2 * Copyright (c) 2000-2010 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
32 * Mach Operating System
33 * Copyright (c) 1991,1990,1989,1988 Carnegie Mellon University
34 * All Rights Reserved.
36 * Permission to use, copy, modify and distribute this software and its
37 * documentation is hereby granted, provided that both the copyright
38 * notice and this permission notice appear in all copies of the
39 * software, derivative works or modified versions, and any portions
40 * thereof, and that both notices appear in supporting documentation.
42 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
43 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
44 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
46 * Carnegie Mellon requests users of this software to return to
48 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
49 * School of Computer Science
50 * Carnegie Mellon University
51 * Pittsburgh PA 15213-3890
53 * any improvements or extensions that they make and grant Carnegie Mellon
54 * the rights to redistribute these changes.
61 * Author: Avadis Tevanian, Jr., Michael Wayne Young
62 * (These guys wrote the Vax version)
64 * Physical Map management code for Intel i386, i486, and i860.
66 * Manages physical address maps.
68 * In addition to hardware address maps, this
69 * module is called upon to provide software-use-only
70 * maps which may or may not be stored in the same
71 * form as hardware maps. These pseudo-maps are
72 * used to store intermediate results from copy
73 * operations to and from address spaces.
75 * Since the information managed by this module is
76 * also stored by the logical address mapping module,
77 * this module may throw away valid virtual-to-physical
78 * mappings at almost any time. However, invalidations
79 * of virtual-to-physical mappings must be done as
82 * In order to cope with hardware architectures which
83 * make virtual-to-physical map invalidates expensive,
84 * this module may delay invalidate or reduced protection
85 * operations until such time as they are actually
86 * necessary. This module is given full information as
87 * to which processors are currently using which maps,
88 * and to when physical maps must be made correct.
93 #include <mach_ldebug.h>
95 #include <libkern/OSAtomic.h>
97 #include <mach/machine/vm_types.h>
99 #include <mach/boolean.h>
100 #include <kern/thread.h>
101 #include <kern/zalloc.h>
102 #include <kern/queue.h>
103 #include <kern/mach_param.h>
105 #include <kern/lock.h>
106 #include <kern/kalloc.h>
107 #include <kern/spl.h>
110 #include <vm/vm_map.h>
111 #include <vm/vm_kern.h>
112 #include <mach/vm_param.h>
113 #include <mach/vm_prot.h>
114 #include <vm/vm_object.h>
115 #include <vm/vm_page.h>
117 #include <mach/machine/vm_param.h>
118 #include <machine/thread.h>
120 #include <kern/misc_protos.h> /* prototyping */
121 #include <i386/misc_protos.h>
122 #include <i386/i386_lowmem.h>
123 #include <x86_64/lowglobals.h>
125 #include <i386/cpuid.h>
126 #include <i386/cpu_data.h>
127 #include <i386/cpu_number.h>
128 #include <i386/machine_cpu.h>
129 #include <i386/seg.h>
130 #include <i386/serial_io.h>
131 #include <i386/cpu_capabilities.h>
132 #include <i386/machine_routines.h>
133 #include <i386/proc_reg.h>
134 #include <i386/tsc.h>
135 #include <i386/pmap_internal.h>
136 #include <i386/pmap_pcid.h>
139 #include <ddb/db_command.h>
140 #include <ddb/db_output.h>
141 #include <ddb/db_sym.h>
142 #include <ddb/db_print.h>
143 #endif /* MACH_KDB */
145 #include <vm/vm_protos.h>
148 #include <i386/mp_desc.h>
154 #define POSTCODE_DELAY 1
155 #include <i386/postcode.h>
156 #endif /* IWANTTODEBUG */
159 #define DBG(x...) kprintf("DBG: " x)
163 /* Compile time assert to ensure adjacency/alignment of per-CPU data fields used
164 * in the trampolines for kernel/user boundary TLB coherency.
166 char pmap_cpu_data_assert
[(((offsetof(cpu_data_t
, cpu_tlb_invalid
) - offsetof(cpu_data_t
, cpu_active_cr3
)) == 8) && (offsetof(cpu_data_t
, cpu_active_cr3
) % 64 == 0)) ? 1 : -1];
167 boolean_t pmap_trace
= FALSE
;
169 boolean_t no_shared_cr3
= DEBUG
; /* TRUE for DEBUG by default */
171 int nx_enabled
= 1; /* enable no-execute protection */
172 int allow_data_exec
= VM_ABI_32
; /* 32-bit apps may execute data by default, 64-bit apps may not */
173 int allow_stack_exec
= 0; /* No apps may execute from the stack by default */
175 const boolean_t cpu_64bit
= TRUE
; /* Mais oui! */
177 uint64_t max_preemption_latency_tsc
= 0;
179 pv_hashed_entry_t
*pv_hash_table
; /* hash lists */
181 uint32_t npvhash
= 0;
183 pv_hashed_entry_t pv_hashed_free_list
= PV_HASHED_ENTRY_NULL
;
184 pv_hashed_entry_t pv_hashed_kern_free_list
= PV_HASHED_ENTRY_NULL
;
185 decl_simple_lock_data(,pv_hashed_free_list_lock
)
186 decl_simple_lock_data(,pv_hashed_kern_free_list_lock
)
187 decl_simple_lock_data(,pv_hash_table_lock
)
189 zone_t pv_hashed_list_zone
; /* zone of pv_hashed_entry structures */
192 * First and last physical addresses that we maintain any information
193 * for. Initialized to zero so that pmap operations done before
194 * pmap_init won't touch any non-existent structures.
196 boolean_t pmap_initialized
= FALSE
;/* Has pmap_init completed? */
198 static struct vm_object kptobj_object_store
;
199 static struct vm_object kpml4obj_object_store
;
200 static struct vm_object kpdptobj_object_store
;
203 * Array of physical page attribites for managed pages.
204 * One byte per physical page.
206 char *pmap_phys_attributes
;
207 unsigned int last_managed_page
= 0;
210 * Amount of virtual memory mapped by one
211 * page-directory entry.
214 uint64_t pde_mapped_size
= PDE_MAPPED_SIZE
;
216 unsigned pmap_memory_region_count
;
217 unsigned pmap_memory_region_current
;
219 pmap_memory_region_t pmap_memory_regions
[PMAP_MEMORY_REGIONS_SIZE
];
222 * Other useful macros.
224 #define current_pmap() (vm_map_pmap(current_thread()->map))
226 struct pmap kernel_pmap_store
;
229 pd_entry_t high_shared_pde
;
230 pd_entry_t commpage64_pde
;
232 struct zone
*pmap_zone
; /* zone of pmap structures */
234 struct zone
*pmap_anchor_zone
;
235 int pmap_debug
= 0; /* flag for debugging prints */
237 unsigned int inuse_ptepages_count
= 0;
238 long long alloc_ptepages_count
__attribute__((aligned(8))) = 0; /* aligned for atomic access */
239 unsigned int bootstrap_wired_pages
= 0;
240 int pt_fake_zone_index
= -1;
242 extern long NMIPI_acks
;
244 boolean_t kernel_text_ps_4K
= TRUE
;
245 boolean_t wpkernel
= TRUE
;
251 pt_entry_t
*DMAP1
, *DMAP2
;
256 * unlinks the pv_hashed_entry_t pvh from the singly linked hash chain.
257 * properly deals with the anchor.
258 * must be called with the hash locked, does not unlock it
263 * Map memory at initialization. The physical addresses being
264 * mapped are not managed and are never unmapped.
