]> git.saurik.com Git - apple/xnu.git/blob - bsd/netinet/in_mcast.c
xnu-2422.115.4.tar.gz
[apple/xnu.git] / bsd / netinet / in_mcast.c
1 /*
2 * Copyright (c) 2010-2013 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*-
29 * Copyright (c) 2007-2009 Bruce Simpson.
30 * Copyright (c) 2005 Robert N. M. Watson.
31 * All rights reserved.
32 *
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
35 * are met:
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
41 * 3. The name of the author may not be used to endorse or promote
42 * products derived from this software without specific prior written
43 * permission.
44 *
45 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
49 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 * SUCH DAMAGE.
56 */
57
58 /*
59 * IPv4 multicast socket, group, and socket option processing module.
60 */
61
62 #include <sys/cdefs.h>
63
64 #include <sys/param.h>
65 #include <sys/systm.h>
66 #include <sys/kernel.h>
67 #include <sys/malloc.h>
68 #include <sys/mbuf.h>
69 #include <sys/protosw.h>
70 #include <sys/socket.h>
71 #include <sys/socketvar.h>
72 #include <sys/protosw.h>
73 #include <sys/sysctl.h>
74 #include <sys/tree.h>
75 #include <sys/mcache.h>
76
77 #include <kern/zalloc.h>
78
79 #include <pexpert/pexpert.h>
80
81 #include <net/if.h>
82 #include <net/if_dl.h>
83 #include <net/route.h>
84
85 #include <netinet/in.h>
86 #include <netinet/in_systm.h>
87 #include <netinet/in_pcb.h>
88 #include <netinet/in_var.h>
89 #include <netinet/ip_var.h>
90 #include <netinet/igmp_var.h>
91
92 #ifndef __SOCKUNION_DECLARED
93 union sockunion {
94 struct sockaddr_storage ss;
95 struct sockaddr sa;
96 struct sockaddr_dl sdl;
97 struct sockaddr_in sin;
98 };
99 typedef union sockunion sockunion_t;
100 #define __SOCKUNION_DECLARED
101 #endif /* __SOCKUNION_DECLARED */
102
103 /*
104 * Functions with non-static linkage defined in this file should be
105 * declared in in_var.h:
106 * imo_multi_filter()
107 * in_addmulti()
108 * in_delmulti()
109 * in_joingroup()
110 * in_leavegroup()
111 * and ip_var.h:
112 * inp_freemoptions()
113 * inp_getmoptions()
114 * inp_setmoptions()
115 *
116 * XXX: Both carp and pf need to use the legacy (*,G) KPIs in_addmulti()
117 * and in_delmulti().
118 */
119 static void imf_commit(struct in_mfilter *);
120 static int imf_get_source(struct in_mfilter *imf,
121 const struct sockaddr_in *psin,
122 struct in_msource **);
123 static struct in_msource *
124 imf_graft(struct in_mfilter *, const uint8_t,
125 const struct sockaddr_in *);
126 static int imf_prune(struct in_mfilter *, const struct sockaddr_in *);
127 static void imf_rollback(struct in_mfilter *);
128 static void imf_reap(struct in_mfilter *);
129 static int imo_grow(struct ip_moptions *, size_t);
130 static size_t imo_match_group(const struct ip_moptions *,
131 const struct ifnet *, const struct sockaddr *);
132 static struct in_msource *
133 imo_match_source(const struct ip_moptions *, const size_t,
134 const struct sockaddr *);
135 static void ims_merge(struct ip_msource *ims,
136 const struct in_msource *lims, const int rollback);
137 static int in_getmulti(struct ifnet *, const struct in_addr *,
138 struct in_multi **);
139 static int in_joingroup(struct ifnet *, const struct in_addr *,
140 struct in_mfilter *, struct in_multi **);
141 static int inm_get_source(struct in_multi *inm, const in_addr_t haddr,
142 const int noalloc, struct ip_msource **pims);
143 static int inm_is_ifp_detached(const struct in_multi *);
144 static int inm_merge(struct in_multi *, /*const*/ struct in_mfilter *);
145 static void inm_reap(struct in_multi *);
146 static struct ip_moptions *
147 inp_findmoptions(struct inpcb *);
148 static int inp_get_source_filters(struct inpcb *, struct sockopt *);
149 static struct ifnet *
150 inp_lookup_mcast_ifp(const struct inpcb *,
151 const struct sockaddr_in *, const struct in_addr);
152 static int inp_block_unblock_source(struct inpcb *, struct sockopt *);
153 static int inp_set_multicast_if(struct inpcb *, struct sockopt *);
154 static int inp_set_source_filters(struct inpcb *, struct sockopt *);
155 static int sysctl_ip_mcast_filters SYSCTL_HANDLER_ARGS;
156 static struct ifnet * ip_multicast_if(struct in_addr *, unsigned int *);
157 static __inline__ int ip_msource_cmp(const struct ip_msource *,
158 const struct ip_msource *);
159
160 SYSCTL_NODE(_net_inet_ip, OID_AUTO, mcast, CTLFLAG_RW | CTLFLAG_LOCKED, 0, "IPv4 multicast");
161
162 static u_long in_mcast_maxgrpsrc = IP_MAX_GROUP_SRC_FILTER;
163 SYSCTL_LONG(_net_inet_ip_mcast, OID_AUTO, maxgrpsrc,
164 CTLFLAG_RW | CTLFLAG_LOCKED, &in_mcast_maxgrpsrc, "Max source filters per group");
165
166 static u_long in_mcast_maxsocksrc = IP_MAX_SOCK_SRC_FILTER;
167 SYSCTL_LONG(_net_inet_ip_mcast, OID_AUTO, maxsocksrc,
168 CTLFLAG_RW | CTLFLAG_LOCKED, &in_mcast_maxsocksrc,
169 "Max source filters per socket");
170
171 int in_mcast_loop = IP_DEFAULT_MULTICAST_LOOP;
172 SYSCTL_INT(_net_inet_ip_mcast, OID_AUTO, loop, CTLFLAG_RW | CTLFLAG_LOCKED,
173 &in_mcast_loop, 0, "Loopback multicast datagrams by default");
174
175 SYSCTL_NODE(_net_inet_ip_mcast, OID_AUTO, filters,
176 CTLFLAG_RD | CTLFLAG_LOCKED, sysctl_ip_mcast_filters,
177 "Per-interface stack-wide source filters");
178
179 RB_GENERATE_PREV(ip_msource_tree, ip_msource, ims_link, ip_msource_cmp);
180
181 #define INM_TRACE_HIST_SIZE 32 /* size of trace history */
182
183 /* For gdb */
184 __private_extern__ unsigned int inm_trace_hist_size = INM_TRACE_HIST_SIZE;
185
186 struct in_multi_dbg {
187 struct in_multi inm; /* in_multi */
188 u_int16_t inm_refhold_cnt; /* # of ref */
189 u_int16_t inm_refrele_cnt; /* # of rele */
190 /*
191 * Circular lists of inm_addref and inm_remref callers.
192 */
193 ctrace_t inm_refhold[INM_TRACE_HIST_SIZE];
194 ctrace_t inm_refrele[INM_TRACE_HIST_SIZE];
195 /*
196 * Trash list linkage
197 */
198 TAILQ_ENTRY(in_multi_dbg) inm_trash_link;
199 };
200
201 /* List of trash in_multi entries protected by inm_trash_lock */
202 static TAILQ_HEAD(, in_multi_dbg) inm_trash_head;
203 static decl_lck_mtx_data(, inm_trash_lock);
204
205 #define INM_ZONE_MAX 64 /* maximum elements in zone */
206 #define INM_ZONE_NAME "in_multi" /* zone name */
207
208 #if DEBUG
209 static unsigned int inm_debug = 1; /* debugging (enabled) */
210 #else
211 static unsigned int inm_debug; /* debugging (disabled) */
212 #endif /* !DEBUG */
213 static unsigned int inm_size; /* size of zone element */
214 static struct zone *inm_zone; /* zone for in_multi */
215
216 #define IPMS_ZONE_MAX 64 /* maximum elements in zone */
217 #define IPMS_ZONE_NAME "ip_msource" /* zone name */
218
219 static unsigned int ipms_size; /* size of zone element */
220 static struct zone *ipms_zone; /* zone for ip_msource */
221
222 #define INMS_ZONE_MAX 64 /* maximum elements in zone */
223 #define INMS_ZONE_NAME "in_msource" /* zone name */
224
225 static unsigned int inms_size; /* size of zone element */
226 static struct zone *inms_zone; /* zone for in_msource */
227
228 /* Lock group and attribute for in_multihead_lock lock */
229 static lck_attr_t *in_multihead_lock_attr;
230 static lck_grp_t *in_multihead_lock_grp;
231 static lck_grp_attr_t *in_multihead_lock_grp_attr;
232
233 static decl_lck_rw_data(, in_multihead_lock);
234 struct in_multihead in_multihead;
235
236 static struct in_multi *in_multi_alloc(int);
237 static void in_multi_free(struct in_multi *);
238 static void in_multi_attach(struct in_multi *);
239 static void inm_trace(struct in_multi *, int);
240
241 static struct ip_msource *ipms_alloc(int);
242 static void ipms_free(struct ip_msource *);
243 static struct in_msource *inms_alloc(int);
244 static void inms_free(struct in_msource *);
245
246 static __inline int
247 ip_msource_cmp(const struct ip_msource *a, const struct ip_msource *b)
248 {
249
250 if (a->ims_haddr < b->ims_haddr)
251 return (-1);
252 if (a->ims_haddr == b->ims_haddr)
253 return (0);
254 return (1);
255 }
256
257 /*
258 * Inline function which wraps assertions for a valid ifp.
259 */
260 static __inline__ int
261 inm_is_ifp_detached(const struct in_multi *inm)
262 {
263 VERIFY(inm->inm_ifma != NULL);
264 VERIFY(inm->inm_ifp == inm->inm_ifma->ifma_ifp);
265
266 return (!ifnet_is_attached(inm->inm_ifp, 0));
267 }
268
269 /*
270 * Initialize an in_mfilter structure to a known state at t0, t1
271 * with an empty source filter list.
272 */
273 static __inline__ void
274 imf_init(struct in_mfilter *imf, const int st0, const int st1)
275 {
276 memset(imf, 0, sizeof(struct in_mfilter));
277 RB_INIT(&imf->imf_sources);
278 imf->imf_st[0] = st0;
279 imf->imf_st[1] = st1;
280 }
281
282 /*
283 * Resize the ip_moptions vector to the next power-of-two minus 1.
284 */
285 static int
286 imo_grow(struct ip_moptions *imo, size_t newmax)
287 {
288 struct in_multi **nmships;
289 struct in_multi **omships;
290 struct in_mfilter *nmfilters;
291 struct in_mfilter *omfilters;
292 size_t idx;
293 size_t oldmax;
294
295 IMO_LOCK_ASSERT_HELD(imo);
296
297 nmships = NULL;
298 nmfilters = NULL;
299 omships = imo->imo_membership;
300 omfilters = imo->imo_mfilters;
301 oldmax = imo->imo_max_memberships;
302 if (newmax == 0)
303 newmax = ((oldmax + 1) * 2) - 1;
304
305 if (newmax > IP_MAX_MEMBERSHIPS)
306 return (ETOOMANYREFS);
307
308 if ((nmships = (struct in_multi **)_REALLOC(omships,
309 sizeof (struct in_multi *) * newmax, M_IPMOPTS,
310 M_WAITOK | M_ZERO)) == NULL)
311 return (ENOMEM);
312
313 imo->imo_membership = nmships;
314
315 if ((nmfilters = (struct in_mfilter *)_REALLOC(omfilters,
316 sizeof (struct in_mfilter) * newmax, M_INMFILTER,
317 M_WAITOK | M_ZERO)) == NULL)
318 return (ENOMEM);
319
320 imo->imo_mfilters = nmfilters;
321
322 /* Initialize newly allocated source filter heads. */
323 for (idx = oldmax; idx < newmax; idx++)
324 imf_init(&nmfilters[idx], MCAST_UNDEFINED, MCAST_EXCLUDE);
325
326 imo->imo_max_memberships = newmax;
327
328 return (0);
329 }
330
331 /*
332 * Find an IPv4 multicast group entry for this ip_moptions instance
333 * which matches the specified group, and optionally an interface.
334 * Return its index into the array, or -1 if not found.
335 */
336 static size_t
337 imo_match_group(const struct ip_moptions *imo, const struct ifnet *ifp,
338 const struct sockaddr *group)
339 {
340 const struct sockaddr_in *gsin;
341 struct in_multi *pinm;
342 int idx;
343 int nmships;
344
345 IMO_LOCK_ASSERT_HELD(__DECONST(struct ip_moptions *, imo));
346
347 gsin = (struct sockaddr_in *)(uintptr_t)(size_t)group;
348
349 /* The imo_membership array may be lazy allocated. */
350 if (imo->imo_membership == NULL || imo->imo_num_memberships == 0)
351 return (-1);
352
353 nmships = imo->imo_num_memberships;
354 for (idx = 0; idx < nmships; idx++) {
355 pinm = imo->imo_membership[idx];
356 if (pinm == NULL)
357 continue;
358 INM_LOCK(pinm);
359 if ((ifp == NULL || (pinm->inm_ifp == ifp)) &&
360 in_hosteq(pinm->inm_addr, gsin->sin_addr)) {
361 INM_UNLOCK(pinm);
362 break;
363 }
364 INM_UNLOCK(pinm);
365 }
366 if (idx >= nmships)
367 idx = -1;
368
369 return (idx);
370 }
371
372 /*
373 * Find an IPv4 multicast source entry for this imo which matches
374 * the given group index for this socket, and source address.
375 *
376 * NOTE: This does not check if the entry is in-mode, merely if
377 * it exists, which may not be the desired behaviour.
378 */
379 static struct in_msource *
380 imo_match_source(const struct ip_moptions *imo, const size_t gidx,
381 const struct sockaddr *src)
382 {
383 struct ip_msource find;
384 struct in_mfilter *imf;
385 struct ip_msource *ims;
386 const sockunion_t *psa;
387
388 IMO_LOCK_ASSERT_HELD(__DECONST(struct ip_moptions *, imo));
389
390 VERIFY(src->sa_family == AF_INET);
391 VERIFY(gidx != (size_t)-1 && gidx < imo->imo_num_memberships);
392
393 /* The imo_mfilters array may be lazy allocated. */
394 if (imo->imo_mfilters == NULL)
395 return (NULL);
396 imf = &imo->imo_mfilters[gidx];
397
398 /* Source trees are keyed in host byte order. */
399 psa = (sockunion_t *)(uintptr_t)(size_t)src;
400 find.ims_haddr = ntohl(psa->sin.sin_addr.s_addr);
401 ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find);
402
403 return ((struct in_msource *)ims);
404 }
405
406 /*
407 * Perform filtering for multicast datagrams on a socket by group and source.
408 *
409 * Returns 0 if a datagram should be allowed through, or various error codes
410 * if the socket was not a member of the group, or the source was muted, etc.
411 */
412 int
413 imo_multi_filter(const struct ip_moptions *imo, const struct ifnet *ifp,
414 const struct sockaddr *group, const struct sockaddr *src)
415 {
416 size_t gidx;
417 struct in_msource *ims;
418 int mode;
419
420 IMO_LOCK_ASSERT_HELD(__DECONST(struct ip_moptions *, imo));
421 VERIFY(ifp != NULL);
422
423 gidx = imo_match_group(imo, ifp, group);
424 if (gidx == (size_t)-1)
425 return (MCAST_NOTGMEMBER);
426
427 /*
428 * Check if the source was included in an (S,G) join.
429 * Allow reception on exclusive memberships by default,
430 * reject reception on inclusive memberships by default.
431 * Exclude source only if an in-mode exclude filter exists.
432 * Include source only if an in-mode include filter exists.
433 * NOTE: We are comparing group state here at IGMP t1 (now)
434 * with socket-layer t0 (since last downcall).
435 */
436 mode = imo->imo_mfilters[gidx].imf_st[1];
437 ims = imo_match_source(imo, gidx, src);
438
439 if ((ims == NULL && mode == MCAST_INCLUDE) ||
440 (ims != NULL && ims->imsl_st[0] != mode)) {
441 return (MCAST_NOTSMEMBER);
442 }
443
444 return (MCAST_PASS);
445 }
446
447 int
448 imo_clone(struct inpcb *from_inp, struct inpcb *to_inp)
449 {
450 int i, err = 0;
451 struct ip_moptions *from;
452 struct ip_moptions *to;
453
454 from = inp_findmoptions(from_inp);
455 if (from == NULL)
456 return (ENOMEM);
457
458 to = inp_findmoptions(to_inp);
459 if (to == NULL) {
460 IMO_REMREF(from);
461 return (ENOMEM);
462 }
463
464 IMO_LOCK(from);
465 IMO_LOCK(to);
466
467 to->imo_multicast_ifp = from->imo_multicast_ifp;
468 to->imo_multicast_vif = from->imo_multicast_vif;
469 to->imo_multicast_ttl = from->imo_multicast_ttl;
470 to->imo_multicast_loop = from->imo_multicast_loop;
471
472 /*
473 * We're cloning, so drop any existing memberships and source
474 * filters on the destination ip_moptions.
