = (csum_flags & m->m_pkthdr.csum_flags);
2037
2038 if ((sw_csum &= (CSUM_DELAY_IP | CSUM_DELAY_DATA)) == 0)
2039 goto done;
2040
2041 mlen = m->m_pkthdr.len; /* total mbuf len */
2042
2043 /* sanity check (need at least simple IP header) */
2044 if (mlen < (hoff + sizeof (*ip))) {
2045 panic("%s: mbuf %p pkt len (%u) < hoff+ip_hdr "
2046 "(%u+%u)\n", __func__, m, mlen, hoff,
2047 (uint32_t)sizeof (*ip));
2048 /* NOTREACHED */
2049 }
2050
2051 /*
2052 * In case the IP header is not contiguous, or not 32-bit aligned,
2053 * or if we're computing the IP header checksum, copy it to a local
2054 * buffer. Copy only the simple IP header here (IP options case
2055 * is handled below.)
2056 */
2057 if ((sw_csum & CSUM_DELAY_IP) || (hoff + sizeof (*ip)) > m->m_len ||
2058 !IP_HDR_ALIGNED_P(mtod(m, caddr_t) + hoff)) {
2059 m_copydata(m, hoff, sizeof (*ip), (caddr_t)buf);
2060 ip = (struct ip *)(void *)buf;
2061 _hlen = sizeof (*ip);
2062 } else {
2063 ip = (struct ip *)(void *)(m->m_data + hoff);
2064 _hlen = 0;
2065 }
2066
2067 hlen = IP_VHL_HL(ip->ip_vhl) << 2; /* IP header len */
2068
2069 /* sanity check */
2070 if (mlen < (hoff + hlen)) {
2071 panic("%s: mbuf %p pkt too short (%d) for IP header (%u), "
2072 "hoff %u", __func__, m, mlen, hlen, hoff);
2073 /* NOTREACHED */
2074 }
2075
2076 /*
2077 * We could be in the context of an IP or interface filter; in the
2078 * former case, ip_len would be in host (correct) order while for
2079 * the latter it would be in network order. Because of this, we
2080 * attempt to interpret the length field by comparing it against
2081 * the actual packet length. If the comparison fails, byte swap
2082 * the length and check again. If it still fails, use the actual
2083 * packet length. This also covers the trailing bytes case.
2084 */
2085 ip_len = ip->ip_len;
2086 if (ip_len != (mlen - hoff)) {
2087 ip_len = OSSwapInt16(ip_len);
2088 if (ip_len != (mlen - hoff)) {
2089 printf("%s: mbuf 0x%llx proto %d IP len %d (%x) "
2090 "[swapped %d (%x)] doesn't match actual packet "
2091 "length; %d is used instead\n", __func__,
2092 (uint64_t)VM_KERNEL_ADDRPERM(m), ip->ip_p,
2093 ip->ip_len, ip->ip_len, ip_len, ip_len,
2094 (mlen - hoff));
2095 ip_len = mlen - hoff;
2096 }
2097 }
2098
2099 len = ip_len - hlen; /* csum span */
2100
2101 if (sw_csum & CSUM_DELAY_DATA) {
2102 uint16_t ulpoff;
2103
2104 /*
2105 * offset is added to the lower 16-bit value of csum_data,
2106 * which is expected to contain the ULP offset; therefore
2107 * CSUM_PARTIAL offset adjustment must be undone.
2108 */
2109 if ((m->m_pkthdr.csum_flags & (CSUM_PARTIAL|CSUM_DATA_VALID)) ==
2110 (CSUM_PARTIAL|CSUM_DATA_VALID)) {
2111 /*
2112 * Get back the original ULP offset (this will
2113 * undo the CSUM_PARTIAL logic in ip_output.)
2114 */
2115 m->m_pkthdr.csum_data = (m->m_pkthdr.csum_tx_stuff -
2116 m->m_pkthdr.csum_tx_start);
2117 }
2118
2119 ulpoff = (m->m_pkthdr.csum_data & 0xffff); /* ULP csum offset */
2120 offset = hoff + hlen; /* ULP header */
2121
2122 if (mlen < (ulpoff + sizeof (csum))) {
2123 panic("%s: mbuf %p pkt len (%u) proto %d invalid ULP "
2124 "cksum offset (%u) cksum flags 0x%x\n", __func__,
2125 m, mlen, ip->ip_p, ulpoff, m->m_pkthdr.csum_flags);
2126 /* NOTREACHED */
2127 }
2128
2129 csum = inet_cksum(m, 0, offset, len);
2130
2131 /* Update stats */
2132 ip_out_cksum_stats(ip->ip_p, len);
2133
2134 /* RFC1122 4.1.3.4 */
2135 if (csum == 0 && (m->m_pkthdr.csum_flags & CSUM_UDP))
2136 csum = 0xffff;
2137
2138 /* Insert the checksum in the ULP csum field */
2139 offset += ulpoff;
2140 if (offset + sizeof (csum) > m->m_len) {
2141 m_copyback(m, offset, sizeof (csum), &csum);
2142 } else if (IP_HDR_ALIGNED_P(mtod(m, char *) + hoff)) {
2143 *(uint16_t *)(void *)(mtod(m, char *) + offset) = csum;
2144 } else {
2145 bcopy(&csum, (mtod(m, char *) + offset), sizeof (csum));
2146 }
2147 m->m_pkthdr.csum_flags &=
2148 ~(CSUM_DELAY_DATA | CSUM_DATA_VALID | CSUM_PARTIAL);
2149 }
2150
2151 if (sw_csum & CSUM_DELAY_IP) {
2152 /* IP header must be in the local buffer */
2153 VERIFY(_hlen == sizeof (*ip));
2154 if (_hlen != hlen) {
2155 VERIFY(hlen <= sizeof (buf));
2156 m_copydata(m, hoff, hlen, (caddr_t)buf);
2157 ip = (struct ip *)(void *)buf;
2158 _hlen = hlen;
2159 }
2160
2161 /*
2162 * Compute the IP header checksum as if the IP length
2163 * is the length which we believe is "correct"; see
2164 * how ip_len gets calculated above. Note that this
2165 * is done on the local copy and not on the real one.
2166 */
2167 ip->ip_len = htons(ip_len);
2168 ip->ip_sum = 0;
2169 csum = in_cksum_hdr_opt(ip);
2170
2171 /* Update stats */
2172 ipstat.ips_snd_swcsum++;
2173 ipstat.ips_snd_swcsum_bytes += hlen;
2174
2175 /*
2176 * Insert only the checksum in the existing IP header
2177 * csum field; all other fields are left unchanged.
