2 * Copyright (c) 2000 Apple Computer, Inc. All rights reserved.
4 * @APPLE_LICENSE_HEADER_START@
6 * The contents of this file constitute Original Code as defined in and
7 * are subject to the Apple Public Source License Version 1.1 (the
8 * "License"). You may not use this file except in compliance with the
9 * License. Please obtain a copy of the License at
10 * http://www.apple.com/publicsource and read it before using this file.
12 * This Original Code and all software distributed under the License are
13 * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER
14 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
15 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the
17 * License for the specific language governing rights and limitations
20 * @APPLE_LICENSE_HEADER_END@
23 * Copyright (c) 1982, 1986, 1988, 1993
24 * The Regents of the University of California. All rights reserved.
26 * Redistribution and use in source and binary forms, with or without
27 * modification, are permitted provided that the following conditions
29 * 1. Redistributions of source code must retain the above copyright
30 * notice, this list of conditions and the following disclaimer.
31 * 2. Redistributions in binary form must reproduce the above copyright
32 * notice, this list of conditions and the following disclaimer in the
33 * documentation and/or other materials provided with the distribution.
34 * 3. All advertising materials mentioning features or use of this software
35 * must display the following acknowledgement:
36 * This product includes software developed by the University of
37 * California, Berkeley and its contributors.
38 * 4. Neither the name of the University nor the names of its contributors
39 * may be used to endorse or promote products derived from this software
40 * without specific prior written permission.
42 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
43 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
44 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
45 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
46 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
47 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
48 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
49 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
50 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
51 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
54 * @(#)ip_input.c 8.2 (Berkeley) 1/4/94
55 * $FreeBSD: src/sys/netinet/ip_input.c,v 1.130.2.25 2001/08/29 21:41:37 jesper Exp $
60 #include <sys/param.h>
61 #include <sys/systm.h>
63 #include <sys/malloc.h>
64 #include <sys/domain.h>
65 #include <sys/protosw.h>
66 #include <sys/socket.h>
68 #include <sys/kernel.h>
69 #include <sys/syslog.h>
70 #include <sys/sysctl.h>
72 #include <kern/queue.h>
73 #include <kern/locks.h>
76 #include <net/if_var.h>
77 #include <net/if_dl.h>
78 #include <net/route.h>
79 #include <net/kpi_protocol.h>
81 #include <netinet/in.h>
82 #include <netinet/in_systm.h>
83 #include <netinet/in_var.h>
84 #include <netinet/ip.h>
85 #include <netinet/in_pcb.h>
86 #include <netinet/ip_var.h>
87 #include <netinet/ip_icmp.h>
88 #include <sys/socketvar.h>
90 #include <netinet/ip_fw.h>
91 #include <netinet/ip_divert.h>
93 #include <netinet/kpi_ipfilter_var.h>
95 /* needed for AUTOCONFIGURING: */
96 #include <netinet/udp.h>
97 #include <netinet/udp_var.h>
98 #include <netinet/bootp.h>
100 #include <sys/kdebug.h>
102 #define DBG_LAYER_BEG NETDBG_CODE(DBG_NETIP, 0)
103 #define DBG_LAYER_END NETDBG_CODE(DBG_NETIP, 2)
104 #define DBG_FNC_IP_INPUT NETDBG_CODE(DBG_NETIP, (2 << 8))
108 #include <netinet6/ipsec.h>
109 #include <netkey/key.h>
113 #if defined(NFAITH) && NFAITH > 0
114 #include <net/if_types.h>
118 #include <netinet/ip_dummynet.h>
122 extern int ipsec_bypass
;
123 extern lck_mtx_t
*sadb_mutex
;
127 static int ip_rsvp_on
;
128 struct socket
*ip_rsvpd
;
130 int ipforwarding
= 0;
131 SYSCTL_INT(_net_inet_ip
, IPCTL_FORWARDING
, forwarding
, CTLFLAG_RW
,
132 &ipforwarding
, 0, "Enable IP forwarding between interfaces");
134 static int ipsendredirects
= 1; /* XXX */
135 SYSCTL_INT(_net_inet_ip
, IPCTL_SENDREDIRECTS
, redirect
, CTLFLAG_RW
,
136 &ipsendredirects
, 0, "Enable sending IP redirects");
138 int ip_defttl
= IPDEFTTL
;
139 SYSCTL_INT(_net_inet_ip
, IPCTL_DEFTTL
, ttl
, CTLFLAG_RW
,
140 &ip_defttl
, 0, "Maximum TTL on IP packets");
142 static int ip_dosourceroute
= 0;
143 SYSCTL_INT(_net_inet_ip
, IPCTL_SOURCEROUTE
, sourceroute
, CTLFLAG_RW
,
144 &ip_dosourceroute
, 0, "Enable forwarding source routed IP packets");
146 static int ip_acceptsourceroute
= 0;
147 SYSCTL_INT(_net_inet_ip
, IPCTL_ACCEPTSOURCEROUTE
, accept_sourceroute
,
148 CTLFLAG_RW
, &ip_acceptsourceroute
, 0,
149 "Enable accepting source routed IP packets");
151 static int ip_keepfaith
= 0;
152 SYSCTL_INT(_net_inet_ip
, IPCTL_KEEPFAITH
, keepfaith
, CTLFLAG_RW
,
154 "Enable packet capture for FAITH IPv4->IPv6 translater daemon");
156 static int nipq
= 0; /* total # of reass queues */
158 SYSCTL_INT(_net_inet_ip
, OID_AUTO
, maxfragpackets
, CTLFLAG_RW
,
160 "Maximum number of IPv4 fragment reassembly queue entries");
162 static int maxfragsperpacket
;
163 SYSCTL_INT(_net_inet_ip
, OID_AUTO
, maxfragsperpacket
, CTLFLAG_RW
,
164 &maxfragsperpacket
, 0,
165 "Maximum number of IPv4 fragments allowed per packet");
168 SYSCTL_INT(_net_inet_ip
, OID_AUTO
, maxfrags
, CTLFLAG_RW
,
169 &maxfrags
, 0, "Maximum number of IPv4 fragments allowed");
171 static int currentfrags
= 0;
174 * XXX - Setting ip_checkinterface mostly implements the receive side of
175 * the Strong ES model described in RFC 1122, but since the routing table
176 * and transmit implementation do not implement the Strong ES model,
177 * setting this to 1 results in an odd hybrid.