475 */
476 for (i = 0; i < to->imo_num_memberships; ++i) {
477 struct in_mfilter *imf;
478
479 imf = to->imo_mfilters ? &to->imo_mfilters[i] : NULL;
480 if (imf != NULL)
481 imf_leave(imf);
482
483 (void) in_leavegroup(to->imo_membership[i], imf);
484
485 if (imf != NULL)
486 imf_purge(imf);
487
488 INM_REMREF(to->imo_membership[i]);
489 to->imo_membership[i] = NULL;
490 }
491 to->imo_num_memberships = 0;
492
493 VERIFY(to->imo_max_memberships != 0 && from->imo_max_memberships != 0);
494 if (to->imo_max_memberships < from->imo_max_memberships) {
495 /*
496 * Ensure source and destination ip_moptions memberships
497 * and source filters arrays are at least equal in size.
498 */
499 err = imo_grow(to, from->imo_max_memberships);
500 if (err != 0)
501 goto done;
502 }
503 VERIFY(to->imo_max_memberships >= from->imo_max_memberships);
504
505 /*
506 * Source filtering doesn't apply to OpenTransport socket,
507 * so simply hold additional reference count per membership.
508 */
509 for (i = 0; i < from->imo_num_memberships; i++) {
510 to->imo_membership[i] =
511 in_addmulti(&from->imo_membership[i]->inm_addr,
512 from->imo_membership[i]->inm_ifp);
513 if (to->imo_membership[i] == NULL)
514 break;
515 to->imo_num_memberships++;
516 }
517 VERIFY(to->imo_num_memberships == from->imo_num_memberships);
518
519 done:
520 IMO_UNLOCK(to);
521 IMO_REMREF(to);
522 IMO_UNLOCK(from);
523 IMO_REMREF(from);
524
525 return (err);
526 }
527
528 /*
529 * Find and return a reference to an in_multi record for (ifp, group),
530 * and bump its reference count.
531 * If one does not exist, try to allocate it, and update link-layer multicast
532 * filters on ifp to listen for group.
533 * Return 0 if successful, otherwise return an appropriate error code.
534 */
535 static int
536 in_getmulti(struct ifnet *ifp, const struct in_addr *group,
537 struct in_multi **pinm)
538 {
539 struct sockaddr_in gsin;
540 struct ifmultiaddr *ifma;
541 struct in_multi *inm;
542 int error;
543
544 in_multihead_lock_shared();
545 IN_LOOKUP_MULTI(group, ifp, inm);
546 if (inm != NULL) {
547 INM_LOCK(inm);
548 VERIFY(inm->inm_reqcnt >= 1);
549 inm->inm_reqcnt++;
550 VERIFY(inm->inm_reqcnt != 0);
551 *pinm = inm;
552 INM_UNLOCK(inm);
553 in_multihead_lock_done();
554 /*
555 * We already joined this group; return the inm
556 * with a refcount held (via lookup) for caller.
557 */
558 return (0);
559 }
560 in_multihead_lock_done();
561
562 bzero(&gsin, sizeof(gsin));
563 gsin.sin_family = AF_INET;
564 gsin.sin_len = sizeof(struct sockaddr_in);
565 gsin.sin_addr = *group;
566
567 /*
568 * Check if a link-layer group is already associated
569 * with this network-layer group on the given ifnet.
570 */
571 error = if_addmulti(ifp, (struct sockaddr *)&gsin, &ifma);
572 if (error != 0)
573 return (error);
574
575 /*
576 * See comments in inm_remref() for access to ifma_protospec.
577 */
578 in_multihead_lock_exclusive();
579 IFMA_LOCK(ifma);
580 if ((inm = ifma->ifma_protospec) != NULL) {
581 VERIFY(ifma->ifma_addr != NULL);
582 VERIFY(ifma->ifma_addr->sa_family == AF_INET);
583 INM_ADDREF(inm); /* for caller */
584 IFMA_UNLOCK(ifma);
585 INM_LOCK(inm);
586 VERIFY(inm->inm_ifma == ifma);
587 VERIFY(inm->inm_ifp == ifp);
588 VERIFY(in_hosteq(inm->inm_addr, *group));
589 if (inm->inm_debug & IFD_ATTACHED) {
590 VERIFY(inm->inm_reqcnt >= 1);
591 inm->inm_reqcnt++;
592 VERIFY(inm->inm_reqcnt != 0);
593 *pinm = inm;
594 INM_UNLOCK(inm);
595 in_multihead_lock_done();
596 IFMA_REMREF(ifma);
597 /*
598 * We lost the race with another thread doing
599 * in_getmulti(); since this group has already
600 * been joined; return the inm with a refcount
601 * held for caller.
602 */
603 return (0);
604 }
605 /*
606 * We lost the race with another thread doing in_delmulti();
607 * the inm referring to the ifma has been detached, thus we
608 * reattach it back to the in_multihead list and return the
609 * inm with a refcount held for the caller.
610 */
611 in_multi_attach(inm);
612 VERIFY((inm->inm_debug &
613 (IFD_ATTACHED | IFD_TRASHED)) == IFD_ATTACHED);
614 *pinm = inm;
615 INM_UNLOCK(inm);
616 in_multihead_lock_done();
617 IFMA_REMREF(ifma);
618 return (0);
619 }
620 IFMA_UNLOCK(ifma);
621
622 /*
623 * A new in_multi record is needed; allocate and initialize it.
624 * We DO NOT perform an IGMP join as the in_ layer may need to
625 * push an initial source list down to IGMP to support SSM.
626 *
627 * The initial source filter state is INCLUDE, {} as per the RFC.
628 */
629 inm = in_multi_alloc(M_WAITOK);
630 if (inm == NULL) {
631 in_multihead_lock_done();
632 IFMA_REMREF(ifma);
633 return (ENOMEM);
634 }
635 INM_LOCK(inm);
636 inm->inm_addr = *group;
637 inm->inm_ifp = ifp;
638 inm->inm_igi = IGMP_IFINFO(ifp);
639 VERIFY(inm->inm_igi != NULL);
640 IGI_ADDREF(inm->inm_igi);
641 inm->inm_ifma = ifma; /* keep refcount from if_addmulti() */
642 inm->inm_state = IGMP_NOT_MEMBER;
643 /*
644 * Pending state-changes per group are subject to a bounds check.
645 */
646 inm->inm_scq.ifq_maxlen = IGMP_MAX_STATE_CHANGES;
647 inm->inm_st[0].iss_fmode = MCAST_UNDEFINED;
648 inm->inm_st[1].iss_fmode = MCAST_UNDEFINED;
649 RB_INIT(&inm->inm_srcs);
650 *pinm = inm;
651 in_multi_attach(inm);
652 VERIFY((inm->inm_debug & (IFD_ATTACHED | IFD_TRASHED)) == IFD_ATTACHED);
653 INM_ADDREF_LOCKED(inm); /* for caller */
654 INM_UNLOCK(inm);
655
656 IFMA_LOCK(ifma);
657 VERIFY(ifma->ifma_protospec == NULL);
658 ifma->ifma_protospec = inm;
659 IFMA_UNLOCK(ifma);
660 in_multihead_lock_done();
661
662 return (0);
663 }
664
665 /*
666 * Clear recorded source entries for a group.
667 * Used by the IGMP code.
668 * FIXME: Should reap.
669 */
670 void
671 inm_clear_recorded(struct in_multi *inm)
672 {
673 struct ip_msource *ims;
674
675 INM_LOCK_ASSERT_HELD(inm);
676
677 RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) {
678 if (ims->ims_stp) {
679 ims->ims_stp = 0;
680 --inm->inm_st[1].iss_rec;
681 }
682 }
683 VERIFY(inm->inm_st[1].iss_rec == 0);
684 }
685
686 /*
687 * Record a source as pending for a Source-Group IGMPv3 query.
688 * This lives here as it modifies the shared tree.
689 *
690 * inm is the group descriptor.
691 * naddr is the address of the source to record in network-byte order.
692 *
693 * If the net.inet.igmp.sgalloc sysctl is non-zero, we will
694 * lazy-allocate a source node in response to an SG query.
695 * Otherwise, no allocation is performed. This saves some memory
696 * with the trade-off that the source will not be reported to the
697 * router if joined in the window between the query response and
698 * the group actually being joined on the local host.
699 *
700 * Return 0 if the source didn't exist or was already marked as recorded.
701 * Return 1 if the source was marked as recorded by this function.
702 * Return <0 if any error occured (negated errno code).
703 */
704 int
705 inm_record_source(struct in_multi *inm, const in_addr_t naddr)
706 {
707 struct ip_msource find;
708 struct ip_msource *ims, *nims;
709
710 INM_LOCK_ASSERT_HELD(inm);
711
712 find.ims_haddr = ntohl(naddr);
713 ims = RB_FIND(ip_msource_tree, &inm->inm_srcs, &find);
714 if (ims && ims->ims_stp)
715 return (0);
716 if (ims == NULL) {
717 if (inm->inm_nsrc == in_mcast_maxgrpsrc)
718 return (-ENOSPC);
719 nims = ipms_alloc(M_WAITOK);
720 if (nims == NULL)
721 return (-ENOMEM);
722 nims->ims_haddr = find.ims_haddr;
723 RB_INSERT(ip_msource_tree, &inm->inm_srcs, nims);
724 ++inm->inm_nsrc;
725 ims = nims;
726 }
727
728 /*
729 * Mark the source as recorded and update the recorded
730 * source count.
731 */
732 ++ims->ims_stp;
733 ++inm->inm_st[1].iss_rec;
734
735 return (1);
736 }
737
738 /*
739 * Return a pointer to an in_msource owned by an in_mfilter,
740 * given its source address.
741 * Lazy-allocate if needed. If this is a new entry its filter state is
742 * undefined at t0.
743 *
744 * imf is the filter set being modified.
745 * haddr is the source address in *host* byte-order.
746 *
747 * Caller is expected to be holding imo_lock.
748 */
749 static int
750 imf_get_source(struct in_mfilter *imf, const struct sockaddr_in *psin,
751 struct in_msource **plims)
752 {
753 struct ip_msource find;
754 struct ip_msource *ims;
755 struct in_msource *lims;
756 int error;
757
758 error = 0;
759 ims = NULL;
760 lims = NULL;
761
762 /* key is host byte order */
763 find.ims_haddr = ntohl(psin->sin_addr.s_addr);
764 ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find);
765 lims = (struct in_msource *)ims;
766 if (lims == NULL) {
767 if (imf->imf_nsrc == in_mcast_maxsocksrc)
768 return (ENOSPC);
769 lims = inms_alloc(M_WAITOK);
770 if (lims == NULL)
771 return (ENOMEM);
772 lims->ims_haddr = find.ims_haddr;
773 lims->imsl_st[0] = MCAST_UNDEFINED;
774 RB_INSERT(ip_msource_tree, &imf->imf_sources,
775 (struct ip_msource *)lims);
776 ++imf->imf_nsrc;
777 }
778
779 *plims = lims;
780
781 return (error);
782 }
783
784 /*
785 * Graft a source entry into an existing socket-layer filter set,
786 * maintaining any required invariants and checking allocations.
787 *
788 * The source is marked as being in the new filter mode at t1.
789 *
790 * Return the pointer to the new node, otherwise return NULL.
791 *
792 * Caller is expected to be holding imo_lock.
793 */
794 static struct in_msource *
795 imf_graft(struct in_mfilter *imf, const uint8_t st1,
796 const struct sockaddr_in *psin)
797 {
798 struct in_msource *lims;
799
800 lims = inms_alloc(M_WAITOK);
801 if (lims == NULL)
802 return (NULL);
803 lims->ims_haddr = ntohl(psin->sin_addr.s_addr);
804 lims->imsl_st[0] = MCAST_UNDEFINED;
805 lims->imsl_st[1] = st1;
806 RB_INSERT(ip_msource_tree, &imf->imf_sources,
807 (struct ip_msource *)lims);
808 ++imf->imf_nsrc;
809
810 return (lims);
811 }
812
813 /*
814 * Prune a source entry from an existing socket-layer filter set,
815 * maintaining any required invariants and checking allocations.
816 *
817 * The source is marked as being left at t1, it is not freed.
818 *
819 * Return 0 if no error occurred, otherwise return an errno value.
820 *
821 * Caller is expected to be holding imo_lock.
822 */
823 static int
824 imf_prune(struct in_mfilter *imf, const struct sockaddr_in *psin)
825 {
826 struct ip_msource find;
827 struct ip_msource *ims;
828 struct in_msource *lims;
829
830 /* key is host byte order */
831 find.ims_haddr = ntohl(psin->sin_addr.s_addr);
832 ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find);
833 if (ims == NULL)
834 return (ENOENT);
835 lims = (struct in_msource *)ims;
836 lims->imsl_st[1] = MCAST_UNDEFINED;
837 return (0);
838 }
839
840 /*
841 * Revert socket-layer filter set deltas at t1 to t0 state.
842 *
843 * Caller is expected to be holding imo_lock.
844 */
845 static void
846 imf_rollback(struct in_mfilter *imf)
847 {
848 struct ip_msource *ims, *tims;
849 struct in_msource *lims;
850
851 RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) {
852 lims = (struct in_msource *)ims;
853 if (lims->imsl_st[0] == lims->imsl_st[1]) {
854 /* no change at t1 */
855 continue;
856 } else if (lims->imsl_st[0] != MCAST_UNDEFINED) {
857 /* revert change to existing source at t1 */
858 lims->imsl_st[1] = lims->imsl_st[0];
859 } else {
860 /* revert source added t1 */
861 IGMP_PRINTF(("%s: free inms 0x%llx\n", __func__,
862 (uint64_t)VM_KERNEL_ADDRPERM(lims)));
863 RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims);
864 inms_free(lims);
865 imf->imf_nsrc--;
866 }
867 }
868 imf->imf_st[1] = imf->imf_st[0];
869 }
870
871 /*
872 * Mark socket-layer filter set as INCLUDE {} at t1.
873 *
874 * Caller is expected to be holding imo_lock.
875 */
876 void
877 imf_leave(struct in_mfilter *imf)
878 {
879 struct ip_msource *ims;
880 struct in_msource *lims;
881
882 RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
883 lims = (struct in_msource *)ims;
884 lims->imsl_st[1] = MCAST_UNDEFINED;
885 }
886 imf->imf_st[1] = MCAST_INCLUDE;
887 }
888
889 /*
890 * Mark socket-layer filter set deltas as committed.
891 *
892 * Caller is expected to be holding imo_lock.
893 */
894 static void
895 imf_commit(struct in_mfilter *imf)
896 {
897 struct ip_msource *ims;
898 struct in_msource *lims;
899
900 RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
901 lims = (struct in_msource *)ims;
902 lims->imsl_st[0] = lims->imsl_st[1];
903 }
904 imf->imf_st[0] = imf->imf_st[1];
905 }
906
907 /*
908 * Reap unreferenced sources from socket-layer filter set.
909 *
910 * Caller is expected to be holding imo_lock.
911 */
912 static void
913 imf_reap(struct in_mfilter *imf)
914 {
915 struct ip_msource *ims, *tims;
916 struct in_msource *lims;
917
918 RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) {
919 lims = (struct in_msource *)ims;
920 if ((lims->imsl_st[0] == MCAST_UNDEFINED) &&
921 (lims->imsl_st[1] == MCAST_UNDEFINED)) {
922 IGMP_PRINTF(("%s: free inms 0x%llx\n", __func__,
923 (uint64_t)VM_KERNEL_ADDRPERM(lims)));
924 RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims);
925 inms_free(lims);
926 imf->imf_nsrc--;
927 }
928 }
929 }
930
931 /*
932 * Purge socket-layer filter set.
933 *
934 * Caller is expected to be holding imo_lock.
935 */
936 void
937 imf_purge(struct in_mfilter *imf)
938 {
939 struct ip_msource *ims, *tims;
940 struct in_msource *lims;
941
942 RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) {
943 lims = (struct in_msource *)ims;
944 IGMP_PRINTF(("%s: free inms 0x%llx\n", __func__,
945 (uint64_t)VM_KERNEL_ADDRPERM(lims)));
946 RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims);
947 inms_free(lims);
948 imf->imf_nsrc--;
949 }
950 imf->imf_st[0] = imf->imf_st[1] = MCAST_UNDEFINED;
951 VERIFY(RB_EMPTY(&imf->imf_sources));
952 }
953
954 /*
955 * Look up a source filter entry for a multicast group.
956 *
957 * inm is the group descriptor to work with.
958 * haddr is the host-byte-order IPv4 address to look up.
959 * noalloc may be non-zero to suppress allocation of sources.
960 * *pims will be set to the address of the retrieved or allocated source.
961 *
962 * Return 0 if successful, otherwise return a non-zero error code.
963 */
964 static int
965 inm_get_source(struct in_multi *inm, const in_addr_t haddr,
966 const int noalloc, struct ip_msource **pims)
967 {
968 struct ip_msource find;
969 struct ip_msource *ims, *nims;
970 #ifdef IGMP_DEBUG
971 struct in_addr ia;
972 char buf[MAX_IPv4_STR_LEN];
973 #endif
974 INM_LOCK_ASSERT_HELD(inm);
975
976 find.ims_haddr = haddr;
977 ims = RB_FIND(ip_msource_tree, &inm->inm_srcs, &find);
978 if (ims == NULL && !noalloc) {
979 if (inm->inm_nsrc == in_mcast_maxgrpsrc)
980 return (ENOSPC);
981 nims = ipms_alloc(M_WAITOK);
982 if (nims == NULL)
983 return (ENOMEM);
984 nims->ims_haddr = haddr;
985 RB_INSERT(ip_msource_tree, &inm->inm_srcs, nims);
986 ++inm->inm_nsrc;
987 ims = nims;
988 #ifdef IGMP_DEBUG
989 ia.s_addr = htonl(haddr);
990 inet_ntop(AF_INET, &ia, buf, sizeof(buf));
991 IGMP_PRINTF(("%s: allocated %s as 0x%llx\n", __func__,
992 buf, (uint64_t)VM_KERNEL_ADDRPERM(ims)));
993 #endif
994 }
995
996 *pims = ims;
997 return (0);
998 }
999
1000 /*
1001 * Helper function to derive the filter mode on a source entry
1002 * from its internal counters. Predicates are:
1003 * A source is only excluded if all listeners exclude it.