2178 */
2179 offset = hoff + offsetof(struct ip, ip_sum);
2180 if (offset + sizeof (csum) > m->m_len) {
2181 m_copyback(m, offset, sizeof (csum), &csum);
2182 } else if (IP_HDR_ALIGNED_P(mtod(m, char *) + hoff)) {
2183 *(uint16_t *)(void *)(mtod(m, char *) + offset) = csum;
2184 } else {
2185 bcopy(&csum, (mtod(m, char *) + offset), sizeof (csum));
2186 }
2187 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_IP;
2188 }
2189
2190 done:
2191 return (sw_csum);
2192 }
2193
2194 /*
2195 * Insert IP options into preformed packet.
2196 * Adjust IP destination as required for IP source routing,
2197 * as indicated by a non-zero in_addr at the start of the options.
2198 *
2199 * XXX This routine assumes that the packet has no options in place.
2200 */
2201 static struct mbuf *
2202 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
2203 {
2204 struct ipoption *p = mtod(opt, struct ipoption *);
2205 struct mbuf *n;
2206 struct ip *ip = mtod(m, struct ip *);
2207 unsigned optlen;
2208
2209 optlen = opt->m_len - sizeof (p->ipopt_dst);
2210 if (optlen + (u_short)ip->ip_len > IP_MAXPACKET)
2211 return (m); /* XXX should fail */
2212 if (p->ipopt_dst.s_addr)
2213 ip->ip_dst = p->ipopt_dst;
2214 if (m->m_flags & M_EXT || m->m_data - optlen < m->m_pktdat) {
2215 MGETHDR(n, M_DONTWAIT, MT_HEADER); /* MAC-OK */
2216 if (n == NULL)
2217 return (m);
2218 n->m_pkthdr.rcvif = 0;
2219 #if CONFIG_MACF_NET
2220 mac_mbuf_label_copy(m, n);
2221 #endif /* CONFIG_MACF_NET */
2222 n->m_pkthdr.len = m->m_pkthdr.len + optlen;
2223 m->m_len -= sizeof (struct ip);
2224 m->m_data += sizeof (struct ip);
2225 n->m_next = m;
2226 m = n;
2227 m->m_len = optlen + sizeof (struct ip);
2228 m->m_data += max_linkhdr;
2229 (void) memcpy(mtod(m, void *), ip, sizeof (struct ip));
2230 } else {
2231 m->m_data -= optlen;
2232 m->m_len += optlen;
2233 m->m_pkthdr.len += optlen;
2234 ovbcopy((caddr_t)ip, mtod(m, caddr_t), sizeof (struct ip));
2235 }
2236 ip = mtod(m, struct ip *);
2237 bcopy(p->ipopt_list, ip + 1, optlen);
2238 *phlen = sizeof (struct ip) + optlen;
2239 ip->ip_vhl = IP_MAKE_VHL(IPVERSION, *phlen >> 2);
2240 ip->ip_len += optlen;
2241 return (m);
2242 }
2243
2244 /*
2245 * Copy options from ip to jp,
2246 * omitting those not copied during fragmentation.
2247 */
2248 static int
2249 ip_optcopy(struct ip *ip, struct ip *jp)
2250 {
2251 u_char *cp, *dp;
2252 int opt, optlen, cnt;
2253
2254 cp = (u_char *)(ip + 1);
2255 dp = (u_char *)(jp + 1);
2256 cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof (struct ip);
2257 for (; cnt > 0; cnt -= optlen, cp += optlen) {
2258 opt = cp[0];
2259 if (opt == IPOPT_EOL)
2260 break;
2261 if (opt == IPOPT_NOP) {
2262 /* Preserve for IP mcast tunnel's LSRR alignment. */
2263 *dp++ = IPOPT_NOP;
2264 optlen = 1;
2265 continue;
2266 }
2267 #if DIAGNOSTIC
2268 if (cnt < IPOPT_OLEN + sizeof (*cp)) {
2269 panic("malformed IPv4 option passed to ip_optcopy");
2270 /* NOTREACHED */
2271 }
2272 #endif
2273 optlen = cp[IPOPT_OLEN];
2274 #if DIAGNOSTIC
2275 if (optlen < IPOPT_OLEN + sizeof (*cp) || optlen > cnt) {
2276 panic("malformed IPv4 option passed to ip_optcopy");
2277 /* NOTREACHED */
2278 }
2279 #endif
2280 /* bogus lengths should have been caught by ip_dooptions */
2281 if (optlen > cnt)
2282 optlen = cnt;
2283 if (IPOPT_COPIED(opt)) {
2284 bcopy(cp, dp, optlen);
2285 dp += optlen;
2286 }
2287 }
2288 for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
2289 *dp++ = IPOPT_EOL;
2290 return (optlen);
2291 }
2292
2293 /*
2294 * IP socket option processing.
2295 */
2296 int
2297 ip_ctloutput(struct socket *so, struct sockopt *sopt)
2298 {
2299 struct inpcb *inp = sotoinpcb(so);
2300 int error, optval;
2301
2302 error = optval = 0;
2303 if (sopt->sopt_level != IPPROTO_IP)
2304 return (EINVAL);
2305
2306 switch (sopt->sopt_dir) {
2307 case SOPT_SET:
2308 switch (sopt->sopt_name) {
2309 #ifdef notyet
2310 case IP_RETOPTS:
2311 #endif
2312 case IP_OPTIONS: {
2313 struct mbuf *m;
2314
2315 if (sopt->sopt_valsize > MLEN) {
2316 error = EMSGSIZE;
2317 break;
2318 }
2319 MGET(m, sopt->sopt_p != kernproc ? M_WAIT : M_DONTWAIT,
2320 MT_HEADER);
2321 if (m == NULL) {
2322 error = ENOBUFS;
2323 break;
2324 }
2325 m->m_len = sopt->sopt_valsize;
2326 error = sooptcopyin(sopt, mtod(m, char *),
2327 m->m_len, m->m_len);
2328 if (error)
2329 break;
2330
2331 return (ip_pcbopts(sopt->sopt_name,
2332 &inp->inp_options, m));
2333 }
2334
2335 case IP_TOS:
2336 case IP_TTL:
2337 case IP_RECVOPTS:
2338 case IP_RECVRETOPTS:
2339 case IP_RECVDSTADDR:
2340 case IP_RECVIF:
2341 case IP_RECVTTL:
2342 case IP_RECVPKTINFO:
2343 error = sooptcopyin(sopt, &optval, sizeof (optval),
2344 sizeof (optval));
2345 if (error)
2346 break;
2347
2348 switch (sopt->sopt_name) {
2349 case IP_TOS:
2350 inp->inp_ip_tos = optval;
2351 break;
2352
2353 case IP_TTL:
2354 inp->inp_ip_ttl = optval;
2355 break;
2356 #define OPTSET(bit) \
2357 if (optval) \
2358 inp->inp_flags |= bit; \
2359 else \
2360 inp->inp_flags &= ~bit;
2361
2362 case IP_RECVOPTS:
2363 OPTSET(INP_RECVOPTS);
2364 break;
2365
2366 case IP_RECVRETOPTS:
2367 OPTSET(INP_RECVRETOPTS);
2368 break;
2369
2370 case IP_RECVDSTADDR:
2371 OPTSET(INP_RECVDSTADDR);
2372 break;
2373
2374 case IP_RECVIF:
2375 OPTSET(INP_RECVIF);
2376 break;
2377
2378 case IP_RECVTTL:
2379 OPTSET(INP_RECVTTL);
2380 break;
2381
2382 case IP_RECVPKTINFO:
2383 OPTSET(INP_PKTINFO);
2384 break;
2385 }
2386 break;
2387 #undef OPTSET
2388
2389 #if CONFIG_FORCE_OUT_IFP
2390 /*
2391 * Apple private interface, similar to IP_BOUND_IF, except
2392 * that the parameter is a NULL-terminated string containing
2393 * the name of the network interface; an emptry string means
2394 * unbind. Applications are encouraged to use IP_BOUND_IF
2395 * instead, as that is the current "official" API.