179 * XXX - ip_checkinterface currently must be disabled if you use ipnat
180 * to translate the destination address to another local interface.
182 * XXX - ip_checkinterface must be disabled if you add IP aliases
183 * to the loopback interface instead of the interface where the
184 * packets for those addresses are received.
186 static int ip_checkinterface
= 0;
187 SYSCTL_INT(_net_inet_ip
, OID_AUTO
, check_interface
, CTLFLAG_RW
,
188 &ip_checkinterface
, 0, "Verify packet arrives on correct interface");
191 static int ipprintfs
= 0;
194 extern struct domain inetdomain
;
195 extern struct protosw inetsw
[];
196 struct protosw
*ip_protox
[IPPROTO_MAX
];
197 static int ipqmaxlen
= IFQ_MAXLEN
;
198 struct in_ifaddrhead in_ifaddrhead
; /* first inet address */
199 struct ifqueue ipintrq
;
200 SYSCTL_INT(_net_inet_ip
, IPCTL_INTRQMAXLEN
, intr_queue_maxlen
, CTLFLAG_RW
,
201 &ipintrq
.ifq_maxlen
, 0, "Maximum size of the IP input queue");
202 SYSCTL_INT(_net_inet_ip
, IPCTL_INTRQDROPS
, intr_queue_drops
, CTLFLAG_RD
,
203 &ipintrq
.ifq_drops
, 0, "Number of packets dropped from the IP input queue");
205 struct ipstat ipstat
;
206 SYSCTL_STRUCT(_net_inet_ip
, IPCTL_STATS
, stats
, CTLFLAG_RD
,
207 &ipstat
, ipstat
, "IP statistics (struct ipstat, netinet/ip_var.h)");
209 /* Packet reassembly stuff */
210 #define IPREASS_NHASH_LOG2 6
211 #define IPREASS_NHASH (1 << IPREASS_NHASH_LOG2)
212 #define IPREASS_HMASK (IPREASS_NHASH - 1)
213 #define IPREASS_HASH(x,y) \
214 (((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
216 static struct ipq ipq
[IPREASS_NHASH
];
217 static TAILQ_HEAD(ipq_list
, ipq
) ipq_list
=
218 TAILQ_HEAD_INITIALIZER(ipq_list
);
219 const int ipintrq_present
= 1;
221 lck_attr_t
*ip_mutex_attr
;
222 lck_grp_t
*ip_mutex_grp
;
223 lck_grp_attr_t
*ip_mutex_grp_attr
;
224 lck_mtx_t
*inet_domain_mutex
;
225 extern lck_mtx_t
*domain_proto_mtx
;
228 SYSCTL_INT(_net_inet_ip
, IPCTL_DEFMTU
, mtu
, CTLFLAG_RW
,
229 &ip_mtu
, 0, "Default MTU");
233 static int ipstealth
= 0;
234 SYSCTL_INT(_net_inet_ip
, OID_AUTO
, stealth
, CTLFLAG_RW
,
240 ip_fw_chk_t
*ip_fw_chk_ptr
;
245 ip_dn_io_t
*ip_dn_io_ptr
;
248 int (*fr_checkp
)(struct ip
*, int, struct ifnet
*, int, struct mbuf
**) = NULL
;
250 SYSCTL_NODE(_net_inet_ip
, OID_AUTO
, linklocal
, CTLFLAG_RW
, 0, "link local");
252 struct ip_linklocal_stat ip_linklocal_stat
;
253 SYSCTL_STRUCT(_net_inet_ip_linklocal
, OID_AUTO
, stat
, CTLFLAG_RD
,
254 &ip_linklocal_stat
, ip_linklocal_stat
,
255 "Number of link local packets with TTL less than 255");
257 SYSCTL_NODE(_net_inet_ip_linklocal
, OID_AUTO
, in
, CTLFLAG_RW
, 0, "link local input");
259 int ip_linklocal_in_allowbadttl
= 1;
260 SYSCTL_INT(_net_inet_ip_linklocal_in
, OID_AUTO
, allowbadttl
, CTLFLAG_RW
,
261 &ip_linklocal_in_allowbadttl
, 0,
262 "Allow incoming link local packets with TTL less than 255");
266 * We need to save the IP options in case a protocol wants to respond
267 * to an incoming packet over the same route if the packet got here
268 * using IP source routing. This allows connection establishment and
269 * maintenance when the remote end is on a network that is not known
272 static int ip_nhops
= 0;
273 static struct ip_srcrt
{
274 struct in_addr dst
; /* final destination */
275 char nop
; /* one NOP to align */
276 char srcopt
[IPOPT_OFFSET
+ 1]; /* OPTVAL, OLEN and OFFSET */
277 struct in_addr route
[MAX_IPOPTLEN
/sizeof(struct in_addr
)];
281 extern struct mbuf
* m_dup(register struct mbuf