1004 * A source is only included if no listeners exclude it,
1005 * and at least one listener includes it.
1006 * May be used by ifmcstat(8).
1007 */
1008 uint8_t
1009 ims_get_mode(const struct in_multi *inm, const struct ip_msource *ims,
1010 uint8_t t)
1011 {
1012 INM_LOCK_ASSERT_HELD(__DECONST(struct in_multi *, inm));
1013
1014 t = !!t;
1015 if (inm->inm_st[t].iss_ex > 0 &&
1016 inm->inm_st[t].iss_ex == ims->ims_st[t].ex)
1017 return (MCAST_EXCLUDE);
1018 else if (ims->ims_st[t].in > 0 && ims->ims_st[t].ex == 0)
1019 return (MCAST_INCLUDE);
1020 return (MCAST_UNDEFINED);
1021 }
1022
1023 /*
1024 * Merge socket-layer source into IGMP-layer source.
1025 * If rollback is non-zero, perform the inverse of the merge.
1026 */
1027 static void
1028 ims_merge(struct ip_msource *ims, const struct in_msource *lims,
1029 const int rollback)
1030 {
1031 int n = rollback ? -1 : 1;
1032 #ifdef IGMP_DEBUG
1033 struct in_addr ia;
1034
1035 ia.s_addr = htonl(ims->ims_haddr);
1036 #endif
1037
1038 if (lims->imsl_st[0] == MCAST_EXCLUDE) {
1039 IGMP_INET_PRINTF(ia,
1040 ("%s: t1 ex -= %d on %s\n",
1041 __func__, n, _igmp_inet_buf));
1042 ims->ims_st[1].ex -= n;
1043 } else if (lims->imsl_st[0] == MCAST_INCLUDE) {
1044 IGMP_INET_PRINTF(ia,
1045 ("%s: t1 in -= %d on %s\n",
1046 __func__, n, _igmp_inet_buf));
1047 ims->ims_st[1].in -= n;
1048 }
1049
1050 if (lims->imsl_st[1] == MCAST_EXCLUDE) {
1051 IGMP_INET_PRINTF(ia,
1052 ("%s: t1 ex += %d on %s\n",
1053 __func__, n, _igmp_inet_buf));
1054 ims->ims_st[1].ex += n;
1055 } else if (lims->imsl_st[1] == MCAST_INCLUDE) {
1056 IGMP_INET_PRINTF(ia,
1057 ("%s: t1 in += %d on %s\n",
1058 __func__, n, _igmp_inet_buf));
1059 ims->ims_st[1].in += n;
1060 }
1061 }
1062
1063 /*
1064 * Atomically update the global in_multi state, when a membership's
1065 * filter list is being updated in any way.
1066 *
1067 * imf is the per-inpcb-membership group filter pointer.
1068 * A fake imf may be passed for in-kernel consumers.
1069 *
1070 * XXX This is a candidate for a set-symmetric-difference style loop
1071 * which would eliminate the repeated lookup from root of ims nodes,
1072 * as they share the same key space.
1073 *
1074 * If any error occurred this function will back out of refcounts
1075 * and return a non-zero value.
1076 */
1077 static int
1078 inm_merge(struct in_multi *inm, /*const*/ struct in_mfilter *imf)
1079 {
1080 struct ip_msource *ims, *nims;
1081 struct in_msource *lims;
1082 int schanged, error;
1083 int nsrc0, nsrc1;
1084
1085 INM_LOCK_ASSERT_HELD(inm);
1086
1087 schanged = 0;
1088 error = 0;
1089 nsrc1 = nsrc0 = 0;
1090
1091 /*
1092 * Update the source filters first, as this may fail.
1093 * Maintain count of in-mode filters at t0, t1. These are
1094 * used to work out if we transition into ASM mode or not.
1095 * Maintain a count of source filters whose state was
1096 * actually modified by this operation.
1097 */
1098 RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
1099 lims = (struct in_msource *)ims;
1100 if (lims->imsl_st[0] == imf->imf_st[0]) nsrc0++;
1101 if (lims->imsl_st[1] == imf->imf_st[1]) nsrc1++;
1102 if (lims->imsl_st[0] == lims->imsl_st[1]) continue;
1103 error = inm_get_source(inm, lims->ims_haddr, 0, &nims);
1104 ++schanged;
1105 if (error)
1106 break;
1107 ims_merge(nims, lims, 0);
1108 }
1109 if (error) {
1110 struct ip_msource *bims;
1111
1112 RB_FOREACH_REVERSE_FROM(ims, ip_msource_tree, nims) {
1113 lims = (struct in_msource *)ims;
1114 if (lims->imsl_st[0] == lims->imsl_st[1])
1115 continue;
1116 (void) inm_get_source(inm, lims->ims_haddr, 1, &bims);
1117 if (bims == NULL)
1118 continue;
1119 ims_merge(bims, lims, 1);
1120 }
1121 goto out_reap;
1122 }
1123
1124 IGMP_PRINTF(("%s: imf filters in-mode: %d at t0, %d at t1\n",
1125 __func__, nsrc0, nsrc1));
1126
1127 /* Handle transition between INCLUDE {n} and INCLUDE {} on socket. */
1128 if (imf->imf_st[0] == imf->imf_st[1] &&
1129 imf->imf_st[1] == MCAST_INCLUDE) {
1130 if (nsrc1 == 0) {
1131 IGMP_PRINTF(("%s: --in on inm at t1\n", __func__));
1132 --inm->inm_st[1].iss_in;
1133 }
1134 }
1135
1136 /* Handle filter mode transition on socket. */
1137 if (imf->imf_st[0] != imf->imf_st[1]) {
1138 IGMP_PRINTF(("%s: imf transition %d to %d\n",
1139 __func__, imf->imf_st[0], imf->imf_st[1]));
1140
1141 if (imf->imf_st[0] == MCAST_EXCLUDE) {
1142 IGMP_PRINTF(("%s: --ex on inm at t1\n", __func__));
1143 --inm->inm_st[1].iss_ex;
1144 } else if (imf->imf_st[0] == MCAST_INCLUDE) {
1145 IGMP_PRINTF(("%s: --in on inm at t1\n", __func__));
1146 --inm->inm_st[1].iss_in;
1147 }
1148
1149 if (imf->imf_st[1] == MCAST_EXCLUDE) {
1150 IGMP_PRINTF(("%s: ex++ on inm at t1\n", __func__));
1151 inm->inm_st[1].iss_ex++;
1152 } else if (imf->imf_st[1] == MCAST_INCLUDE && nsrc1 > 0) {
1153 IGMP_PRINTF(("%s: in++ on inm at t1\n", __func__));
1154 inm->inm_st[1].iss_in++;
1155 }
1156 }
1157
1158 /*
1159 * Track inm filter state in terms of listener counts.
1160 * If there are any exclusive listeners, stack-wide
1161 * membership is exclusive.
1162 * Otherwise, if only inclusive listeners, stack-wide is inclusive.
1163 * If no listeners remain, state is undefined at t1,
1164 * and the IGMP lifecycle for this group should finish.
1165 */
1166 if (inm->inm_st[1].iss_ex > 0) {
1167 IGMP_PRINTF(("%s: transition to EX\n", __func__));
1168 inm->inm_st[1].iss_fmode = MCAST_EXCLUDE;
1169 } else if (inm->inm_st[1].iss_in > 0) {
1170 IGMP_PRINTF(("%s: transition to IN\n", __func__));
1171 inm->inm_st[1].iss_fmode = MCAST_INCLUDE;
1172 } else {
1173 IGMP_PRINTF(("%s: transition to UNDEF\n", __func__));
1174 inm->inm_st[1].iss_fmode = MCAST_UNDEFINED;
1175 }
1176
1177 /* Decrement ASM listener count on transition out of ASM mode. */
1178 if (imf->imf_st[0] == MCAST_EXCLUDE && nsrc0 == 0) {
1179 if ((imf->imf_st[1] != MCAST_EXCLUDE) ||
1180 (imf->imf_st[1] == MCAST_EXCLUDE && nsrc1 > 0)) {
1181 IGMP_PRINTF(("%s: --asm on inm at t1\n", __func__));
1182 --inm->inm_st[1].iss_asm;
1183 }
1184 }
1185
1186 /* Increment ASM listener count on transition to ASM mode. */
1187 if (imf->imf_st[1] == MCAST_EXCLUDE && nsrc1 == 0) {
1188 IGMP_PRINTF(("%s: asm++ on inm at t1\n", __func__));
1189 inm->inm_st[1].iss_asm++;
1190 }
1191
1192 IGMP_PRINTF(("%s: merged imf 0x%llx to inm 0x%llx\n", __func__,
1193 (uint64_t)VM_KERNEL_ADDRPERM(imf),
1194 (uint64_t)VM_KERNEL_ADDRPERM(inm)));
1195 inm_print(inm);
1196
1197 out_reap:
1198 if (schanged > 0) {
1199 IGMP_PRINTF(("%s: sources changed; reaping\n", __func__));
1200 inm_reap(inm);
1201 }
1202 return (error);
1203 }
1204
1205 /*
1206 * Mark an in_multi's filter set deltas as committed.
1207 * Called by IGMP after a state change has been enqueued.
1208 */
1209 void
1210 inm_commit(struct in_multi *inm)
1211 {
1212 struct ip_msource *ims;
1213
1214 INM_LOCK_ASSERT_HELD(inm);
1215
1216 IGMP_PRINTF(("%s: commit inm 0x%llx\n", __func__,
1217 (uint64_t)VM_KERNEL_ADDRPERM(inm)));
1218 IGMP_PRINTF(("%s: pre commit:\n", __func__));
1219 inm_print(inm);
1220
1221 RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) {
1222 ims->ims_st[0] = ims->ims_st[1];
1223 }
1224 inm->inm_st[0] = inm->inm_st[1];
1225 }
1226
1227 /*
1228 * Reap unreferenced nodes from an in_multi's filter set.
1229 */
1230 static void
1231 inm_reap(struct in_multi *inm)
1232 {
1233 struct ip_msource *ims, *tims;
1234
1235 INM_LOCK_ASSERT_HELD(inm);
1236
1237 RB_FOREACH_SAFE(ims, ip_msource_tree, &inm->inm_srcs, tims) {
1238 if (ims->ims_st[0].ex > 0 || ims->ims_st[0].in > 0 ||
1239 ims->ims_st[1].ex > 0 || ims->ims_st[1].in > 0 ||
1240 ims->ims_stp != 0)
1241 continue;
1242 IGMP_PRINTF(("%s: free ims 0x%llx\n", __func__,
1243 (uint64_t)VM_KERNEL_ADDRPERM(ims)));
1244 RB_REMOVE(ip_msource_tree, &inm->inm_srcs, ims);
1245 ipms_free(ims);
1246 inm->inm_nsrc--;
1247 }
1248 }
1249
1250 /*
1251 * Purge all source nodes from an in_multi's filter set.
1252 */
1253 void
1254 inm_purge(struct in_multi *inm)
1255 {
1256 struct ip_msource *ims, *tims;
1257
1258 INM_LOCK_ASSERT_HELD(inm);
1259
1260 RB_FOREACH_SAFE(ims, ip_msource_tree, &inm->inm_srcs, tims) {
1261 IGMP_PRINTF(("%s: free ims 0x%llx\n", __func__,
1262 (uint64_t)VM_KERNEL_ADDRPERM(ims)));
1263 RB_REMOVE(ip_msource_tree, &inm->inm_srcs, ims);
1264 ipms_free(ims);
1265 inm->inm_nsrc--;
1266 }
1267 }
1268
1269 /*
1270 * Join a multicast group; real entry point.
1271 *
1272 * Only preserves atomicity at inm level.
1273 * NOTE: imf argument cannot be const due to sys/tree.h limitations.
1274 *
1275 * If the IGMP downcall fails, the group is not joined, and an error
1276 * code is returned.
1277 */
1278 static int
1279 in_joingroup(struct ifnet *ifp, const struct in_addr *gina,
1280 /*const*/ struct in_mfilter *imf, struct in_multi **pinm)
1281 {
1282 struct in_mfilter timf;
1283 struct in_multi *inm = NULL;
1284 int error = 0;
1285 struct igmp_tparams itp;
1286
1287 IGMP_INET_PRINTF(*gina, ("%s: join %s on 0x%llx(%s))\n", __func__,
1288 _igmp_inet_buf, (uint64_t)VM_KERNEL_ADDRPERM(ifp), if_name(ifp)));
1289
1290 bzero(&itp, sizeof (itp));
1291 *pinm = NULL;
1292
1293 /*
1294 * If no imf was specified (i.e. kernel consumer),
1295 * fake one up and assume it is an ASM join.
1296 */
1297 if (imf == NULL) {
1298 imf_init(&timf, MCAST_UNDEFINED, MCAST_EXCLUDE);
1299 imf = &timf;
1300 }
1301
1302 error = in_getmulti(ifp, gina, &inm);
1303 if (error) {
1304 IGMP_PRINTF(("%s: in_getmulti() failure\n", __func__));
1305 return (error);
1306 }
1307
1308 IGMP_PRINTF(("%s: merge inm state\n", __func__));
1309
1310 INM_LOCK(inm);
1311 error = inm_merge(inm, imf);
1312 if (error) {
1313 IGMP_PRINTF(("%s: failed to merge inm state\n", __func__));
1314 goto out_inm_release;
1315 }
1316
1317 IGMP_PRINTF(("%s: doing igmp downcall\n", __func__));
1318 error = igmp_change_state(inm, &itp);
1319 if (error) {
1320 IGMP_PRINTF(("%s: failed to update source\n", __func__));
1321 imf_rollback(imf);
1322 goto out_inm_release;
1323 }
1324
1325 out_inm_release:
1326 if (error) {
1327 IGMP_PRINTF(("%s: dropping ref on 0x%llx\n", __func__,
1328 (uint64_t)VM_KERNEL_ADDRPERM(inm)));
1329 INM_UNLOCK(inm);
1330 INM_REMREF(inm);
1331 } else {
1332 INM_UNLOCK(inm);
1333 *pinm = inm; /* keep refcount from in_getmulti() */
1334 }
1335
1336 /* schedule timer now that we've dropped the lock(s) */
1337 igmp_set_timeout(&itp);
1338
1339 return (error);
1340 }
1341
1342 /*
1343 * Leave a multicast group; real entry point.
1344 * All source filters will be expunged.
1345 *
1346 * Only preserves atomicity at inm level.
1347 *
1348 * Note: This is not the same as inm_release(*) as this function also
1349 * makes a state change downcall into IGMP.
1350 */
1351 int
1352 in_leavegroup(struct in_multi *inm, /*const*/ struct in_mfilter *imf)
1353 {
1354 struct in_mfilter timf;
1355 int error, lastref;
1356 struct igmp_tparams itp;
1357
1358 bzero(&itp, sizeof (itp));
1359 error = 0;
1360
1361 INM_LOCK_ASSERT_NOTHELD(inm);
1362
1363 in_multihead_lock_exclusive();
1364 INM_LOCK(inm);
1365
1366 IGMP_INET_PRINTF(inm->inm_addr,
1367 ("%s: leave inm 0x%llx, %s/%s%d, imf 0x%llx\n", __func__,
1368 (uint64_t)VM_KERNEL_ADDRPERM(inm), _igmp_inet_buf,
1369 (inm_is_ifp_detached(inm) ? "null" : inm->inm_ifp->if_name),
1370 inm->inm_ifp->if_unit, (uint64_t)VM_KERNEL_ADDRPERM(imf)));
1371
1372 /*
1373 * If no imf was specified (i.e. kernel consumer),
1374 * fake one up and assume it is an ASM join.
1375 */
1376 if (imf == NULL) {
1377 imf_init(&timf, MCAST_EXCLUDE, MCAST_UNDEFINED);
1378 imf = &timf;
1379 }
1380
1381 /*
1382 * Begin state merge transaction at IGMP layer.
1383 *
1384 * As this particular invocation should not cause any memory
1385 * to be allocated, and there is no opportunity to roll back
1386 * the transaction, it MUST NOT fail.
1387 */
1388 IGMP_PRINTF(("%s: merge inm state\n", __func__));
1389
1390 error = inm_merge(inm, imf);
1391 KASSERT(error == 0, ("%s: failed to merge inm state\n", __func__));
1392
1393 IGMP_PRINTF(("%s: doing igmp downcall\n", __func__));
1394 error = igmp_change_state(inm, &itp);
1395 #if IGMP_DEBUG
1396 if (error)
1397 IGMP_PRINTF(("%s: failed igmp downcall\n", __func__));
1398 #endif
1399 lastref = in_multi_detach(inm);
1400 VERIFY(!lastref || (!(inm->inm_debug & IFD_ATTACHED) &&
1401 inm->inm_reqcnt == 0));
1402 INM_UNLOCK(inm);
1403 in_multihead_lock_done();
1404
1405 if (lastref)
1406 INM_REMREF(inm); /* for in_multihead list */
1407
1408 /* schedule timer now that we've dropped the lock(s) */
1409 igmp_set_timeout(&itp);
1410
1411 return (error);
1412 }
1413
1414 /*
1415 * Join an IPv4 multicast group in (*,G) exclusive mode.
1416 * The group must be a 224.0.0.0/24 link-scope group.
