2 * Copyright (c) 1996 John S. Dyson
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
8 * 1. Redistributions of source code must retain the above copyright
9 * notice immediately at the beginning of the file, without modification,
10 * this list of conditions, and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. Absolutely no warranty of function or purpose is made by the author
16 * 4. Modifications may be freely made to this file if the above conditions
20 * Copyright (c) 2003-2004 Apple Computer, Inc. All rights reserved.
22 * @APPLE_LICENSE_HEADER_START@
24 * The contents of this file constitute Original Code as defined in and
25 * are subject to the Apple Public Source License Version 1.1 (the
26 * "License"). You may not use this file except in compliance with the
27 * License. Please obtain a copy of the License at
28 * http://www.apple.com/publicsource and read it before using this file.
30 * This Original Code and all software distributed under the License are
31 * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER
32 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
33 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
34 * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the
35 * License for the specific language governing rights and limitations
38 * @APPLE_LICENSE_HEADER_END@
42 * This file contains a high-performance replacement for the socket-based
43 * pipes scheme originally used in FreeBSD/4.4Lite. It does not support
44 * all features of sockets, but does do everything that pipes normally
49 * This code has two modes of operation, a small write mode and a large
50 * write mode. The small write mode acts like conventional pipes with
51 * a kernel buffer. If the buffer is less than PIPE_MINDIRECT, then the
52 * "normal" pipe buffering is done. If the buffer is between PIPE_MINDIRECT
53 * and PIPE_SIZE in size, it is fully mapped and wired into the kernel, and
54 * the receiving process can copy it directly from the pages in the sending
57 * If the sending process receives a signal, it is possible that it will
58 * go away, and certainly its address space can change, because control
59 * is returned back to the user-mode side. In that case, the pipe code
60 * arranges to copy the buffer supplied by the user process, to a pageable
61 * kernel buffer, and the receiving process will grab the data from the
62 * pageable kernel buffer. Since signals don't happen all that often,
63 * the copy operation is normally eliminated.
65 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
66 * happen for small transfers so that the system will not spend all of
67 * its time context switching.
69 * In order to limit the resource use of pipes, two sysctls exist:
71 * kern.ipc.maxpipekva - This is a hard limit on the amount of pageable
72 * address space available to us in pipe_map. Whenever the amount in use
73 * exceeds half of this value, all new pipes will be created with size
74 * SMALL_PIPE_SIZE, rather than PIPE_SIZE. Big pipe creation will be limited
75 * as well. This value is loader tunable only.
77 * kern.ipc.maxpipekvawired - This value limits the amount of memory that may
78 * be wired in order to facilitate direct copies using page flipping.
79 * Whenever this value is exceeded, pipes will fall back to using regular
80 * copies. This value is sysctl controllable at all times.
82 * These values are autotuned in subr_param.c.
84 * Memory usage may be monitored through the sysctls
85 * kern.ipc.pipes, kern.ipc.pipekva and kern.ipc.pipekvawired.
89 #include <sys/param.h>
90 #include <sys/systm.h>
91 #include <sys/filedesc.h>
92 #include <sys/kernel.h>
93 #include <sys/vnode.h>
94 #include <sys/proc_internal.h>
95 #include <sys/kauth.h>
96 #include <sys/file_internal.h>
98 #include <sys/ioctl.h>
99 #include <sys/fcntl.h>
100 #include <sys/malloc.h>
101 #include <sys/syslog.h>
102 #include <sys/unistd.h>
103 #include <sys/resourcevar.h>
104 #include <sys/aio_kern.h>
105 #include <sys/signalvar.h>
106 #include <sys/pipe.h>
107 #include <sys/sysproto.h>
109 #include <bsm/audit_kernel.h>
111 #include <sys/kdebug.h>
113 #include <kern/zalloc.h>
114 #include <vm/vm_kern.h>
115 #include <libkern/OSAtomic.h>
117 #define f_flag f_fglob->fg_flag
118 #define f_type f_fglob->fg_type
119 #define f_msgcount f_fglob->fg_msgcount
120 #define f_cred f_fglob->fg_cred
121 #define f_ops f_fglob->fg_ops
122 #define f_offset f_fglob->fg_offset
123 #define f_data f_fglob->fg_data
125 * Use this define if you want to disable *fancy* VM things. Expect an
126 * approx 30% decrease in transfer rate. This could be useful for
129 * this needs to be ported to X and the performance measured
130 * before committing to supporting it
132 #define PIPE_NODIRECT 1
134 #ifndef PIPE_NODIRECT
137 #include <vm/vm_param.h>
138 #include <vm/vm_object.h>
139 #include <vm/vm_kern.h>
140 #include <vm/vm_extern.h>
142 #include <vm/vm_map.h>
143 #include <vm/vm_page.h>
150 * interfaces to the outside world
152 static int pipe_read(struct fileproc
*fp
, struct uio
*uio
,
153 kauth_cred_t cred
, int flags
, struct proc
*p
);
155 static int pipe_write(struct fileproc
*fp
, struct uio
*uio
,
156 kauth_cred_t cred
, int flags
, struct proc
*p
);
158 static int pipe_close(struct fileglob
*fg
, struct proc
*p
);
160 static int pipe_select(struct fileproc
*fp
, int which
, void * wql
, struct proc
*p
);
162 static int pipe_kqfilter(struct fileproc
*fp
, struct knote
*kn
, struct proc
*p
);
164 static int pipe_ioctl(struct fileproc
*fp
, u_long cmd
, caddr_t data
, struct proc
*p
);
167 struct fileops pipeops
=
177 static void filt_pipedetach(struct knote
*kn
);
178 static int filt_piperead(struct knote
*kn
, long hint
);
179 static int filt_pipewrite(struct knote
*kn
, long hint
);
181 static struct filterops pipe_rfiltops
=
182 { 1, NULL
, filt_pipedetach
, filt_piperead
};
183 static struct filterops pipe_wfiltops
=
184 { 1, NULL
, filt_pipedetach
, filt_pipewrite
};
187 * Default pipe buffer size(s), this can be kind-of large now because pipe
188 * space is pageable. The pipe code will try to maintain locality of
189 * reference for performance reasons, so small amounts of outstanding I/O
190 * will not wipe the cache.
