]> git.saurik.com Git - apple/xnu.git/blob - osfmk/kern/host.c
xnu-1699.32.7.tar.gz
[apple/xnu.git] / osfmk / kern / host.c
1 /*
2 * Copyright (c) 2000-2009 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*
29 * @OSF_COPYRIGHT@
30 */
31 /*
32 * Mach Operating System
33 * Copyright (c) 1991,1990,1989,1988 Carnegie Mellon University
34 * All Rights Reserved.
35 *
36 * Permission to use, copy, modify and distribute this software and its
37 * documentation is hereby granted, provided that both the copyright
38 * notice and this permission notice appear in all copies of the
39 * software, derivative works or modified versions, and any portions
40 * thereof, and that both notices appear in supporting documentation.
41 *
42 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
43 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
44 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
45 *
46 * Carnegie Mellon requests users of this software to return to
47 *
48 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
49 * School of Computer Science
50 * Carnegie Mellon University
51 * Pittsburgh PA 15213-3890
52 *
53 * any improvements or extensions that they make and grant Carnegie Mellon
54 * the rights to redistribute these changes.
55 */
56 /*
57 */
58
59 /*
60 * host.c
61 *
62 * Non-ipc host functions.
63 */
64
65 #include <mach/mach_types.h>
66 #include <mach/boolean.h>
67 #include <mach/host_info.h>
68 #include <mach/host_special_ports.h>
69 #include <mach/kern_return.h>
70 #include <mach/machine.h>
71 #include <mach/port.h>
72 #include <mach/processor_info.h>
73 #include <mach/vm_param.h>
74 #include <mach/processor.h>
75 #include <mach/mach_host_server.h>
76 #include <mach/host_priv_server.h>
77 #include <mach/vm_map.h>
78
79 #include <kern/kern_types.h>
80 #include <kern/assert.h>
81 #include <kern/kalloc.h>
82 #include <kern/host.h>
83 #include <kern/host_statistics.h>
84 #include <kern/ipc_host.h>
85 #include <kern/misc_protos.h>
86 #include <kern/sched.h>
87 #include <kern/processor.h>
88
89 #include <vm/vm_map.h>
90
91 host_data_t realhost;
92
93 vm_extmod_statistics_data_t host_extmod_statistics;
94
95 kern_return_t
96 host_processors(
97 host_priv_t host_priv,
98 processor_array_t *out_array,
99 mach_msg_type_number_t *countp)
100 {
101 register processor_t processor, *tp;
102 void *addr;
103 unsigned int count, i;
104
105 if (host_priv == HOST_PRIV_NULL)
106 return (KERN_INVALID_ARGUMENT);
107
108 assert(host_priv == &realhost);
109
110 count = processor_count;
111 assert(count != 0);
112
113 addr = kalloc((vm_size_t) (count * sizeof(mach_port_t)));
114 if (addr == 0)
115 return (KERN_RESOURCE_SHORTAGE);
116
117 tp = (processor_t *) addr;
118 *tp++ = processor = processor_list;
119
120 if (count > 1) {
121 simple_lock(&processor_list_lock);
122
123 for (i = 1; i < count; i++)
124 *tp++ = processor = processor->processor_list;
125
126 simple_unlock(&processor_list_lock);
127 }
128
129 *countp = count;
130 *out_array = (processor_array_t)addr;
131
132 /* do the conversion that Mig should handle */
133
134 tp = (processor_t *) addr;
135 for (i = 0; i < count; i++)
136 ((mach_port_t *) tp)[i] =
137 (mach_port_t)convert_processor_to_port(tp[i]);
138
139 return (KERN_SUCCESS);
140 }
141
142 kern_return_t
143 host_info(
144 host_t host,
145 host_flavor_t flavor,
146 host_info_t info,
147 mach_msg_type_number_t *count)
148 {
149
150 if (host == HOST_NULL)
151 return (KERN_INVALID_ARGUMENT);
152
153 switch (flavor) {
154
155 case HOST_BASIC_INFO:
156 {
157 register host_basic_info_t basic_info;
158 register int master_id;
159
160 /*
161 * Basic information about this host.