2396 */
2397 case IP_FORCE_OUT_IFP: {
2398 char ifname[IFNAMSIZ];
2399 unsigned int ifscope;
2400
2401 /* This option is settable only for IPv4 */
2402 if (!(inp->inp_vflag & INP_IPV4)) {
2403 error = EINVAL;
2404 break;
2405 }
2406
2407 /* Verify interface name parameter is sane */
2408 if (sopt->sopt_valsize > sizeof (ifname)) {
2409 error = EINVAL;
2410 break;
2411 }
2412
2413 /* Copy the interface name */
2414 if (sopt->sopt_valsize != 0) {
2415 error = sooptcopyin(sopt, ifname,
2416 sizeof (ifname), sopt->sopt_valsize);
2417 if (error)
2418 break;
2419 }
2420
2421 if (sopt->sopt_valsize == 0 || ifname[0] == '\0') {
2422 /* Unbind this socket from any interface */
2423 ifscope = IFSCOPE_NONE;
2424 } else {
2425 ifnet_t ifp;
2426
2427 /* Verify name is NULL terminated */
2428 if (ifname[sopt->sopt_valsize - 1] != '\0') {
2429 error = EINVAL;
2430 break;
2431 }
2432
2433 /* Bail out if given bogus interface name */
2434 if (ifnet_find_by_name(ifname, &ifp) != 0) {
2435 error = ENXIO;
2436 break;
2437 }
2438
2439 /* Bind this socket to this interface */
2440 ifscope = ifp->if_index;
2441
2442 /*
2443 * Won't actually free; since we don't release
2444 * this later, we should do it now.
2445 */
2446 ifnet_release(ifp);
2447 }
2448 error = inp_bindif(inp, ifscope, NULL);
2449 }
2450 break;
2451 #endif /* CONFIG_FORCE_OUT_IFP */
2452 /*
2453 * Multicast socket options are processed by the in_mcast
2454 * module.
2455 */
2456 case IP_MULTICAST_IF:
2457 case IP_MULTICAST_IFINDEX:
2458 case IP_MULTICAST_VIF:
2459 case IP_MULTICAST_TTL:
2460 case IP_MULTICAST_LOOP:
2461 case IP_ADD_MEMBERSHIP:
2462 case IP_DROP_MEMBERSHIP:
2463 case IP_ADD_SOURCE_MEMBERSHIP:
2464 case IP_DROP_SOURCE_MEMBERSHIP:
2465 case IP_BLOCK_SOURCE:
2466 case IP_UNBLOCK_SOURCE:
2467 case IP_MSFILTER:
2468 case MCAST_JOIN_GROUP:
2469 case MCAST_LEAVE_GROUP:
2470 case MCAST_JOIN_SOURCE_GROUP:
2471 case MCAST_LEAVE_SOURCE_GROUP:
2472 case MCAST_BLOCK_SOURCE:
2473 case MCAST_UNBLOCK_SOURCE:
2474 error = inp_setmoptions(inp, sopt);
2475 break;
2476
2477 case IP_PORTRANGE:
2478 error = sooptcopyin(sopt, &optval, sizeof (optval),
2479 sizeof (optval));
2480 if (error)
2481 break;
2482
2483 switch (optval) {
2484 case IP_PORTRANGE_DEFAULT:
2485 inp->inp_flags &= ~(INP_LOWPORT);
2486 inp->inp_flags &= ~(INP_HIGHPORT);
2487 break;
2488
2489 case IP_PORTRANGE_HIGH:
2490 inp->inp_flags &= ~(INP_LOWPORT);
2491 inp->inp_flags |= INP_HIGHPORT;
2492 break;
2493
2494 case IP_PORTRANGE_LOW:
2495 inp->inp_flags &= ~(INP_HIGHPORT);
2496 inp->inp_flags |= INP_LOWPORT;
2497 break;
2498
2499 default:
2500 error = EINVAL;
2501 break;
2502 }
2503 break;
2504
2505 #if IPSEC
2506 case IP_IPSEC_POLICY: {
2507 caddr_t req = NULL;
2508 size_t len = 0;
2509 int priv;
2510 struct mbuf *m;
2511 int optname;
2512
2513 if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */
2514 break;
2515 if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */
2516 break;
2517 priv = (proc_suser(sopt->sopt_p) == 0);
2518 if (m) {
2519 req = mtod(m, caddr_t);
2520 len = m->m_len;
2521 }
2522 optname = sopt->sopt_name;
2523 error = ipsec4_set_policy(inp, optname, req, len, priv);
2524 m_freem(m);
2525 break;
2526 }
2527 #endif /* IPSEC */
2528
2529 #if TRAFFIC_MGT
2530 case IP_TRAFFIC_MGT_BACKGROUND: {
2531 unsigned background = 0;
2532
2533 error = sooptcopyin(sopt, &background,
2534 sizeof (background), sizeof (background));
2535 if (error)
2536 break;
2537
2538 if (background) {
2539 socket_set_traffic_mgt_flags_locked(so,
2540 TRAFFIC_MGT_SO_BACKGROUND);
2541 } else {
2542 socket_clear_traffic_mgt_flags_locked(so,
2543 TRAFFIC_MGT_SO_BACKGROUND);
2544 }
2545
2546 break;
2547 }
2548 #endif /* TRAFFIC_MGT */
2549
2550 /*
2551 * On a multihomed system, scoped routing can be used to
2552 * restrict the source interface used for sending packets.
2553 * The socket option IP_BOUND_IF binds a particular AF_INET
2554 * socket to an interface such that data sent on the socket
2555 * is restricted to that interface. This is unlike the
2556 * SO_DONTROUTE option where the routing table is bypassed;
2557 * therefore it allows for a greater flexibility and control
2558 * over the system behavior, and does not place any restriction
2559 * on the destination address type (e.g. unicast, multicast,
2560 * or broadcast if applicable) or whether or not the host is
2561 * directly reachable. Note that in the multicast transmit
2562 * case, IP_MULTICAST_{IF,IFINDEX} takes precedence over
2563 * IP_BOUND_IF, since the former practically bypasses the
2564 * routing table; in this case, IP_BOUND_IF sets the default
2565 * interface used for sending multicast packets in the absence
2566 * of an explicit multicast transmit interface.