192 #define MINPIPESIZE (PIPE_SIZE/3)
195 * Limit the number of "big" pipes
197 #define LIMITBIGPIPES 32
200 static int amountpipes
;
201 static int amountpipekva
;
203 #ifndef PIPE_NODIRECT
204 static int amountpipekvawired
;
206 int maxpipekva
= 1024 * 1024 * 16;
209 SYSCTL_DECL(_kern_ipc
);
211 SYSCTL_INT(_kern_ipc
, OID_AUTO
, maxpipekva
, CTLFLAG_RD
,
212 &maxpipekva
, 0, "Pipe KVA limit");
213 SYSCTL_INT(_kern_ipc
, OID_AUTO
, maxpipekvawired
, CTLFLAG_RW
,
214 &maxpipekvawired
, 0, "Pipe KVA wired limit");
215 SYSCTL_INT(_kern_ipc
, OID_AUTO
, pipes
, CTLFLAG_RD
,
216 &amountpipes
, 0, "Current # of pipes");
217 SYSCTL_INT(_kern_ipc
, OID_AUTO
, bigpipes
, CTLFLAG_RD
,
218 &nbigpipe
, 0, "Current # of big pipes");
219 SYSCTL_INT(_kern_ipc
, OID_AUTO
, pipekva
, CTLFLAG_RD
,
220 &amountpipekva
, 0, "Pipe KVA usage");
221 SYSCTL_INT(_kern_ipc
, OID_AUTO
, pipekvawired
, CTLFLAG_RD
,
222 &amountpipekvawired
, 0, "Pipe wired KVA usage");
225 void pipeinit(void *dummy __unused
);
226 static void pipeclose(struct pipe
*cpipe
);
227 static void pipe_free_kmem(struct pipe
*cpipe
);
228 static int pipe_create(struct pipe
**cpipep
);
229 static void pipeselwakeup(struct pipe
*cpipe
, struct pipe
*spipe
);
230 static __inline
int pipelock(struct pipe
*cpipe
, int catch);
231 static __inline
void pipeunlock(struct pipe
*cpipe
);
233 #ifndef PIPE_NODIRECT
234 static int pipe_build_write_buffer(struct pipe
*wpipe
, struct uio
*uio
);
235 static void pipe_destroy_write_buffer(struct pipe
*wpipe
);
236 static int pipe_direct_write(struct pipe
*wpipe
, struct uio
*uio
);
237 static void pipe_clone_write_buffer(struct pipe
*wpipe
);
240 extern int postpipeevent(struct pipe
*, int);
241 extern void evpipefree(struct pipe
*cpipe
);
244 static int pipespace(struct pipe
*cpipe
, int size
);
246 static lck_grp_t
*pipe_mtx_grp
;
247 static lck_attr_t
*pipe_mtx_attr
;
248 static lck_grp_attr_t
*pipe_mtx_grp_attr
;
250 static zone_t pipe_zone
;
252 SYSINIT(vfs
, SI_SUB_VFS
, SI_ORDER_ANY
, pipeinit
, NULL
);
255 pipeinit(void *dummy __unused
)
257 pipe_zone
= (zone_t
)zinit(sizeof(struct pipe
), 8192 * sizeof(struct pipe
), 4096, "pipe zone");
260 * allocate lock group attribute and group for pipe mutexes
262 pipe_mtx_grp_attr
= lck_grp_attr_alloc_init();
263 //lck_grp_attr_setstat(pipe_mtx_grp_attr);
264 pipe_mtx_grp
= lck_grp_alloc_init("pipe", pipe_mtx_grp_attr
);
267 * allocate the lock attribute for pipe mutexes
269 pipe_mtx_attr
= lck_attr_alloc_init();
270 //lck_attr_setdebug(pipe_mtx_attr);
276 * The pipe system call for the DTYPE_PIPE type of pipes
281 pipe(struct proc
*p
, __unused
struct pipe_args
*uap
, register_t
*retval
)
283 struct fileproc
*rf
, *wf
;
284 struct pipe
*rpipe
, *wpipe
;
288 if ((pmtx
= lck_mtx_alloc_init(pipe_mtx_grp
, pipe_mtx_attr
)) == NULL
)
291 rpipe
= wpipe
= NULL
;
292 if (pipe_create(&rpipe
) || pipe_create(&wpipe
)) {
297 * allocate the space for the normal I/O direction up
298 * front... we'll delay the allocation for the other
299 * direction until a write actually occurs (most
300 * likely it won't)...
302 * Reduce to 1/4th pipe size if we're over our global max.
304 if (amountpipekva
> maxpipekva
/ 2)
305 error
= pipespace(rpipe
, SMALL_PIPE_SIZE
);
307 error
= pipespace(rpipe
, PIPE_SIZE
);
311 #ifndef PIPE_NODIRECT
312 rpipe
->pipe_state
|= PIPE_DIRECTOK
;
313 wpipe
->pipe_state
|= PIPE_DIRECTOK
;
315 TAILQ_INIT(&rpipe
->pipe_evlist
);
316 TAILQ_INIT(&wpipe
->pipe_evlist
);
318 error
= falloc(p
, &rf
, &fd
);
325 * for now we'll create half-duplex
326 * pipes... this is what we've always
330 rf
->f_type
= DTYPE_PIPE
;
331 rf
->f_data
= (caddr_t
)rpipe
;
332 rf
->f_ops
= &pipeops
;
334 error
= falloc(p
, &wf
, &fd
);
336 fp_free(p
, retval
[0], rf
);
340 wf
->f_type
= DTYPE_PIPE
;
341 wf
->f_data
= (caddr_t
)wpipe
;
342 wf
->f_ops
= &pipeops
;
347 * XXXXXXXX SHOULD NOT HOLD FILE_LOCK() XXXXXXXXXXXX
349 * struct pipe represents a pipe endpoint. The MAC label is shared
350 * between the connected endpoints. As a result mac_init_pipe() and
351 * mac_create_pipe() should only be called on one of the endpoints
352 * after they have been connected.