162 */
163 if (*count < HOST_BASIC_INFO_OLD_COUNT)
164 return (KERN_FAILURE);
165
166 basic_info = (host_basic_info_t) info;
167
168 basic_info->memory_size = machine_info.memory_size;
169 basic_info->max_cpus = machine_info.max_cpus;
170 basic_info->avail_cpus = processor_avail_count;
171 master_id = master_processor->cpu_id;
172 basic_info->cpu_type = slot_type(master_id);
173 basic_info->cpu_subtype = slot_subtype(master_id);
174
175 if (*count >= HOST_BASIC_INFO_COUNT) {
176 basic_info->cpu_threadtype = slot_threadtype(master_id);
177 basic_info->physical_cpu = machine_info.physical_cpu;
178 basic_info->physical_cpu_max = machine_info.physical_cpu_max;
179 basic_info->logical_cpu = machine_info.logical_cpu;
180 basic_info->logical_cpu_max = machine_info.logical_cpu_max;
181 basic_info->max_mem = machine_info.max_mem;
182
183 *count = HOST_BASIC_INFO_COUNT;
184 } else {
185 *count = HOST_BASIC_INFO_OLD_COUNT;
186 }
187
188 return (KERN_SUCCESS);
189 }
190
191 case HOST_SCHED_INFO:
192 {
193 register host_sched_info_t sched_info;
194 uint32_t quantum_time;
195 uint64_t quantum_ns;
196
197 /*
198 * Return scheduler information.
199 */
200 if (*count < HOST_SCHED_INFO_COUNT)
201 return (KERN_FAILURE);
202
203 sched_info = (host_sched_info_t) info;
204
205 quantum_time = SCHED(initial_quantum_size)(THREAD_NULL);
206 absolutetime_to_nanoseconds(quantum_time, &quantum_ns);
207
208 sched_info->min_timeout =
209 sched_info->min_quantum = (uint32_t)(quantum_ns / 1000 / 1000);
210
211 *count = HOST_SCHED_INFO_COUNT;
212
213 return (KERN_SUCCESS);
214 }
215
216 case HOST_RESOURCE_SIZES:
217 {
218 /*
219 * Return sizes of kernel data structures
220 */
221 if (*count < HOST_RESOURCE_SIZES_COUNT)
222 return (KERN_FAILURE);
223
224 /* XXX Fail until ledgers are implemented */
225 return (KERN_INVALID_ARGUMENT);
226 }
227
228 case HOST_PRIORITY_INFO:
229 {
230 register host_priority_info_t priority_info;
231
232 if (*count < HOST_PRIORITY_INFO_COUNT)
233 return (KERN_FAILURE);
234
235 priority_info = (host_priority_info_t) info;
236
237 priority_info->kernel_priority = MINPRI_KERNEL;
238 priority_info->system_priority = MINPRI_KERNEL;
239 priority_info->server_priority = MINPRI_RESERVED;
240 priority_info->user_priority = BASEPRI_DEFAULT;
241 priority_info->depress_priority = DEPRESSPRI;
242 priority_info->idle_priority = IDLEPRI;
243 priority_info->minimum_priority = MINPRI_USER;
244 priority_info->maximum_priority = MAXPRI_RESERVED;
245
246 *count = HOST_PRIORITY_INFO_COUNT;
247
248 return (KERN_SUCCESS);
249 }
250
251 /*
252 * Gestalt for various trap facilities.