2567 */
2568 case IP_BOUND_IF:
2569 /* This option is settable only for IPv4 */
2570 if (!(inp->inp_vflag & INP_IPV4)) {
2571 error = EINVAL;
2572 break;
2573 }
2574
2575 error = sooptcopyin(sopt, &optval, sizeof (optval),
2576 sizeof (optval));
2577
2578 if (error)
2579 break;
2580
2581 error = inp_bindif(inp, optval, NULL);
2582 break;
2583
2584 case IP_NO_IFT_CELLULAR:
2585 /* This option is settable only for IPv4 */
2586 if (!(inp->inp_vflag & INP_IPV4)) {
2587 error = EINVAL;
2588 break;
2589 }
2590
2591 error = sooptcopyin(sopt, &optval, sizeof (optval),
2592 sizeof (optval));
2593
2594 if (error)
2595 break;
2596
2597 /* once set, it cannot be unset */
2598 if (!optval && (inp->inp_flags & INP_NO_IFT_CELLULAR)) {
2599 error = EINVAL;
2600 break;
2601 }
2602
2603 error = so_set_restrictions(so,
2604 SO_RESTRICT_DENY_CELLULAR);
2605 break;
2606
2607 case IP_OUT_IF:
2608 /* This option is not settable */
2609 error = EINVAL;
2610 break;
2611
2612 default:
2613 error = ENOPROTOOPT;
2614 break;
2615 }
2616 break;
2617
2618 case SOPT_GET:
2619 switch (sopt->sopt_name) {
2620 case IP_OPTIONS:
2621 case IP_RETOPTS:
2622 if (inp->inp_options) {
2623 error = sooptcopyout(sopt,
2624 mtod(inp->inp_options, char *),
2625 inp->inp_options->m_len);
2626 } else {
2627 sopt->sopt_valsize = 0;
2628 }
2629 break;
2630
2631 case IP_TOS:
2632 case IP_TTL:
2633 case IP_RECVOPTS:
2634 case IP_RECVRETOPTS:
2635 case IP_RECVDSTADDR:
2636 case IP_RECVIF:
2637 case IP_RECVTTL:
2638 case IP_PORTRANGE:
2639 case IP_RECVPKTINFO:
2640 switch (sopt->sopt_name) {
2641
2642 case IP_TOS:
2643 optval = inp->inp_ip_tos;
2644 break;
2645
2646 case IP_TTL:
2647 optval = inp->inp_ip_ttl;
2648 break;
2649
2650 #define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0)
2651
2652 case IP_RECVOPTS:
2653 optval = OPTBIT(INP_RECVOPTS);
2654 break;
2655
2656 case IP_RECVRETOPTS:
2657 optval = OPTBIT(INP_RECVRETOPTS);
2658 break;
2659
2660 case IP_RECVDSTADDR:
2661 optval = OPTBIT(INP_RECVDSTADDR);
2662 break;
2663
2664 case IP_RECVIF:
2665 optval = OPTBIT(INP_RECVIF);
2666 break;
2667
2668 case IP_RECVTTL:
2669 optval = OPTBIT(INP_RECVTTL);
2670 break;
2671
2672 case IP_PORTRANGE:
2673 if (inp->inp_flags & INP_HIGHPORT)
2674 optval = IP_PORTRANGE_HIGH;
2675 else if (inp->inp_flags & INP_LOWPORT)
2676 optval = IP_PORTRANGE_LOW;
2677 else
2678 optval = 0;
2679 break;
2680
2681 case IP_RECVPKTINFO:
2682 optval = OPTBIT(INP_PKTINFO);
2683 break;
2684 }
2685 error = sooptcopyout(sopt, &optval, sizeof (optval));
2686 break;
2687
2688 case IP_MULTICAST_IF:
2689 case IP_MULTICAST_IFINDEX:
2690 case IP_MULTICAST_VIF:
2691 case IP_MULTICAST_TTL:
2692 case IP_MULTICAST_LOOP:
2693 case IP_MSFILTER:
2694 error = inp_getmoptions(inp, sopt);
2695 break;
2696
2697 #if IPSEC
2698 case IP_IPSEC_POLICY: {
2699 struct mbuf *m = NULL;
2700 caddr_t req = NULL;
2701 size_t len = 0;
2702
2703 if (m != NULL) {
2704 req = mtod(m, caddr_t);
2705 len = m->m_len;
2706 }
2707 error = ipsec4_get_policy(sotoinpcb(so), req, len, &m);
2708 if (error == 0)
2709 error = soopt_mcopyout(sopt, m); /* XXX */
2710 if (error == 0)
2711 m_freem(m);
2712 break;
2713 }
2714 #endif /* IPSEC */
2715
2716 #if TRAFFIC_MGT
2717 case IP_TRAFFIC_MGT_BACKGROUND: {
2718 unsigned background = (so->so_traffic_mgt_flags &
2719 TRAFFIC_MGT_SO_BACKGROUND) ? 1 : 0;
2720 return (sooptcopyout(sopt, &background,
2721 sizeof (background)));
2722 break;
2723 }
2724 #endif /* TRAFFIC_MGT */
2725
2726 case IP_BOUND_IF:
2727 if (inp->inp_flags & INP_BOUND_IF)
2728 optval = inp->inp_boundifp->if_index;
2729 error = sooptcopyout(sopt, &optval, sizeof (optval));
2730 break;
2731
2732 case IP_NO_IFT_CELLULAR:
2733 optval = (inp->inp_flags & INP_NO_IFT_CELLULAR) ? 1 : 0;
2734 error = sooptcopyout(sopt, &optval, sizeof (optval));
2735 break;
2736
2737 case IP_OUT_IF:
2738 optval = (inp->inp_last_outifp != NULL) ?
2739 inp->inp_last_outifp->if_index : 0;
2740 error = sooptcopyout(sopt, &optval, sizeof (optval));
2741 break;
2742
2743 default:
2744 error = ENOPROTOOPT;
2745 break;
2746 }
2747 break;
2748 }
2749 return (error);
2750 }
2751
2752 /*
2753 * Set up IP options in pcb for insertion in output packets.
2754 * Store in mbuf with pointer in pcbopt, adding pseudo-option
2755 * with destination address if source routed.
2756 */
2757 static int
2758 ip_pcbopts(int optname, struct mbuf **pcbopt, struct mbuf *m)
2759 {
2760 #pragma unused(optname)
2761 int cnt, optlen;
2762 u_char *cp;
2763 u_char opt;
2764
2765 /* turn off any old options */
2766 if (*pcbopt)
2767 (void) m_free(*pcbopt);
2768 *pcbopt = 0;
2769 if (m == (struct mbuf *)0 || m->m_len == 0) {
2770 /*
2771 * Only turning off any previous options.