1417 * This KPI is for legacy kernel consumers only.
1418 */
1419 struct in_multi *
1420 in_addmulti(struct in_addr *ap, struct ifnet *ifp)
1421 {
1422 struct in_multi *pinm = NULL;
1423 int error;
1424
1425 KASSERT(IN_LOCAL_GROUP(ntohl(ap->s_addr)),
1426 ("%s: %s not in 224.0.0.0/24\n", __func__, inet_ntoa(*ap)));
1427
1428 error = in_joingroup(ifp, ap, NULL, &pinm);
1429 VERIFY(pinm != NULL || error != 0);
1430
1431 return (pinm);
1432 }
1433
1434 /*
1435 * Leave an IPv4 multicast group, assumed to be in exclusive (*,G) mode.
1436 * This KPI is for legacy kernel consumers only.
1437 */
1438 void
1439 in_delmulti(struct in_multi *inm)
1440 {
1441
1442 (void) in_leavegroup(inm, NULL);
1443 }
1444
1445 /*
1446 * Block or unblock an ASM multicast source on an inpcb.
1447 * This implements the delta-based API described in RFC 3678.
1448 *
1449 * The delta-based API applies only to exclusive-mode memberships.
1450 * An IGMP downcall will be performed.
1451 *
1452 * Return 0 if successful, otherwise return an appropriate error code.
1453 */
1454 static int
1455 inp_block_unblock_source(struct inpcb *inp, struct sockopt *sopt)
1456 {
1457 struct group_source_req gsr;
1458 sockunion_t *gsa, *ssa;
1459 struct ifnet *ifp;
1460 struct in_mfilter *imf;
1461 struct ip_moptions *imo;
1462 struct in_msource *ims;
1463 struct in_multi *inm;
1464 size_t idx;
1465 uint16_t fmode;
1466 int error, doblock;
1467 unsigned int ifindex = 0;
1468 struct igmp_tparams itp;
1469
1470 bzero(&itp, sizeof (itp));
1471 ifp = NULL;
1472 error = 0;
1473 doblock = 0;
1474
1475 memset(&gsr, 0, sizeof(struct group_source_req));
1476 gsa = (sockunion_t *)&gsr.gsr_group;
1477 ssa = (sockunion_t *)&gsr.gsr_source;
1478
1479 switch (sopt->sopt_name) {
1480 case IP_BLOCK_SOURCE:
1481 case IP_UNBLOCK_SOURCE: {
1482 struct ip_mreq_source mreqs;
1483
1484 error = sooptcopyin(sopt, &mreqs,
1485 sizeof(struct ip_mreq_source),
1486 sizeof(struct ip_mreq_source));
1487 if (error)
1488 return (error);
1489
1490 gsa->sin.sin_family = AF_INET;
1491 gsa->sin.sin_len = sizeof(struct sockaddr_in);
1492 gsa->sin.sin_addr = mreqs.imr_multiaddr;
1493
1494 ssa->sin.sin_family = AF_INET;
1495 ssa->sin.sin_len = sizeof(struct sockaddr_in);
1496 ssa->sin.sin_addr = mreqs.imr_sourceaddr;
1497
1498 if (!in_nullhost(mreqs.imr_interface))
1499 ifp = ip_multicast_if(&mreqs.imr_interface, &ifindex);
1500
1501 if (sopt->sopt_name == IP_BLOCK_SOURCE)
1502 doblock = 1;
1503
1504 IGMP_INET_PRINTF(mreqs.imr_interface,
1505 ("%s: imr_interface = %s, ifp = 0x%llx\n", __func__,
1506 _igmp_inet_buf, (uint64_t)VM_KERNEL_ADDRPERM(ifp)));
1507 break;
1508 }
1509
1510 case MCAST_BLOCK_SOURCE:
1511 case MCAST_UNBLOCK_SOURCE:
1512 error = sooptcopyin(sopt, &gsr,
1513 sizeof(struct group_source_req),
1514 sizeof(struct group_source_req));
1515 if (error)
1516 return (error);
1517
1518 if (gsa->sin.sin_family != AF_INET ||
1519 gsa->sin.sin_len != sizeof(struct sockaddr_in))
1520 return (EINVAL);
1521
1522 if (ssa->sin.sin_family != AF_INET ||
1523 ssa->sin.sin_len != sizeof(struct sockaddr_in))
1524 return (EINVAL);
1525
1526 ifnet_head_lock_shared();
1527 if (gsr.gsr_interface == 0 ||
1528 (u_int)if_index < gsr.gsr_interface) {
1529 ifnet_head_done();
1530 return (EADDRNOTAVAIL);
1531 }
1532
1533 ifp = ifindex2ifnet[gsr.gsr_interface];
1534 ifnet_head_done();
1535
1536 if (ifp == NULL)
1537 return (EADDRNOTAVAIL);
1538
1539 if (sopt->sopt_name == MCAST_BLOCK_SOURCE)
1540 doblock = 1;
1541 break;
1542
1543 default:
1544 IGMP_PRINTF(("%s: unknown sopt_name %d\n",
1545 __func__, sopt->sopt_name));
1546 return (EOPNOTSUPP);
1547 break;
1548 }
1549
1550 if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
1551 return (EINVAL);
1552
1553 /*
1554 * Check if we are actually a member of this group.
1555 */
1556 imo = inp_findmoptions(inp);
1557 if (imo == NULL)
1558 return (ENOMEM);
1559
1560 IMO_LOCK(imo);
1561 idx = imo_match_group(imo, ifp, &gsa->sa);
1562 if (idx == (size_t)-1 || imo->imo_mfilters == NULL) {
1563 error = EADDRNOTAVAIL;
1564 goto out_imo_locked;
1565 }
1566
1567 VERIFY(imo->imo_mfilters != NULL);
1568 imf = &imo->imo_mfilters[idx];
1569 inm = imo->imo_membership[idx];
1570
1571 /*
1572 * Attempting to use the delta-based API on an
1573 * non exclusive-mode membership is an error.
1574 */
1575 fmode = imf->imf_st[0];
1576 if (fmode != MCAST_EXCLUDE) {
1577 error = EINVAL;
1578 goto out_imo_locked;
1579 }
1580
1581 /*
1582 * Deal with error cases up-front:
1583 * Asked to block, but already blocked; or
1584 * Asked to unblock, but nothing to unblock.
1585 * If adding a new block entry, allocate it.
1586 */
1587 ims = imo_match_source(imo, idx, &ssa->sa);
1588 if ((ims != NULL && doblock) || (ims == NULL && !doblock)) {
1589 IGMP_INET_PRINTF(ssa->sin.sin_addr,
1590 ("%s: source %s %spresent\n", __func__,
1591 _igmp_inet_buf, doblock ? "" : "not "));
1592 error = EADDRNOTAVAIL;
1593 goto out_imo_locked;
1594 }
1595
1596 /*
1597 * Begin state merge transaction at socket layer.
1598 */
1599 if (doblock) {
1600 IGMP_PRINTF(("%s: %s source\n", __func__, "block"));
1601 ims = imf_graft(imf, fmode, &ssa->sin);
1602 if (ims == NULL)
1603 error = ENOMEM;
1604 } else {
1605 IGMP_PRINTF(("%s: %s source\n", __func__, "allow"));
1606 error = imf_prune(imf, &ssa->sin);
1607 }
1608
1609 if (error) {
1610 IGMP_PRINTF(("%s: merge imf state failed\n", __func__));
1611 goto out_imf_rollback;
1612 }
1613
1614 /*
1615 * Begin state merge transaction at IGMP layer.
1616 */
1617 INM_LOCK(inm);
1618 IGMP_PRINTF(("%s: merge inm state\n", __func__));
1619 error = inm_merge(inm, imf);
1620 if (error) {
1621 IGMP_PRINTF(("%s: failed to merge inm state\n", __func__));
1622 INM_UNLOCK(inm);
1623 goto out_imf_rollback;
1624 }
1625
1626 IGMP_PRINTF(("%s: doing igmp downcall\n", __func__));
1627 error = igmp_change_state(inm, &itp);
1628 INM_UNLOCK(inm);
1629 #if IGMP_DEBUG
1630 if (error)
1631 IGMP_PRINTF(("%s: failed igmp downcall\n", __func__));
1632 #endif
1633
1634 out_imf_rollback:
1635 if (error)
1636 imf_rollback(imf);
1637 else
1638 imf_commit(imf);
1639
1640 imf_reap(imf);
1641
1642 out_imo_locked:
1643 IMO_UNLOCK(imo);
1644 IMO_REMREF(imo); /* from inp_findmoptions() */
1645
1646 /* schedule timer now that we've dropped the lock(s) */
1647 igmp_set_timeout(&itp);
1648
1649 return (error);
1650 }
1651
1652 /*
1653 * Given an inpcb, return its multicast options structure pointer.
1654 *
1655 * Caller is responsible for locking the inpcb, and releasing the
1656 * extra reference held on the imo, upon a successful return.
1657 */
1658 static struct ip_moptions *
1659 inp_findmoptions(struct inpcb *inp)
1660 {
1661 struct ip_moptions *imo;
1662 struct in_multi **immp;
1663 struct in_mfilter *imfp;
1664 size_t idx;
1665
1666 if ((imo = inp->inp_moptions) != NULL) {
1667 IMO_ADDREF(imo); /* for caller */
1668 return (imo);
1669 }
1670
1671 imo = ip_allocmoptions(M_WAITOK);
1672 if (imo == NULL)
1673 return (NULL);
1674
1675 immp = _MALLOC(sizeof (*immp) * IP_MIN_MEMBERSHIPS, M_IPMOPTS,
1676 M_WAITOK | M_ZERO);
1677 if (immp == NULL) {
1678 IMO_REMREF(imo);
1679 return (NULL);
1680 }
1681
1682 imfp = _MALLOC(sizeof (struct in_mfilter) * IP_MIN_MEMBERSHIPS,
1683 M_INMFILTER, M_WAITOK | M_ZERO);
1684 if (imfp == NULL) {
1685 _FREE(immp, M_IPMOPTS);
1686 IMO_REMREF(imo);
1687 return (NULL);
1688 }
1689
1690 imo->imo_multicast_ifp = NULL;
1691 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1692 imo->imo_multicast_vif = -1;
1693 imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1694 imo->imo_multicast_loop = in_mcast_loop;
1695 imo->imo_num_memberships = 0;
1696 imo->imo_max_memberships = IP_MIN_MEMBERSHIPS;
1697 imo->imo_membership = immp;
1698
1699 /* Initialize per-group source filters. */
1700 for (idx = 0; idx < IP_MIN_MEMBERSHIPS; idx++)
1701 imf_init(&imfp[idx], MCAST_UNDEFINED, MCAST_EXCLUDE);
1702
1703 imo->imo_mfilters = imfp;
1704 inp->inp_moptions = imo; /* keep reference from ip_allocmoptions() */
1705 IMO_ADDREF(imo); /* for caller */
1706
1707 return (imo);
1708 }
1709 /*
1710 * Atomically get source filters on a socket for an IPv4 multicast group.
1711 */
1712 static int
1713 inp_get_source_filters(struct inpcb *inp, struct sockopt *sopt)
1714 {
1715 struct __msfilterreq64 msfr, msfr64;
1716 struct __msfilterreq32 msfr32;
1717 sockunion_t *gsa;
1718 struct ifnet *ifp;
1719 struct ip_moptions *imo;
1720 struct in_mfilter *imf;
1721 struct ip_msource *ims;
1722 struct in_msource *lims;
1723 struct sockaddr_in *psin;
1724 struct sockaddr_storage *ptss;
1725 struct sockaddr_storage *tss;
1726 int error;
1727 size_t idx, nsrcs, ncsrcs;
1728 user_addr_t tmp_ptr;
1729
1730 imo = inp->inp_moptions;
1731 VERIFY(imo != NULL);
1732
1733 if (IS_64BIT_PROCESS(current_proc())) {
1734 error = sooptcopyin(sopt, &msfr64,
1735 sizeof(struct __msfilterreq64),
1736 sizeof(struct __msfilterreq64));
1737 if (error)
1738 return (error);
1739 /* we never use msfr.msfr_srcs; */
1740 memcpy(&msfr, &msfr64, sizeof(msfr));
1741 } else {
1742 error = sooptcopyin(sopt, &msfr32,
1743 sizeof(struct __msfilterreq32),
1744 sizeof(struct __msfilterreq32));
1745 if (error)
1746 return (error);
1747 /* we never use msfr.msfr_srcs; */
1748 memcpy(&msfr, &msfr32, sizeof(msfr));
1749 }
1750
1751 ifnet_head_lock_shared();
1752 if (msfr.msfr_ifindex == 0 || (u_int)if_index < msfr.msfr_ifindex) {
1753 ifnet_head_done();
1754 return (EADDRNOTAVAIL);
1755 }
1756
1757 ifp = ifindex2ifnet[msfr.msfr_ifindex];
1758 ifnet_head_done();
1759
1760 if (ifp == NULL)
1761 return (EADDRNOTAVAIL);
1762
1763 if ((size_t) msfr.msfr_nsrcs >
1764 UINT32_MAX / sizeof(struct sockaddr_storage))
1765 msfr.msfr_nsrcs = UINT32_MAX / sizeof(struct sockaddr_storage);
1766
1767 if (msfr.msfr_nsrcs > in_mcast_maxsocksrc)
1768 msfr.msfr_nsrcs = in_mcast_maxsocksrc;
1769
1770 IMO_LOCK(imo);
1771 /*
1772 * Lookup group on the socket.
1773 */
1774 gsa = (sockunion_t *)&msfr.msfr_group;
1775 idx = imo_match_group(imo, ifp, &gsa->sa);
1776 if (idx == (size_t)-1 || imo->imo_mfilters == NULL) {
1777 IMO_UNLOCK(imo);
1778 return (EADDRNOTAVAIL);
1779 }
1780 imf = &imo->imo_mfilters[idx];
1781
1782 /*
1783 * Ignore memberships which are in limbo.
1784 */
1785 if (imf->imf_st[1] == MCAST_UNDEFINED) {
1786 IMO_UNLOCK(imo);
1787 return (EAGAIN);
1788 }
1789 msfr.msfr_fmode = imf->imf_st[1];
1790
1791 /*
1792 * If the user specified a buffer, copy out the source filter
1793 * entries to userland gracefully.
1794 * We only copy out the number of entries which userland
1795 * has asked for, but we always tell userland how big the
1796 * buffer really needs to be.
1797 */
1798
1799 if (IS_64BIT_PROCESS(current_proc()))
1800 tmp_ptr = msfr64.msfr_srcs;
1801 else
1802 tmp_ptr = CAST_USER_ADDR_T(msfr32.msfr_srcs);
1803
1804 tss = NULL;
1805 if (tmp_ptr != USER_ADDR_NULL && msfr.msfr_nsrcs > 0) {
1806 tss = _MALLOC((size_t) msfr.msfr_nsrcs * sizeof(*tss),
1807 M_TEMP, M_WAITOK | M_ZERO);
1808 if (tss == NULL) {
1809 IMO_UNLOCK(imo);
1810 return (ENOBUFS);
1811 }
1812 bzero(tss, (size_t) msfr.msfr_nsrcs * sizeof(*tss));
1813 }
1814
1815 /*
1816 * Count number of sources in-mode at t0.
1817 * If buffer space exists and remains, copy out source entries.
1818 */
1819 nsrcs = msfr.msfr_nsrcs;
1820 ncsrcs = 0;
1821 ptss = tss;
1822 RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
1823 lims = (struct in_msource *)ims;
1824 if (lims->imsl_st[0] == MCAST_UNDEFINED ||
1825 lims->imsl_st[0] != imf->imf_st[0])
1826 continue;
1827 if (tss != NULL && nsrcs > 0) {
1828 psin = (struct sockaddr_in *)ptss;
1829 psin->sin_family = AF_INET;
1830 psin->sin_len = sizeof(struct sockaddr_in);
1831 psin->sin_addr.s_addr = htonl(lims->ims_haddr);
1832 psin->sin_port = 0;
1833 ++ptss;
1834 --nsrcs;
1835 ++ncsrcs;
1836 }
1837 }
1838
1839 IMO_UNLOCK(imo);
1840
1841 if (tss != NULL) {
1842 error = copyout(tss, tmp_ptr, ncsrcs * sizeof(*tss));
1843 FREE(tss, M_TEMP);
1844 if (error)
1845 return (error);
1846 }
1847
1848 msfr.msfr_nsrcs = ncsrcs;
1849 if (IS_64BIT_PROCESS(current_proc())) {
1850 msfr64.msfr_ifindex = msfr.msfr_ifindex;
1851 msfr64.msfr_fmode = msfr.msfr_fmode;
1852 msfr64.msfr_nsrcs = msfr.msfr_nsrcs;
1853 memcpy(&msfr64.msfr_group, &msfr.msfr_group,
1854 sizeof(struct sockaddr_storage));
1855 error = sooptcopyout(sopt, &msfr64,
1856 sizeof(struct __msfilterreq64));
1857 } else {
1858 msfr32.msfr_ifindex = msfr.msfr_ifindex;
1859 msfr32.msfr_fmode = msfr.msfr_fmode;
1860 msfr32.msfr_nsrcs = msfr.msfr_nsrcs;
1861 memcpy(&msfr64.msfr_group, &msfr.msfr_group,
1862 sizeof(struct sockaddr_storage));
1863 error = sooptcopyout(sopt, &msfr32,
1864 sizeof(struct __msfilterreq32));
1865 }
1866
1867 return (error);
1868 }
1869
1870 /*
1871 * Return the IP multicast options in response to user getsockopt().