253 */
254 case HOST_MACH_MSG_TRAP:
255 case HOST_SEMAPHORE_TRAPS:
256 {
257 *count = 0;
258 return (KERN_SUCCESS);
259 }
260
261 default:
262 return (KERN_INVALID_ARGUMENT);
263 }
264 }
265
266 kern_return_t
267 host_statistics(
268 host_t host,
269 host_flavor_t flavor,
270 host_info_t info,
271 mach_msg_type_number_t *count)
272 {
273 uint32_t i;
274
275 if (host == HOST_NULL)
276 return (KERN_INVALID_HOST);
277
278 switch(flavor) {
279
280 case HOST_LOAD_INFO:
281 {
282 host_load_info_t load_info;
283
284 if (*count < HOST_LOAD_INFO_COUNT)
285 return (KERN_FAILURE);
286
287 load_info = (host_load_info_t) info;
288
289 bcopy((char *) avenrun,
290 (char *) load_info->avenrun, sizeof avenrun);
291 bcopy((char *) mach_factor,
292 (char *) load_info->mach_factor, sizeof mach_factor);
293
294 *count = HOST_LOAD_INFO_COUNT;
295 return (KERN_SUCCESS);
296 }
297
298 case HOST_VM_INFO:
299 {
300 register processor_t processor;
301 register vm_statistics64_t stat;
302 vm_statistics64_data_t host_vm_stat;
303 vm_statistics_t stat32;
304 mach_msg_type_number_t original_count;
305
306 if (*count < HOST_VM_INFO_REV0_COUNT)
307 return (KERN_FAILURE);
308
309 processor = processor_list;
310 stat = &PROCESSOR_DATA(processor, vm_stat);
311 host_vm_stat = *stat;
312
313 if (processor_count > 1) {
314 simple_lock(&processor_list_lock);
315
316 while ((processor = processor->processor_list) != NULL) {
317 stat = &PROCESSOR_DATA(processor, vm_stat);
318
319 host_vm_stat.zero_fill_count += stat->zero_fill_count;
320 host_vm_stat.reactivations += stat->reactivations;
321 host_vm_stat.pageins += stat->pageins;
322 host_vm_stat.pageouts += stat->pageouts;
323 host_vm_stat.faults += stat->faults;
324 host_vm_stat.cow_faults += stat->cow_faults;
325 host_vm_stat.lookups += stat->lookups;
326 host_vm_stat.hits += stat->hits;
327 }
328
329 simple_unlock(&processor_list_lock);
330 }
331
332 stat32 = (vm_statistics_t) info;
333
334 stat32->free_count = VM_STATISTICS_TRUNCATE_TO_32_BIT(vm_page_free_count + vm_page_speculative_count);
335 stat32->active_count = VM_STATISTICS_TRUNCATE_TO_32_BIT(vm_page_active_count);
336
337 if (vm_page_local_q) {
338 for (i = 0; i < vm_page_local_q_count; i++) {
339 struct vpl *lq;
340
341 lq = &vm_page_local_q[i].vpl_un.vpl;
342
343 stat32->active_count += VM_STATISTICS_TRUNCATE_TO_32_BIT(lq->vpl_count);
344 }
345 }
346 stat32->inactive_count = VM_STATISTICS_TRUNCATE_TO_32_BIT(vm_page_inactive_count);
347 #if CONFIG_EMBEDDED
348 stat32->wire_count = VM_STATISTICS_TRUNCATE_TO_32_BIT(vm_page_wire_count);
349 #else
350 stat32->wire_count = VM_STATISTICS_TRUNCATE_TO_32_BIT(vm_page_wire_count + vm_page_throttled_count + vm_lopage_free_count);
351 #endif
352 stat32->zero_fill_count = VM_STATISTICS_TRUNCATE_TO_32_BIT(host_vm_stat.zero_fill_count);
353 stat32->reactivations = VM_STATISTICS_TRUNCATE_TO_32_BIT(host_vm_stat.reactivations);
354 stat32->pageins = VM_STATISTICS_TRUNCATE_TO_32_BIT(host_vm_stat.pageins);
355 stat32->pageouts = VM_STATISTICS_TRUNCATE_TO_32_BIT(host_vm_stat.pageouts);
356 stat32->faults = VM_STATISTICS_TRUNCATE_TO_32_BIT(host_vm_stat.faults);
357 stat32->cow_faults = VM_STATISTICS_TRUNCATE_TO_32_BIT(host_vm_stat.cow_faults);
358 stat32->lookups = VM_STATISTICS_TRUNCATE_TO_32_BIT(host_vm_stat.lookups);
359 stat32->hits = VM_STATISTICS_TRUNCATE_TO_32_BIT(host_vm_stat.hits);
360
361 /*
362 * Fill in extra info added in later revisions of the
363 * vm_statistics data structure. Fill in only what can fit
364 * in the data structure the caller gave us !