2772 */
2773 if (m)
2774 (void) m_free(m);
2775 return (0);
2776 }
2777
2778 if (m->m_len % sizeof (int32_t))
2779 goto bad;
2780
2781 /*
2782 * IP first-hop destination address will be stored before
2783 * actual options; move other options back
2784 * and clear it when none present.
2785 */
2786 if (m->m_data + m->m_len + sizeof (struct in_addr) >= &m->m_dat[MLEN])
2787 goto bad;
2788 cnt = m->m_len;
2789 m->m_len += sizeof (struct in_addr);
2790 cp = mtod(m, u_char *) + sizeof (struct in_addr);
2791 ovbcopy(mtod(m, caddr_t), (caddr_t)cp, (unsigned)cnt);
2792 bzero(mtod(m, caddr_t), sizeof (struct in_addr));
2793
2794 for (; cnt > 0; cnt -= optlen, cp += optlen) {
2795 opt = cp[IPOPT_OPTVAL];
2796 if (opt == IPOPT_EOL)
2797 break;
2798 if (opt == IPOPT_NOP)
2799 optlen = 1;
2800 else {
2801 if (cnt < IPOPT_OLEN + sizeof (*cp))
2802 goto bad;
2803 optlen = cp[IPOPT_OLEN];
2804 if (optlen < IPOPT_OLEN + sizeof (*cp) || optlen > cnt)
2805 goto bad;
2806 }
2807 switch (opt) {
2808
2809 default:
2810 break;
2811
2812 case IPOPT_LSRR:
2813 case IPOPT_SSRR:
2814 /*
2815 * user process specifies route as:
2816 * ->A->B->C->D
2817 * D must be our final destination (but we can't
2818 * check that since we may not have connected yet).
2819 * A is first hop destination, which doesn't appear in
2820 * actual IP option, but is stored before the options.
2821 */
2822 if (optlen < IPOPT_MINOFF - 1 + sizeof (struct in_addr))
2823 goto bad;
2824 m->m_len -= sizeof (struct in_addr);
2825 cnt -= sizeof (struct in_addr);
2826 optlen -= sizeof (struct in_addr);
2827 cp[IPOPT_OLEN] = optlen;
2828 /*
2829 * Move first hop before start of options.
2830 */
2831 bcopy((caddr_t)&cp[IPOPT_OFFSET+1], mtod(m, caddr_t),
2832 sizeof (struct in_addr));
2833 /*
2834 * Then copy rest of options back
2835 * to close up the deleted entry.
2836 */
2837 ovbcopy((caddr_t)(&cp[IPOPT_OFFSET+1] +
2838 sizeof (struct in_addr)),
2839 (caddr_t)&cp[IPOPT_OFFSET+1],
2840 (unsigned)cnt + sizeof (struct in_addr));
2841 break;
2842 }
2843 }
2844 if (m->m_len > MAX_IPOPTLEN + sizeof (struct in_addr))
2845 goto bad;
2846 *pcbopt = m;
2847 return (0);
2848
2849 bad:
2850 (void) m_free(m);
2851 return (EINVAL);
2852 }
2853
2854 void
2855 ip_moptions_init(void)
2856 {
2857 PE_parse_boot_argn("ifa_debug", &imo_debug, sizeof (imo_debug));
2858
2859 imo_size = (imo_debug == 0) ? sizeof (struct ip_moptions) :
2860 sizeof (struct ip_moptions_dbg);
2861
2862 imo_zone = zinit(imo_size, IMO_ZONE_MAX * imo_size, 0,
2863 IMO_ZONE_NAME);
2864 if (imo_zone == NULL) {
2865 panic("%s: failed allocating %s", __func__, IMO_ZONE_NAME);
2866 /* NOTREACHED */
2867 }
2868 zone_change(imo_zone, Z_EXPAND, TRUE);
2869 }
2870
2871 void
2872 imo_addref(struct ip_moptions *imo, int locked)
2873 {
2874 if (!locked)
2875 IMO_LOCK(imo);
2876 else
2877 IMO_LOCK_ASSERT_HELD(imo);
2878
2879 if (++imo->imo_refcnt == 0) {
2880 panic("%s: imo %p wraparound refcnt\n", __func__, imo);
2881 /* NOTREACHED */
2882 } else if (imo->imo_trace != NULL) {
2883 (*imo->imo_trace)(imo, TRUE);
2884 }
2885
2886 if (!locked)
2887 IMO_UNLOCK(imo);
2888 }
2889
2890 void
2891 imo_remref(struct ip_moptions *imo)
2892 {
2893 int i;
2894
2895 IMO_LOCK(imo);
2896 if (imo->imo_refcnt == 0) {
2897 panic("%s: imo %p negative refcnt", __func__, imo);
2898 /* NOTREACHED */
2899 } else if (imo->imo_trace != NULL) {
2900 (*imo->imo_trace)(imo, FALSE);
2901 }
2902
2903 --imo->imo_refcnt;
2904 if (imo->imo_refcnt > 0) {
2905 IMO_UNLOCK(imo);
2906 return;
2907 }
2908
2909 for (i = 0; i < imo->imo_num_memberships; ++i) {
2910 struct in_mfilter *imf;
2911
2912 imf = imo->imo_mfilters ? &imo->imo_mfilters[i] : NULL;
2913 if (imf != NULL)
2914 imf_leave(imf);
2915
2916 (void) in_leavegroup(imo->imo_membership[i], imf);
2917
2918 if (imf != NULL)
2919 imf_purge(imf);
2920
2921 INM_REMREF(imo->imo_membership[i]);
2922 imo->imo_membership[i] = NULL;
2923 }
2924 imo->imo_num_memberships = 0;
2925 if (imo->imo_mfilters != NULL) {
2926 FREE(imo->imo_mfilters, M_INMFILTER);
2927 imo->imo_mfilters = NULL;
2928 }
2929 if (imo->imo_membership != NULL) {
2930 FREE(imo->imo_membership, M_IPMOPTS);
2931 imo->imo_membership = NULL;
2932 }
2933 IMO_UNLOCK(imo);
2934
2935 lck_mtx_destroy(&imo->imo_lock, ifa_mtx_grp);
2936
2937 if (!(imo->imo_debug & IFD_ALLOC)) {
2938 panic("%s: imo %p cannot be freed", __func__, imo);
2939 /* NOTREACHED */
2940 }
2941 zfree(imo_zone, imo);
2942 }
2943
2944 static void
2945 imo_trace(struct ip_moptions *imo, int refhold)
2946 {
2947 struct ip_moptions_dbg *imo_dbg = (struct ip_moptions_dbg *)imo;
2948 ctrace_t *tr;
2949 u_int32_t idx;
2950 u_int16_t *cnt;
2951
2952 if (!(imo->imo_debug & IFD_DEBUG)) {
2953 panic("%s: imo %p has no debug structure", __func__, imo);
2954 /* NOTREACHED */
2955 }
2956 if (refhold) {
2957 cnt = &imo_dbg->imo_refhold_cnt;
2958 tr = imo_dbg->imo_refhold;
2959 } else {
2960 cnt = &imo_dbg->imo_refrele_cnt;
2961 tr = imo_dbg->imo_refrele;
2962 }
2963
2964 idx = atomic_add_16_ov(cnt, 1) % IMO_TRACE_HIST_SIZE;
2965 ctrace_record(&tr[idx]);
2966 }
2967
2968 struct ip_moptions *
2969 ip_allocmoptions(int how)
2970 {
2971 struct ip_moptions *imo;
2972
2973 imo = (how == M_WAITOK) ? zalloc(imo_zone) : zalloc_noblock(imo_zone);
2974 if (imo != NULL) {
2975 bzero(imo, imo_size);
2976 lck_mtx_init(&imo->imo_lock, ifa_mtx_grp, ifa_mtx_attr);
2977 imo->imo_debug |= IFD_ALLOC;
2978 if (imo_debug != 0) {
2979 imo->imo_debug |= IFD_DEBUG;
2980 imo->imo_trace = imo_trace;
2981 }
2982 IMO_ADDREF(imo);
2983 }
2984
2985 return (imo);
2986 }
2987
2988 /*
2989 * Routine called from ip_output() to loop back a copy of an IP multicast
2990 * packet to the input queue of a specified interface. Note that this
2991 * calls the output routine of the loopback "driver", but with an interface
2992 * pointer that might NOT be a loopback interface -- evil, but easier than
2993 * replicating that code here.