*m
, int how
);
284 static void save_rte(u_char
*, struct in_addr
);
285 static int ip_dooptions(struct mbuf
*, int, struct sockaddr_in
*, struct route
*ipforward_rt
);
286 static void ip_forward(struct mbuf
*, int, struct sockaddr_in
*, struct route
*ipforward_rt
);
287 static void ip_freef(struct ipq
*);
290 static struct mbuf
*ip_reass(struct mbuf
*,
291 struct ipq
*, struct ipq
*, u_int32_t
*, u_int16_t
*);
293 static struct mbuf
*ip_reass(struct mbuf
*,
294 struct ipq
*, struct ipq
*, u_int16_t
*, u_int16_t
*);
297 static struct mbuf
*ip_reass(struct mbuf
*, struct ipq
*, struct ipq
*);
302 extern u_short ip_id
;
305 extern u_long route_generation
;
306 extern int apple_hwcksum_rx
;
309 * IP initialization: fill in IP protocol switch table.
310 * All protocols not implemented in kernel go to raw IP protocol handler.
315 register struct protosw
*pr
;
317 static ip_initialized
= 0;
318 struct timeval timenow
;
323 TAILQ_INIT(&in_ifaddrhead
);
324 pr
= pffindproto_locked(PF_INET
, IPPROTO_RAW
, SOCK_RAW
);
327 for (i
= 0; i
< IPPROTO_MAX
; i
++)
329 for (pr
= inetdomain
.dom_protosw
; pr
; pr
= pr
->pr_next
)
330 { if(!((unsigned int)pr
->pr_domain
)) continue; /* If uninitialized, skip */
331 if (pr
->pr_domain
->dom_family
== PF_INET
&&
332 pr
->pr_protocol
&& pr
->pr_protocol
!= IPPROTO_RAW
)
333 ip_protox
[pr
->pr_protocol
] = pr
;
335 for (i
= 0; i
< IPREASS_NHASH
; i
++)
336 ipq
[i
].next
= ipq
[i
].prev
= &ipq
[i
];
338 maxnipq
= nmbclusters
/ 32;
339 maxfrags
= maxnipq
* 2;
340 maxfragsperpacket
= 128; /* enough for 64k in 512 byte fragments */
343 getmicrouptime(&timenow
);
344 ip_id
= timenow
.tv_sec
& 0xffff;
346 ipintrq
.ifq_maxlen
= ipqmaxlen
;
350 ip_mutex_grp_attr
= lck_grp_attr_alloc_init();
352 ip_mutex_grp
= lck_grp_alloc_init("ip", ip_mutex_grp_attr
);
354 ip_mutex_attr
= lck_attr_alloc_init();
356 if ((ip_mutex
= lck_mtx_alloc_init(ip_mutex_grp
, ip_mutex_attr
)) == NULL
) {
357 printf("ip_init: can't alloc ip_mutex\n");
367 protocol_family_t protocol
,
373 /* Initialize the PF_INET domain, and add in the pre-defined protos */
377 register struct protosw
*pr
;
378 register struct domain
*dp
;
379 static inetdomain_initted
= 0;
380 extern int in_proto_count
;
382 if (!inetdomain_initted
)
384 kprintf("Initing %d protosw entries\n", in_proto_count
);
386 dp
->dom_flags
= DOM_REENTRANT
;
388 for (i
=0, pr
= &inetsw
[0]; i
<in_proto_count
; i
++, pr
++)
389 net_add_proto(pr
, dp
);
390 inet_domain_mutex
= dp
->dom_mtx
;
391 inetdomain_initted
= 1;
393 lck_mtx_unlock(domain_proto_mtx
);
394 proto_register_input(PF_INET
, ip_proto_input
, NULL
);
395 lck_mtx_lock(domain_proto_mtx
);
399 __private_extern__
void
400 ip_proto_dispatch_in(
404 ipfilter_t inject_ipfref
)
406 struct ipfilter
*filter
;
407 int seen
= (inject_ipfref
== 0);
408 int changed_header
= 0;
411 if (!TAILQ_EMPTY(&ipv4_filters
)) {
413 TAILQ_FOREACH(filter
, &ipv4_filters
, ipf_link
) {
415 if ((struct ipfilter
*)inject_ipfref
== filter
)
417 } else if (filter
->ipf_filter
.ipf_input
) {
420 if (changed_header
== 0) {
422 ip
= mtod(m
, struct ip
*);
423 ip
->ip_len
= htons(ip
->ip_len
+ hlen
);
424 ip
->ip_off
= htons(ip
->ip_off
);
426 ip
->ip_sum
= in_cksum(m
, hlen
);
428 result
= filter
->ipf_filter
.ipf_input(
429 filter
->ipf_filter
.cookie
, (mbuf_t
*)&m
, hlen
, proto
);
430 if (result
== EJUSTRETURN
) {
444 * If there isn't a specific lock for the protocol
445 * we're about to call, use the generic lock for AF_INET.