266 * For now, VM is already on, we only need to map the
272 vm_map_offset_t start_addr
,
273 vm_map_offset_t end_addr
,
280 while (start_addr
< end_addr
) {
281 pmap_enter(kernel_pmap
, (vm_map_offset_t
)virt
,
282 (ppnum_t
) i386_btop(start_addr
), prot
, flags
, FALSE
);
289 extern char *first_avail
;
290 extern vm_offset_t virtual_avail
, virtual_end
;
291 extern pmap_paddr_t avail_start
, avail_end
;
292 extern vm_offset_t sHIB
;
293 extern vm_offset_t eHIB
;
294 extern vm_offset_t stext
;
295 extern vm_offset_t etext
;
296 extern vm_offset_t sdata
;
298 extern void *KPTphys
;
300 boolean_t pmap_smep_enabled
= FALSE
;
306 * Here early in the life of a processor (from cpu_mode_init()).
307 * Ensure global page feature is disabled at this point.
310 set_cr4(get_cr4() &~ CR4_PGE
);
313 * Initialize the per-cpu, TLB-related fields.
315 current_cpu_datap()->cpu_kernel_cr3
= kernel_pmap
->pm_cr3
;
316 current_cpu_datap()->cpu_active_cr3
= kernel_pmap
->pm_cr3
;
317 current_cpu_datap()->cpu_tlb_invalid
= FALSE
;
318 current_cpu_datap()->cpu_task_map
= TASK_MAP_64BIT
;
319 pmap_pcid_configure();
320 if (cpuid_leaf7_features() & CPUID_LEAF7_FEATURE_SMEP
) {
322 if (!PE_parse_boot_argn("-pmap_smep_disable", &nsmep
, sizeof(nsmep
))) {
323 set_cr4(get_cr4() | CR4_SMEP
);
324 pmap_smep_enabled
= TRUE
;
332 * Bootstrap the system enough to run with virtual memory.
333 * Map the kernel's code and data, and allocate the system page table.
334 * Called with mapping OFF. Page_size must already be set.
339 __unused vm_offset_t load_start
,
340 __unused boolean_t IA32e
)
342 #if NCOPY_WINDOWS > 0
348 vm_last_addr
= VM_MAX_KERNEL_ADDRESS
; /* Set the highest address
351 * The kernel's pmap is statically allocated so we don't
352 * have to use pmap_create, which is unlikely to work
353 * correctly at this part of the boot sequence.
356 kernel_pmap
= &kernel_pmap_store
;
357 kernel_pmap
->ref_count
= 1;
358 kernel_pmap
->nx_enabled
= FALSE
;
359 kernel_pmap
->pm_task_map
= TASK_MAP_64BIT
;
360 kernel_pmap
->pm_obj
= (vm_object_t
) NULL
;
361 kernel_pmap
->dirbase
= (pd_entry_t
*)((uintptr_t)IdlePTD
);
362 kernel_pmap
->pm_pdpt
= (pd_entry_t
*) ((uintptr_t)IdlePDPT
);
363 kernel_pmap
->pm_pml4
= IdlePML4
;
364 kernel_pmap
->pm_cr3
= (uintptr_t)ID_MAP_VTOP(IdlePML4
);
365 pmap_pcid_initialize_kernel(kernel_pmap
);
369 current_cpu_datap()->cpu_kernel_cr3
= (addr64_t
) kernel_pmap
->pm_cr3
;
372 OSAddAtomic(NKPT
, &inuse_ptepages_count
);
373 OSAddAtomic64(NKPT
, &alloc_ptepages_count
);
374 bootstrap_wired_pages
= NKPT
;
376 virtual_avail
= (vm_offset_t
)(VM_MIN_KERNEL_ADDRESS
) + (vm_offset_t
)first_avail
;
377 virtual_end
= (vm_offset_t
)(VM_MAX_KERNEL_ADDRESS
);
379 #if NCOPY_WINDOWS > 0
381 * Reserve some special page table entries/VA space for temporary
384 #define SYSMAP(c, p, v, n) \
385 v = (c)va; va += ((n)*INTEL_PGBYTES);
389 for (i
=0; i
<PMAP_NWINDOWS
; i
++) {
391 kprintf("trying to do SYSMAP idx %d %p\n", i
,
392 current_cpu_datap());
393 kprintf("cpu_pmap %p\n", current_cpu_datap()->cpu_pmap
);
394 kprintf("mapwindow %p\n", current_cpu_datap()->cpu_pmap
->mapwindow
);
395 kprintf("two stuff %p %p\n",
396 (void *)(current_cpu_datap()->cpu_pmap
->mapwindow
[i
].prv_CMAP
),
397 (void *)(current_cpu_datap()->cpu_pmap
->mapwindow
[i
].prv_CADDR
));
400 (current_cpu_datap()->cpu_pmap
->mapwindow
[i
].prv_CMAP
),
401 (current_cpu_datap()->cpu_pmap
->mapwindow
[i
].prv_CADDR
),
403 current_cpu_datap()->cpu_pmap
->mapwindow
[i
].prv_CMAP
=
404 &(current_cpu_datap()->cpu_pmap
->mapwindow
[i
].prv_CMAP_store
);
405 *current_cpu_datap()->cpu_pmap
->mapwindow
[i
].prv_CMAP
= 0;
408 /* DMAP user for debugger */
409 SYSMAP(caddr_t
, DMAP1
, DADDR1
, 1);
410 SYSMAP(caddr_t
, DMAP2
, DADDR2
, 1); /* XXX temporary - can remove */
415 if (PE_parse_boot_argn("npvhash", &npvhash
, sizeof (npvhash
))) {
416 if (0 != ((npvhash
+ 1) & npvhash
)) {
417 kprintf("invalid hash %d, must be ((2^N)-1), "
418 "using default %d\n", npvhash
, NPVHASH
);
425 simple_lock_init(&kernel_pmap
->lock
, 0);
426 simple_lock_init(&pv_hashed_free_list_lock
, 0);
427 simple_lock_init(&pv_hashed_kern_free_list_lock
, 0);
428 simple_lock_init(&pv_hash_table_lock
,0);
433 printf("PMAP: PCID enabled\n");
435 if (pmap_smep_enabled
)
436 printf("PMAP: Supervisor Mode Execute Protection enabled\n");
438 boot_args
*args
= (boot_args
*)PE_state
.bootArgs
;
439 if (args
->efiMode
== kBootArgsEfiMode32
) {
440 printf("EFI32: kernel virtual space limited to 4GB\n");
441 virtual_end
= VM_MAX_KERNEL_ADDRESS_EFI32
;
443 kprintf("Kernel virtual space from 0x%lx to 0x%lx.\n",
444 (long)KERNEL_BASE
, (long)virtual_end
);
445 kprintf("Available physical space from 0x%llx to 0x%llx\n",
446 avail_start
, avail_end
);
449 * The -no_shared_cr3 boot-arg is a debugging feature (set by default
450 * in the DEBUG kernel) to force the kernel to switch to its own map
451 * (and cr3) when control is in kernelspace. The kernel's map does not
452 * include (i.e. share) userspace so wild references will cause
453 * a panic. Only copyin and copyout are exempt from this.
455 (void) PE_parse_boot_argn("-no_shared_cr3",
456 &no_shared_cr3
, sizeof (no_shared_cr3
));
458 kprintf("Kernel not sharing user map\n");
461 if (PE_parse_boot_argn("-pmap_trace", &pmap_trace
, sizeof (pmap_trace
))) {
462 kprintf("Kernel traces for pmap operations enabled\n");
464 #endif /* PMAP_TRACES */
472 *startp
= virtual_avail
;
477 * Initialize the pmap module.