2994 */
2995 static void
2996 ip_mloopback(struct ifnet *srcifp, struct ifnet *origifp, struct mbuf *m,
2997 struct sockaddr_in *dst, int hlen)
2998 {
2999 struct mbuf *copym;
3000 struct ip *ip;
3001
3002 if (lo_ifp == NULL)
3003 return;
3004
3005 /*
3006 * Copy the packet header as it's needed for the checksum
3007 * Make sure to deep-copy IP header portion in case the data
3008 * is in an mbuf cluster, so that we can safely override the IP
3009 * header portion later.
3010 */
3011 copym = m_copym_mode(m, 0, M_COPYALL, M_DONTWAIT, M_COPYM_COPY_HDR);
3012 if (copym != NULL && ((copym->m_flags & M_EXT) || copym->m_len < hlen))
3013 copym = m_pullup(copym, hlen);
3014
3015 if (copym == NULL)
3016 return;
3017
3018 /*
3019 * We don't bother to fragment if the IP length is greater
3020 * than the interface's MTU. Can this possibly matter?
3021 */
3022 ip = mtod(copym, struct ip *);
3023 #if BYTE_ORDER != BIG_ENDIAN
3024 HTONS(ip->ip_len);
3025 HTONS(ip->ip_off);
3026 #endif
3027 ip->ip_sum = 0;
3028 ip->ip_sum = ip_cksum_hdr_out(copym, hlen);
3029
3030 /*
3031 * Mark checksum as valid unless receive checksum offload is
3032 * disabled; if so, compute checksum in software. If the
3033 * interface itself is lo0, this will be overridden by if_loop.
3034 */
3035 if (hwcksum_rx) {
3036 copym->m_pkthdr.csum_flags &= ~CSUM_PARTIAL;
3037 copym->m_pkthdr.csum_flags |=
3038 CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
3039 copym->m_pkthdr.csum_data = 0xffff;
3040 } else if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
3041 #if BYTE_ORDER != BIG_ENDIAN
3042 NTOHS(ip->ip_len);
3043 #endif
3044 in_delayed_cksum(copym);
3045 #if BYTE_ORDER != BIG_ENDIAN
3046 HTONS(ip->ip_len);
3047 #endif
3048 }
3049
3050 /*
3051 * Stuff the 'real' ifp into the pkthdr, to be used in matching
3052 * in ip_input(); we need the loopback ifp/dl_tag passed as args
3053 * to make the loopback driver compliant with the data link
3054 * requirements.
3055 */
3056 copym->m_pkthdr.rcvif = origifp;
3057
3058 /*
3059 * Also record the source interface (which owns the source address).
3060 * This is basically a stripped down version of ifa_foraddr().
3061 */
3062 if (srcifp == NULL) {
3063 struct in_ifaddr *ia;
3064
3065 lck_rw_lock_shared(in_ifaddr_rwlock);
3066 TAILQ_FOREACH(ia, INADDR_HASH(ip->ip_src.s_addr), ia_hash) {
3067 IFA_LOCK_SPIN(&ia->ia_ifa);
3068 if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_src.s_addr) {
3069 srcifp = ia->ia_ifp;
3070 IFA_UNLOCK(&ia->ia_ifa);
3071 break;
3072 }
3073 IFA_UNLOCK(&ia->ia_ifa);
3074 }
3075 lck_rw_done(in_ifaddr_rwlock);
3076 }
3077 if (srcifp != NULL)
3078 ip_setsrcifaddr_info(copym, srcifp->if_index, NULL);
3079 ip_setdstifaddr_info(copym, origifp->if_index, NULL);
3080
3081 dlil_output(lo_ifp, PF_INET, copym, NULL, SA(dst), 0, NULL);
3082 }
3083
3084 /*
3085 * Given a source IP address (and route, if available), determine the best
3086 * interface to send the packet from. Checking for (and updating) the
3087 * ROF_SRCIF_SELECTED flag in the pcb-supplied route placeholder is done
3088 * without any locks based on the assumption that ip_output() is single-
3089 * threaded per-pcb, i.e. for any given pcb there can only be one thread
3090 * performing output at the IP layer.
3091 *
3092 * This routine is analogous to in6_selectroute() for IPv6.
3093 */
3094 static struct ifaddr *
3095 in_selectsrcif(struct ip *ip, struct route *ro, unsigned int ifscope)
3096 {
3097 struct ifaddr *ifa = NULL;
3098 struct in_addr src = ip->ip_src;
3099 struct in_addr dst = ip->ip_dst;
3100 struct ifnet *rt_ifp;
3101 char s_src[MAX_IPv4_STR_LEN], s_dst[MAX_IPv4_STR_LEN];
3102
3103 VERIFY(src.s_addr != INADDR_ANY);
3104
3105 if (ip_select_srcif_debug) {
3106 (void) inet_ntop(AF_INET, &src.s_addr, s_src, sizeof (s_src));
3107 (void) inet_ntop(AF_INET, &dst.s_addr, s_dst, sizeof (s_dst));
3108 }
3109
3110 if (ro->ro_rt != NULL)
3111 RT_LOCK(ro->ro_rt);
3112
3113 rt_ifp = (ro->ro_rt != NULL) ? ro->ro_rt->rt_ifp : NULL;
3114
3115 /*
3116 * Given the source IP address, find a suitable source interface
3117 * to use for transmission; if the caller has specified a scope,
3118 * optimize the search by looking at the addresses only for that
3119 * interface. This is still suboptimal, however, as we need to
3120 * traverse the per-interface list.