354 mac_init_pipe(rpipe
);
355 mac_create_pipe(td
->td_ucred
, rpipe
);
358 *fdflags(p
, retval
[0]) &= ~UF_RESERVED
;
359 *fdflags(p
, retval
[1]) &= ~UF_RESERVED
;
360 fp_drop(p
, retval
[0], rf
, 1);
361 fp_drop(p
, retval
[1], wf
, 1);
364 rpipe
->pipe_peer
= wpipe
;
365 wpipe
->pipe_peer
= rpipe
;
367 rpipe
->pipe_mtxp
= wpipe
->pipe_mtxp
= pmtx
;
374 lck_mtx_free(pmtx
, pipe_mtx_grp
);
381 pipe_stat(struct pipe
*cpipe
, struct stat
*ub
)
392 error
= mac_check_pipe_stat(active_cred
, cpipe
);
397 if (cpipe
->pipe_buffer
.buffer
== 0) {
399 * must be stat'ing the write fd
401 cpipe
= cpipe
->pipe_peer
;
406 bzero(ub
, sizeof(*ub
));
407 ub
->st_mode
= S_IFIFO
| S_IRUSR
| S_IWUSR
| S_IRGRP
| S_IWGRP
;
408 ub
->st_blksize
= cpipe
->pipe_buffer
.size
;
409 ub
->st_size
= cpipe
->pipe_buffer
.cnt
;
410 ub
->st_blocks
= (ub
->st_size
+ ub
->st_blksize
- 1) / ub
->st_blksize
;
413 ub
->st_uid
= kauth_getuid();
414 ub
->st_gid
= kauth_getgid();
417 ub
->st_atimespec
.tv_sec
= now
.tv_sec
;
418 ub
->st_atimespec
.tv_nsec
= now
.tv_usec
* 1000;
420 ub
->st_mtimespec
.tv_sec
= now
.tv_sec
;
421 ub
->st_mtimespec
.tv_nsec
= now
.tv_usec
* 1000;
423 ub
->st_ctimespec
.tv_sec
= now
.tv_sec
;
424 ub
->st_ctimespec
.tv_nsec
= now
.tv_usec
* 1000;
427 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen, st_uid, st_gid.
428 * XXX (st_dev, st_ino) should be unique.
435 * Allocate kva for pipe circular buffer, the space is pageable
436 * This routine will 'realloc' the size of a pipe safely, if it fails
437 * it will retain the old buffer.
438 * If it fails it will return ENOMEM.
441 pipespace(struct pipe
*cpipe
, int size
)
445 size
= round_page(size
);
447 if (kmem_alloc(kernel_map
, &buffer
, size
) != KERN_SUCCESS
)
450 /* free old resources if we're resizing */
451 pipe_free_kmem(cpipe
);
452 cpipe
->pipe_buffer
.buffer
= (caddr_t
)buffer
;
453 cpipe
->pipe_buffer
.size
= size
;
454 cpipe
->pipe_buffer
.in
= 0;
455 cpipe
->pipe_buffer
.out
= 0;
456 cpipe
->pipe_buffer
.cnt
= 0;
458 OSAddAtomic(1, (SInt32
*)&amountpipes
);
459 OSAddAtomic(cpipe
->pipe_buffer
.size
, (SInt32
*)&amountpipekva
);
465 * initialize and allocate VM and memory for pipe
468 pipe_create(struct pipe
**cpipep
)
472 cpipe
= (struct pipe
*)zalloc(pipe_zone
);
474 if ((*cpipep
= cpipe
) == NULL
)
478 * protect so pipespace or pipeclose don't follow a junk pointer
479 * if pipespace() fails.
481 bzero(cpipe
, sizeof *cpipe
);
488 * lock a pipe for I/O, blocking other access
491 pipelock(cpipe
, catch)
497 while (cpipe
->pipe_state
& PIPE_LOCKFL
) {
498 cpipe
->pipe_state
|= PIPE_LWANT
;
500 error
= msleep(cpipe
, PIPE_MTX(cpipe
), catch ? (PRIBIO
| PCATCH
) : PRIBIO
,
505 cpipe
->pipe_state
|= PIPE_LOCKFL
;
511 * unlock a pipe I/O lock
518 cpipe
->pipe_state
&= ~PIPE_LOCKFL
;
520 if (cpipe
->pipe_state
& PIPE_LWANT
) {
521 cpipe
->pipe_state
&= ~PIPE_LWANT
;
527 pipeselwakeup(cpipe
, spipe
)
532 if (cpipe
->pipe_state
& PIPE_SEL
) {
533 cpipe
->pipe_state
&= ~PIPE_SEL
;
534 selwakeup(&cpipe
->pipe_sel
);
536 if (cpipe
->pipe_state
& PIPE_KNOTE
)
537 KNOTE(&cpipe
->pipe_sel
.si_note
, 1);
539 postpipeevent(cpipe
, EV_RWBYTES
);
541 if (spipe
&& (spipe
->pipe_state
& PIPE_ASYNC
) && spipe
->pipe_pgid
) {
544 if (spipe
->pipe_pgid
< 0)
545 gsignal(-spipe
->pipe_pgid
, SIGIO
);
546 else if ((p
= pfind(spipe
->pipe_pgid
)) != (struct proc
*)0)
553 pipe_read(struct fileproc
*fp
, struct uio
*uio
, __unused kauth_cred_t active_cred
, __unused
int flags
, __unused
struct proc
*p
)
555 struct pipe
*rpipe
= (struct pipe
*)fp
->f_data
;
563 error
= pipelock(rpipe
, 1);
568 error
= mac_check_pipe_read(active_cred
, rpipe
);
573 while (uio_resid(uio
)) {
575 * normal pipe buffer receive
577 if (rpipe
->pipe_buffer
.cnt
> 0) {
578 size
= rpipe
->pipe_buffer
.size
- rpipe
->pipe_buffer
.out
;
579 if (size
> rpipe
->pipe_buffer
.cnt
)
580 size
= rpipe
->pipe_buffer
.cnt
;
581 // LP64todo - fix this!