478 * Called by vm_init, to initialize any structures that the pmap
479 * system needs to map virtual memory.
487 vm_map_offset_t vaddr
;
491 kernel_pmap
->pm_obj_pml4
= &kpml4obj_object_store
;
492 _vm_object_allocate((vm_object_size_t
)NPML4PGS
, &kpml4obj_object_store
);
494 kernel_pmap
->pm_obj_pdpt
= &kpdptobj_object_store
;
495 _vm_object_allocate((vm_object_size_t
)NPDPTPGS
, &kpdptobj_object_store
);
497 kernel_pmap
->pm_obj
= &kptobj_object_store
;
498 _vm_object_allocate((vm_object_size_t
)NPDEPGS
, &kptobj_object_store
);
501 * Allocate memory for the pv_head_table and its lock bits,
502 * the modify bit array, and the pte_page table.
506 * zero bias all these arrays now instead of off avail_start
507 * so we cover all memory
510 npages
= i386_btop(avail_end
);
511 s
= (vm_size_t
) (sizeof(struct pv_rooted_entry
) * npages
512 + (sizeof (struct pv_hashed_entry_t
*) * (npvhash
+1))
513 + pv_lock_table_size(npages
)
514 + pv_hash_lock_table_size((npvhash
+1))
518 if (kernel_memory_allocate(kernel_map
, &addr
, s
, 0,
519 KMA_KOBJECT
| KMA_PERMANENT
)
523 memset((char *)addr
, 0, s
);
529 if (0 == npvhash
) panic("npvhash not initialized");
533 * Allocate the structures first to preserve word-alignment.
535 pv_head_table
= (pv_rooted_entry_t
) addr
;
536 addr
= (vm_offset_t
) (pv_head_table
+ npages
);
538 pv_hash_table
= (pv_hashed_entry_t
*)addr
;
539 addr
= (vm_offset_t
) (pv_hash_table
+ (npvhash
+ 1));
541 pv_lock_table
= (char *) addr
;
542 addr
= (vm_offset_t
) (pv_lock_table
+ pv_lock_table_size(npages
));
544 pv_hash_lock_table
= (char *) addr
;
545 addr
= (vm_offset_t
) (pv_hash_lock_table
+ pv_hash_lock_table_size((npvhash
+1)));
547 pmap_phys_attributes
= (char *) addr
;
549 ppnum_t last_pn
= i386_btop(avail_end
);
551 pmap_memory_region_t
*pmptr
= pmap_memory_regions
;
552 for (i
= 0; i
< pmap_memory_region_count
; i
++, pmptr
++) {
553 if (pmptr
->type
!= kEfiConventionalMemory
)
556 for (pn
= pmptr
->base
; pn
<= pmptr
->end
; pn
++) {
558 pmap_phys_attributes
[pn
] |= PHYS_MANAGED
;
560 if (pn
> last_managed_page
)
561 last_managed_page
= pn
;
563 if (pn
>= lowest_hi
&& pn
<= highest_hi
)
564 pmap_phys_attributes
[pn
] |= PHYS_NOENCRYPT
;
569 ppn
= pmap_find_phys(kernel_pmap
, vaddr
);
571 pmap_phys_attributes
[ppn
] |= PHYS_NOENCRYPT
;
577 * Create the zone of physical maps,
578 * and of the physical-to-virtual entries.
580 s
= (vm_size_t
) sizeof(struct pmap
);
581 pmap_zone
= zinit(s
, 400*s
, 4096, "pmap"); /* XXX */
582 zone_change(pmap_zone
, Z_NOENCRYPT
, TRUE
);
584 pmap_anchor_zone
= zinit(PAGE_SIZE
, task_max
, PAGE_SIZE
, "pagetable anchors");
585 zone_change(pmap_anchor_zone
, Z_NOENCRYPT
, TRUE
);
588 /* The anchor is required to be page aligned. Zone debugging adds
589 * padding which may violate that requirement. Disable it
590 * to avoid assumptions.
592 zone_debug_disable(pmap_anchor_zone
);
595 s
= (vm_size_t
) sizeof(struct pv_hashed_entry
);
596 pv_hashed_list_zone
= zinit(s
, 10000*s
/* Expandable zone */,
597 4096 * 3 /* LCM x86_64*/, "pv_list");
598 zone_change(pv_hashed_list_zone
, Z_NOENCRYPT
, TRUE
);
600 /* create pv entries for kernel pages mapped by low level
601 startup code. these have to exist so we can pmap_remove()
602 e.g. kext pages from the middle of our addr space */
604 vaddr
= (vm_map_offset_t
) VM_MIN_KERNEL_ADDRESS
;
605 for (ppn
= VM_MIN_KERNEL_PAGE
; ppn
< i386_btop(avail_start
); ppn
++) {
606 pv_rooted_entry_t pv_e
;
608 pv_e
= pai_to_pvh(ppn
);
611 pv_e
->pmap
= kernel_pmap
;
612 queue_init(&pv_e
->qlink
);
614 pmap_initialized
= TRUE
;
616 max_preemption_latency_tsc
= tmrCvt((uint64_t)MAX_PREEMPTION_LATENCY_NS
, tscFCvtn2t
);
619 * Ensure the kernel's PML4 entry exists for the basement
620 * before this is shared with any user.
622 pmap_expand_pml4(kernel_pmap
, KERNEL_BASEMENT
);
626 * Called once VM is fully initialized so that we can release unused
627 * sections of low memory to the general pool.
628 * Also complete the set-up of identity-mapped sections of the kernel:
629 * 1) write-protect kernel text
630 * 2) map kernel text using large pages if possible
631 * 3) read and write-protect page zero (for K32)
632 * 4) map the global page at the appropriate virtual address.
636 * To effectively map and write-protect all kernel text pages, the text
637 * must be 2M-aligned at the base, and the data section above must also be
638 * 2M-aligned. That is, there's padding below and above. This is achieved
639 * through linker directives. Large pages are used only if this alignment
640 * exists (and not overriden by the -kernel_text_page_4K boot-arg). The
645 * sdata: ================== 2Meg
649 * etext: ------------------
657 * stext: ================== 2Meg
661 * eHIB: ------------------
665 * Prior to changing the mapping from 4K to 2M, the zero-padding pages
666 * [eHIB,stext] and [etext,sdata] are ml_static_mfree()'d. Then all the
667 * 4K pages covering [stext,etext] are coalesced as 2M large pages.
668 * The now unused level-1 PTE pages are also freed.
670 extern uint32_t pmap_reserved_ranges
;
672 pmap_lowmem_finalize(void)
677 /* Check the kernel is linked at the expected base address */
678 if (i386_btop(kvtophys((vm_offset_t
) &IdlePML4
)) !=
679 I386_KERNEL_IMAGE_BASE_PAGE
)
680 panic("pmap_lowmem_finalize() unexpected kernel base address");
683 * Update wired memory statistics for early boot pages
685 PMAP_ZINFO_PALLOC(bootstrap_wired_pages
* PAGE_SIZE
);
688 * Free all pages in pmap regions below the base:
690 * We can't free all the pages to VM that EFI reports available.
691 * Pages in the range 0xc0000-0xff000 aren't safe over sleep/wake.
692 * There's also a size miscalculation here: pend is one page less
693 * than it should be but this is not fixed to be backwards
695 * Due to this current EFI limitation, we take only the first
696 * entry in the memory region table. However, the loop is retained
697 * (with the intended termination criteria commented out) in the
698 * hope that some day we can free all low-memory ranges.