3121 */
3122 if (ifscope != IFSCOPE_NONE || ro->ro_rt != NULL) {
3123 unsigned int scope = ifscope;
3124
3125 /*
3126 * If no scope is specified and the route is stale (pointing
3127 * to a defunct interface) use the current primary interface;
3128 * this happens when switching between interfaces configured
3129 * with the same IP address. Otherwise pick up the scope
3130 * information from the route; the ULP may have looked up a
3131 * correct route and we just need to verify it here and mark
3132 * it with the ROF_SRCIF_SELECTED flag below.
3133 */
3134 if (scope == IFSCOPE_NONE) {
3135 scope = rt_ifp->if_index;
3136 if (scope != get_primary_ifscope(AF_INET) &&
3137 ROUTE_UNUSABLE(ro))
3138 scope = get_primary_ifscope(AF_INET);
3139 }
3140
3141 ifa = (struct ifaddr *)ifa_foraddr_scoped(src.s_addr, scope);
3142
3143 if (ifa == NULL && ip->ip_p != IPPROTO_UDP &&
3144 ip->ip_p != IPPROTO_TCP && ipforwarding) {
3145 /*
3146 * If forwarding is enabled, and if the packet isn't
3147 * TCP or UDP, check if the source address belongs
3148 * to one of our own interfaces; if so, demote the
3149 * interface scope and do a route lookup right below.
3150 */
3151 ifa = (struct ifaddr *)ifa_foraddr(src.s_addr);
3152 if (ifa != NULL) {
3153 IFA_REMREF(ifa);
3154 ifa = NULL;
3155 ifscope = IFSCOPE_NONE;
3156 }
3157 }
3158
3159 if (ip_select_srcif_debug && ifa != NULL) {
3160 if (ro->ro_rt != NULL) {
3161 printf("%s->%s ifscope %d->%d ifa_if %s "
3162 "ro_if %s\n", s_src, s_dst, ifscope,
3163 scope, if_name(ifa->ifa_ifp),
3164 if_name(rt_ifp));
3165 } else {
3166 printf("%s->%s ifscope %d->%d ifa_if %s\n",
3167 s_src, s_dst, ifscope, scope,
3168 if_name(ifa->ifa_ifp));
3169 }
3170 }
3171 }
3172
3173 /*
3174 * Slow path; search for an interface having the corresponding source
3175 * IP address if the scope was not specified by the caller, and:
3176 *
3177 * 1) There currently isn't any route, or,
3178 * 2) The interface used by the route does not own that source
3179 * IP address; in this case, the route will get blown away
3180 * and we'll do a more specific scoped search using the newly
3181 * found interface.
3182 */
3183 if (ifa == NULL && ifscope == IFSCOPE_NONE) {
3184 ifa = (struct ifaddr *)ifa_foraddr(src.s_addr);
3185
3186 /*
3187 * If we have the IP address, but not the route, we don't
3188 * really know whether or not it belongs to the correct
3189 * interface (it could be shared across multiple interfaces.)
3190 * The only way to find out is to do a route lookup.
3191 */
3192 if (ifa != NULL && ro->ro_rt == NULL) {
3193 struct rtentry *rt;
3194 struct sockaddr_in sin;
3195 struct ifaddr *oifa = NULL;
3196
3197 bzero(&sin, sizeof (sin));
3198 sin.sin_family = AF_INET;
3199 sin.sin_len = sizeof (sin);
3200 sin.sin_addr = dst;
3201
3202 lck_mtx_lock(rnh_lock);
3203 if ((rt = rt_lookup(TRUE, SA(&sin), NULL,
3204 rt_tables[AF_INET], IFSCOPE_NONE)) != NULL) {
3205 RT_LOCK(rt);
3206 /*
3207 * If the route uses a different interface,
3208 * use that one instead. The IP address of
3209 * the ifaddr that we pick up here is not
3210 * relevant.
3211 */
3212 if (ifa->ifa_ifp != rt->rt_ifp) {
3213 oifa = ifa;
3214 ifa = rt->rt_ifa;
3215 IFA_ADDREF(ifa);
3216 RT_UNLOCK(rt);
3217 } else {
3218 RT_UNLOCK(rt);
3219 }
3220 rtfree_locked(rt);
3221 }
3222 lck_mtx_unlock(rnh_lock);
3223
3224 if (oifa != NULL) {
3225 struct ifaddr *iifa;
3226
3227 /*
3228 * See if the interface pointed to by the
3229 * route is configured with the source IP
3230 * address of the packet.
3231 */
3232 iifa = (struct ifaddr *)ifa_foraddr_scoped(
3233 src.s_addr, ifa->ifa_ifp->if_index);
3234
3235 if (iifa != NULL) {
3236 /*
3237 * Found it; drop the original one
3238 * as well as the route interface
3239 * address, and use this instead.
3240 */
3241 IFA_REMREF(oifa);
3242 IFA_REMREF(ifa);
3243 ifa = iifa;
3244 } else if (!ipforwarding ||
3245 (rt->rt_flags & RTF_GATEWAY)) {
3246 /*
3247 * This interface doesn't have that
3248 * source IP address; drop the route
3249 * interface address and just use the
3250 * original one, and let the caller
3251 * do a scoped route lookup.
3252 */
3253 IFA_REMREF(ifa);
3254 ifa = oifa;
3255 } else {
3256 /*
3257 * Forwarding is enabled and the source
3258 * address belongs to one of our own
3259 * interfaces which isn't the outgoing
3260 * interface, and we have a route, and
3261 * the destination is on a network that
3262 * is directly attached (onlink); drop
3263 * the original one and use the route
3264 * interface address instead.
3265 */
3266 IFA_REMREF(oifa);
3267 }
3268 }
3269 } else if (ifa != NULL && ro->ro_rt != NULL &&
3270 !(ro->ro_rt->rt_flags & RTF_GATEWAY) &&
3271 ifa->ifa_ifp != ro->ro_rt->rt_ifp && ipforwarding) {
3272 /*
3273 * Forwarding is enabled and the source address belongs
3274 * to one of our own interfaces which isn't the same
3275 * as the interface used by the known route; drop the
3276 * original one and use the route interface address.
3277 */
3278 IFA_REMREF(ifa);
3279 ifa = ro->ro_rt->rt_ifa;
3280 IFA_ADDREF(ifa);
3281 }
3282
3283 if (ip_select_srcif_debug && ifa != NULL) {
3284 printf("%s->%s ifscope %d ifa_if %s\n",
3285 s_src, s_dst, ifscope, if_name(ifa->ifa_ifp));
3286 }
3287 }
3288
3289 if (ro->ro_rt != NULL)
3290 RT_LOCK_ASSERT_HELD(ro->ro_rt);
3291 /*
3292 * If there is a non-loopback route with the wrong interface, or if
3293 * there is no interface configured with such an address, blow it
3294 * away. Except for local/loopback, we look for one with a matching
3295 * interface scope/index.