365 */
366 original_count = *count;
367 *count = HOST_VM_INFO_REV0_COUNT; /* rev0 already filled in */
368 if (original_count >= HOST_VM_INFO_REV1_COUNT) {
369 /* rev1 added "purgeable" info */
370 stat32->purgeable_count = VM_STATISTICS_TRUNCATE_TO_32_BIT(vm_page_purgeable_count);
371 stat32->purges = VM_STATISTICS_TRUNCATE_TO_32_BIT(vm_page_purged_count);
372 *count = HOST_VM_INFO_REV1_COUNT;
373 }
374
375 if (original_count >= HOST_VM_INFO_REV2_COUNT) {
376 /* rev2 added "speculative" info */
377 stat32->speculative_count = VM_STATISTICS_TRUNCATE_TO_32_BIT(vm_page_speculative_count);
378 *count = HOST_VM_INFO_REV2_COUNT;
379 }
380
381 /* rev3 changed some of the fields to be 64-bit*/
382
383 return (KERN_SUCCESS);
384 }
385
386 case HOST_CPU_LOAD_INFO:
387 {
388 register processor_t processor;
389 host_cpu_load_info_t cpu_load_info;
390
391 if (*count < HOST_CPU_LOAD_INFO_COUNT)
392 return (KERN_FAILURE);
393
394 #define GET_TICKS_VALUE(processor, state, timer) \
395 MACRO_BEGIN \
396 cpu_load_info->cpu_ticks[(state)] += \
397 (uint32_t)(timer_grab(&PROCESSOR_DATA(processor, timer)) \
398 / hz_tick_interval); \
399 MACRO_END
400
401 cpu_load_info = (host_cpu_load_info_t)info;
402 cpu_load_info->cpu_ticks[CPU_STATE_USER] = 0;
403 cpu_load_info->cpu_ticks[CPU_STATE_SYSTEM] = 0;
404 cpu_load_info->cpu_ticks[CPU_STATE_IDLE] = 0;
405 cpu_load_info->cpu_ticks[CPU_STATE_NICE] = 0;
406
407 simple_lock(&processor_list_lock);
408
409 for (processor = processor_list; processor != NULL; processor = processor->processor_list) {
410 timer_data_t idle_temp;
411 timer_t idle_state;
412
413 GET_TICKS_VALUE(processor, CPU_STATE_USER, user_state);
414 GET_TICKS_VALUE(processor, CPU_STATE_SYSTEM, system_state);
415
416 idle_state = &PROCESSOR_DATA(processor, idle_state);
417 idle_temp = *idle_state;
418
419 if (PROCESSOR_DATA(processor, current_state) != idle_state ||
420 timer_grab(&idle_temp) != timer_grab(idle_state))
421 GET_TICKS_VALUE(processor, CPU_STATE_IDLE, idle_state);
422 else {
423 timer_advance(&idle_temp, mach_absolute_time() - idle_temp.tstamp);
424
425 cpu_load_info->cpu_ticks[CPU_STATE_IDLE] +=
426 (uint32_t)(timer_grab(&idle_temp) / hz_tick_interval);
427 }
428 }
429 simple_unlock(&processor_list_lock);
430 *count = HOST_CPU_LOAD_INFO_COUNT;
431
432 return (KERN_SUCCESS);
433 }
434
435 default:
436 return (KERN_INVALID_ARGUMENT);
437 }
438 }
439
440
441 kern_return_t
442 host_statistics64(
443 host_t host,
444 host_flavor_t flavor,
445 host_info64_t info,
446 mach_msg_type_number_t *count)
447 {
448 uint32_t i;
449
450 if (host == HOST_NULL)
451 return (KERN_INVALID_HOST);
452
453 switch(flavor) {
454
455 case HOST_VM_INFO64: /* We were asked to get vm_statistics64 */
456 {
457 register processor_t processor;
458 register vm_statistics64_t stat;
459 vm_statistics64_data_t host_vm_stat;
460
461 if (*count < HOST_VM_INFO64_COUNT)
462 return (KERN_FAILURE);
463
464 processor = processor_list;
465 stat = &PROCESSOR_DATA(processor, vm_stat);
466 host_vm_stat = *stat;
467
468 if (processor_count > 1) {
469 simple_lock(&processor_list_lock);
470
471 while ((processor = processor->processor_list) != NULL) {
472 stat = &PROCESSOR_DATA(processor, vm_stat);
473
474 host_vm_stat.zero_fill_count += stat->zero_fill_count;
475 host_vm_stat.reactivations += stat->reactivations;
476 host_vm_stat.pageins += stat->pageins;
477 host_vm_stat.pageouts += stat->pageouts;
478 host_vm_stat.faults += stat->faults;
479 host_vm_stat.cow_faults += stat->cow_faults;
480 host_vm_stat.lookups += stat->lookups;
481 host_vm_stat.hits += stat->hits;
482 }
483
484 simple_unlock(&processor_list_lock);
485 }
486
487 stat = (vm_statistics64_t) info;
488
489 stat->free_count = vm_page_free_count + vm_page_speculative_count;
490 stat->active_count = vm_page_active_count;
491
492 if (vm_page_local_q) {
493 for (i = 0; i < vm_page_local_q_count; i++) {
494 struct vpl *lq;
495
496 lq = &vm_page_local_q[i].vpl_un.vpl;
497
498 stat->active_count += lq->vpl_count;
499 }
500 }
501 stat->inactive_count = vm_page_inactive_count;
502 #if CONFIG_EMBEDDED
503 stat->wire_count = vm_page_wire_count;
504 #else