701 // pmap_memory_regions[i].end <= I386_KERNEL_IMAGE_BASE_PAGE;
702 i
< 1 && (pmap_reserved_ranges
== 0);
704 vm_offset_t pbase
= (vm_offset_t
)i386_ptob(pmap_memory_regions
[i
].base
);
705 vm_offset_t pend
= (vm_offset_t
)i386_ptob(pmap_memory_regions
[i
].end
);
706 // vm_offset_t pend = i386_ptob(pmap_memory_regions[i].end+1);
708 DBG("ml_static_mfree(%p,%p) for pmap region %d\n",
709 (void *) ml_static_ptovirt(pbase
),
710 (void *) (pend
- pbase
), i
);
711 ml_static_mfree(ml_static_ptovirt(pbase
), pend
- pbase
);
715 * If text and data are both 2MB-aligned,
716 * we can map text with large-pages,
717 * unless the -kernel_text_ps_4K boot-arg overrides.
719 if ((stext
& I386_LPGMASK
) == 0 && (sdata
& I386_LPGMASK
) == 0) {
720 kprintf("Kernel text is 2MB aligned");
721 kernel_text_ps_4K
= FALSE
;
722 if (PE_parse_boot_argn("-kernel_text_ps_4K",
724 sizeof (kernel_text_ps_4K
)))
725 kprintf(" but will be mapped with 4K pages\n");
727 kprintf(" and will be mapped with 2M pages\n");
730 (void) PE_parse_boot_argn("wpkernel", &wpkernel
, sizeof (wpkernel
));
732 kprintf("Kernel text %p-%p to be write-protected\n",
733 (void *) stext
, (void *) etext
);
738 * Scan over text if mappings are to be changed:
739 * - Remap kernel text readonly unless the "wpkernel" boot-arg is 0
740 * - Change to large-pages if possible and not overriden.
742 if (kernel_text_ps_4K
&& wpkernel
) {
744 for (myva
= stext
; myva
< etext
; myva
+= PAGE_SIZE
) {
747 ptep
= pmap_pte(kernel_pmap
, (vm_map_offset_t
)myva
);
749 pmap_store_pte(ptep
, *ptep
& ~INTEL_PTE_RW
);
753 if (!kernel_text_ps_4K
) {
757 * Release zero-filled page padding used for 2M-alignment.
759 DBG("ml_static_mfree(%p,%p) for padding below text\n",
760 (void *) eHIB
, (void *) (stext
- eHIB
));
761 ml_static_mfree(eHIB
, stext
- eHIB
);
762 DBG("ml_static_mfree(%p,%p) for padding above text\n",
763 (void *) etext
, (void *) (sdata
- etext
));
764 ml_static_mfree(etext
, sdata
- etext
);
767 * Coalesce text pages into large pages.
769 for (myva
= stext
; myva
< sdata
; myva
+= I386_LPGBYTES
) {
771 vm_offset_t pte_phys
;
775 pdep
= pmap_pde(kernel_pmap
, (vm_map_offset_t
)myva
);
776 ptep
= pmap_pte(kernel_pmap
, (vm_map_offset_t
)myva
);
777 DBG("myva: %p pdep: %p ptep: %p\n",
778 (void *) myva
, (void *) pdep
, (void *) ptep
);
779 if ((*ptep
& INTEL_PTE_VALID
) == 0)
781 pte_phys
= (vm_offset_t
)(*ptep
& PG_FRAME
);
782 pde
= *pdep
& PTMASK
; /* page attributes from pde */
783 pde
|= INTEL_PTE_PS
; /* make it a 2M entry */
784 pde
|= pte_phys
; /* take page frame from pte */
787 pde
&= ~INTEL_PTE_RW
;
788 DBG("pmap_store_pte(%p,0x%llx)\n",
790 pmap_store_pte(pdep
, pde
);
793 * Free the now-unused level-1 pte.
794 * Note: ptep is a virtual address to the pte in the
795 * recursive map. We can't use this address to free
796 * the page. Instead we need to compute its address
797 * in the Idle PTEs in "low memory".
799 vm_offset_t vm_ptep
= (vm_offset_t
) KPTphys
800 + (pte_phys
>> PTPGSHIFT
);
801 DBG("ml_static_mfree(%p,0x%x) for pte\n",
802 (void *) vm_ptep
, PAGE_SIZE
);
803 ml_static_mfree(vm_ptep
, PAGE_SIZE
);
806 /* Change variable read by sysctl machdep.pmap */
807 pmap_kernel_text_ps
= I386_LPGBYTES
;
810 /* map lowmem global page into fixed addr */
811 pt_entry_t
*pte
= NULL
;
812 if (0 == (pte
= pmap_pte(kernel_pmap
,
813 VM_MIN_KERNEL_LOADED_ADDRESS
+ 0x2000)))
815 /* make sure it is defined on page boundary */
816 assert(0 == ((vm_offset_t
) &lowGlo
& PAGE_MASK
));
817 pmap_store_pte(pte
, kvtophys((vm_offset_t
)&lowGlo
)
831 * this function is only used for debugging fron the vm layer
837 pv_rooted_entry_t pv_h
;
841 assert(pn
!= vm_page_fictitious_addr
);
843 if (!pmap_initialized
)
846 if (pn
== vm_page_guard_addr
)
849 pai
= ppn_to_pai(pn
);
850 if (!IS_MANAGED_PAGE(pai
))
852 pv_h
= pai_to_pvh(pn
);
853 result
= (pv_h
->pmap
== PMAP_NULL
);
860 vm_map_offset_t va_start
,
861 vm_map_offset_t va_end
)
863 vm_map_offset_t offset
;
866 if (pmap
== PMAP_NULL
) {
871 * Check the resident page count
872 * - if it's zero, the pmap is completely empty.
873 * This short-circuit test prevents a virtual address scan which is
874 * painfully slow for 64-bit spaces.
875 * This assumes the count is correct
876 * .. the debug kernel ought to be checking perhaps by page table walk.
878 if (pmap
->stats
.resident_count
== 0)
881 for (offset
= va_start
;
883 offset
+= PAGE_SIZE_64
) {
884 phys_page
= pmap_find_phys(pmap
, offset
);
886 kprintf("pmap_is_empty(%p,0x%llx,0x%llx): "
887 "page %d at 0x%llx\n",
888 pmap
, va_start
, va_end
, phys_page
, offset
);
898 * Create and return a physical map.
900 * If the size specified for the map
901 * is zero, the map is an actual physical
902 * map, and may be referenced by the
905 * If the size specified is non-zero,
906 * the map will be used in software only, and
907 * is bounded by that size.
919 PMAP_TRACE(PMAP_CODE(PMAP__CREATE
) | DBG_FUNC_START
,
920 (uint32_t) (sz
>>32), (uint32_t) sz
, is_64bit
, 0, 0);
922 size
= (vm_size_t
) sz
;
925 * A software use-only map doesn't even need a map.