446 * otherwise let the protocol deal with its own locking
448 ip
= mtod(m
, struct ip
*);
450 if (changed_header
) {
451 ip
->ip_len
= ntohs(ip
->ip_len
) - hlen
;
452 ip
->ip_off
= ntohs(ip
->ip_off
);
455 if (!(ip_protox
[ip
->ip_p
]->pr_flags
& PR_PROTOLOCK
)) {
456 lck_mtx_lock(inet_domain_mutex
);
457 (*ip_protox
[ip
->ip_p
]->pr_input
)(m
, hlen
);
458 lck_mtx_unlock(inet_domain_mutex
);
461 (*ip_protox
[ip
->ip_p
]->pr_input
)(m
, hlen
);
466 * ipforward_rt cleared in in_addroute()
467 * when a new route is successfully created.
469 static struct sockaddr_in ipaddr
= { sizeof(ipaddr
), AF_INET
};
472 * Ip input routine. Checksum and byte swap header. If fragmented
473 * try to reassemble. Process options. Pass to next level.
476 ip_input(struct mbuf
*m
)
480 struct in_ifaddr
*ia
= NULL
;
481 int i
, hlen
, mff
, checkif
;
483 struct in_addr pkt_dst
;
484 u_int32_t div_info
= 0; /* packet divert/tee info */
485 struct ip_fw_args args
;
486 ipfilter_t inject_filter_ref
= 0;
488 struct route ipforward_rt
= { 0 };
490 lck_mtx_lock(ip_mutex
);
495 args
.divert_rule
= 0; /* divert cookie */
496 args
.next_hop
= NULL
;
498 /* Grab info from mtags prepended to the chain */
500 if ((tag
= m_tag_locate(m
, KERNEL_MODULE_TAG_ID
, KERNEL_TAG_TYPE_DUMMYNET
, NULL
)) != NULL
) {
501 struct dn_pkt_tag
*dn_tag
;
503 dn_tag
= (struct dn_pkt_tag
*)(tag
+1);
504 args
.rule
= dn_tag
->rule
;
506 m_tag_delete(m
, tag
);
508 #endif /* DUMMYNET */
510 if ((tag
= m_tag_locate(m
, KERNEL_MODULE_TAG_ID
, KERNEL_TAG_TYPE_DIVERT
, NULL
)) != NULL
) {
511 struct divert_tag
*div_tag
;
513 div_tag
= (struct divert_tag
*)(tag
+1);
514 args
.divert_rule
= div_tag
->cookie
;
516 m_tag_delete(m
, tag
);
518 if ((tag
= m_tag_locate(m
, KERNEL_MODULE_TAG_ID
, KERNEL_TAG_TYPE_IPFORWARD
, NULL
)) != NULL
) {
519 struct ip_fwd_tag
*ipfwd_tag
;
521 ipfwd_tag
= (struct ip_fwd_tag
*)(tag
+1);
522 args
.next_hop
= ipfwd_tag
->next_hop
;
524 m_tag_delete(m
, tag
);
528 if (m
== NULL
|| (m
->m_flags
& M_PKTHDR
) == 0)
529 panic("ip_input no HDR");
532 if (args
.rule
) { /* dummynet already filtered us */
533 ip
= mtod(m
, struct ip
*);
534 hlen
= IP_VHL_HL(ip
->ip_vhl
) << 2;
535 inject_filter_ref
= ipf_get_inject_filter(m
);
540 * No need to proccess packet twice if we've
543 inject_filter_ref
= ipf_get_inject_filter(m
);
544 if (inject_filter_ref
!= 0) {
545 lck_mtx_unlock(ip_mutex
);
546 ip
= mtod(m
, struct ip
*);
547 hlen
= IP_VHL_HL(ip
->ip_vhl
) << 2;
548 ip
->ip_len
= ntohs(ip
->ip_len
) - hlen
;
549 ip
->ip_off
= ntohs(ip
->ip_off
);
550 ip_proto_dispatch_in(m
, hlen
, ip
->ip_p
, inject_filter_ref
);
556 if (m
->m_pkthdr
.len
< sizeof(struct ip
))
559 if (m
->m_len
< sizeof (struct ip
) &&
560 (m
= m_pullup(m
, sizeof (struct ip
))) == 0) {
561 ipstat
.ips_toosmall
++;
562 lck_mtx_unlock(ip_mutex
);
565 ip
= mtod(m