582 if (size
> (u_int
) uio_resid(uio
))
583 size
= (u_int
) uio_resid(uio
);
587 &rpipe
->pipe_buffer
.buffer
[rpipe
->pipe_buffer
.out
],
593 rpipe
->pipe_buffer
.out
+= size
;
594 if (rpipe
->pipe_buffer
.out
>= rpipe
->pipe_buffer
.size
)
595 rpipe
->pipe_buffer
.out
= 0;
597 rpipe
->pipe_buffer
.cnt
-= size
;
600 * If there is no more to read in the pipe, reset
601 * its pointers to the beginning. This improves
604 if (rpipe
->pipe_buffer
.cnt
== 0) {
605 rpipe
->pipe_buffer
.in
= 0;
606 rpipe
->pipe_buffer
.out
= 0;
609 #ifndef PIPE_NODIRECT
611 * Direct copy, bypassing a kernel buffer.
613 } else if ((size
= rpipe
->pipe_map
.cnt
) &&
614 (rpipe
->pipe_state
& PIPE_DIRECTW
)) {
616 // LP64todo - fix this!
617 if (size
> (u_int
) uio_resid(uio
))
618 size
= (u_int
) uio_resid(uio
);
620 va
= (caddr_t
) rpipe
->pipe_map
.kva
+
623 error
= uiomove(va
, size
, uio
);
628 rpipe
->pipe_map
.pos
+= size
;
629 rpipe
->pipe_map
.cnt
-= size
;
630 if (rpipe
->pipe_map
.cnt
== 0) {
631 rpipe
->pipe_state
&= ~PIPE_DIRECTW
;
637 * detect EOF condition
638 * read returns 0 on EOF, no need to set error
640 if (rpipe
->pipe_state
& PIPE_EOF
)
644 * If the "write-side" has been blocked, wake it up now.
646 if (rpipe
->pipe_state
& PIPE_WANTW
) {
647 rpipe
->pipe_state
&= ~PIPE_WANTW
;
652 * Break if some data was read.
658 * Unlock the pipe buffer for our remaining processing.
659 * We will either break out with an error or we will
660 * sleep and relock to loop.
665 * Handle non-blocking mode operation or
666 * wait for more data.
668 if (fp
->f_flag
& FNONBLOCK
) {
671 rpipe
->pipe_state
|= PIPE_WANTR
;
673 error
= msleep(rpipe
, PIPE_MTX(rpipe
), PRIBIO
| PCATCH
, "piperd", 0);
676 error
= pipelock(rpipe
, 1);
691 * PIPE_WANT processing only makes sense if pipe_busy is 0.
693 if ((rpipe
->pipe_busy
== 0) && (rpipe
->pipe_state
& PIPE_WANT
)) {
694 rpipe
->pipe_state
&= ~(PIPE_WANT
|PIPE_WANTW
);
696 } else if (rpipe
->pipe_buffer
.cnt
< MINPIPESIZE
) {
698 * Handle write blocking hysteresis.
700 if (rpipe
->pipe_state
& PIPE_WANTW
) {
701 rpipe
->pipe_state
&= ~PIPE_WANTW
;
706 if ((rpipe
->pipe_buffer
.size
- rpipe
->pipe_buffer
.cnt
) >= PIPE_BUF
)
707 pipeselwakeup(rpipe
, rpipe
->pipe_peer
);
716 #ifndef PIPE_NODIRECT
718 * Map the sending processes' buffer into kernel space and wire it.
719 * This is similar to a physical write operation.
722 pipe_build_write_buffer(wpipe
, uio
)
729 vm_offset_t addr
, endaddr
;
732 size
= (u_int
) uio
->uio_iov
->iov_len
;
733 if (size
> wpipe
->pipe_buffer
.size
)
734 size
= wpipe
->pipe_buffer
.size
;
736 pmap
= vmspace_pmap(curproc
->p_vmspace
);
737 endaddr
= round_page((vm_offset_t
)uio
->uio_iov
->iov_base
+ size
);
738 addr
= trunc_page((vm_offset_t
)uio
->uio_iov
->iov_base
);
739 for (i
= 0; addr
< endaddr
; addr
+= PAGE_SIZE
, i
++) {
741 * vm_fault_quick() can sleep. Consequently,
742 * vm_page_lock_queue() and vm_page_unlock_queue()
743 * should not be performed outside of this loop.
746 if (vm_fault_quick((caddr_t
)addr
, VM_PROT_READ
) < 0) {
747 vm_page_lock_queues();
748 for (j
= 0; j
< i
; j
++)
749 vm_page_unhold(wpipe
->pipe_map
.ms
[j
]);
750 vm_page_unlock_queues();
753 wpipe
->pipe_map
.ms
[i
] = pmap_extract_and_hold(pmap
, addr
,
755 if (wpipe
->pipe_map
.ms
[i
] == NULL
)
760 * set up the control block
762 wpipe
->pipe_map
.npages
= i
;
763 wpipe
->pipe_map
.pos
=
764 ((vm_offset_t
) uio
->uio_iov
->iov_base
) & PAGE_MASK
;
765 wpipe
->pipe_map
.cnt
= size
;
770 if (wpipe
->pipe_map
.kva
== 0) {
772 * We need to allocate space for an extra page because the
773 * address range might (will) span pages at times.