932 p
= (pmap_t
) zalloc(pmap_zone
);
934 panic("pmap_create zalloc");
935 /* Zero all fields */
936 bzero(p
, sizeof(*p
));
937 /* init counts now since we'll be bumping some */
938 simple_lock_init(&p
->lock
, 0);
939 p
->stats
.resident_count
= 0;
940 p
->stats
.resident_max
= 0;
941 p
->stats
.wired_count
= 0;
944 p
->pm_shared
= FALSE
;
946 p
->pm_task_map
= is_64bit
? TASK_MAP_64BIT
: TASK_MAP_32BIT
;;
948 pmap_pcid_initialize(p
);
949 p
->pm_pml4
= zalloc(pmap_anchor_zone
);
951 pmap_assert((((uintptr_t)p
->pm_pml4
) & PAGE_MASK
) == 0);
953 memset((char *)p
->pm_pml4
, 0, PAGE_SIZE
);
955 p
->pm_cr3
= (pmap_paddr_t
)kvtophys((vm_offset_t
)p
->pm_pml4
);
957 /* allocate the vm_objs to hold the pdpt, pde and pte pages */
959 p
->pm_obj_pml4
= vm_object_allocate((vm_object_size_t
)(NPML4PGS
));
960 if (NULL
== p
->pm_obj_pml4
)
961 panic("pmap_create pdpt obj");
963 p
->pm_obj_pdpt
= vm_object_allocate((vm_object_size_t
)(NPDPTPGS
));
964 if (NULL
== p
->pm_obj_pdpt
)
965 panic("pmap_create pdpt obj");
967 p
->pm_obj
= vm_object_allocate((vm_object_size_t
)(NPDEPGS
));
968 if (NULL
== p
->pm_obj
)
969 panic("pmap_create pte obj");
971 /* All pmaps share the kernel's pml4 */
972 pml4
= pmap64_pml4(p
, 0ULL);
973 kpml4
= kernel_pmap
->pm_pml4
;
974 pml4
[KERNEL_PML4_INDEX
] = kpml4
[KERNEL_PML4_INDEX
];
975 pml4
[KERNEL_KEXTS_INDEX
] = kpml4
[KERNEL_KEXTS_INDEX
];
976 pml4
[KERNEL_PHYSMAP_INDEX
] = kpml4
[KERNEL_PHYSMAP_INDEX
];
978 PMAP_TRACE(PMAP_CODE(PMAP__CREATE
) | DBG_FUNC_START
,
979 p
, is_64bit
, 0, 0, 0);
985 * Retire the given physical map from service.
986 * Should only be called if the map contains
991 pmap_destroy(pmap_t p
)
998 PMAP_TRACE(PMAP_CODE(PMAP__DESTROY
) | DBG_FUNC_START
,
1005 pmap_assert((current_thread() && (current_thread()->map
)) ? (current_thread()->map
->pmap
!= p
) : TRUE
);
1009 * If some cpu is not using the physical pmap pointer that it
1010 * is supposed to be (see set_dirbase), we might be using the
1011 * pmap that is being destroyed! Make sure we are
1012 * physically on the right pmap:
1014 PMAP_UPDATE_TLBS(p
, 0x0ULL
, 0xFFFFFFFFFFFFF000ULL
);
1015 if (pmap_pcid_ncpus
)
1016 pmap_destroy_pcid_sync(p
);
1022 PMAP_TRACE(PMAP_CODE(PMAP__DESTROY
) | DBG_FUNC_END
,
1024 pmap_assert(p
== kernel_pmap
);
1025 return; /* still in use */
1029 * Free the memory maps, then the
1032 int inuse_ptepages
= 0;
1034 zfree(pmap_anchor_zone
, p
->pm_pml4
);
1036 inuse_ptepages
+= p
->pm_obj_pml4
->resident_page_count
;
1037 vm_object_deallocate(p
->pm_obj_pml4
);
1039 inuse_ptepages
+= p
->pm_obj_pdpt
->resident_page_count
;
1040 vm_object_deallocate(p
->pm_obj_pdpt
);
1042 inuse_ptepages
+= p
->pm_obj
->resident_page_count
;
1043 vm_object_deallocate(p
->pm_obj
);
1045 OSAddAtomic(-inuse_ptepages
, &inuse_ptepages_count
);
1046 PMAP_ZINFO_PFREE(inuse_ptepages
* PAGE_SIZE
);
1048 zfree(pmap_zone
, p
);
1050 PMAP_TRACE(PMAP_CODE(PMAP__DESTROY
) | DBG_FUNC_END
,
1055 * Add a reference to the specified pmap.
1059 pmap_reference(pmap_t p
)
1061 if (p
!= PMAP_NULL
) {
1069 * Remove phys addr if mapped in specified map
1073 pmap_remove_some_phys(
1074 __unused pmap_t map
,
1075 __unused ppnum_t pn
)
1078 /* Implement to support working set code */
1084 * Set the physical protection on the
1085 * specified range of this map as requested.
1086 * Will not increase permissions.
1091 vm_map_offset_t sva
,
1092 vm_map_offset_t eva
,
1096 pt_entry_t
*spte
, *epte
;
1097 vm_map_offset_t lva
;
1098 vm_map_offset_t orig_sva
;
1104 if (map
== PMAP_NULL
)
1107 if (prot
== VM_PROT_NONE
) {
1108 pmap_remove(map
, sva
, eva
);
1111 PMAP_TRACE(PMAP_CODE(PMAP__PROTECT
) | DBG_FUNC_START
,
1113 (uint32_t) (sva
>> 32), (uint32_t) sva
,
1114 (uint32_t) (eva
>> 32), (uint32_t) eva
);
1116 if ((prot
& VM_PROT_EXECUTE
) || !nx_enabled
|| !map
->nx_enabled
)
1125 lva
= (sva
+ pde_mapped_size
) & ~(pde_mapped_size
- 1);
1128 pde
= pmap_pde(map
, sva
);
1129 if (pde
&& (*pde
& INTEL_PTE_VALID
)) {
1130 if (*pde
& INTEL_PTE_PS
) {
1133 epte
= spte
+1; /* excluded */
1135 spte
= pmap_pte(map
, (sva
& ~(pde_mapped_size
- 1)));
1136 spte
= &spte
[ptenum(sva
)];
1137 epte
= &spte
[intel_btop(lva
- sva
)];
1140 for (; spte
< epte
; spte
++) {
1141 if (!(*spte
& INTEL_PTE_VALID
))
1144 if (prot
& VM_PROT_WRITE
)
1145 pmap_update_pte(spte
, *spte
,
1146 *spte
| INTEL_PTE_WRITE
);
1148 pmap_update_pte(spte
, *spte
,
1149 *spte
& ~INTEL_PTE_WRITE
);
1152 pmap_update_pte(spte
, *spte
,
1153 *spte
| INTEL_PTE_NX
);
1155 pmap_update_pte(spte
, *spte
,
1156 *spte
& ~INTEL_PTE_NX
);
1164 PMAP_UPDATE_TLBS(map
, orig_sva
, eva
);
1168 PMAP_TRACE(PMAP_CODE(PMAP__PROTECT
) | DBG_FUNC_END
,
1173 /* Map a (possibly) autogenned block */
1182 __unused
unsigned int flags
)
1187 if (attr
& VM_MEM_SUPERPAGE
)
1188 cur_page_size
= SUPERPAGE_SIZE
;
1190 cur_page_size
= PAGE_SIZE
;
1192 for (page
= 0; page
< size
; page
+=cur_page_size
/PAGE_SIZE
) {
1193 pmap_enter(pmap
, va
, pa
, prot
, attr
, TRUE
);
1194 va
+= cur_page_size
;
1195 pa
+=cur_page_size
/PAGE_SIZE
;
1203 vm_map_offset_t vaddr
)
1209 pml4_entry_t
*pml4p
;
1211 DBG("pmap_expand_pml4(%p,%p)\n", map
, (void *)vaddr
);
1214 * Allocate a VM page for the pml4 page
1216 while ((m
= vm_page_grab()) == VM_PAGE_NULL
)
1220 * put the page into the pmap's obj list so it
1221 * can be found later.