505 stat->wire_count = vm_page_wire_count + vm_page_throttled_count + vm_lopage_free_count;
506 #endif
507 stat->zero_fill_count = host_vm_stat.zero_fill_count;
508 stat->reactivations = host_vm_stat.reactivations;
509 stat->pageins = host_vm_stat.pageins;
510 stat->pageouts = host_vm_stat.pageouts;
511 stat->faults = host_vm_stat.faults;
512 stat->cow_faults = host_vm_stat.cow_faults;
513 stat->lookups = host_vm_stat.lookups;
514 stat->hits = host_vm_stat.hits;
515
516 /* rev1 added "purgable" info */
517 stat->purgeable_count = vm_page_purgeable_count;
518 stat->purges = vm_page_purged_count;
519
520 /* rev2 added "speculative" info */
521 stat->speculative_count = vm_page_speculative_count;
522
523 *count = HOST_VM_INFO64_COUNT;
524
525 return(KERN_SUCCESS);
526 }
527
528 case HOST_EXTMOD_INFO64: /* We were asked to get vm_statistics64 */
529 {
530 vm_extmod_statistics_t out_extmod_statistics;
531
532 if (*count < HOST_EXTMOD_INFO64_COUNT)
533 return (KERN_FAILURE);
534
535 out_extmod_statistics = (vm_extmod_statistics_t) info;
536 *out_extmod_statistics = host_extmod_statistics;
537
538 *count = HOST_EXTMOD_INFO64_COUNT;
539
540 return(KERN_SUCCESS);
541 }
542
543 default: /* If we didn't recognize the flavor, send to host_statistics */
544 return(host_statistics(host, flavor, (host_info_t) info, count));
545 }
546 }
547
548
549 /*
550 * Get host statistics that require privilege.
551 * None for now, just call the un-privileged version.
552 */
553 kern_return_t
554 host_priv_statistics(
555 host_priv_t host_priv,
556 host_flavor_t flavor,
557 host_info_t info,
558 mach_msg_type_number_t *count)
559 {
560 return(host_statistics((host_t)host_priv, flavor, info, count));
561 }
562
563 kern_return_t
564 set_sched_stats_active(
565 boolean_t active)
566 {
567 sched_stats_active = active;
568 return KERN_SUCCESS;
569 }
570
571
572 kern_return_t
573 get_sched_statistics(
574 struct _processor_statistics_np *out,
575 uint32_t *count)
576 {
577 processor_t processor;
578
579 if (!sched_stats_active) {
580 return KERN_FAILURE;
581 }
582
583 simple_lock(&processor_list_lock);
584
585 if (*count < (processor_count + 2) * sizeof(struct _processor_statistics_np)) { /* One for RT, one for FS */
586 simple_unlock(&processor_list_lock);
587 return KERN_FAILURE;
588 }
589
590 processor = processor_list;
591 while (processor) {
592 struct processor_sched_statistics *stats = &processor->processor_data.sched_stats;
593
594 out->ps_cpuid = processor->cpu_id;
595 out->ps_csw_count = stats->csw_count;
596 out->ps_preempt_count = stats->preempt_count;
597 out->ps_preempted_rt_count = stats->preempted_rt_count;
598 out->ps_preempted_by_rt_count = stats->preempted_by_rt_count;
599 out->ps_rt_sched_count = stats->rt_sched_count;
600 out->ps_interrupt_count = stats->interrupt_count;
601 out->ps_ipi_count = stats->ipi_count;
602 out->ps_timer_pop_count = stats->timer_pop_count;
603 out->ps_runq_count_sum = SCHED(processor_runq_stats_count_sum)(processor);
604 out->ps_idle_transitions = stats->idle_transitions;
605 out->ps_quantum_timer_expirations = stats->quantum_timer_expirations;
606
607 out++;
608 processor = processor->processor_list;
609 }
610
611 *count = (uint32_t) (processor_count * sizeof(struct _processor_statistics_np));
612
613 simple_unlock(&processor_list_lock);
614
615 /* And include RT Queue information */
616 bzero(out, sizeof(*out));
617 out->ps_cpuid = (-1);
618 out->ps_runq_count_sum = rt_runq.runq_stats.count_sum;
619 out++;
620 *count += (uint32_t)sizeof(struct _processor_statistics_np);
621
622 /* And include Fair Share Queue information at the end */
623 bzero(out, sizeof(*out));
624 out->ps_cpuid = (-2);
625 out->ps_runq_count_sum = SCHED(fairshare_runq_stats_count_sum)();
626 *count += (uint32_t)sizeof(struct _processor_statistics_np);
627
628 return KERN_SUCCESS;
629 }
630
631 kern_return_t
632 host_page_size(
633 host_t host,
634 vm_size_t *out_page_size)
635 {
636 if (host == HOST_NULL)
637 return(KERN_INVALID_ARGUMENT);
638
639 *out_page_size = PAGE_SIZE;
640
641 return(KERN_SUCCESS);
642 }
643
644 /*
645 * Return kernel version string (more than you ever
646 * wanted to know about what version of the kernel this is).