775 wpipe
->pipe_map
.kva
= kmem_alloc_nofault(kernel_map
,
776 wpipe
->pipe_buffer
.size
+ PAGE_SIZE
);
777 atomic_add_int(&amountpipekvawired
,
778 wpipe
->pipe_buffer
.size
+ PAGE_SIZE
);
780 pmap_qenter(wpipe
->pipe_map
.kva
, wpipe
->pipe_map
.ms
,
781 wpipe
->pipe_map
.npages
);
784 * and update the uio data
787 uio
->uio_iov
->iov_len
-= size
;
788 uio
->uio_iov
->iov_base
= (char *)uio
->uio_iov
->iov_base
+ size
;
789 if (uio
->uio_iov
->iov_len
== 0)
791 uio_setresid(uio
, (uio_resid(uio
) - size
));
792 uio
->uio_offset
+= size
;
797 * unmap and unwire the process buffer
800 pipe_destroy_write_buffer(wpipe
)
805 if (wpipe
->pipe_map
.kva
) {
806 pmap_qremove(wpipe
->pipe_map
.kva
, wpipe
->pipe_map
.npages
);
808 if (amountpipekvawired
> maxpipekvawired
/ 2) {
809 /* Conserve address space */
810 vm_offset_t kva
= wpipe
->pipe_map
.kva
;
811 wpipe
->pipe_map
.kva
= 0;
812 kmem_free(kernel_map
, kva
,
813 wpipe
->pipe_buffer
.size
+ PAGE_SIZE
);
814 atomic_subtract_int(&amountpipekvawired
,
815 wpipe
->pipe_buffer
.size
+ PAGE_SIZE
);
818 vm_page_lock_queues();
819 for (i
= 0; i
< wpipe
->pipe_map
.npages
; i
++) {
820 vm_page_unhold(wpipe
->pipe_map
.ms
[i
]);
822 vm_page_unlock_queues();
823 wpipe
->pipe_map
.npages
= 0;
827 * In the case of a signal, the writing process might go away. This
828 * code copies the data into the circular buffer so that the source
829 * pages can be freed without loss of data.
832 pipe_clone_write_buffer(wpipe
)
838 size
= wpipe
->pipe_map
.cnt
;
839 pos
= wpipe
->pipe_map
.pos
;
841 wpipe
->pipe_buffer
.in
= size
;
842 wpipe
->pipe_buffer
.out
= 0;
843 wpipe
->pipe_buffer
.cnt
= size
;
844 wpipe
->pipe_state
&= ~PIPE_DIRECTW
;
847 bcopy((caddr_t
) wpipe
->pipe_map
.kva
+ pos
,
848 wpipe
->pipe_buffer
.buffer
, size
);
849 pipe_destroy_write_buffer(wpipe
);
854 * This implements the pipe buffer write mechanism. Note that only
855 * a direct write OR a normal pipe write can be pending at any given time.
856 * If there are any characters in the pipe buffer, the direct write will
857 * be deferred until the receiving process grabs all of the bytes from
858 * the pipe buffer. Then the direct mapping write is set-up.
861 pipe_direct_write(wpipe
, uio
)
868 while (wpipe
->pipe_state
& PIPE_DIRECTW
) {
869 if (wpipe
->pipe_state
& PIPE_WANTR
) {
870 wpipe
->pipe_state
&= ~PIPE_WANTR
;
873 wpipe
->pipe_state
|= PIPE_WANTW
;
874 error
= msleep(wpipe
, PIPE_MTX(wpipe
),
875 PRIBIO
| PCATCH
, "pipdww", 0);
878 if (wpipe
->pipe_state
& PIPE_EOF
) {
883 wpipe
->pipe_map
.cnt
= 0; /* transfer not ready yet */
884 if (wpipe
->pipe_buffer
.cnt
> 0) {
885 if (wpipe
->pipe_state
& PIPE_WANTR
) {
886 wpipe
->pipe_state
&= ~PIPE_WANTR
;
890 wpipe
->pipe_state
|= PIPE_WANTW
;
891 error
= msleep(wpipe
, PIPE_MTX(wpipe
),
892 PRIBIO
| PCATCH
, "pipdwc", 0);
895 if (wpipe
->pipe_state
& PIPE_EOF
) {
902 wpipe
->pipe_state
|= PIPE_DIRECTW
;
906 error
= pipe_build_write_buffer(wpipe
, uio
);
910 wpipe
->pipe_state
&= ~PIPE_DIRECTW
;
915 while (!error
&& (wpipe
->pipe_state
& PIPE_DIRECTW
)) {
916 if (wpipe
->pipe_state
& PIPE_EOF
) {
919 pipe_destroy_write_buffer(wpipe
);
921 pipeselwakeup(wpipe
, wpipe
);
926 if (wpipe
->pipe_state
& PIPE_WANTR
) {
927 wpipe
->pipe_state
&= ~PIPE_WANTR
;
930 pipeselwakeup(wpipe
, wpipe
);
931 error
= msleep(wpipe
, PIPE_MTX(wpipe
), PRIBIO
| PCATCH
,
936 if (wpipe
->pipe_state
& PIPE_DIRECTW
) {
938 * this bit of trickery substitutes a kernel buffer for
939 * the process that might be going away.
941 pipe_clone_write_buffer(wpipe
);
944 pipe_destroy_write_buffer(wpipe
);
959 pipe_write(struct fileproc
*fp
, struct uio
*uio
, __unused kauth_cred_t active_cred
, __unused
int flags
, __unused
struct proc
*p
)
964 struct pipe
*wpipe
, *rpipe
;
966 rpipe
= (struct pipe
*)fp
->f_data
;
969 wpipe
= rpipe
->pipe_peer
;
972 * detect loss of pipe read side, issue SIGPIPE if lost.