1225 i
= pml4idx(map
, vaddr
);
1232 vm_page_lockspin_queues();
1234 vm_page_unlock_queues();
1236 OSAddAtomic(1, &inuse_ptepages_count
);
1237 OSAddAtomic64(1, &alloc_ptepages_count
);
1238 PMAP_ZINFO_PALLOC(PAGE_SIZE
);
1240 /* Take the oject lock (mutex) before the PMAP_LOCK (spinlock) */
1241 vm_object_lock(map
->pm_obj_pml4
);
1245 * See if someone else expanded us first
1247 if (pmap64_pdpt(map
, vaddr
) != PDPT_ENTRY_NULL
) {
1249 vm_object_unlock(map
->pm_obj_pml4
);
1253 OSAddAtomic(-1, &inuse_ptepages_count
);
1254 PMAP_ZINFO_PFREE(PAGE_SIZE
);
1259 if (0 != vm_page_lookup(map
->pm_obj_pml4
, (vm_object_offset_t
)i
)) {
1260 panic("pmap_expand_pml4: obj not empty, pmap %p pm_obj %p vaddr 0x%llx i 0x%llx\n",
1261 map
, map
->pm_obj_pml4
, vaddr
, i
);
1264 vm_page_insert(m
, map
->pm_obj_pml4
, (vm_object_offset_t
)i
);
1265 vm_object_unlock(map
->pm_obj_pml4
);
1268 * Set the page directory entry for this page table.
1270 pml4p
= pmap64_pml4(map
, vaddr
); /* refetch under lock */
1272 pmap_store_pte(pml4p
, pa_to_pte(pa
)
1285 vm_map_offset_t vaddr
)
1291 pdpt_entry_t
*pdptp
;
1293 DBG("pmap_expand_pdpt(%p,%p)\n", map
, (void *)vaddr
);
1295 while ((pdptp
= pmap64_pdpt(map
, vaddr
)) == PDPT_ENTRY_NULL
) {
1296 pmap_expand_pml4(map
, vaddr
);
1300 * Allocate a VM page for the pdpt page
1302 while ((m
= vm_page_grab()) == VM_PAGE_NULL
)
1306 * put the page into the pmap's obj list so it
1307 * can be found later.
1311 i
= pdptidx(map
, vaddr
);
1318 vm_page_lockspin_queues();
1320 vm_page_unlock_queues();
1322 OSAddAtomic(1, &inuse_ptepages_count
);
1323 OSAddAtomic64(1, &alloc_ptepages_count
);
1324 PMAP_ZINFO_PALLOC(PAGE_SIZE
);
1326 /* Take the oject lock (mutex) before the PMAP_LOCK (spinlock) */
1327 vm_object_lock(map
->pm_obj_pdpt
);
1331 * See if someone else expanded us first
1333 if (pmap64_pde(map
, vaddr
) != PD_ENTRY_NULL
) {
1335 vm_object_unlock(map
->pm_obj_pdpt
);
1339 OSAddAtomic(-1, &inuse_ptepages_count
);
1340 PMAP_ZINFO_PFREE(PAGE_SIZE
);
1345 if (0 != vm_page_lookup(map
->pm_obj_pdpt
, (vm_object_offset_t
)i
)) {
1346 panic("pmap_expand_pdpt: obj not empty, pmap %p pm_obj %p vaddr 0x%llx i 0x%llx\n",
1347 map
, map
->pm_obj_pdpt
, vaddr
, i
);
1350 vm_page_insert(m
, map
->pm_obj_pdpt
, (vm_object_offset_t
)i
);
1351 vm_object_unlock(map
->pm_obj_pdpt
);
1354 * Set the page directory entry for this page table.
1356 pdptp
= pmap64_pdpt(map
, vaddr
); /* refetch under lock */
1358 pmap_store_pte(pdptp
, pa_to_pte(pa
)
1372 * Routine: pmap_expand
1374 * Expands a pmap to be able to map the specified virtual address.
1376 * Allocates new virtual memory for the P0 or P1 portion of the
1377 * pmap, then re-maps the physical pages that were in the old
1378 * pmap to be in the new pmap.
1380 * Must be called with the pmap system and the pmap unlocked,
1381 * since these must be unlocked to use vm_allocate or vm_deallocate.
1382 * Thus it must be called in a loop that checks whether the map
1383 * has been expanded enough.
1384 * (We won't loop forever, since page tables aren't shrunk.)
1389 vm_map_offset_t vaddr
)
1392 register vm_page_t m
;
1393 register pmap_paddr_t pa
;
1399 * For the kernel, the virtual address must be in or above the basement
1400 * which is for kexts and is in the 512GB immediately below the kernel..
1401 * XXX - should use VM_MIN_KERNEL_AND_KEXT_ADDRESS not KERNEL_BASEMENT
1403 if (map
== kernel_pmap
&&
1404 !(vaddr
>= KERNEL_BASEMENT
&& vaddr
<= VM_MAX_KERNEL_ADDRESS
))
1405 panic("pmap_expand: bad vaddr 0x%llx for kernel pmap", vaddr
);
1408 while ((pdp
= pmap64_pde(map
, vaddr
)) == PD_ENTRY_NULL
) {
1409 /* need room for another pde entry */
1410 pmap_expand_pdpt(map
, vaddr
);
1414 * Allocate a VM page for the pde entries.
1416 while ((m
= vm_page_grab()) == VM_PAGE_NULL
)
1420 * put the page into the pmap's obj list so it
1421 * can be found later.
1425 i
= pdeidx(map
, vaddr
);
1432 vm_page_lockspin_queues();
1434 vm_page_unlock_queues();
1436 OSAddAtomic(1, &inuse_ptepages_count
);
1437 OSAddAtomic64(1, &alloc_ptepages_count
);
1438 PMAP_ZINFO_PALLOC(PAGE_SIZE
);
1440 /* Take the oject lock (mutex) before the PMAP_LOCK (spinlock) */
1441 vm_object_lock(map
->pm_obj
);
1446 * See if someone else expanded us first
1448 if (pmap_pte(map
, vaddr
) != PT_ENTRY_NULL
) {
1450 vm_object_unlock(map
->pm_obj
);
1454 OSAddAtomic(-1, &inuse_ptepages_count
);
1455 PMAP_ZINFO_PFREE(PAGE_SIZE
);
1460 if (0 != vm_page_lookup(map
->pm_obj
, (vm_object_offset_t
)i
)) {
1461 panic("pmap_expand: obj not empty, pmap 0x%x pm_obj 0x%x vaddr 0x%llx i 0x%llx\n",
1462 map
, map
->pm_obj
, vaddr
, i
);
1465 vm_page_insert(m
, map
->pm_obj
, (vm_object_offset_t
)i
);
1466 vm_object_unlock(map
->pm_obj
);
1469 * Set the page directory entry for this page table.