3296 */
3297 if (ro->ro_rt != NULL &&
3298 (ifa == NULL || (ifa->ifa_ifp != rt_ifp && rt_ifp != lo_ifp) ||
3299 !(ro->ro_rt->rt_flags & RTF_UP))) {
3300 if (ip_select_srcif_debug) {
3301 if (ifa != NULL) {
3302 printf("%s->%s ifscope %d ro_if %s != "
3303 "ifa_if %s (cached route cleared)\n",
3304 s_src, s_dst, ifscope, if_name(rt_ifp),
3305 if_name(ifa->ifa_ifp));
3306 } else {
3307 printf("%s->%s ifscope %d ro_if %s "
3308 "(no ifa_if found)\n",
3309 s_src, s_dst, ifscope, if_name(rt_ifp));
3310 }
3311 }
3312
3313 RT_UNLOCK(ro->ro_rt);
3314 ROUTE_RELEASE(ro);
3315
3316 /*
3317 * If the destination is IPv4 LLA and the route's interface
3318 * doesn't match the source interface, then the source IP
3319 * address is wrong; it most likely belongs to the primary
3320 * interface associated with the IPv4 LL subnet. Drop the
3321 * packet rather than letting it go out and return an error
3322 * to the ULP. This actually applies not only to IPv4 LL
3323 * but other shared subnets; for now we explicitly test only
3324 * for the former case and save the latter for future.
3325 */
3326 if (IN_LINKLOCAL(ntohl(dst.s_addr)) &&
3327 !IN_LINKLOCAL(ntohl(src.s_addr)) && ifa != NULL) {
3328 IFA_REMREF(ifa);
3329 ifa = NULL;
3330 }
3331 }
3332
3333 if (ip_select_srcif_debug && ifa == NULL) {
3334 printf("%s->%s ifscope %d (neither ro_if/ifa_if found)\n",
3335 s_src, s_dst, ifscope);
3336 }
3337
3338 /*
3339 * If there is a route, mark it accordingly. If there isn't one,
3340 * we'll get here again during the next transmit (possibly with a
3341 * route) and the flag will get set at that point. For IPv4 LLA
3342 * destination, mark it only if the route has been fully resolved;
3343 * otherwise we want to come back here again when the route points
3344 * to the interface over which the ARP reply arrives on.
3345 */
3346 if (ro->ro_rt != NULL && (!IN_LINKLOCAL(ntohl(dst.s_addr)) ||
3347 (ro->ro_rt->rt_gateway->sa_family == AF_LINK &&
3348 SDL(ro->ro_rt->rt_gateway)->sdl_alen != 0))) {
3349 if (ifa != NULL)
3350 IFA_ADDREF(ifa); /* for route */
3351 if (ro->ro_srcia != NULL)
3352 IFA_REMREF(ro->ro_srcia);
3353 ro->ro_srcia = ifa;
3354 ro->ro_flags |= ROF_SRCIF_SELECTED;
3355 RT_GENID_SYNC(ro->ro_rt);
3356 }
3357
3358 if (ro->ro_rt != NULL)
3359 RT_UNLOCK(ro->ro_rt);
3360
3361 return (ifa);
3362 }
3363
3364 void
3365 ip_output_checksum(struct ifnet *ifp, struct mbuf *m, int hlen, int ip_len,
3366 uint32_t *sw_csum)
3367 {
3368 int tso = TSO_IPV4_OK(ifp, m);
3369 uint32_t hwcap = ifp->if_hwassist;
3370
3371 m->m_pkthdr.csum_flags |= CSUM_IP;
3372
3373 if (!hwcksum_tx) {
3374 /* do all in software; hardware checksum offload is disabled */
3375 *sw_csum = (CSUM_DELAY_DATA | CSUM_DELAY_IP) &
3376 m->m_pkthdr.csum_flags;
3377 } else {
3378 /* do in software what the hardware cannot */
3379 *sw_csum = m->m_pkthdr.csum_flags &
3380 ~IF_HWASSIST_CSUM_FLAGS(hwcap);
3381 }
3382
3383 if (hlen != sizeof (struct ip)) {
3384 *sw_csum |= ((CSUM_DELAY_DATA | CSUM_DELAY_IP) &
3385 m->m_pkthdr.csum_flags);
3386 } else if (!(*sw_csum & CSUM_DELAY_DATA) && (hwcap & CSUM_PARTIAL)) {
3387 /*
3388 * Partial checksum offload, if non-IP fragment, and TCP only
3389 * (no UDP support, as the hardware may not be able to convert
3390 * +0 to -0 (0xffff) per RFC1122 4.1.3.4.)
3391 */
3392 if (hwcksum_tx && !tso &&
3393 (m->m_pkthdr.csum_flags & CSUM_TCP) &&
3394 ip_len <= ifp->if_mtu) {
3395 uint16_t start = sizeof (struct ip);
3396 uint16_t ulpoff = m->m_pkthdr.csum_data & 0xffff;
3397 m->m_pkthdr.csum_flags |=
3398 (CSUM_DATA_VALID | CSUM_PARTIAL);
3399 m->m_pkthdr.csum_tx_stuff = (ulpoff + start);
3400 m->m_pkthdr.csum_tx_start = start;
3401 /* do IP hdr chksum in software */
3402 *sw_csum = CSUM_DELAY_IP;
3403 } else {
3404 *sw_csum |= (CSUM_DELAY_DATA & m->m_pkthdr.csum_flags);
3405 }
3406 }
3407
3408 if (*sw_csum & CSUM_DELAY_DATA) {
3409 in_delayed_cksum(m);
3410 *sw_csum &= ~CSUM_DELAY_DATA;
3411 }
3412
3413 if (hwcksum_tx) {
3414 /*
3415 * Drop off bits that aren't supported by hardware;
3416 * also make sure to preserve non-checksum related bits.
3417 */
3418 m->m_pkthdr.csum_flags =
3419 ((m->m_pkthdr.csum_flags &
3420 (IF_HWASSIST_CSUM_FLAGS(hwcap) | CSUM_DATA_VALID)) |
3421 (m->m_pkthdr.csum_flags & ~IF_HWASSIST_CSUM_MASK));
3422 } else {
3423 /* drop all bits; hardware checksum offload is disabled */
3424 m->m_pkthdr.csum_flags = 0;
3425 }
3426 }
3427
3428 /*
3429 * GRE protocol output for PPP/PPTP
3430 */
3431 int
3432 ip_gre_output(struct mbuf *m)
3433 {
3434 struct route ro;
3435 int error;
3436
3437 bzero(&ro, sizeof (ro));
3438
3439 error = ip_output(m, NULL, &ro, 0, NULL, NULL);
3440
3441 ROUTE_RELEASE(&ro);
3442
3443 return (error);
3444 }