974 if (wpipe
== NULL
|| (wpipe
->pipe_state
& PIPE_EOF
)) {
979 error
= mac_check_pipe_write(active_cred
, wpipe
);
989 if (wpipe
->pipe_buffer
.buffer
== 0) {
991 * need to allocate some storage... we delay the allocation
992 * until the first write on fd[0] to avoid allocating storage for both
993 * 'pipe ends'... most pipes are half-duplex with the writes targeting
994 * fd[1], so allocating space for both ends is a waste...
996 * Reduce to 1/4th pipe size if we're over our global max.
998 if (amountpipekva
> maxpipekva
/ 2)
999 pipe_size
= SMALL_PIPE_SIZE
;
1001 pipe_size
= PIPE_SIZE
;
1005 * If it is advantageous to resize the pipe buffer, do
1008 if ((uio_resid(uio
) > PIPE_SIZE
) &&
1009 (wpipe
->pipe_buffer
.size
<= PIPE_SIZE
) &&
1010 (amountpipekva
< maxpipekva
/ 2) &&
1011 (nbigpipe
< LIMITBIGPIPES
) &&
1012 #ifndef PIPE_NODIRECT
1013 (wpipe
->pipe_state
& PIPE_DIRECTW
) == 0 &&
1015 (wpipe
->pipe_buffer
.cnt
== 0)) {
1017 pipe_size
= BIG_PIPE_SIZE
;
1022 * need to do initial allocation or resizing of pipe
1024 if ((error
= pipelock(wpipe
, 1)) == 0) {
1026 if (pipespace(wpipe
, pipe_size
) == 0)
1027 OSAddAtomic(1, (SInt32
*)&nbigpipe
);
1031 if (wpipe
->pipe_buffer
.buffer
== 0) {
1033 * initial allocation failed
1040 * If an error occurred unbusy and return, waking up any pending
1044 if ((wpipe
->pipe_busy
== 0) &&
1045 (wpipe
->pipe_state
& PIPE_WANT
)) {
1046 wpipe
->pipe_state
&= ~(PIPE_WANT
| PIPE_WANTR
);
1053 // LP64todo - fix this!
1054 orig_resid
= uio_resid(uio
);
1056 while (uio_resid(uio
)) {
1059 #ifndef PIPE_NODIRECT
1061 * If the transfer is large, we can gain performance if
1062 * we do process-to-process copies directly.
1063 * If the write is non-blocking, we don't use the
1064 * direct write mechanism.
1066 * The direct write mechanism will detect the reader going
1069 if ((uio
->uio_iov
->iov_len
>= PIPE_MINDIRECT
) &&
1070 (fp
->f_flag
& FNONBLOCK
) == 0 &&
1071 amountpipekvawired
+ uio
->uio_resid
< maxpipekvawired
) {
1072 error
= pipe_direct_write(wpipe
, uio
);
1079 * Pipe buffered writes cannot be coincidental with
1080 * direct writes. We wait until the currently executing
1081 * direct write is completed before we start filling the
1082 * pipe buffer. We break out if a signal occurs or the
1086 while (wpipe
->pipe_state
& PIPE_DIRECTW
) {
1087 if (wpipe
->pipe_state
& PIPE_WANTR
) {
1088 wpipe
->pipe_state
&= ~PIPE_WANTR
;
1091 error
= msleep(wpipe
, PIPE_MTX(wpipe
), PRIBIO
| PCATCH
, "pipbww", 0);
1093 if (wpipe
->pipe_state
& PIPE_EOF
)
1101 space
= wpipe
->pipe_buffer
.size
- wpipe
->pipe_buffer
.cnt
;
1104 * Writes of size <= PIPE_BUF must be atomic.
1106 if ((space
< uio_resid(uio
)) && (orig_resid
<= PIPE_BUF
))
1111 if ((error
= pipelock(wpipe
,1)) == 0) {
1112 int size
; /* Transfer size */
1113 int segsize
; /* first segment to transfer */
1115 if (wpipe
->pipe_state
& PIPE_EOF
) {
1120 #ifndef PIPE_NODIRECT
1122 * It is possible for a direct write to
1123 * slip in on us... handle it here...
1125 if (wpipe
->pipe_state
& PIPE_DIRECTW
) {
1131 * If a process blocked in pipelock, our
1132 * value for space might be bad... the mutex
1133 * is dropped while we're blocked
1135 if (space
> (int)(wpipe
->pipe_buffer
.size
-
1136 wpipe
->pipe_buffer
.cnt
)) {
1142 * Transfer size is minimum of uio transfer
1143 * and free space in pipe buffer.
1145 // LP64todo - fix this!
1146 if (space
> uio_resid(uio
))
1147 size
= uio_resid(uio
);
1151 * First segment to transfer is minimum of
1152 * transfer size and contiguous space in
1153 * pipe buffer. If first segment to transfer
1154 * is less than the transfer size, we've got
1155 * a wraparound in the buffer.