1471 pdp
= pmap_pde(map
, vaddr
);
1472 pmap_store_pte(pdp
, pa_to_pte(pa
)
1482 /* On K64 machines with more than 32GB of memory, pmap_steal_memory
1483 * will allocate past the 1GB of pre-expanded virtual kernel area. This
1484 * function allocates all the page tables using memory from the same pool
1485 * that pmap_steal_memory uses, rather than calling vm_page_grab (which
1486 * isn't available yet). */
1488 pmap_pre_expand(pmap_t pmap
, vm_map_offset_t vaddr
)
1495 if(pmap64_pdpt(pmap
, vaddr
) == PDPT_ENTRY_NULL
) {
1496 if (!pmap_next_page_hi(&pn
))
1497 panic("pmap_pre_expand");
1501 pte
= pmap64_pml4(pmap
, vaddr
);
1503 pmap_store_pte(pte
, pa_to_pte(i386_ptob(pn
))
1509 if(pmap64_pde(pmap
, vaddr
) == PD_ENTRY_NULL
) {
1510 if (!pmap_next_page_hi(&pn
))
1511 panic("pmap_pre_expand");
1515 pte
= pmap64_pdpt(pmap
, vaddr
);
1517 pmap_store_pte(pte
, pa_to_pte(i386_ptob(pn
))
1523 if(pmap_pte(pmap
, vaddr
) == PT_ENTRY_NULL
) {
1524 if (!pmap_next_page_hi(&pn
))
1525 panic("pmap_pre_expand");
1529 pte
= pmap64_pde(pmap
, vaddr
);
1531 pmap_store_pte(pte
, pa_to_pte(i386_ptob(pn
))
1541 * pmap_sync_page_data_phys(ppnum_t pa)
1543 * Invalidates all of the instruction cache on a physical page and
1544 * pushes any dirty data from the data cache for the same physical page
1545 * Not required in i386.
1548 pmap_sync_page_data_phys(__unused ppnum_t pa
)
1554 * pmap_sync_page_attributes_phys(ppnum_t pa)
1556 * Write back and invalidate all cachelines on a physical page.
1559 pmap_sync_page_attributes_phys(ppnum_t pa
)
1561 cache_flush_page_phys(pa
);
1566 #ifdef CURRENTLY_UNUSED_AND_UNTESTED
1572 * Routine: pmap_collect
1574 * Garbage collects the physical map system for
1575 * pages which are no longer used.
1576 * Success need not be guaranteed -- that is, there
1577 * may well be pages which are not referenced, but
1578 * others may be collected.
1580 * Called by the pageout daemon when pages are scarce.
1586 register pt_entry_t
*pdp
, *ptp
;
1593 if (p
== kernel_pmap
)
1597 * Garbage collect map.
1601 for (pdp
= (pt_entry_t
*)p
->dirbase
;
1602 pdp
< (pt_entry_t
*)&p
->dirbase
[(UMAXPTDI
+1)];
1605 if (*pdp
& INTEL_PTE_VALID
) {
1606 if(*pdp
& INTEL_PTE_REF
) {
1607 pmap_store_pte(pdp
, *pdp
& ~INTEL_PTE_REF
);
1611 ptp
= pmap_pte(p
, pdetova(pdp
- (pt_entry_t
*)p
->dirbase
));
1612 eptp
= ptp
+ NPTEPG
;
1615 * If the pte page has any wired mappings, we cannot
1620 register pt_entry_t
*ptep
;
1621 for (ptep
= ptp
; ptep
< eptp
; ptep
++) {
1622 if (iswired(*ptep
)) {
1630 * Remove the virtual addresses mapped by this pte page.
1632 pmap_remove_range(p
,
1633 pdetova(pdp
- (pt_entry_t
*)p
->dirbase
),
1638 * Invalidate the page directory pointer.
1640 pmap_store_pte(pdp
, 0x0);
1645 * And free the pte page itself.
1648 register vm_page_t m
;
1650 vm_object_lock(p
->pm_obj
);
1652 m
= vm_page_lookup(p
->pm_obj
,(vm_object_offset_t
)(pdp
- (pt_entry_t
*)&p
->dirbase
[0]));
1653 if (m
== VM_PAGE_NULL
)
1654 panic("pmap_collect: pte page not in object");
1656 vm_object_unlock(p
->pm_obj
);
1660 OSAddAtomic(-1, &inuse_ptepages_count
);
1661 PMAP_ZINFO_PFREE(PAGE_SIZE
);
1670 PMAP_UPDATE_TLBS(p
, 0x0, 0xFFFFFFFFFFFFF000ULL
);
1679 pmap_copy_page(ppnum_t src
, ppnum_t dst
)
1681 bcopy_phys((addr64_t
)i386_ptob(src
),
1682 (addr64_t
)i386_ptob(dst
),
1688 * Routine: pmap_pageable
1690 * Make the specified pages (by pmap, offset)
1691 * pageable (or not) as requested.
1693 * A page which is not pageable may not take
1694 * a fault; therefore, its page table entry
1695 * must remain valid for the duration.
1697 * This routine is merely advisory; pmap_enter
1698 * will specify that these pages are to be wired
1699 * down (or not) as appropriate.
1703 __unused pmap_t pmap
,
1704 __unused vm_map_offset_t start_addr
,
1705 __unused vm_map_offset_t end_addr
,
1706 __unused boolean_t pageable
)
1709 pmap
++; start_addr
++; end_addr
++; pageable
++;
1715 invalidate_icache(__unused vm_offset_t addr
,
1716 __unused
unsigned cnt
,
1723 flush_dcache(__unused vm_offset_t addr
,
1724 __unused
unsigned count
,
1732 * Constrain DTrace copyin/copyout actions
1734 extern kern_return_t
dtrace_copyio_preflight(addr64_t
);
1735 extern kern_return_t
dtrace_copyio_postflight(addr64_t
);
1737 kern_return_t
dtrace_copyio_preflight(__unused addr64_t va
)
1739 thread_t thread
= current_thread();
1742 if (current_map() == kernel_map
)
1743 return KERN_FAILURE
;
1744 else if (((ccr3
= get_cr3_base()) != thread
->map
->pmap
->pm_cr3
) && (no_shared_cr3
== FALSE
))
1745 return KERN_FAILURE
;
1746 else if (no_shared_cr3
&& (ccr3
!= kernel_pmap
->pm_cr3
))
1747 return KERN_FAILURE
;
1748 else if (thread
->machine
.specFlags
& CopyIOActive
)
1749 return KERN_FAILURE
;
1751 return KERN_SUCCESS
;
1754 kern_return_t
dtrace_copyio_postflight(__unused addr64_t va
)
1756 return KERN_SUCCESS
;
1758 #endif /* CONFIG_DTRACE */
1760 #include <mach_vm_debug.h>
1762 #include <vm/vm_debug.h>
1765 pmap_list_resident_pages(
1766 __unused pmap_t pmap
,
1767 __unused vm_offset_t
*listp
,
1772 #endif /* MACH_VM_DEBUG */
1776 /* temporary workaround */
1778 coredumpok(__unused vm_map_t map
, __unused vm_offset_t va
)
1783 ptep
= pmap_pte(map
->pmap
, va
);
1786 return ((*ptep
& (INTEL_PTE_NCACHE
| INTEL_PTE_WIRED
)) != (INTEL_PTE_NCACHE
| INTEL_PTE_WIRED
));
1794 phys_page_exists(ppnum_t pn
)
1796 assert(pn
!= vm_page_fictitious_addr
);
1798 if (!pmap_initialized
)
1801 if (pn
== vm_page_guard_addr
)
1804 if (!IS_MANAGED_PAGE(ppn_to_pai(pn
)))
1813 pmap_switch(pmap_t tpmap
)
1817 s
= splhigh(); /* Make sure interruptions are disabled */
1818 set_dirbase(tpmap
, current_thread());
1824 * disable no-execute capability on
1825 * the specified pmap
1828 pmap_disable_NX(pmap_t pmap
)
1830 pmap
->nx_enabled
= 0;
1834 pt_fake_zone_init(int zone_index
)
1836 pt_fake_zone_index
= zone_index
;
1842 vm_size_t
*cur_size
,
1843 vm_size_t
*max_size
,
1844 vm_size_t
*elem_size
,
1845 vm_size_t
*alloc_size
,
1851 *count
= inuse_ptepages_count
;
1852 *cur_size
= PAGE_SIZE
* inuse_ptepages_count
;
1853 *max_size
= PAGE_SIZE
* (inuse_ptepages_count
+
1854 vm_page_inactive_count
+
1855 vm_page_active_count
+
1856 vm_page_free_count
);
1857 *elem_size
= PAGE_SIZE
;
1858 *alloc_size
= PAGE_SIZE
;
1859 *sum_size
= alloc_ptepages_count
* PAGE_SIZE
;
1867 pmap_cpuset_NMIPI(cpu_set cpu_mask
) {
1868 unsigned int cpu
, cpu_bit
;
1871 for (cpu
= 0, cpu_bit
= 1; cpu
< real_ncpus
; cpu
++, cpu_bit
<<= 1) {
1872 if (cpu_mask
& cpu_bit
)
1873 cpu_NMI_interrupt(cpu
);
1875 deadline
= mach_absolute_time() + (LockTimeOut
);
1876 while (mach_absolute_time() < deadline
)
1881 * Called with pmap locked, we:
1882 * - scan through per-cpu data to see which other cpus need to flush
1883 * - send an IPI to each non-idle cpu to be flushed
1884 * - wait for all to signal back that they are inactive or we see that
1885 * they are at a safe point (idle).