, struct ip
*);
567 KERNEL_DEBUG(DBG_LAYER_BEG
, ip
->ip_dst
.s_addr
,
568 ip
->ip_src
.s_addr
, ip
->ip_p
, ip
->ip_off
, ip
->ip_len
);
570 if (IP_VHL_V(ip
->ip_vhl
) != IPVERSION
) {
571 ipstat
.ips_badvers
++;
575 hlen
= IP_VHL_HL(ip
->ip_vhl
) << 2;
576 if (hlen
< sizeof(struct ip
)) { /* minimum header length */
577 ipstat
.ips_badhlen
++;
580 if (hlen
> m
->m_len
) {
581 if ((m
= m_pullup(m
, hlen
)) == 0) {
582 ipstat
.ips_badhlen
++;
583 lck_mtx_unlock(ip_mutex
);
586 ip
= mtod(m
, struct ip
*);
589 /* 127/8 must not appear on wire - RFC1122 */
590 if ((ntohl(ip
->ip_dst
.s_addr
) >> IN_CLASSA_NSHIFT
) == IN_LOOPBACKNET
||
591 (ntohl(ip
->ip_src
.s_addr
) >> IN_CLASSA_NSHIFT
) == IN_LOOPBACKNET
) {
592 if ((m
->m_pkthdr
.rcvif
->if_flags
& IFF_LOOPBACK
) == 0) {
593 ipstat
.ips_badaddr
++;
598 /* IPv4 Link-Local Addresses as defined in <draft-ietf-zeroconf-ipv4-linklocal-05.txt> */
599 if ((IN_LINKLOCAL(ntohl(ip
->ip_dst
.s_addr
)) ||
600 IN_LINKLOCAL(ntohl(ip
->ip_src
.s_addr
)))) {
601 ip_linklocal_stat
.iplls_in_total
++;
602 if (ip
->ip_ttl
!= MAXTTL
) {
603 ip_linklocal_stat
.iplls_in_badttl
++;
604 /* Silently drop link local traffic with bad TTL */
605 if (!ip_linklocal_in_allowbadttl
)
609 if ((IF_HWASSIST_CSUM_FLAGS(m
->m_pkthdr
.rcvif
->if_hwassist
) == 0)
610 || (apple_hwcksum_rx
== 0) ||
611 ((m
->m_pkthdr
.csum_flags
& CSUM_TCP_SUM16
) && ip
->ip_p
!= IPPROTO_TCP
)) {
612 m
->m_pkthdr
.csum_flags
= 0; /* invalidate HW generated checksum flags */
615 if (m
->m_pkthdr
.csum_flags
& CSUM_IP_CHECKED
) {
616 sum
= !(m
->m_pkthdr
.csum_flags
& CSUM_IP_VALID
);
618 sum
= in_cksum(m
, hlen
);
626 * Convert fields to host representation.
629 if (ip
->ip_len
< hlen
) {
636 * Check that the amount of data in the buffers
637 * is as at least much as the IP header would have us expect.
638 * Trim mbufs if longer than we expect.
639 * Drop packet if shorter than we expect.
641 if (m
->m_pkthdr
.len
< ip
->ip_len
) {
643 ipstat
.ips_tooshort
++;
646 if (m
->m_pkthdr
.len
> ip
->ip_len
) {
647 /* Invalidate hwcksuming */
648 m
->m_pkthdr
.csum_flags
= 0;
649 m
->m_pkthdr
.csum_data
= 0;
651 if (m
->m_len
== m
->m_pkthdr
.len
) {
652 m
->m_len
= ip
->ip_len
;
653 m
->m_pkthdr
.len
= ip
->ip_len
;
655 m_adj(m
, ip
->ip_len
- m
->m_pkthdr
.len
);
659 if (ipsec_bypass
== 0 && ipsec_gethist(m
, NULL
))
665 * Right now when no processing on packet has done
666 * and it is still fresh out of network we do our black
668 * - Firewall: deny/allow/divert
669 * - Xlate: translate packet's addr/port (NAT).
670 * - Pipe: pass pkt through dummynet.
671 * - Wrap: fake packet's addr/port <unimpl.>
672 * - Encapsulate: put it in another IP and send out. <unimp.>
675 #if defined(IPFIREWALL) && defined(DUMMYNET)
679 * Check if we want to allow this packet to be processed.
680 * Consider it to be bad if not.