1157 segsize
= wpipe
->pipe_buffer
.size
-
1158 wpipe
->pipe_buffer
.in
;
1162 /* Transfer first segment */
1165 error
= uiomove(&wpipe
->pipe_buffer
.buffer
[wpipe
->pipe_buffer
.in
],
1169 if (error
== 0 && segsize
< size
) {
1171 * Transfer remaining part now, to
1172 * support atomic writes. Wraparound
1175 if (wpipe
->pipe_buffer
.in
+ segsize
!=
1176 wpipe
->pipe_buffer
.size
)
1177 panic("Expected pipe buffer "
1178 "wraparound disappeared");
1182 &wpipe
->pipe_buffer
.buffer
[0],
1183 size
- segsize
, uio
);
1187 wpipe
->pipe_buffer
.in
+= size
;
1188 if (wpipe
->pipe_buffer
.in
>=
1189 wpipe
->pipe_buffer
.size
) {
1190 if (wpipe
->pipe_buffer
.in
!=
1192 wpipe
->pipe_buffer
.size
)
1195 wpipe
->pipe_buffer
.in
= size
-
1199 wpipe
->pipe_buffer
.cnt
+= size
;
1200 if (wpipe
->pipe_buffer
.cnt
>
1201 wpipe
->pipe_buffer
.size
)
1202 panic("Pipe buffer overflow");
1212 * If the "read-side" has been blocked, wake it up now.
1214 if (wpipe
->pipe_state
& PIPE_WANTR
) {
1215 wpipe
->pipe_state
&= ~PIPE_WANTR
;
1219 * don't block on non-blocking I/O
1220 * we'll do the pipeselwakeup on the way out
1222 if (fp
->f_flag
& FNONBLOCK
) {
1227 * We have no more space and have something to offer,
1228 * wake up select/poll.
1230 pipeselwakeup(wpipe
, wpipe
);
1232 wpipe
->pipe_state
|= PIPE_WANTW
;
1234 error
= msleep(wpipe
, PIPE_MTX(wpipe
), PRIBIO
| PCATCH
, "pipewr", 0);
1239 * If read side wants to go away, we just issue a signal
1242 if (wpipe
->pipe_state
& PIPE_EOF
) {
1250 if ((wpipe
->pipe_busy
== 0) && (wpipe
->pipe_state
& PIPE_WANT
)) {
1251 wpipe
->pipe_state
&= ~(PIPE_WANT
| PIPE_WANTR
);
1254 if (wpipe
->pipe_buffer
.cnt
> 0) {
1256 * If there are any characters in the buffer, we wake up
1257 * the reader if it was blocked waiting for data.
1259 if (wpipe
->pipe_state
& PIPE_WANTR
) {
1260 wpipe
->pipe_state
&= ~PIPE_WANTR
;
1264 * wake up thread blocked in select/poll or post the notification
1266 pipeselwakeup(wpipe
, wpipe
);
1274 * we implement a very minimal set of ioctls for compatibility with sockets.
1278 pipe_ioctl(struct fileproc
*fp
, u_long cmd
, caddr_t data
, __unused
struct proc
*p
)
1280 struct pipe
*mpipe
= (struct pipe
*)fp
->f_data
;
1288 error
= mac_check_pipe_ioctl(active_cred
, mpipe
, cmd
, data
);
1304 mpipe
->pipe_state
|= PIPE_ASYNC
;
1306 mpipe
->pipe_state
&= ~PIPE_ASYNC
;
1312 #ifndef PIPE_NODIRECT
1313 if (mpipe
->pipe_state
& PIPE_DIRECTW
)
1314 *(int *)data
= mpipe
->pipe_map
.cnt
;
1317 *(int *)data
= mpipe
->pipe_buffer
.cnt
;
1322 mpipe
->pipe_pgid
= *(int *)data
;
1328 *(int *)data
= mpipe
->pipe_pgid
;
1340 pipe_select(struct fileproc
*fp
, int which
, void *wql
, struct proc
*p
)
1342 struct pipe
*rpipe
= (struct pipe
*)fp
->f_data
;
1346 if (rpipe
== NULL
|| rpipe
== (struct pipe
*)-1)
1351 wpipe
= rpipe
->pipe_peer
;
1356 if ((rpipe
->pipe_state
& PIPE_DIRECTW
) ||
1357 (rpipe
->pipe_buffer
.cnt
> 0) ||
1358 (rpipe
->pipe_state
& PIPE_EOF
)) {
1362 rpipe
->pipe_state
|= PIPE_SEL
;
1363 selrecord(p
, &rpipe
->pipe_sel
, wql
);
1368 if (wpipe
== NULL
|| (wpipe
->pipe_state
& PIPE_EOF
) ||
1369 (((wpipe
->pipe_state
& PIPE_DIRECTW
) == 0) &&
1370 (wpipe
->pipe_buffer
.size
- wpipe
->pipe_buffer
.cnt
) >= PIPE_BUF
)) {
1374 wpipe
->pipe_state
|= PIPE_SEL
;
1375 selrecord(p
, &wpipe
->pipe_sel
, wql
);
1379 rpipe
->pipe_state
|= PIPE_SEL
;
1380 selrecord(p
, &rpipe
->pipe_sel
, wql
);
1391 pipe_close(struct fileglob
*fg
, __unused
struct proc
*p
)
1396 cpipe
= (struct pipe
*)fg
->fg_data
;
1407 pipe_free_kmem(struct pipe
*cpipe
)
1410 if (cpipe
->pipe_buffer
.buffer
!= NULL
) {
1411 if (cpipe
->pipe_buffer
.size
> PIPE_SIZE
)
1412 OSAddAtomic(-1, (SInt32
*)&nbigpipe
);
1413 OSAddAtomic(cpipe
->pipe_buffer
.size
, (SInt32
*)&amountpipekva
);
1414 OSAddAtomic(-1, (SInt32
*)&amountpipes
);
1416 kmem_free(kernel_map
, (vm_offset_t
)cpipe
->pipe_buffer
.buffer
,
1417 cpipe
->pipe_buffer
.size
);
1418 cpipe
->pipe_buffer
.buffer
= NULL
;
1420 #ifndef PIPE_NODIRECT
1421 if (cpipe
->pipe_map
.kva
!= 0) {
1422 atomic_subtract_int(&amountpipekvawired
,
1423 cpipe
->pipe_buffer
.size
+ PAGE_SIZE
);
1424 kmem_free(kernel_map
,
1425 cpipe
->pipe_map
.kva
,
1426 cpipe
->pipe_buffer
.size
+ PAGE_SIZE
);
1427 cpipe
->pipe_map
.cnt
= 0;
1428 cpipe
->pipe_map
.kva
= 0;
1429 cpipe
->pipe_map
.pos
= 0;
1430 cpipe
->pipe_map
.npages
= 0;
1439 pipeclose(struct pipe
*cpipe
)
1446 /* partially created pipes won't have a valid mutex. */
1447 if (PIPE_MTX(cpipe
) != NULL
)
1450 pipeselwakeup(cpipe
, cpipe
);
1453 * If the other side is blocked, wake it up saying that
1454 * we want to close it down.