1872 */
1873 int
1874 inp_getmoptions(struct inpcb *inp, struct sockopt *sopt)
1875 {
1876 struct ip_mreqn mreqn;
1877 struct ip_moptions *imo;
1878 struct ifnet *ifp;
1879 struct in_ifaddr *ia;
1880 int error, optval;
1881 unsigned int ifindex;
1882 u_char coptval;
1883
1884 imo = inp->inp_moptions;
1885 /*
1886 * If socket is neither of type SOCK_RAW or SOCK_DGRAM,
1887 * or is a divert socket, reject it.
1888 */
1889 if (SOCK_PROTO(inp->inp_socket) == IPPROTO_DIVERT ||
1890 (SOCK_TYPE(inp->inp_socket) != SOCK_RAW &&
1891 SOCK_TYPE(inp->inp_socket) != SOCK_DGRAM)) {
1892 return (EOPNOTSUPP);
1893 }
1894
1895 error = 0;
1896 switch (sopt->sopt_name) {
1897 #ifdef MROUTING
1898 case IP_MULTICAST_VIF:
1899 if (imo != NULL) {
1900 IMO_LOCK(imo);
1901 optval = imo->imo_multicast_vif;
1902 IMO_UNLOCK(imo);
1903 } else
1904 optval = -1;
1905 error = sooptcopyout(sopt, &optval, sizeof(int));
1906 break;
1907 #endif /* MROUTING */
1908
1909 case IP_MULTICAST_IF:
1910 memset(&mreqn, 0, sizeof(struct ip_mreqn));
1911 if (imo != NULL) {
1912 IMO_LOCK(imo);
1913 ifp = imo->imo_multicast_ifp;
1914 if (!in_nullhost(imo->imo_multicast_addr)) {
1915 mreqn.imr_address = imo->imo_multicast_addr;
1916 } else if (ifp != NULL) {
1917 mreqn.imr_ifindex = ifp->if_index;
1918 IFP_TO_IA(ifp, ia);
1919 if (ia != NULL) {
1920 IFA_LOCK_SPIN(&ia->ia_ifa);
1921 mreqn.imr_address =
1922 IA_SIN(ia)->sin_addr;
1923 IFA_UNLOCK(&ia->ia_ifa);
1924 IFA_REMREF(&ia->ia_ifa);
1925 }
1926 }
1927 IMO_UNLOCK(imo);
1928 }
1929 if (sopt->sopt_valsize == sizeof(struct ip_mreqn)) {
1930 error = sooptcopyout(sopt, &mreqn,
1931 sizeof(struct ip_mreqn));
1932 } else {
1933 error = sooptcopyout(sopt, &mreqn.imr_address,
1934 sizeof(struct in_addr));
1935 }
1936 break;
1937
1938 case IP_MULTICAST_IFINDEX:
1939 if (imo != NULL)
1940 IMO_LOCK(imo);
1941 if (imo == NULL || imo->imo_multicast_ifp == NULL) {
1942 ifindex = 0;
1943 } else {
1944 ifindex = imo->imo_multicast_ifp->if_index;
1945 }
1946 if (imo != NULL)
1947 IMO_UNLOCK(imo);
1948 error = sooptcopyout(sopt, &ifindex, sizeof (ifindex));
1949 break;
1950
1951 case IP_MULTICAST_TTL:
1952 if (imo == NULL)
1953 optval = coptval = IP_DEFAULT_MULTICAST_TTL;
1954 else {
1955 IMO_LOCK(imo);
1956 optval = coptval = imo->imo_multicast_ttl;
1957 IMO_UNLOCK(imo);
1958 }
1959 if (sopt->sopt_valsize == sizeof(u_char))
1960 error = sooptcopyout(sopt, &coptval, sizeof(u_char));
1961 else
1962 error = sooptcopyout(sopt, &optval, sizeof(int));
1963 break;
1964
1965 case IP_MULTICAST_LOOP:
1966 if (imo == 0)
1967 optval = coptval = IP_DEFAULT_MULTICAST_LOOP;
1968 else {
1969 IMO_LOCK(imo);
1970 optval = coptval = imo->imo_multicast_loop;
1971 IMO_UNLOCK(imo);
1972 }
1973 if (sopt->sopt_valsize == sizeof(u_char))
1974 error = sooptcopyout(sopt, &coptval, sizeof(u_char));
1975 else
1976 error = sooptcopyout(sopt, &optval, sizeof(int));
1977 break;
1978
1979 case IP_MSFILTER:
1980 if (imo == NULL) {
1981 error = EADDRNOTAVAIL;
1982 } else {
1983 error = inp_get_source_filters(inp, sopt);
1984 }
1985 break;
1986
1987 default:
1988 error = ENOPROTOOPT;
1989 break;
1990 }
1991
1992 return (error);
1993 }
1994
1995 /*
1996 * Look up the ifnet to use for a multicast group membership,
1997 * given the IPv4 address of an interface, and the IPv4 group address.
1998 *
1999 * This routine exists to support legacy multicast applications
2000 * which do not understand that multicast memberships are scoped to
2001 * specific physical links in the networking stack, or which need
2002 * to join link-scope groups before IPv4 addresses are configured.
2003 *
2004 * If inp is non-NULL and is bound to an interface, use this socket's
2005 * inp_boundif for any required routing table lookup.
2006 *
2007 * If the route lookup fails, attempt to use the first non-loopback
2008 * interface with multicast capability in the system as a
2009 * last resort. The legacy IPv4 ASM API requires that we do
2010 * this in order to allow groups to be joined when the routing
2011 * table has not yet been populated during boot.
2012 *
2013 * Returns NULL if no ifp could be found.
2014 *
2015 */
2016 static struct ifnet *
2017 inp_lookup_mcast_ifp(const struct inpcb *inp,
2018 const struct sockaddr_in *gsin, const struct in_addr ina)
2019 {
2020 struct ifnet *ifp;
2021 unsigned int ifindex = 0;
2022
2023 VERIFY(gsin->sin_family == AF_INET);
2024 VERIFY(IN_MULTICAST(ntohl(gsin->sin_addr.s_addr)));
2025
2026 ifp = NULL;
2027 if (!in_nullhost(ina)) {
2028 struct in_addr new_ina;
2029 memcpy(&new_ina, &ina, sizeof(struct in_addr));
2030 ifp = ip_multicast_if(&new_ina, &ifindex);
2031 } else {
2032 struct route ro;
2033 unsigned int ifscope = IFSCOPE_NONE;
2034
2035 if (inp != NULL && (inp->inp_flags & INP_BOUND_IF))
2036 ifscope = inp->inp_boundifp->if_index;
2037
2038 bzero(&ro, sizeof (ro));
2039 memcpy(&ro.ro_dst, gsin, sizeof(struct sockaddr_in));
2040 rtalloc_scoped_ign(&ro, 0, ifscope);
2041 if (ro.ro_rt != NULL) {
2042 ifp = ro.ro_rt->rt_ifp;
2043 VERIFY(ifp != NULL);
2044 } else {
2045 struct in_ifaddr *ia;
2046 struct ifnet *mifp;
2047
2048 mifp = NULL;
2049 lck_rw_lock_shared(in_ifaddr_rwlock);
2050 TAILQ_FOREACH(ia, &in_ifaddrhead, ia_link) {
2051 IFA_LOCK_SPIN(&ia->ia_ifa);
2052 mifp = ia->ia_ifp;
2053 IFA_UNLOCK(&ia->ia_ifa);
2054 if (!(mifp->if_flags & IFF_LOOPBACK) &&
2055 (mifp->if_flags & IFF_MULTICAST)) {
2056 ifp = mifp;
2057 break;
2058 }
2059 }
2060 lck_rw_done(in_ifaddr_rwlock);
2061 }
2062 ROUTE_RELEASE(&ro);
2063 }
2064
2065 return (ifp);
2066 }
2067
2068 /*
2069 * Join an IPv4 multicast group, possibly with a source.
2070 *
2071 * NB: sopt->sopt_val might point to the kernel address space. This means that
2072 * we were called by the IPv6 stack due to the presence of an IPv6 v4 mapped
2073 * address. In this scenario, sopt_p points to kernproc and sooptcopyin() will
2074 * just issue an in-kernel memcpy.
2075 */
2076 int
2077 inp_join_group(struct inpcb *inp, struct sockopt *sopt)
2078 {
2079 struct group_source_req gsr;
2080 sockunion_t *gsa, *ssa;
2081 struct ifnet *ifp;
2082 struct in_mfilter *imf;
2083 struct ip_moptions *imo;
2084 struct in_multi *inm = NULL;
2085 struct in_msource *lims;
2086 size_t idx;
2087 int error, is_new;
2088 struct igmp_tparams itp;
2089
2090 bzero(&itp, sizeof (itp));
2091 ifp = NULL;
2092 imf = NULL;
2093 error = 0;
2094 is_new = 0;
2095
2096 memset(&gsr, 0, sizeof(struct group_source_req));
2097 gsa = (sockunion_t *)&gsr.gsr_group;
2098 gsa->ss.ss_family = AF_UNSPEC;
2099 ssa = (sockunion_t *)&gsr.gsr_source;
2100 ssa->ss.ss_family = AF_UNSPEC;
2101
2102 switch (sopt->sopt_name) {
2103 case IP_ADD_MEMBERSHIP:
2104 case IP_ADD_SOURCE_MEMBERSHIP: {
2105 struct ip_mreq_source mreqs;
2106
2107 if (sopt->sopt_name == IP_ADD_MEMBERSHIP) {
2108 error = sooptcopyin(sopt, &mreqs,
2109 sizeof(struct ip_mreq),
2110 sizeof(struct ip_mreq));
2111 /*
2112 * Do argument switcharoo from ip_mreq into
2113 * ip_mreq_source to avoid using two instances.
2114 */
2115 mreqs.imr_interface = mreqs.imr_sourceaddr;
2116 mreqs.imr_sourceaddr.s_addr = INADDR_ANY;
2117 } else if (sopt->sopt_name == IP_ADD_SOURCE_MEMBERSHIP) {
2118 error = sooptcopyin(sopt, &mreqs,
2119 sizeof(struct ip_mreq_source),
2120 sizeof(struct ip_mreq_source));
2121 }
2122 if (error) {
2123 IGMP_PRINTF(("%s: error copyin IP_ADD_MEMBERSHIP/"
2124 "IP_ADD_SOURCE_MEMBERSHIP %d err=%d\n",
2125 __func__, sopt->sopt_name, error));
2126 return (error);
2127 }
2128
2129 gsa->sin.sin_family = AF_INET;
2130 gsa->sin.sin_len = sizeof(struct sockaddr_in);
2131 gsa->sin.sin_addr = mreqs.imr_multiaddr;
2132
2133 if (sopt->sopt_name == IP_ADD_SOURCE_MEMBERSHIP) {
2134 ssa->sin.sin_family = AF_INET;
2135 ssa->sin.sin_len = sizeof(struct sockaddr_in);
2136 ssa->sin.sin_addr = mreqs.imr_sourceaddr;
2137 }
2138
2139 if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
2140 return (EINVAL);
2141
2142 ifp = inp_lookup_mcast_ifp(inp, &gsa->sin,
2143 mreqs.imr_interface);
2144 IGMP_INET_PRINTF(mreqs.imr_interface,
2145 ("%s: imr_interface = %s, ifp = 0x%llx\n", __func__,
2146 _igmp_inet_buf, (uint64_t)VM_KERNEL_ADDRPERM(ifp)));
2147 break;
2148 }
2149
2150 case MCAST_JOIN_GROUP:
2151 case MCAST_JOIN_SOURCE_GROUP:
2152 if (sopt->sopt_name == MCAST_JOIN_GROUP) {
2153 error = sooptcopyin(sopt, &gsr,
2154 sizeof(struct group_req),
2155 sizeof(struct group_req));
2156 } else if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) {
2157 error = sooptcopyin(sopt, &gsr,
2158 sizeof(struct group_source_req),
2159 sizeof(struct group_source_req));
2160 }
2161 if (error)
2162 return (error);
2163
2164 if (gsa->sin.sin_family != AF_INET ||
2165 gsa->sin.sin_len != sizeof(struct sockaddr_in))
2166 return (EINVAL);
2167
2168 /*
2169 * Overwrite the port field if present, as the sockaddr
2170 * being copied in may be matched with a binary comparison.
2171 */
2172 gsa->sin.sin_port = 0;
2173 if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) {
2174 if (ssa->sin.sin_family != AF_INET ||
2175 ssa->sin.sin_len != sizeof(struct sockaddr_in))
2176 return (EINVAL);
2177 ssa->sin.sin_port = 0;
2178 }
2179
2180 if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
2181 return (EINVAL);
2182
2183 ifnet_head_lock_shared();
2184 if (gsr.gsr_interface == 0 ||
2185 (u_int)if_index < gsr.gsr_interface) {
2186 ifnet_head_done();
2187 return (EADDRNOTAVAIL);
2188 }
2189 ifp = ifindex2ifnet[gsr.gsr_interface];
2190 ifnet_head_done();
2191
2192 break;
2193
2194 default:
2195 IGMP_PRINTF(("%s: unknown sopt_name %d\n",
2196 __func__, sopt->sopt_name));
2197 return (EOPNOTSUPP);
2198 break;
2199 }
2200
2201 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0)
2202 return (EADDRNOTAVAIL);
2203
2204 imo = inp_findmoptions(inp);
2205 if (imo == NULL)
2206 return (ENOMEM);
2207
2208 IMO_LOCK(imo);
2209 idx = imo_match_group(imo, ifp, &gsa->sa);
2210 if (idx == (size_t)-1) {
2211 is_new = 1;
2212 } else {
2213 inm = imo->imo_membership[idx];
2214 imf = &imo->imo_mfilters[idx];
2215 if (ssa->ss.ss_family != AF_UNSPEC) {
2216 /*
2217 * MCAST_JOIN_SOURCE_GROUP on an exclusive membership
2218 * is an error. On an existing inclusive membership,
2219 * it just adds the source to the filter list.
2220 */
2221 if (imf->imf_st[1] != MCAST_INCLUDE) {
2222 error = EINVAL;
2223 goto out_imo_locked;
2224 }
2225 /*
2226 * Throw out duplicates.
2227 *
2228 * XXX FIXME: This makes a naive assumption that
2229 * even if entries exist for *ssa in this imf,
2230 * they will be rejected as dupes, even if they
2231 * are not valid in the current mode (in-mode).
2232 *
2233 * in_msource is transactioned just as for anything
2234 * else in SSM -- but note naive use of inm_graft()
2235 * below for allocating new filter entries.
2236 *
2237 * This is only an issue if someone mixes the
2238 * full-state SSM API with the delta-based API,
2239 * which is discouraged in the relevant RFCs.
2240 */
2241 lims = imo_match_source(imo, idx, &ssa->sa);
2242 if (lims != NULL /*&&
2243 lims->imsl_st[1] == MCAST_INCLUDE*/) {
2244 error = EADDRNOTAVAIL;
2245 goto out_imo_locked;
2246 }
2247 } else {
2248 /*
2249 * MCAST_JOIN_GROUP on an existing exclusive
2250 * membership is an error; return EADDRINUSE
2251 * to preserve 4.4BSD API idempotence, and
2252 * avoid tedious detour to code below.
2253 * NOTE: This is bending RFC 3678 a bit.
2254 *
2255 * On an existing inclusive membership, this is also
2256 * an error; if you want to change filter mode,
2257 * you must use the userland API setsourcefilter().
2258 * XXX We don't reject this for imf in UNDEFINED
2259 * state at t1, because allocation of a filter
2260 * is atomic with allocation of a membership.
2261 */
2262 error = EINVAL;
2263 /* See comments above for EADDRINUSE */
2264 if (imf->imf_st[1] == MCAST_EXCLUDE)
2265 error = EADDRINUSE;
2266 goto out_imo_locked;
2267 }
2268 }
2269
2270 /*
2271 * Begin state merge transaction at socket layer.
2272 */
2273
2274 if (is_new) {
2275 if (imo->imo_num_memberships == imo->imo_max_memberships) {
2276 error = imo_grow(imo, 0);
2277 if (error)
2278 goto out_imo_locked;
2279 }
2280 /*
2281 * Allocate the new slot upfront so we can deal with
2282 * grafting the new source filter in same code path
2283 * as for join-source on existing membership.
2284 */
2285 idx = imo->imo_num_memberships;
2286 imo->imo_membership[idx] = NULL;
2287 imo->imo_num_memberships++;
2288 VERIFY(imo->imo_mfilters != NULL);
2289 imf = &imo->imo_mfilters[idx];
2290 VERIFY(RB_EMPTY(&imf->imf_sources));
2291 }
2292
2293 /*
2294 * Graft new source into filter list for this inpcb's
2295 * membership of the group. The in_multi may not have
2296 * been allocated yet if this is a new membership, however,
2297 * the in_mfilter slot will be allocated and must be initialized.
2298 */
2299 if (ssa->ss.ss_family != AF_UNSPEC) {
2300 /* Membership starts in IN mode */
2301 if (is_new) {
2302 IGMP_PRINTF(("%s: new join w/source\n", __func__));
2303 imf_init(imf, MCAST_UNDEFINED, MCAST_INCLUDE);
2304 } else {
2305 IGMP_PRINTF(("%s: %s source\n", __func__, "allow"));
2306 }
2307 lims = imf_graft(imf, MCAST_INCLUDE, &ssa->sin);
2308 if (lims == NULL) {
2309 IGMP_PRINTF(("%s: merge imf state failed\n",
2310 __func__));
2311 error = ENOMEM;
2312 goto out_imo_free;
2313 }
2314 } else {
2315 /* No address specified; Membership starts in EX mode */
2316 if (is_new) {
2317 IGMP_PRINTF(("%s: new join w/o source\n", __func__));
2318 imf_init(imf, MCAST_UNDEFINED, MCAST_EXCLUDE);
2319 }
2320 }
2321
2322 /*
2323 * Begin state merge transaction at IGMP layer.