685 if (fr_checkp(ip
, hlen
, m
->m_pkthdr
.rcvif
, 0, &m1
) || !m1
) {
686 lck_mtx_unlock(ip_mutex
);
689 ip
= mtod(m
= m1
, struct ip
*);
691 if (fw_enable
&& IPFW_LOADED
) {
692 #if IPFIREWALL_FORWARD
694 * If we've been forwarded from the output side, then
695 * skip the firewall a second time
699 #endif /* IPFIREWALL_FORWARD */
702 lck_mtx_unlock(ip_mutex
);
704 i
= ip_fw_chk_ptr(&args
);
707 if ( (i
& IP_FW_PORT_DENY_FLAG
) || m
== NULL
) { /* drop */
712 ip
= mtod(m
, struct ip
*); /* just in case m changed */
713 if (i
== 0 && args
.next_hop
== NULL
) { /* common case */
714 lck_mtx_lock(ip_mutex
);
718 if (DUMMYNET_LOADED
&& (i
& IP_FW_PORT_DYNT_FLAG
) != 0) {
719 /* Send packet to the appropriate pipe */
720 ip_dn_io_ptr(m
, i
&0xffff, DN_TO_IP_IN
, &args
);
723 #endif /* DUMMYNET */
725 if (i
!= 0 && (i
& IP_FW_PORT_DYNT_FLAG
) == 0) {
726 /* Divert or tee packet */
727 lck_mtx_lock(ip_mutex
);
732 #if IPFIREWALL_FORWARD
733 if (i
== 0 && args
.next_hop
!= NULL
) {
734 lck_mtx_lock(ip_mutex
);
739 * if we get here, the packet must be dropped
747 * Process options and, if not destined for us,
748 * ship it on. ip_dooptions returns 1 when an
749 * error was detected (causing an icmp message
750 * to be sent and the original packet to be freed).
752 ip_nhops
= 0; /* for source routed packets */
753 if (hlen
> sizeof (struct ip
) && ip_dooptions(m
, 0, args
.next_hop
, &ipforward_rt
)) {
754 lck_mtx_unlock(ip_mutex
);
758 /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
759 * matter if it is destined to another node, or whether it is
760 * a multicast one, RSVP wants it! and prevents it from being forwarded
761 * anywhere else. Also checks if the rsvp daemon is running before
762 * grabbing the packet.
764 if (rsvp_on
&& ip
->ip_p
==IPPROTO_RSVP
)
768 * Check our list of addresses, to see if the packet is for us.
769 * If we don't have any addresses, assume any unicast packet
770 * we receive might be for us (and let the upper layers deal
773 if (TAILQ_EMPTY(&in_ifaddrhead
) &&
774 (m
->m_flags
& (M_MCAST
|M_BCAST
)) == 0)
778 * Cache the destination address of the packet; this may be
779 * changed by use of 'ipfw fwd'.
781 pkt_dst
= args
.next_hop
== NULL
?
782 ip
->ip_dst
: args
.next_hop
->sin_addr
;
785 * Enable a consistency check between the destination address
786 * and the arrival interface for a unicast packet (the RFC 1122
787 * strong ES model) if IP forwarding is disabled and the packet
788 * is not locally generated and the packet is not subject to
791 * XXX - Checking also should be disabled if the destination
792 * address is ipnat'ed to a different interface.
794 * XXX - Checking is incompatible with IP aliases added
795 * to the loopback interface instead of the interface where
796 * the packets are received.
798 checkif
= ip_checkinterface
&& (ipforwarding
== 0) &&
799 ((m
->m_pkthdr
.rcvif
->if_flags
& IFF_LOOPBACK
) == 0) &&
800 (args
.next_hop
== NULL
);
802 lck_mtx_lock(rt_mtx
);
803 TAILQ_FOREACH(ia
, &in_ifaddrhead
, ia_link
) {
804 #define satosin(sa) ((struct sockaddr_in *)(sa))
806 if (IA_SIN(ia
)->sin_addr
.s_addr
== INADDR_ANY
) {
807 lck_mtx_unlock(rt_mtx
);
812 * If the address matches, verify that the packet
813 * arrived via the correct interface if checking is
816 if (IA_SIN(ia
)->sin_addr
.s_addr
== pkt_dst
.s_addr
&&
817 (!checkif
|| ia
->ia_ifp
== m
->m_pkthdr
.rcvif
)) {
818 lck_mtx_unlock(rt_mtx
);
822 * Only accept broadcast packets that arrive via the
823 * matching interface. Reception of forwarded directed
824 * broadcasts would be handled via ip_forward() and
825 * ether_output() with the loopback into the stack for
826 * SIMPLEX interfaces handled by ether_output().
828 if ((!checkif
|| ia
->ia_ifp
== m
->m_pkthdr
.rcvif
) &&
829 ia
->ia_ifp
&& ia
->ia_ifp
->if_flags
& IFF_BROADCAST
) {
830 if (satosin(&ia
->ia_broadaddr
)->sin_addr
.s_addr
==
832 lck_mtx_unlock(rt_mtx
);
835 if (ia
->ia_netbroadcast
.s_addr
== pkt_dst
.s_addr
) {
836 lck_mtx_unlock(rt_mtx
);
841 lck_mtx_unlock(rt_mtx
);
842 if (IN_MULTICAST(ntohl(ip
->ip_dst
.s_addr
))) {
843 struct in_multi
*inm
;
846 * If we are acting as a multicast router, all
847 * incoming multicast packets are passed to the
848 * kernel-level multicast forwarding function.
849 * The packet is returned (relatively) intact; if
850 * ip_mforward() returns a non-zero value, the packet
851 * must be discarded, else it may be accepted below.
854 ip_mforward(ip
, m
->m_pkthdr
.rcvif
, m
, 0) != 0) {
855 ipstat
.ips_cantforward
++;
857 lck_mtx_unlock(ip_mutex
);
862 * The process-level routing daemon needs to receive
863 * all multicast IGMP packets, whether or not this
864 * host belongs to their destination groups.