1456 while (cpipe
->pipe_busy
) {
1457 cpipe
->pipe_state
|= PIPE_WANT
| PIPE_EOF
;
1461 msleep(cpipe
, PIPE_MTX(cpipe
), PRIBIO
, "pipecl", 0);
1465 if (cpipe
->pipe_label
!= NULL
&& cpipe
->pipe_peer
== NULL
)
1466 mac_destroy_pipe(cpipe
);
1470 * Disconnect from peer
1472 if ((ppipe
= cpipe
->pipe_peer
) != NULL
) {
1474 ppipe
->pipe_state
|= PIPE_EOF
;
1476 pipeselwakeup(ppipe
, ppipe
);
1479 if (cpipe
->pipe_state
& PIPE_KNOTE
)
1480 KNOTE(&ppipe
->pipe_sel
.si_note
, 1);
1482 postpipeevent(ppipe
, EV_RCLOSED
);
1484 ppipe
->pipe_peer
= NULL
;
1491 if (PIPE_MTX(cpipe
) != NULL
) {
1492 if (ppipe
!= NULL
) {
1494 * since the mutex is shared and the peer is still
1495 * alive, we need to release the mutex, not free it
1500 * peer is gone, so we're the sole party left with
1501 * interest in this mutex... we can just free it
1503 lck_mtx_free(PIPE_MTX(cpipe
), pipe_mtx_grp
);
1506 pipe_free_kmem(cpipe
);
1508 zfree(pipe_zone
, cpipe
);
1514 pipe_kqfilter(__unused
struct fileproc
*fp
, struct knote
*kn
, __unused
struct proc
*p
)
1518 cpipe
= (struct pipe
*)kn
->kn_fp
->f_data
;
1522 switch (kn
->kn_filter
) {
1524 kn
->kn_fop
= &pipe_rfiltops
;
1527 kn
->kn_fop
= &pipe_wfiltops
;
1529 if (cpipe
->pipe_peer
== NULL
) {
1531 * other end of pipe has been closed
1536 cpipe
= cpipe
->pipe_peer
;
1543 if (KNOTE_ATTACH(&cpipe
->pipe_sel
.si_note
, kn
))
1544 cpipe
->pipe_state
|= PIPE_KNOTE
;
1551 filt_pipedetach(struct knote
*kn
)
1553 struct pipe
*cpipe
= (struct pipe
*)kn
->kn_fp
->f_data
;
1557 if (kn
->kn_filter
== EVFILT_WRITE
) {
1558 if (cpipe
->pipe_peer
== NULL
) {
1562 cpipe
= cpipe
->pipe_peer
;
1564 if (cpipe
->pipe_state
& PIPE_KNOTE
) {
1565 if (KNOTE_DETACH(&cpipe
->pipe_sel
.si_note
, kn
))
1566 cpipe
->pipe_state
&= ~PIPE_KNOTE
;
1573 filt_piperead(struct knote
*kn
, long hint
)
1575 struct pipe
*rpipe
= (struct pipe
*)kn
->kn_fp
->f_data
;
1580 * if hint == 0, then we've been called from the kevent
1581 * world directly and do not currently hold the pipe mutex...
1582 * if hint == 1, we're being called back via the KNOTE post
1583 * we made in pipeselwakeup, and we already hold the mutex...
1588 wpipe
= rpipe
->pipe_peer
;
1589 kn
->kn_data
= rpipe
->pipe_buffer
.cnt
;
1591 #ifndef PIPE_NODIRECT
1592 if ((kn
->kn_data
== 0) && (rpipe
->pipe_state
& PIPE_DIRECTW
))
1593 kn
->kn_data
= rpipe
->pipe_map
.cnt
;
1595 if ((rpipe
->pipe_state
& PIPE_EOF
) ||
1596 (wpipe
== NULL
) || (wpipe
->pipe_state
& PIPE_EOF
)) {
1597 kn
->kn_flags
|= EV_EOF
;
1600 retval
= (kn
->kn_sfflags
& NOTE_LOWAT
) ?
1601 (kn
->kn_data
>= kn
->kn_sdata
) : (kn
->kn_data
> 0);
1611 filt_pipewrite(struct knote
*kn
, long hint
)
1613 struct pipe
*rpipe
= (struct pipe
*)kn
->kn_fp
->f_data
;
1617 * if hint == 0, then we've been called from the kevent
1618 * world directly and do not currently hold the pipe mutex...
1619 * if hint == 1, we're being called back via the KNOTE post
1620 * we made in pipeselwakeup, and we already hold the mutex...
1625 wpipe
= rpipe
->pipe_peer
;
1627 if ((wpipe
== NULL
) || (wpipe
->pipe_state
& PIPE_EOF
)) {
1629 kn
->kn_flags
|= EV_EOF
;
1635 kn
->kn_data
= wpipe
->pipe_buffer
.size
- wpipe
->pipe_buffer
.cnt
;
1637 #ifndef PIPE_NODIRECT
1638 if (wpipe
->pipe_state
& PIPE_DIRECTW
)
1644 return (kn
->kn_data
>= ((kn
->kn_sfflags
& NOTE_LOWAT
) ?
1645 kn
->kn_sdata
: PIPE_BUF
));