1886 * - flush the local tlb if active for this pmap
1887 * - return ... the caller will unlock the pmap
1891 pmap_flush_tlbs(pmap_t pmap
, vm_map_offset_t startv
, vm_map_offset_t endv
)
1894 unsigned int cpu_bit
;
1895 cpu_set cpus_to_signal
;
1896 unsigned int my_cpu
= cpu_number();
1897 pmap_paddr_t pmap_cr3
= pmap
->pm_cr3
;
1898 boolean_t flush_self
= FALSE
;
1900 boolean_t pmap_is_shared
= (pmap
->pm_shared
|| (pmap
== kernel_pmap
));
1902 assert((processor_avail_count
< 2) ||
1903 (ml_get_interrupts_enabled() && get_preemption_level() != 0));
1906 * Scan other cpus for matching active or task CR3.
1907 * For idle cpus (with no active map) we mark them invalid but
1908 * don't signal -- they'll check as they go busy.
1912 if (pmap_pcid_ncpus
) {
1913 pmap_pcid_invalidate_all_cpus(pmap
);
1914 __asm__
volatile("mfence":::"memory");
1917 for (cpu
= 0, cpu_bit
= 1; cpu
< real_ncpus
; cpu
++, cpu_bit
<<= 1) {
1918 if (!cpu_datap(cpu
)->cpu_running
)
1920 uint64_t cpu_active_cr3
= CPU_GET_ACTIVE_CR3(cpu
);
1921 uint64_t cpu_task_cr3
= CPU_GET_TASK_CR3(cpu
);
1923 if ((pmap_cr3
== cpu_task_cr3
) ||
1924 (pmap_cr3
== cpu_active_cr3
) ||
1926 if (cpu
== my_cpu
) {
1930 if (pmap_pcid_ncpus
&& pmap_is_shared
)
1931 cpu_datap(cpu
)->cpu_tlb_invalid_global
= TRUE
;
1933 cpu_datap(cpu
)->cpu_tlb_invalid_local
= TRUE
;
1934 __asm__
volatile("mfence":::"memory");
1937 * We don't need to signal processors which will flush
1938 * lazily at the idle state or kernel boundary.
1939 * For example, if we're invalidating the kernel pmap,
1940 * processors currently in userspace don't need to flush
1941 * their TLBs until the next time they enter the kernel.
1942 * Alterations to the address space of a task active
1943 * on a remote processor result in a signal, to
1944 * account for copy operations. (There may be room
1945 * for optimization in such cases).
1946 * The order of the loads below with respect
1947 * to the store to the "cpu_tlb_invalid" field above
1948 * is important--hence the barrier.
1950 if (CPU_CR3_IS_ACTIVE(cpu
) &&
1951 (pmap_cr3
== CPU_GET_ACTIVE_CR3(cpu
) ||
1953 (pmap_cr3
== CPU_GET_TASK_CR3(cpu
)))) {
1954 cpus_to_signal
|= cpu_bit
;
1955 i386_signal_cpu(cpu
, MP_TLB_FLUSH
, ASYNC
);
1960 PMAP_TRACE_CONSTANT(PMAP_CODE(PMAP__FLUSH_TLBS
) | DBG_FUNC_START
,
1961 pmap
, cpus_to_signal
, flush_self
, startv
, endv
);
1964 * Flush local tlb if required.
1965 * Do this now to overlap with other processors responding.
1968 if (pmap_pcid_ncpus
) {
1969 pmap_pcid_validate_cpu(pmap
, my_cpu
);
1979 if (cpus_to_signal
) {
1980 cpu_set cpus_to_respond
= cpus_to_signal
;
1982 deadline
= mach_absolute_time() + LockTimeOut
;
1984 * Wait for those other cpus to acknowledge
1986 while (cpus_to_respond
!= 0) {
1989 for (cpu
= 0, cpu_bit
= 1; cpu
< real_ncpus
; cpu
++, cpu_bit
<<= 1) {
1990 /* Consider checking local/global invalidity
1991 * as appropriate in the PCID case.
1993 if ((cpus_to_respond
& cpu_bit
) != 0) {
1994 if (!cpu_datap(cpu
)->cpu_running
||
1995 cpu_datap(cpu
)->cpu_tlb_invalid
== FALSE
||
1996 !CPU_CR3_IS_ACTIVE(cpu
)) {
1997 cpus_to_respond
&= ~cpu_bit
;
2001 if (cpus_to_respond
== 0)
2004 if (cpus_to_respond
&& (mach_absolute_time() > deadline
)) {
2005 if (machine_timeout_suspended())
2007 pmap_tlb_flush_timeout
= TRUE
;
2008 orig_acks
= NMIPI_acks
;
2009 pmap_cpuset_NMIPI(cpus_to_respond
);
2011 panic("TLB invalidation IPI timeout: "
2012 "CPU(s) failed to respond to interrupts, unresponsive CPU bitmap: 0x%lx, NMIPI acks: orig: 0x%lx, now: 0x%lx",
2013 cpus_to_respond
, orig_acks
, NMIPI_acks
);
2018 PMAP_TRACE_CONSTANT(PMAP_CODE(PMAP__FLUSH_TLBS
) | DBG_FUNC_END
,
2019 pmap
, cpus_to_signal
, startv
, endv
, 0);
2023 process_pmap_updates(void)
2025 int ccpu
= cpu_number();
2026 pmap_assert(ml_get_interrupts_enabled() == 0 || get_preemption_level() != 0);
2027 if (pmap_pcid_ncpus
) {
2028 pmap_pcid_validate_current();
2029 if (cpu_datap(ccpu
)->cpu_tlb_invalid_global
) {
2030 cpu_datap(ccpu
)->cpu_tlb_invalid
= FALSE
;
2034 cpu_datap(ccpu
)->cpu_tlb_invalid_local
= FALSE
;
2039 current_cpu_datap()->cpu_tlb_invalid
= FALSE
;
2043 __asm__
volatile("mfence");
2047 pmap_update_interrupt(void)
2049 PMAP_TRACE(PMAP_CODE(PMAP__UPDATE_INTERRUPT
) | DBG_FUNC_START
,
2052 process_pmap_updates();
2054 PMAP_TRACE(PMAP_CODE(PMAP__UPDATE_INTERRUPT
) | DBG_FUNC_END
,