866 if (ip
->ip_p
== IPPROTO_IGMP
)
868 ipstat
.ips_forward
++;
871 * See if we belong to the destination multicast group on the
874 IN_LOOKUP_MULTI(ip
->ip_dst
, m
->m_pkthdr
.rcvif
, inm
);
876 ipstat
.ips_notmember
++;
878 lck_mtx_unlock(ip_mutex
);
883 if (ip
->ip_dst
.s_addr
== (u_long
)INADDR_BROADCAST
)
885 if (ip
->ip_dst
.s_addr
== INADDR_ANY
)
888 /* Allow DHCP/BootP responses through */
889 if (m
->m_pkthdr
.rcvif
!= NULL
890 && (m
->m_pkthdr
.rcvif
->if_eflags
& IFEF_AUTOCONFIGURING
)
891 && hlen
== sizeof(struct ip
)
892 && ip
->ip_p
== IPPROTO_UDP
) {
894 if (m
->m_len
< sizeof(struct udpiphdr
)
895 && (m
= m_pullup(m
, sizeof(struct udpiphdr
))) == 0) {
896 udpstat
.udps_hdrops
++;
897 lck_mtx_unlock(ip_mutex
);
900 ui
= mtod(m
, struct udpiphdr
*);
901 if (ntohs(ui
->ui_dport
) == IPPORT_BOOTPC
) {
904 ip
= mtod(m
, struct ip
*); /* in case it changed */
907 #if defined(NFAITH) && 0 < NFAITH
909 * FAITH(Firewall Aided Internet Translator)
911 if (m
->m_pkthdr
.rcvif
&& m
->m_pkthdr
.rcvif
->if_type
== IFT_FAITH
) {
913 if (ip
->ip_p
== IPPROTO_TCP
|| ip
->ip_p
== IPPROTO_ICMP
)
917 lck_mtx_unlock(ip_mutex
);
921 lck_mtx_unlock(ip_mutex
);
923 * Not for us; forward if possible and desirable.
925 if (ipforwarding
== 0) {
926 ipstat
.ips_cantforward
++;
929 ip_forward(m
, 0, args
.next_hop
, &ipforward_rt
);
935 /* Darwin does not have an if_data in ifaddr */
936 /* Count the packet in the ip address stats */
938 ia
->ia_ifa
.if_ipackets
++;
939 ia
->ia_ifa
.if_ibytes
+= m
->m_pkthdr
.len
;
944 * If offset or IP_MF are set, must reassemble.
945 * Otherwise, nothing need be done.
946 * (We could look in the reassembly queue to see
947 * if the packet was previously fragmented,
948 * but it's not worth the time; just let them time out.)
950 if (ip
->ip_off
& (IP_MF
| IP_OFFMASK
| IP_RF
)) {
952 /* If maxnipq is 0, never accept fragments. */
954 ipstat
.ips_fragments
++;
955 ipstat
.ips_fragdropped
++;
960 * If we will exceed the number of fragments in queues, timeout the
961 * oldest fragemented packet to make space.
963 if (currentfrags
>= maxfrags
) {
964 fp
= TAILQ_LAST(&ipq_list
, ipq_list
);
965 ipstat
.ips_fragtimeout
+= fp
->ipq_nfrags
;
967 if (ip
->ip_id
== fp
->ipq_id
&&
968 ip
->ip_src
.s_addr
== fp
->ipq_src
.s_addr
&&
969 ip
->ip_dst
.s_addr
== fp
->ipq_dst
.s_addr
&&
970 ip
->ip_p
== fp
->ipq_p
) {
972 * If we match the fragment queue we were going to
973 * discard, drop this packet too.
975 ipstat
.ips_fragdropped
++;
983 sum
= IPREASS_HASH(ip
->ip_src
.s_addr
, ip
->ip_id
);
985 * Look for queue of fragments
988 for (fp
= ipq
[sum
].next
; fp
!= &ipq
[sum
]; fp
= fp
->next
)
989 if (ip
->ip_id
== fp
->ipq_id
&&
990 ip
->ip_src
.s_addr
== fp
->ipq_src
.s_addr
&&
991 ip
->ip_dst
.s_addr
== fp
->ipq_dst
.s_addr
&&
992 ip
->ip_p
== fp
->ipq_p
)
996 * Enforce upper bound on number of fragmented packets
997 * for which we attempt reassembly;
998 * If maxnipq is -1, accept all fragments without limitation.
1000 if ((nipq
> maxnipq
) && (maxnipq
> 0)) {
1002 * drop the oldest fragment before proceeding further
1004 fp
= TAILQ_LAST(&ipq_list
, ipq_list
);
1005 ipstat
.ips_fragtimeout
+= fp
->ipq_nfrags
;
1013 * Adjust ip_len to not reflect header,
1014 * convert offset of this to bytes.
1017 if (ip
->ip_off
& IP_MF
) {
1019 * Make sure that fragments have a data length
1020 * that's a non-zero multiple of 8 bytes.