2324 */
2325
2326 if (is_new) {
2327 VERIFY(inm == NULL);
2328 error = in_joingroup(ifp, &gsa->sin.sin_addr, imf, &inm);
2329 VERIFY(inm != NULL || error != 0);
2330 if (error)
2331 goto out_imo_free;
2332 imo->imo_membership[idx] = inm; /* from in_joingroup() */
2333 } else {
2334 IGMP_PRINTF(("%s: merge inm state\n", __func__));
2335 INM_LOCK(inm);
2336 error = inm_merge(inm, imf);
2337 if (error) {
2338 IGMP_PRINTF(("%s: failed to merge inm state\n",
2339 __func__));
2340 INM_UNLOCK(inm);
2341 goto out_imf_rollback;
2342 }
2343 IGMP_PRINTF(("%s: doing igmp downcall\n", __func__));
2344 error = igmp_change_state(inm, &itp);
2345 INM_UNLOCK(inm);
2346 if (error) {
2347 IGMP_PRINTF(("%s: failed igmp downcall\n",
2348 __func__));
2349 goto out_imf_rollback;
2350 }
2351 }
2352
2353 out_imf_rollback:
2354 if (error) {
2355 imf_rollback(imf);
2356 if (is_new)
2357 imf_purge(imf);
2358 else
2359 imf_reap(imf);
2360 } else {
2361 imf_commit(imf);
2362 }
2363
2364 out_imo_free:
2365 if (error && is_new) {
2366 VERIFY(inm == NULL);
2367 imo->imo_membership[idx] = NULL;
2368 --imo->imo_num_memberships;
2369 }
2370
2371 out_imo_locked:
2372 IMO_UNLOCK(imo);
2373 IMO_REMREF(imo); /* from inp_findmoptions() */
2374
2375 /* schedule timer now that we've dropped the lock(s) */
2376 igmp_set_timeout(&itp);
2377
2378 return (error);
2379 }
2380
2381 /*
2382 * Leave an IPv4 multicast group on an inpcb, possibly with a source.
2383 *
2384 * NB: sopt->sopt_val might point to the kernel address space. Refer to the
2385 * block comment on top of inp_join_group() for more information.
2386 */
2387 int
2388 inp_leave_group(struct inpcb *inp, struct sockopt *sopt)
2389 {
2390 struct group_source_req gsr;
2391 struct ip_mreq_source mreqs;
2392 sockunion_t *gsa, *ssa;
2393 struct ifnet *ifp;
2394 struct in_mfilter *imf;
2395 struct ip_moptions *imo;
2396 struct in_msource *ims;
2397 struct in_multi *inm = NULL;
2398 size_t idx;
2399 int error, is_final;
2400 unsigned int ifindex = 0;
2401 struct igmp_tparams itp;
2402
2403 bzero(&itp, sizeof (itp));
2404 ifp = NULL;
2405 error = 0;
2406 is_final = 1;
2407
2408 memset(&gsr, 0, sizeof(struct group_source_req));
2409 gsa = (sockunion_t *)&gsr.gsr_group;
2410 gsa->ss.ss_family = AF_UNSPEC;
2411 ssa = (sockunion_t *)&gsr.gsr_source;
2412 ssa->ss.ss_family = AF_UNSPEC;
2413
2414 switch (sopt->sopt_name) {
2415 case IP_DROP_MEMBERSHIP:
2416 case IP_DROP_SOURCE_MEMBERSHIP:
2417 if (sopt->sopt_name == IP_DROP_MEMBERSHIP) {
2418 error = sooptcopyin(sopt, &mreqs,
2419 sizeof(struct ip_mreq),
2420 sizeof(struct ip_mreq));
2421 /*
2422 * Swap interface and sourceaddr arguments,
2423 * as ip_mreq and ip_mreq_source are laid
2424 * out differently.
2425 */
2426 mreqs.imr_interface = mreqs.imr_sourceaddr;
2427 mreqs.imr_sourceaddr.s_addr = INADDR_ANY;
2428 } else if (sopt->sopt_name == IP_DROP_SOURCE_MEMBERSHIP) {
2429 error = sooptcopyin(sopt, &mreqs,
2430 sizeof(struct ip_mreq_source),
2431 sizeof(struct ip_mreq_source));
2432 }
2433 if (error)
2434 return (error);
2435
2436 gsa->sin.sin_family = AF_INET;
2437 gsa->sin.sin_len = sizeof(struct sockaddr_in);
2438 gsa->sin.sin_addr = mreqs.imr_multiaddr;
2439
2440 if (sopt->sopt_name == IP_DROP_SOURCE_MEMBERSHIP) {
2441 ssa->sin.sin_family = AF_INET;
2442 ssa->sin.sin_len = sizeof(struct sockaddr_in);
2443 ssa->sin.sin_addr = mreqs.imr_sourceaddr;
2444 }
2445 /*
2446 * Attempt to look up hinted ifp from interface address.
2447 * Fallthrough with null ifp iff lookup fails, to
2448 * preserve 4.4BSD mcast API idempotence.
2449 * XXX NOTE WELL: The RFC 3678 API is preferred because
2450 * using an IPv4 address as a key is racy.
2451 */
2452 if (!in_nullhost(mreqs.imr_interface))
2453 ifp = ip_multicast_if(&mreqs.imr_interface, &ifindex);
2454
2455 IGMP_INET_PRINTF(mreqs.imr_interface,
2456 ("%s: imr_interface = %s, ifp = 0x%llx\n", __func__,
2457 _igmp_inet_buf, (uint64_t)VM_KERNEL_ADDRPERM(ifp)));
2458
2459 break;
2460
2461 case MCAST_LEAVE_GROUP:
2462 case MCAST_LEAVE_SOURCE_GROUP:
2463 if (sopt->sopt_name == MCAST_LEAVE_GROUP) {
2464 error = sooptcopyin(sopt, &gsr,
2465 sizeof(struct group_req),
2466 sizeof(struct group_req));
2467 } else if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) {
2468 error = sooptcopyin(sopt, &gsr,
2469 sizeof(struct group_source_req),
2470 sizeof(struct group_source_req));
2471 }
2472 if (error)
2473 return (error);
2474
2475 if (gsa->sin.sin_family != AF_INET ||
2476 gsa->sin.sin_len != sizeof(struct sockaddr_in))
2477 return (EINVAL);
2478
2479 if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) {
2480 if (ssa->sin.sin_family != AF_INET ||
2481 ssa->sin.sin_len != sizeof(struct sockaddr_in))
2482 return (EINVAL);
2483 }
2484
2485 ifnet_head_lock_shared();
2486 if (gsr.gsr_interface == 0 ||
2487 (u_int)if_index < gsr.gsr_interface) {
2488 ifnet_head_done();
2489 return (EADDRNOTAVAIL);
2490 }
2491
2492 ifp = ifindex2ifnet[gsr.gsr_interface];
2493 ifnet_head_done();
2494 break;
2495
2496 default:
2497 IGMP_PRINTF(("%s: unknown sopt_name %d\n",
2498 __func__, sopt->sopt_name));
2499 return (EOPNOTSUPP);
2500 break;
2501 }
2502
2503 if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
2504 return (EINVAL);
2505
2506 /*
2507 * Find the membership in the membership array.
2508 */
2509 imo = inp_findmoptions(inp);
2510 if (imo == NULL)
2511 return (ENOMEM);
2512
2513 IMO_LOCK(imo);
2514 idx = imo_match_group(imo, ifp, &gsa->sa);
2515 if (idx == (size_t)-1) {
2516 error = EADDRNOTAVAIL;
2517 goto out_locked;
2518 }
2519 inm = imo->imo_membership[idx];
2520 imf = &imo->imo_mfilters[idx];
2521
2522 if (ssa->ss.ss_family != AF_UNSPEC) {
2523 IGMP_PRINTF(("%s: opt=%d is_final=0\n", __func__,
2524 sopt->sopt_name));
2525 is_final = 0;
2526 }
2527
2528 /*
2529 * Begin state merge transaction at socket layer.
2530 */
2531
2532 /*
2533 * If we were instructed only to leave a given source, do so.
2534 * MCAST_LEAVE_SOURCE_GROUP is only valid for inclusive memberships.
2535 */
2536 if (is_final) {
2537 imf_leave(imf);
2538 } else {
2539 if (imf->imf_st[0] == MCAST_EXCLUDE) {
2540 error = EADDRNOTAVAIL;
2541 goto out_locked;
2542 }
2543 ims = imo_match_source(imo, idx, &ssa->sa);
2544 if (ims == NULL) {
2545 IGMP_INET_PRINTF(ssa->sin.sin_addr,
2546 ("%s: source %s %spresent\n", __func__,
2547 _igmp_inet_buf, "not "));
2548 error = EADDRNOTAVAIL;
2549 goto out_locked;
2550 }
2551 IGMP_PRINTF(("%s: %s source\n", __func__, "block"));
2552 error = imf_prune(imf, &ssa->sin);
2553 if (error) {
2554 IGMP_PRINTF(("%s: merge imf state failed\n",
2555 __func__));
2556 goto out_locked;
2557 }
2558 }
2559
2560 /*
2561 * Begin state merge transaction at IGMP layer.
2562 */
2563
2564 if (is_final) {
2565 /*
2566 * Give up the multicast address record to which
2567 * the membership points. Reference held in imo
2568 * will be released below.
2569 */
2570 (void) in_leavegroup(inm, imf);
2571 } else {
2572 IGMP_PRINTF(("%s: merge inm state\n", __func__));
2573 INM_LOCK(inm);
2574 error = inm_merge(inm, imf);
2575 if (error) {
2576 IGMP_PRINTF(("%s: failed to merge inm state\n",
2577 __func__));
2578 INM_UNLOCK(inm);
2579 goto out_imf_rollback;
2580 }
2581
2582 IGMP_PRINTF(("%s: doing igmp downcall\n", __func__));
2583 error = igmp_change_state(inm, &itp);
2584 if (error) {
2585 IGMP_PRINTF(("%s: failed igmp downcall\n", __func__));
2586 }
2587 INM_UNLOCK(inm);
2588 }
2589
2590 out_imf_rollback:
2591 if (error)
2592 imf_rollback(imf);
2593 else
2594 imf_commit(imf);
2595
2596 imf_reap(imf);
2597
2598 if (is_final) {
2599 /* Remove the gap in the membership and filter array. */
2600 VERIFY(inm == imo->imo_membership[idx]);
2601 imo->imo_membership[idx] = NULL;
2602 INM_REMREF(inm);
2603 for (++idx; idx < imo->imo_num_memberships; ++idx) {
2604 imo->imo_membership[idx-1] = imo->imo_membership[idx];
2605 imo->imo_mfilters[idx-1] = imo->imo_mfilters[idx];
2606 }
2607 imo->imo_num_memberships--;
2608 }
2609
2610 out_locked:
2611 IMO_UNLOCK(imo);
2612 IMO_REMREF(imo); /* from inp_findmoptions() */
2613
2614 /* schedule timer now that we've dropped the lock(s) */
2615 igmp_set_timeout(&itp);
2616
2617 return (error);
2618 }
2619
2620 /*
2621 * Select the interface for transmitting IPv4 multicast datagrams.
2622 *
2623 * Either an instance of struct in_addr or an instance of struct ip_mreqn
2624 * may be passed to this socket option. An address of INADDR_ANY or an
2625 * interface index of 0 is used to remove a previous selection.
2626 * When no interface is selected, one is chosen for every send.
2627 */
2628 static int
2629 inp_set_multicast_if(struct inpcb *inp, struct sockopt *sopt)
2630 {
2631 struct in_addr addr;
2632 struct ip_mreqn mreqn;
2633 struct ifnet *ifp;
2634 struct ip_moptions *imo;
2635 int error = 0 ;
2636 unsigned int ifindex = 0;
2637
2638 if (sopt->sopt_valsize == sizeof(struct ip_mreqn)) {
2639 /*
2640 * An interface index was specified using the
2641 * Linux-derived ip_mreqn structure.
2642 */
2643 error = sooptcopyin(sopt, &mreqn, sizeof(struct ip_mreqn),
2644 sizeof(struct ip_mreqn));
2645 if (error)
2646 return (error);
2647
2648 ifnet_head_lock_shared();
2649 if (mreqn.imr_ifindex < 0 || if_index < mreqn.imr_ifindex) {
2650 ifnet_head_done();
2651 return (EINVAL);
2652 }
2653
2654 if (mreqn.imr_ifindex == 0) {
2655 ifp = NULL;
2656 } else {
2657 ifp = ifindex2ifnet[mreqn.imr_ifindex];
2658 if (ifp == NULL) {
2659 ifnet_head_done();
2660 return (EADDRNOTAVAIL);
2661 }
2662 }
2663 ifnet_head_done();
2664 } else {
2665 /*
2666 * An interface was specified by IPv4 address.
2667 * This is the traditional BSD usage.
2668 */
2669 error = sooptcopyin(sopt, &addr, sizeof(struct in_addr),
2670 sizeof(struct in_addr));
2671 if (error)
2672 return (error);
2673 if (in_nullhost(addr)) {
2674 ifp = NULL;
2675 } else {
2676 ifp = ip_multicast_if(&addr, &ifindex);
2677 if (ifp == NULL) {
2678 IGMP_INET_PRINTF(addr,
2679 ("%s: can't find ifp for addr=%s\n",
2680 __func__, _igmp_inet_buf));
2681 return (EADDRNOTAVAIL);
2682 }
2683 }
2684 /* XXX remove? */
2685 #ifdef IGMP_DEBUG0
2686 IGMP_PRINTF(("%s: ifp = 0x%llx, addr = %s\n", __func__,
2687 (uint64_t)VM_KERNEL_ADDRPERM(ifp), inet_ntoa(addr)));
2688 #endif
2689 }
2690
2691 /* Reject interfaces which do not support multicast. */
2692 if (ifp != NULL && (ifp->if_flags & IFF_MULTICAST) == 0)
2693 return (EOPNOTSUPP);
2694
2695 imo = inp_findmoptions(inp);
2696 if (imo == NULL)
2697 return (ENOMEM);
2698
2699 IMO_LOCK(imo);
2700 imo->imo_multicast_ifp = ifp;
2701 if (ifindex)
2702 imo->imo_multicast_addr = addr;
2703 else
2704 imo->imo_multicast_addr.s_addr = INADDR_ANY;
2705 IMO_UNLOCK(imo);
2706 IMO_REMREF(imo); /* from inp_findmoptions() */
2707
2708 return (0);
2709 }
2710
2711 /*
2712 * Atomically set source filters on a socket for an IPv4 multicast group.
2713 */
2714 static int
2715 inp_set_source_filters(struct inpcb *inp, struct sockopt *sopt)
2716 {
2717 struct __msfilterreq64 msfr, msfr64;
2718 struct __msfilterreq32 msfr32;
2719 sockunion_t *gsa;
2720 struct ifnet *ifp;
2721 struct in_mfilter *imf;
2722 struct ip_moptions *imo;
2723 struct in_multi *inm;
2724 size_t idx;
2725 int error;
2726 user_addr_t tmp_ptr;
2727 struct igmp_tparams itp;
2728
2729 bzero(&itp, sizeof (itp));
2730
2731 if (IS_64BIT_PROCESS(current_proc())) {
2732 error = sooptcopyin(sopt, &msfr64,
2733 sizeof(struct __msfilterreq64),
2734 sizeof(struct __msfilterreq64));
2735 if (error)
2736 return (error);
2737 /* we never use msfr.msfr_srcs; */
2738 memcpy(&msfr, &msfr64, sizeof(msfr));
2739 } else {
2740 error = sooptcopyin(sopt, &msfr32,
2741 sizeof(struct __msfilterreq32),
2742 sizeof(struct __msfilterreq32));
2743 if (error)
2744 return (error);
2745 /* we never use msfr.msfr_srcs; */
2746 memcpy(&msfr, &msfr32, sizeof(msfr));
2747 }
2748
2749 if ((size_t) msfr.msfr_nsrcs >
2750 UINT32_MAX / sizeof(struct sockaddr_storage))
2751 msfr.msfr_nsrcs = UINT32_MAX / sizeof(struct sockaddr_storage);
2752
2753 if (msfr.msfr_nsrcs > in_mcast_maxsocksrc)
2754 return (ENOBUFS);
2755
2756 if ((msfr.msfr_fmode != MCAST_EXCLUDE &&
2757 msfr.msfr_fmode != MCAST_INCLUDE))
2758 return (EINVAL);
2759
2760 if (msfr.msfr_group.ss_family != AF_INET ||
2761 msfr.msfr_group.ss_len != sizeof(struct sockaddr_in))
2762 return (EINVAL);
2763
2764 gsa = (sockunion_t *)&msfr.msfr_group;
2765 if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
2766 return (EINVAL);
2767
2768 gsa->sin.sin_port = 0; /* ignore port */
2769
2770 ifnet_head_lock_shared();
2771 if (msfr.msfr_ifindex == 0 || (u_int)if_index < msfr.msfr_ifindex) {
2772 ifnet_head_done();
2773 return (EADDRNOTAVAIL);
2774 }
2775
2776 ifp = ifindex2ifnet[msfr.msfr_ifindex];
2777 ifnet_head_done();
2778 if (ifp == NULL)
2779 return (EADDRNOTAVAIL);
2780
2781 /*
2782 * Check if this socket is a member of this group.