647 */
648 extern char version[];
649
650 kern_return_t
651 host_kernel_version(
652 host_t host,
653 kernel_version_t out_version)
654 {
655
656 if (host == HOST_NULL)
657 return(KERN_INVALID_ARGUMENT);
658
659 (void) strncpy(out_version, version, sizeof(kernel_version_t));
660
661 return(KERN_SUCCESS);
662 }
663
664 /*
665 * host_processor_sets:
666 *
667 * List all processor sets on the host.
668 */
669 kern_return_t
670 host_processor_sets(
671 host_priv_t host_priv,
672 processor_set_name_array_t *pset_list,
673 mach_msg_type_number_t *count)
674 {
675 void *addr;
676
677 if (host_priv == HOST_PRIV_NULL)
678 return (KERN_INVALID_ARGUMENT);
679
680 /*
681 * Allocate memory. Can be pageable because it won't be
682 * touched while holding a lock.
683 */
684
685 addr = kalloc((vm_size_t) sizeof(mach_port_t));
686 if (addr == 0)
687 return (KERN_RESOURCE_SHORTAGE);
688
689 /* do the conversion that Mig should handle */
690 *((ipc_port_t *) addr) = convert_pset_name_to_port(&pset0);
691
692 *pset_list = (processor_set_array_t)addr;
693 *count = 1;
694
695 return (KERN_SUCCESS);
696 }
697
698 /*
699 * host_processor_set_priv:
700 *
701 * Return control port for given processor set.
702 */
703 kern_return_t
704 host_processor_set_priv(
705 host_priv_t host_priv,
706 processor_set_t pset_name,
707 processor_set_t *pset)
708 {
709 if (host_priv == HOST_PRIV_NULL || pset_name == PROCESSOR_SET_NULL) {
710 *pset = PROCESSOR_SET_NULL;
711
712 return (KERN_INVALID_ARGUMENT);
713 }
714
715 *pset = pset_name;
716
717 return (KERN_SUCCESS);
718 }
719
720 /*
721 * host_processor_info
722 *
723 * Return info about the processors on this host. It will return
724 * the number of processors, and the specific type of info requested
725 * in an OOL array.