2783 */
2784 imo = inp_findmoptions(inp);
2785 if (imo == NULL)
2786 return (ENOMEM);
2787
2788 IMO_LOCK(imo);
2789 idx = imo_match_group(imo, ifp, &gsa->sa);
2790 if (idx == (size_t)-1 || imo->imo_mfilters == NULL) {
2791 error = EADDRNOTAVAIL;
2792 goto out_imo_locked;
2793 }
2794 inm = imo->imo_membership[idx];
2795 imf = &imo->imo_mfilters[idx];
2796
2797 /*
2798 * Begin state merge transaction at socket layer.
2799 */
2800
2801 imf->imf_st[1] = msfr.msfr_fmode;
2802
2803 /*
2804 * Apply any new source filters, if present.
2805 * Make a copy of the user-space source vector so
2806 * that we may copy them with a single copyin. This
2807 * allows us to deal with page faults up-front.
2808 */
2809 if (msfr.msfr_nsrcs > 0) {
2810 struct in_msource *lims;
2811 struct sockaddr_in *psin;
2812 struct sockaddr_storage *kss, *pkss;
2813 int i;
2814
2815 if (IS_64BIT_PROCESS(current_proc()))
2816 tmp_ptr = msfr64.msfr_srcs;
2817 else
2818 tmp_ptr = CAST_USER_ADDR_T(msfr32.msfr_srcs);
2819
2820 IGMP_PRINTF(("%s: loading %lu source list entries\n",
2821 __func__, (unsigned long)msfr.msfr_nsrcs));
2822 kss = _MALLOC((size_t) msfr.msfr_nsrcs * sizeof(*kss),
2823 M_TEMP, M_WAITOK);
2824 if (kss == NULL) {
2825 error = ENOMEM;
2826 goto out_imo_locked;
2827 }
2828 error = copyin(tmp_ptr, kss,
2829 (size_t) msfr.msfr_nsrcs * sizeof(*kss));
2830 if (error) {
2831 FREE(kss, M_TEMP);
2832 goto out_imo_locked;
2833 }
2834
2835 /*
2836 * Mark all source filters as UNDEFINED at t1.
2837 * Restore new group filter mode, as imf_leave()
2838 * will set it to INCLUDE.
2839 */
2840 imf_leave(imf);
2841 imf->imf_st[1] = msfr.msfr_fmode;
2842
2843 /*
2844 * Update socket layer filters at t1, lazy-allocating
2845 * new entries. This saves a bunch of memory at the
2846 * cost of one RB_FIND() per source entry; duplicate
2847 * entries in the msfr_nsrcs vector are ignored.
2848 * If we encounter an error, rollback transaction.
2849 *
2850 * XXX This too could be replaced with a set-symmetric
2851 * difference like loop to avoid walking from root
2852 * every time, as the key space is common.
2853 */
2854 for (i = 0, pkss = kss; (u_int)i < msfr.msfr_nsrcs;
2855 i++, pkss++) {
2856 psin = (struct sockaddr_in *)pkss;
2857 if (psin->sin_family != AF_INET) {
2858 error = EAFNOSUPPORT;
2859 break;
2860 }
2861 if (psin->sin_len != sizeof(struct sockaddr_in)) {
2862 error = EINVAL;
2863 break;
2864 }
2865 error = imf_get_source(imf, psin, &lims);
2866 if (error)
2867 break;
2868 lims->imsl_st[1] = imf->imf_st[1];
2869 }
2870 FREE(kss, M_TEMP);
2871 }
2872
2873 if (error)
2874 goto out_imf_rollback;
2875
2876 /*
2877 * Begin state merge transaction at IGMP layer.
2878 */
2879 INM_LOCK(inm);
2880 IGMP_PRINTF(("%s: merge inm state\n", __func__));
2881 error = inm_merge(inm, imf);
2882 if (error) {
2883 IGMP_PRINTF(("%s: failed to merge inm state\n", __func__));
2884 INM_UNLOCK(inm);
2885 goto out_imf_rollback;
2886 }
2887
2888 IGMP_PRINTF(("%s: doing igmp downcall\n", __func__));
2889 error = igmp_change_state(inm, &itp);
2890 INM_UNLOCK(inm);
2891 #ifdef IGMP_DEBUG
2892 if (error)
2893 IGMP_PRINTF(("%s: failed igmp downcall\n", __func__));
2894 #endif
2895
2896 out_imf_rollback:
2897 if (error)
2898 imf_rollback(imf);
2899 else
2900 imf_commit(imf);
2901
2902 imf_reap(imf);
2903
2904 out_imo_locked:
2905 IMO_UNLOCK(imo);
2906 IMO_REMREF(imo); /* from inp_findmoptions() */
2907
2908 /* schedule timer now that we've dropped the lock(s) */
2909 igmp_set_timeout(&itp);
2910
2911 return (error);
2912 }
2913
2914 /*
2915 * Set the IP multicast options in response to user setsockopt().
2916 *
2917 * Many of the socket options handled in this function duplicate the
2918 * functionality of socket options in the regular unicast API. However,
2919 * it is not possible to merge the duplicate code, because the idempotence
2920 * of the IPv4 multicast part of the BSD Sockets API must be preserved;
2921 * the effects of these options must be treated as separate and distinct.
2922 *
2923 * FUTURE: The IP_MULTICAST_VIF option may be eliminated if MROUTING
2924 * is refactored to no longer use vifs.
2925 */
2926 int
2927 inp_setmoptions(struct inpcb *inp, struct sockopt *sopt)
2928 {
2929 struct ip_moptions *imo;
2930 int error;
2931 unsigned int ifindex;
2932 struct ifnet *ifp;
2933
2934 error = 0;
2935
2936 /*
2937 * If socket is neither of type SOCK_RAW or SOCK_DGRAM,
2938 * or is a divert socket, reject it.
2939 */
2940 if (SOCK_PROTO(inp->inp_socket) == IPPROTO_DIVERT ||
2941 (SOCK_TYPE(inp->inp_socket) != SOCK_RAW &&
2942 SOCK_TYPE(inp->inp_socket) != SOCK_DGRAM))
2943 return (EOPNOTSUPP);
2944
2945 switch (sopt->sopt_name) {
2946 #if MROUTING
2947 case IP_MULTICAST_VIF: {
2948 int vifi;
2949 /*
2950 * Select a multicast VIF for transmission.
2951 * Only useful if multicast forwarding is active.
2952 */
2953 if (legal_vif_num == NULL) {
2954 error = EOPNOTSUPP;
2955 break;
2956 }
2957 error = sooptcopyin(sopt, &vifi, sizeof(int), sizeof(int));
2958 if (error)
2959 break;
2960 if (!legal_vif_num(vifi) && (vifi != -1)) {
2961 error = EINVAL;
2962 break;
2963 }
2964 imo = inp_findmoptions(inp);
2965 if (imo == NULL) {
2966 error = ENOMEM;
2967 break;
2968 }
2969 IMO_LOCK(imo);
2970 imo->imo_multicast_vif = vifi;
2971 IMO_UNLOCK(imo);
2972 IMO_REMREF(imo); /* from inp_findmoptions() */
2973 break;
2974 }
2975 #endif
2976 case IP_MULTICAST_IF:
2977 error = inp_set_multicast_if(inp, sopt);
2978 break;
2979
2980 case IP_MULTICAST_IFINDEX:
2981 /*
2982 * Select the interface for outgoing multicast packets.
2983 */
2984 error = sooptcopyin(sopt, &ifindex, sizeof (ifindex),
2985 sizeof (ifindex));
2986 if (error)
2987 break;
2988
2989 imo = inp_findmoptions(inp);
2990 if (imo == NULL) {
2991 error = ENOMEM;
2992 break;
2993 }
2994 /*
2995 * Index 0 is used to remove a previous selection.
2996 * When no interface is selected, a default one is
2997 * chosen every time a multicast packet is sent.
2998 */
2999 if (ifindex == 0) {
3000 IMO_LOCK(imo);
3001 imo->imo_multicast_ifp = NULL;
3002 IMO_UNLOCK(imo);
3003 IMO_REMREF(imo); /* from inp_findmoptions() */
3004 break;
3005 }
3006
3007 ifnet_head_lock_shared();
3008 /* Don't need to check is ifindex is < 0 since it's unsigned */
3009 if ((unsigned int)if_index < ifindex) {
3010 ifnet_head_done();
3011 IMO_REMREF(imo); /* from inp_findmoptions() */
3012 error = ENXIO; /* per IPV6_MULTICAST_IF */
3013 break;
3014 }
3015 ifp = ifindex2ifnet[ifindex];
3016 ifnet_head_done();
3017
3018 /* If it's detached or isn't a multicast interface, bail out */
3019 if (ifp == NULL || !(ifp->if_flags & IFF_MULTICAST)) {
3020 IMO_REMREF(imo); /* from inp_findmoptions() */
3021 error = EADDRNOTAVAIL;
3022 break;
3023 }
3024 IMO_LOCK(imo);
3025 imo->imo_multicast_ifp = ifp;
3026 /*
3027 * Clear out any remnants of past IP_MULTICAST_IF. The addr
3028 * isn't really used anywhere in the kernel; we could have
3029 * iterated thru the addresses of the interface and pick one
3030 * here, but that is redundant since ip_getmoptions() already
3031 * takes care of that for INADDR_ANY.
3032 */
3033 imo->imo_multicast_addr.s_addr = INADDR_ANY;
3034 IMO_UNLOCK(imo);
3035 IMO_REMREF(imo); /* from inp_findmoptions() */
3036 break;
3037
3038 case IP_MULTICAST_TTL: {
3039 u_char ttl;
3040
3041 /*
3042 * Set the IP time-to-live for outgoing multicast packets.
3043 * The original multicast API required a char argument,
3044 * which is inconsistent with the rest of the socket API.
3045 * We allow either a char or an int.
3046 */
3047 if (sopt->sopt_valsize == sizeof(u_char)) {
3048 error = sooptcopyin(sopt, &ttl, sizeof(u_char),
3049 sizeof(u_char));
3050 if (error)
3051 break;
3052 } else {
3053 u_int ittl;
3054
3055 error = sooptcopyin(sopt, &ittl, sizeof(u_int),
3056 sizeof(u_int));
3057 if (error)
3058 break;
3059 if (ittl > 255) {
3060 error = EINVAL;
3061 break;
3062 }
3063 ttl = (u_char)ittl;
3064 }
3065 imo = inp_findmoptions(inp);
3066 if (imo == NULL) {
3067 error = ENOMEM;
3068 break;
3069 }
3070 IMO_LOCK(imo);
3071 imo->imo_multicast_ttl = ttl;
3072 IMO_UNLOCK(imo);
3073 IMO_REMREF(imo); /* from inp_findmoptions() */
3074 break;
3075 }
3076
3077 case IP_MULTICAST_LOOP: {
3078 u_char loop;
3079
3080 /*
3081 * Set the loopback flag for outgoing multicast packets.
3082 * Must be zero or one. The original multicast API required a
3083 * char argument, which is inconsistent with the rest
3084 * of the socket API. We allow either a char or an int.
3085 */
3086 if (sopt->sopt_valsize == sizeof(u_char)) {
3087 error = sooptcopyin(sopt, &loop, sizeof(u_char),
3088 sizeof(u_char));
3089 if (error)
3090 break;
3091 } else {
3092 u_int iloop;
3093
3094 error = sooptcopyin(sopt, &iloop, sizeof(u_int),
3095 sizeof(u_int));
3096 if (error)
3097 break;
3098 loop = (u_char)iloop;
3099 }
3100 imo = inp_findmoptions(inp);
3101 if (imo == NULL) {
3102 error = ENOMEM;
3103 break;
3104 }
3105 IMO_LOCK(imo);
3106 imo->imo_multicast_loop = !!loop;
3107 IMO_UNLOCK(imo);
3108 IMO_REMREF(imo); /* from inp_findmoptions() */
3109 break;
3110 }
3111
3112 case IP_ADD_MEMBERSHIP:
3113 case IP_ADD_SOURCE_MEMBERSHIP:
3114 case MCAST_JOIN_GROUP:
3115 case MCAST_JOIN_SOURCE_GROUP:
3116 error = inp_join_group(inp, sopt);
3117 break;
3118
3119 case IP_DROP_MEMBERSHIP:
3120 case IP_DROP_SOURCE_MEMBERSHIP:
3121 case MCAST_LEAVE_GROUP:
3122 case MCAST_LEAVE_SOURCE_GROUP:
3123 error = inp_leave_group(inp, sopt);
3124 break;
3125
3126 case IP_BLOCK_SOURCE:
3127 case IP_UNBLOCK_SOURCE:
3128 case MCAST_BLOCK_SOURCE:
3129 case MCAST_UNBLOCK_SOURCE:
3130 error = inp_block_unblock_source(inp, sopt);
3131 break;
3132
3133 case IP_MSFILTER:
3134 error = inp_set_source_filters(inp, sopt);
3135 break;
3136
3137 default:
3138 error = EOPNOTSUPP;
3139 break;
3140 }
3141
3142 return (error);
3143 }
3144
3145 /*
3146 * Expose IGMP's multicast filter mode and source list(s) to userland,
3147 * keyed by (ifindex, group).
3148 * The filter mode is written out as a uint32_t, followed by
3149 * 0..n of struct in_addr.
3150 * For use by ifmcstat(8).
3151 */
3152 static int
3153 sysctl_ip_mcast_filters SYSCTL_HANDLER_ARGS
3154 {
3155 #pragma unused(oidp)
3156
3157 struct in_addr src, group;
3158 struct ifnet *ifp;
3159 struct in_multi *inm;
3160 struct in_multistep step;
3161 struct ip_msource *ims;
3162 int *name;
3163 int retval = 0;
3164 u_int namelen;
3165 uint32_t fmode, ifindex;
3166
3167 name = (int *)arg1;
3168 namelen = (u_int)arg2;
3169
3170 if (req->newptr != USER_ADDR_NULL)
3171 return (EPERM);
3172
3173 if (namelen != 2)
3174 return (EINVAL);
3175
3176 ifindex = name[0];
3177 ifnet_head_lock_shared();
3178 if (ifindex <= 0 || ifindex > (u_int)if_index) {
3179 IGMP_PRINTF(("%s: ifindex %u out of range\n",
3180 __func__, ifindex));
3181 ifnet_head_done();
3182 return (ENOENT);
3183 }
3184
3185 group.s_addr = name[1];
3186 if (!IN_MULTICAST(ntohl(group.s_addr))) {
3187 IGMP_INET_PRINTF(group,
3188 ("%s: group %s is not multicast\n",
3189 __func__, _igmp_inet_buf));
3190 ifnet_head_done();
3191 return (EINVAL);
3192 }
3193
3194 ifp = ifindex2ifnet[ifindex];
3195 ifnet_head_done();
3196 if (ifp == NULL) {
3197 IGMP_PRINTF(("%s: no ifp for ifindex %u\n", __func__, ifindex));
3198 return (ENOENT);
3199 }
3200
3201 in_multihead_lock_shared();
3202 IN_FIRST_MULTI(step, inm);
3203 while (inm != NULL) {
3204 INM_LOCK(inm);
3205 if (inm->inm_ifp != ifp)
3206 goto next;
3207
3208 if (!in_hosteq(inm->inm_addr, group))
3209 goto next;
3210
3211 fmode = inm->inm_st[1].iss_fmode;
3212 retval = SYSCTL_OUT(req, &fmode, sizeof(uint32_t));
3213 if (retval != 0) {
3214 INM_UNLOCK(inm);
3215 break; /* abort */
3216 }
3217 RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) {
3218 #ifdef IGMP_DEBUG
3219 struct in_addr ina;
3220 ina.s_addr = htonl(ims->ims_haddr);
3221 IGMP_INET_PRINTF(ina,
3222 ("%s: visit node %s\n", __func__, _igmp_inet_buf));
3223 #endif
3224 /*
3225 * Only copy-out sources which are in-mode.
3226 */
3227 if (fmode != ims_get_mode(inm, ims, 1)) {
3228 IGMP_PRINTF(("%s: skip non-in-mode\n",
3229 __func__));
3230 continue; /* process next source */
3231 }
3232 src.s_addr = htonl(ims->ims_haddr);
3233 retval = SYSCTL_OUT(req, &src, sizeof(struct in_addr));
3234 if (retval != 0)
3235 break; /* process next inm */
3236 }
3237 next:
3238 INM_UNLOCK(inm);
3239 IN_NEXT_MULTI(step, inm);
3240 }
3241 in_multihead_lock_done();
3242
3243 return (retval);
3244 }
3245
3246 /*
3247 * XXX
3248 * The whole multicast option thing needs to be re-thought.
3249 * Several of these options are equally applicable to non-multicast
3250 * transmission, and one (IP_MULTICAST_TTL) totally duplicates a
3251 * standard option (IP_TTL).