726 */
727 kern_return_t
728 host_processor_info(
729 host_t host,
730 processor_flavor_t flavor,
731 natural_t *out_pcount,
732 processor_info_array_t *out_array,
733 mach_msg_type_number_t *out_array_count)
734 {
735 kern_return_t result;
736 processor_t processor;
737 host_t thost;
738 processor_info_t info;
739 unsigned int icount, tcount;
740 unsigned int pcount, i;
741 vm_offset_t addr;
742 vm_size_t size, needed;
743 vm_map_copy_t copy;
744
745 if (host == HOST_NULL)
746 return (KERN_INVALID_ARGUMENT);
747
748 result = processor_info_count(flavor, &icount);
749 if (result != KERN_SUCCESS)
750 return (result);
751
752 pcount = processor_count;
753 assert(pcount != 0);
754
755 needed = pcount * icount * sizeof(natural_t);
756 size = round_page(needed);
757 result = kmem_alloc(ipc_kernel_map, &addr, size);
758 if (result != KERN_SUCCESS)
759 return (KERN_RESOURCE_SHORTAGE);
760
761 info = (processor_info_t) addr;
762 processor = processor_list;
763 tcount = icount;
764
765 result = processor_info(processor, flavor, &thost, info, &tcount);
766 if (result != KERN_SUCCESS) {
767 kmem_free(ipc_kernel_map, addr, size);
768 return (result);
769 }
770
771 if (pcount > 1) {
772 for (i = 1; i < pcount; i++) {
773 simple_lock(&processor_list_lock);
774 processor = processor->processor_list;
775 simple_unlock(&processor_list_lock);
776
777 info += icount;
778 tcount = icount;
779 result = processor_info(processor, flavor, &thost, info, &tcount);
780 if (result != KERN_SUCCESS) {
781 kmem_free(ipc_kernel_map, addr, size);
782 return (result);
783 }
784 }
785 }
786
787 if (size != needed)
788 bzero((char *) addr + needed, size - needed);
789
790 result = vm_map_unwire(ipc_kernel_map, vm_map_trunc_page(addr),
791 vm_map_round_page(addr + size), FALSE);
792 assert(result == KERN_SUCCESS);
793 result = vm_map_copyin(ipc_kernel_map, (vm_map_address_t)addr,
794 (vm_map_size_t)size, TRUE, &copy);
795 assert(result == KERN_SUCCESS);
796
797 *out_pcount = pcount;
798 *out_array = (processor_info_array_t) copy;
799 *out_array_count = pcount * icount;
800
801 return (KERN_SUCCESS);
802 }
803
804 /*
805 * Kernel interface for setting a special port.
806 */
807 kern_return_t
808 kernel_set_special_port(
809 host_priv_t host_priv,
810 int id,
811 ipc_port_t port)
812 {
813 ipc_port_t old_port;
814
815 host_lock(host_priv);
816 old_port = host_priv->special[id];
817 host_priv->special[id] = port;
818 host_unlock(host_priv);
819 if (IP_VALID(old_port))
820 ipc_port_release_send(old_port);
821 return KERN_SUCCESS;
822 }
823
824 /*
825 * User interface for setting a special port.
826 *
827 * Only permits the user to set a user-owned special port
828 * ID, rejecting a kernel-owned special port ID.
829 *
830 * A special kernel port cannot be set up using this
831 * routine; use kernel_set_special_port() instead.
832 */
833 kern_return_t
834 host_set_special_port(
835 host_priv_t host_priv,
836 int id,
837 ipc_port_t port)
838 {
839 if (host_priv == HOST_PRIV_NULL ||
840 id <= HOST_MAX_SPECIAL_KERNEL_PORT || id > HOST_MAX_SPECIAL_PORT ) {
841 if (IP_VALID(port))
842 ipc_port_release_send(port);
843 return KERN_INVALID_ARGUMENT;
844 }
845
846 return kernel_set_special_port(host_priv, id, port);
847 }
848
849
850 /*
851 * User interface for retrieving a special port.
852 *
853 * Note that there is nothing to prevent a user special
854 * port from disappearing after it has been discovered by
855 * the caller; thus, using a special port can always result
856 * in a "port not valid" error.
857 */
858
859 kern_return_t
860 host_get_special_port(
861 host_priv_t host_priv,
862 __unused int node,
863 int id,
864 ipc_port_t *portp)
865 {
866 ipc_port_t port;
867
868 if (host_priv == HOST_PRIV_NULL ||
869 id == HOST_SECURITY_PORT || id > HOST_MAX_SPECIAL_PORT || id < 0)
870 return KERN_INVALID_ARGUMENT;
871
872 host_lock(host_priv);
873 port = realhost.special[id];
874 *portp = ipc_port_copy_send(port);
875 host_unlock(host_priv);
876
877 return KERN_SUCCESS;
878 }
879
880
881 /*
882 * host_get_io_master
883 *
884 * Return the IO master access port for this host.
885 */
886 kern_return_t
887 host_get_io_master(
888 host_t host,
889 io_master_t *io_masterp)
890 {
891 if (host == HOST_NULL)
892 return KERN_INVALID_ARGUMENT;
893
894 return (host_get_io_master_port(host_priv_self(), io_masterp));
895 }
896
897 host_t
898 host_self(void)
899 {
900 return &realhost;
901 }
902
903 host_priv_t
904 host_priv_self(void)
905 {
906 return &realhost;
907 }
908
909 host_security_t
910 host_security_self(void)
911 {
912 return &realhost;
913 }
914