3252 */
3253 /*
3254 * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
3255 */
3256 static struct ifnet *
3257 ip_multicast_if(struct in_addr *a, unsigned int *ifindexp)
3258 {
3259 unsigned int ifindex;
3260 struct ifnet *ifp;
3261
3262 if (ifindexp != NULL)
3263 *ifindexp = 0;
3264 if (ntohl(a->s_addr) >> 24 == 0) {
3265 ifindex = ntohl(a->s_addr) & 0xffffff;
3266 ifnet_head_lock_shared();
3267 /* Don't need to check is ifindex is < 0 since it's unsigned */
3268 if ((unsigned int)if_index < ifindex) {
3269 ifnet_head_done();
3270 return (NULL);
3271 }
3272 ifp = ifindex2ifnet[ifindex];
3273 ifnet_head_done();
3274 if (ifp != NULL && ifindexp != NULL)
3275 *ifindexp = ifindex;
3276 } else {
3277 INADDR_TO_IFP(*a, ifp);
3278 }
3279 return (ifp);
3280 }
3281
3282 void
3283 in_multi_init(void)
3284 {
3285 PE_parse_boot_argn("ifa_debug", &inm_debug, sizeof (inm_debug));
3286
3287 /* Setup lock group and attribute for in_multihead */
3288 in_multihead_lock_grp_attr = lck_grp_attr_alloc_init();
3289 in_multihead_lock_grp = lck_grp_alloc_init("in_multihead",
3290 in_multihead_lock_grp_attr);
3291 in_multihead_lock_attr = lck_attr_alloc_init();
3292 lck_rw_init(&in_multihead_lock, in_multihead_lock_grp,
3293 in_multihead_lock_attr);
3294
3295 lck_mtx_init(&inm_trash_lock, in_multihead_lock_grp,
3296 in_multihead_lock_attr);
3297 TAILQ_INIT(&inm_trash_head);
3298
3299 inm_size = (inm_debug == 0) ? sizeof (struct in_multi) :
3300 sizeof (struct in_multi_dbg);
3301 inm_zone = zinit(inm_size, INM_ZONE_MAX * inm_size,
3302 0, INM_ZONE_NAME);
3303 if (inm_zone == NULL) {
3304 panic("%s: failed allocating %s", __func__, INM_ZONE_NAME);
3305 /* NOTREACHED */
3306 }
3307 zone_change(inm_zone, Z_EXPAND, TRUE);
3308
3309 ipms_size = sizeof (struct ip_msource);
3310 ipms_zone = zinit(ipms_size, IPMS_ZONE_MAX * ipms_size,
3311 0, IPMS_ZONE_NAME);
3312 if (ipms_zone == NULL) {
3313 panic("%s: failed allocating %s", __func__, IPMS_ZONE_NAME);
3314 /* NOTREACHED */
3315 }
3316 zone_change(ipms_zone, Z_EXPAND, TRUE);
3317
3318 inms_size = sizeof (struct in_msource);
3319 inms_zone = zinit(inms_size, INMS_ZONE_MAX * inms_size,
3320 0, INMS_ZONE_NAME);
3321 if (inms_zone == NULL) {
3322 panic("%s: failed allocating %s", __func__, INMS_ZONE_NAME);
3323 /* NOTREACHED */
3324 }
3325 zone_change(inms_zone, Z_EXPAND, TRUE);
3326 }
3327
3328 static struct in_multi *
3329 in_multi_alloc(int how)
3330 {
3331 struct in_multi *inm;
3332
3333 inm = (how == M_WAITOK) ? zalloc(inm_zone) : zalloc_noblock(inm_zone);
3334 if (inm != NULL) {
3335 bzero(inm, inm_size);
3336 lck_mtx_init(&inm->inm_lock, in_multihead_lock_grp,
3337 in_multihead_lock_attr);
3338 inm->inm_debug |= IFD_ALLOC;
3339 if (inm_debug != 0) {
3340 inm->inm_debug |= IFD_DEBUG;
3341 inm->inm_trace = inm_trace;
3342 }
3343 }
3344 return (inm);
3345 }
3346
3347 static void
3348 in_multi_free(struct in_multi *inm)
3349 {
3350 INM_LOCK(inm);
3351 if (inm->inm_debug & IFD_ATTACHED) {
3352 panic("%s: attached inm=%p is being freed", __func__, inm);
3353 /* NOTREACHED */
3354 } else if (inm->inm_ifma != NULL) {
3355 panic("%s: ifma not NULL for inm=%p", __func__, inm);
3356 /* NOTREACHED */
3357 } else if (!(inm->inm_debug & IFD_ALLOC)) {
3358 panic("%s: inm %p cannot be freed", __func__, inm);
3359 /* NOTREACHED */
3360 } else if (inm->inm_refcount != 0) {
3361 panic("%s: non-zero refcount inm=%p", __func__, inm);
3362 /* NOTREACHED */
3363 } else if (inm->inm_reqcnt != 0) {
3364 panic("%s: non-zero reqcnt inm=%p", __func__, inm);
3365 /* NOTREACHED */
3366 }
3367
3368 /* Free any pending IGMPv3 state-change records */
3369 IF_DRAIN(&inm->inm_scq);
3370
3371 inm->inm_debug &= ~IFD_ALLOC;
3372 if ((inm->inm_debug & (IFD_DEBUG | IFD_TRASHED)) ==
3373 (IFD_DEBUG | IFD_TRASHED)) {
3374 lck_mtx_lock(&inm_trash_lock);
3375 TAILQ_REMOVE(&inm_trash_head, (struct in_multi_dbg *)inm,
3376 inm_trash_link);
3377 lck_mtx_unlock(&inm_trash_lock);
3378 inm->inm_debug &= ~IFD_TRASHED;
3379 }
3380 INM_UNLOCK(inm);
3381
3382 lck_mtx_destroy(&inm->inm_lock, in_multihead_lock_grp);
3383 zfree(inm_zone, inm);
3384 }
3385
3386 static void
3387 in_multi_attach(struct in_multi *inm)
3388 {
3389 in_multihead_lock_assert(LCK_RW_ASSERT_EXCLUSIVE);
3390 INM_LOCK_ASSERT_HELD(inm);
3391
3392 if (inm->inm_debug & IFD_ATTACHED) {
3393 panic("%s: Attempt to attach an already attached inm=%p",
3394 __func__, inm);
3395 /* NOTREACHED */
3396 } else if (inm->inm_debug & IFD_TRASHED) {
3397 panic("%s: Attempt to reattach a detached inm=%p",
3398 __func__, inm);
3399 /* NOTREACHED */
3400 }
3401
3402 inm->inm_reqcnt++;
3403 VERIFY(inm->inm_reqcnt == 1);
3404 INM_ADDREF_LOCKED(inm);
3405 inm->inm_debug |= IFD_ATTACHED;
3406 /*
3407 * Reattach case: If debugging is enabled, take it
3408 * out of the trash list and clear IFD_TRASHED.
3409 */
3410 if ((inm->inm_debug & (IFD_DEBUG | IFD_TRASHED)) ==
3411 (IFD_DEBUG | IFD_TRASHED)) {
3412 /* Become a regular mutex, just in case */
3413 INM_CONVERT_LOCK(inm);
3414 lck_mtx_lock(&inm_trash_lock);
3415 TAILQ_REMOVE(&inm_trash_head, (struct in_multi_dbg *)inm,
3416 inm_trash_link);
3417 lck_mtx_unlock(&inm_trash_lock);
3418 inm->inm_debug &= ~IFD_TRASHED;
3419 }
3420
3421 LIST_INSERT_HEAD(&in_multihead, inm, inm_link);
3422 }
3423
3424 int
3425 in_multi_detach(struct in_multi *inm)
3426 {
3427 in_multihead_lock_assert(LCK_RW_ASSERT_EXCLUSIVE);
3428 INM_LOCK_ASSERT_HELD(inm);
3429
3430 if (inm->inm_reqcnt == 0) {
3431 panic("%s: inm=%p negative reqcnt", __func__, inm);
3432 /* NOTREACHED */
3433 }
3434
3435 --inm->inm_reqcnt;
3436 if (inm->inm_reqcnt > 0)
3437 return (0);
3438
3439 if (!(inm->inm_debug & IFD_ATTACHED)) {
3440 panic("%s: Attempt to detach an unattached record inm=%p",
3441 __func__, inm);
3442 /* NOTREACHED */
3443 } else if (inm->inm_debug & IFD_TRASHED) {
3444 panic("%s: inm %p is already in trash list", __func__, inm);
3445 /* NOTREACHED */
3446 }
3447
3448 /*
3449 * NOTE: Caller calls IFMA_REMREF
3450 */
3451 inm->inm_debug &= ~IFD_ATTACHED;
3452 LIST_REMOVE(inm, inm_link);
3453
3454 if (inm->inm_debug & IFD_DEBUG) {
3455 /* Become a regular mutex, just in case */
3456 INM_CONVERT_LOCK(inm);
3457 lck_mtx_lock(&inm_trash_lock);
3458 TAILQ_INSERT_TAIL(&inm_trash_head,
3459 (struct in_multi_dbg *)inm, inm_trash_link);
3460 lck_mtx_unlock(&inm_trash_lock);
3461 inm->inm_debug |= IFD_TRASHED;
3462 }
3463
3464 return (1);
3465 }
3466
3467 void
3468 inm_addref(struct in_multi *inm, int locked)
3469 {
3470 if (!locked)
3471 INM_LOCK_SPIN(inm);
3472 else
3473 INM_LOCK_ASSERT_HELD(inm);
3474
3475 if (++inm->inm_refcount == 0) {
3476 panic("%s: inm=%p wraparound refcnt", __func__, inm);
3477 /* NOTREACHED */
3478 } else if (inm->inm_trace != NULL) {
3479 (*inm->inm_trace)(inm, TRUE);
3480 }
3481 if (!locked)
3482 INM_UNLOCK(inm);
3483 }
3484
3485 void
3486 inm_remref(struct in_multi *inm, int locked)
3487 {
3488 struct ifmultiaddr *ifma;
3489 struct igmp_ifinfo *igi;
3490
3491 if (!locked)
3492 INM_LOCK_SPIN(inm);
3493 else
3494 INM_LOCK_ASSERT_HELD(inm);
3495
3496 if (inm->inm_refcount == 0 || (inm->inm_refcount == 1 && locked)) {
3497 panic("%s: inm=%p negative/missing refcnt", __func__, inm);
3498 /* NOTREACHED */
3499 } else if (inm->inm_trace != NULL) {
3500 (*inm->inm_trace)(inm, FALSE);
3501 }
3502
3503 --inm->inm_refcount;
3504 if (inm->inm_refcount > 0) {
3505 if (!locked)
3506 INM_UNLOCK(inm);
3507 return;
3508 }
3509
3510 /*
3511 * Synchronization with in_getmulti(). In the event the inm has been
3512 * detached, the underlying ifma would still be in the if_multiaddrs
3513 * list, and thus can be looked up via if_addmulti(). At that point,
3514 * the only way to find this inm is via ifma_protospec. To avoid
3515 * race conditions between the last inm_remref() of that inm and its
3516 * use via ifma_protospec, in_multihead lock is used for serialization.
3517 * In order to avoid violating the lock order, we must drop inm_lock
3518 * before acquiring in_multihead lock. To prevent the inm from being
3519 * freed prematurely, we hold an extra reference.
3520 */
3521 ++inm->inm_refcount;
3522 INM_UNLOCK(inm);
3523 in_multihead_lock_shared();
3524 INM_LOCK_SPIN(inm);
3525 --inm->inm_refcount;
3526 if (inm->inm_refcount > 0) {
3527 /* We've lost the race, so abort since inm is still in use */
3528 INM_UNLOCK(inm);
3529 in_multihead_lock_done();
3530 /* If it was locked, return it as such */
3531 if (locked)
3532 INM_LOCK(inm);
3533 return;
3534 }
3535 inm_purge(inm);
3536 ifma = inm->inm_ifma;
3537 inm->inm_ifma = NULL;
3538 inm->inm_ifp = NULL;
3539 igi = inm->inm_igi;
3540 inm->inm_igi = NULL;
3541 INM_UNLOCK(inm);
3542 IFMA_LOCK_SPIN(ifma);
3543 ifma->ifma_protospec = NULL;
3544 IFMA_UNLOCK(ifma);
3545 in_multihead_lock_done();
3546
3547 in_multi_free(inm);
3548 if_delmulti_ifma(ifma);
3549 /* Release reference held to the underlying ifmultiaddr */
3550 IFMA_REMREF(ifma);
3551
3552 if (igi != NULL)
3553 IGI_REMREF(igi);
3554 }
3555
3556 static void
3557 inm_trace(struct in_multi *inm, int refhold)
3558 {
3559 struct in_multi_dbg *inm_dbg = (struct in_multi_dbg *)inm;
3560 ctrace_t *tr;
3561 u_int32_t idx;
3562 u_int16_t *cnt;
3563
3564 if (!(inm->inm_debug & IFD_DEBUG)) {
3565 panic("%s: inm %p has no debug structure", __func__, inm);
3566 /* NOTREACHED */
3567 }
3568 if (refhold) {
3569 cnt = &inm_dbg->inm_refhold_cnt;
3570 tr = inm_dbg->inm_refhold;
3571 } else {
3572 cnt = &inm_dbg->inm_refrele_cnt;
3573 tr = inm_dbg->inm_refrele;
3574 }
3575
3576 idx = atomic_add_16_ov(cnt, 1) % INM_TRACE_HIST_SIZE;
3577 ctrace_record(&tr[idx]);
3578 }
3579
3580 void
3581 in_multihead_lock_exclusive(void)
3582 {
3583 lck_rw_lock_exclusive(&in_multihead_lock);
3584 }
3585
3586 void
3587 in_multihead_lock_shared(void)
3588 {
3589 lck_rw_lock_shared(&in_multihead_lock);
3590 }
3591
3592 void
3593 in_multihead_lock_assert(int what)
3594 {
3595 lck_rw_assert(&in_multihead_lock, what);
3596 }
3597
3598 void
3599 in_multihead_lock_done(void)
3600 {
3601 lck_rw_done(&in_multihead_lock);
3602 }
3603
3604 static struct ip_msource *
3605 ipms_alloc(int how)
3606 {
3607 struct ip_msource *ims;
3608
3609 ims = (how == M_WAITOK) ? zalloc(ipms_zone) : zalloc_noblock(ipms_zone);
3610 if (ims != NULL)
3611 bzero(ims, ipms_size);
3612
3613 return (ims);
3614 }
3615
3616 static void
3617 ipms_free(struct ip_msource *ims)
3618 {
3619 zfree(ipms_zone, ims);
3620 }
3621
3622 static struct in_msource *
3623 inms_alloc(int how)
3624 {
3625 struct in_msource *inms;
3626
3627 inms = (how == M_WAITOK) ? zalloc(inms_zone) :
3628 zalloc_noblock(inms_zone);
3629 if (inms != NULL)
3630 bzero(inms, inms_size);
3631
3632 return (inms);
3633 }
3634
3635 static void
3636 inms_free(struct in_msource *inms)
3637 {
3638 zfree(inms_zone, inms);
3639 }
3640
3641 #ifdef IGMP_DEBUG
3642
3643 static const char *inm_modestrs[] = { "un\n", "in", "ex" };
3644
3645 static const char *
3646 inm_mode_str(const int mode)
3647 {
3648 if (mode >= MCAST_UNDEFINED && mode <= MCAST_EXCLUDE)
3649 return (inm_modestrs[mode]);
3650 return ("??");
3651 }
3652
3653 static const char *inm_statestrs[] = {
3654 "not-member\n",
3655 "silent\n",
3656 "reporting\n",
3657 "idle\n",
3658 "lazy\n",
3659 "sleeping\n",
3660 "awakening\n",
3661 "query-pending\n",
3662 "sg-query-pending\n",
3663 "leaving"
3664 };
3665
3666 static const char *
3667 inm_state_str(const int state)
3668 {
3669 if (state >= IGMP_NOT_MEMBER && state <= IGMP_LEAVING_MEMBER)
3670 return (inm_statestrs[state]);
3671 return ("??");
3672 }
3673
3674 /*
3675 * Dump an in_multi structure to the console.
3676 */
3677 void
3678 inm_print(const struct in_multi *inm)
3679 {
3680 int t;
3681 char buf[MAX_IPv4_STR_LEN];
3682
3683 INM_LOCK_ASSERT_HELD(__DECONST(struct in_multi *, inm));
3684
3685 if (igmp_debug == 0)
3686 return;
3687
3688 inet_ntop(AF_INET, &inm->inm_addr, buf, sizeof(buf));
3689 printf("%s: --- begin inm 0x%llx ---\n", __func__,
3690 (uint64_t)VM_KERNEL_ADDRPERM(inm));
3691 printf("addr %s ifp 0x%llx(%s) ifma 0x%llx\n",
3692 buf,
3693 (uint64_t)VM_KERNEL_ADDRPERM(inm->inm_ifp),
3694 if_name(inm->inm_ifp),
3695 (uint64_t)VM_KERNEL_ADDRPERM(inm->inm_ifma));
3696 printf("timer %u state %s refcount %u scq.len %u\n",
3697 inm->inm_timer,
3698 inm_state_str(inm->inm_state),
3699 inm->inm_refcount,
3700 inm->inm_scq.ifq_len);
3701 printf("igi 0x%llx nsrc %lu sctimer %u scrv %u\n",
3702 (uint64_t)VM_KERNEL_ADDRPERM(inm->inm_igi),
3703 inm->inm_nsrc,
3704 inm->inm_sctimer,
3705 inm->inm_scrv);
3706 for (t = 0; t < 2; t++) {
3707 printf("t%d: fmode %s asm %u ex %u in %u rec %u\n", t,
3708 inm_mode_str(inm->inm_st[t].iss_fmode),
3709 inm->inm_st[t].iss_asm,
3710 inm->inm_st[t].iss_ex,
3711 inm->inm_st[t].iss_in,
3712 inm->inm_st[t].iss_rec);
3713 }
3714 printf("%s: --- end inm 0x%llx ---\n", __func__,
3715 (uint64_t)VM_KERNEL_ADDRPERM(inm));
3716 }
3717
3718 #else
3719
3720 void
3721 inm_print(__unused const struct in_multi *inm)
3722 {
3723
3724 }
3725
3726 #endif