1022 if (ip
->ip_len
== 0 || (ip
->ip_len
& 0x7) != 0) {
1023 ipstat
.ips_toosmall
++; /* XXX */
1026 m
->m_flags
|= M_FRAG
;
1028 /* Clear the flag in case packet comes from loopback */
1029 m
->m_flags
&= ~M_FRAG
;
1034 * Attempt reassembly; if it succeeds, proceed.
1035 * ip_reass() will return a different mbuf, and update
1036 * the divert info in div_info and args.divert_rule.
1038 ipstat
.ips_fragments
++;
1039 m
->m_pkthdr
.header
= ip
;
1042 fp
, &ipq
[sum
], &div_info
, &args
.divert_rule
);
1044 m
= ip_reass(m
, fp
, &ipq
[sum
]);
1047 lck_mtx_unlock(ip_mutex
);
1050 ipstat
.ips_reassembled
++;
1051 ip
= mtod(m
, struct ip
*);
1052 /* Get the header length of the reassembled packet */
1053 hlen
= IP_VHL_HL(ip
->ip_vhl
) << 2;
1055 /* Restore original checksum before diverting packet */
1056 if (div_info
!= 0) {
1061 ip
->ip_sum
= in_cksum(m
, hlen
);
1072 * Divert or tee packet to the divert protocol if required.
1074 * If div_info is zero then cookie should be too, so we shouldn't
1075 * need to clear them here. Assume divert_packet() does so also.
1077 if (div_info
!= 0) {
1078 struct mbuf
*clone
= NULL
;
1080 /* Clone packet if we're doing a 'tee' */
1081 if ((div_info
& IP_FW_PORT_TEE_FLAG
) != 0)
1082 clone
= m_dup(m
, M_DONTWAIT
);
1084 /* Restore packet header fields to original values */
1089 /* Deliver packet to divert input routine */
1090 ipstat
.ips_delivered
++;
1091 lck_mtx_unlock(ip_mutex
);
1092 divert_packet(m
, 1, div_info
& 0xffff, args
.divert_rule
);
1094 /* If 'tee', continue with original packet */
1095 if (clone
== NULL
) {
1098 lck_mtx_lock(ip_mutex
);
1100 ip
= mtod(m
, struct ip
*);
1106 * enforce IPsec policy checking if we are seeing last header.
1107 * note that we do not visit this with protocols with pcb layer
1108 * code - like udp/tcp/raw ip.
1110 if (ipsec_bypass
== 0 && (ip_protox
[ip
->ip_p
]->pr_flags
& PR_LASTHDR
) != 0) {
1111 lck_mtx_lock(sadb_mutex
);
1112 if (ipsec4_in_reject(m
, NULL
)) {
1113 ipsecstat
.in_polvio
++;
1114 lck_mtx_unlock(sadb_mutex
);
1117 lck_mtx_unlock(sadb_mutex
);
1122 * Switch out to protocol's input routine.
1124 ipstat
.ips_delivered
++;
1126 if (args
.next_hop
&& ip
->ip_p
== IPPROTO_TCP
) {
1127 /* TCP needs IPFORWARD info if available */
1128 struct m_tag
*fwd_tag
;
1129 struct ip_fwd_tag
*ipfwd_tag
;
1131 fwd_tag
= m_tag_alloc(KERNEL_MODULE_TAG_ID
, KERNEL_TAG_TYPE_IPFORWARD
,
1132 sizeof(struct sockaddr_in
), M_NOWAIT
);
1133 if (fwd_tag
== NULL
) {
1137 ipfwd_tag
= (struct ip_fwd_tag
*)(fwd_tag
+1);
1138 ipfwd_tag
->next_hop
= args
.next_hop
;
1140 m_tag_prepend(m
, fwd_tag
);
1142 KERNEL_DEBUG(DBG_LAYER_END
, ip
->ip_dst
.s_addr
,
1143 ip
->ip_src
.s_addr
, ip
->ip_p
, ip
->ip_off
, ip
->ip_len
);
1145 lck_mtx_unlock(ip_mutex
);
1147 /* TCP deals with its own locking */
1148 ip_proto_dispatch_in(m
, hlen
, ip
->ip_p
, 0);
1150 KERNEL_DEBUG(DBG_LAYER_END
, ip
->ip_dst
.s_addr
,
1151 ip
->ip_src
.s_addr
, ip
->ip_p
, ip
->ip_off
, ip
->ip_len
);
1153 lck_mtx_unlock(ip_mutex
);
1154 ip_proto_dispatch_in(m
, hlen
, ip
->ip_p
, 0);
1160 KERNEL_DEBUG(DBG_LAYER_END
, 0,0,0,0,0);
1161 lck_mtx_unlock(ip_mutex
);
1166 * Take incoming datagram fragment and try to reassemble it into
1167 * whole datagram. If a chain for reassembly of this datagram already
1168 * exists, then it is given as fp; otherwise have to make a chain.
1170 * When IPDIVERT enabled, keep additional state with each packet that
1171 * tells us if we need to divert or tee the packet we're building.
1174 static struct mbuf
*
1176 ip_reass(m
, fp
, where
, divinfo
, divcookie
)
1178 ip_reass(m
, fp
, where
)
1180 register struct mbuf
*m
;
1181 register struct ipq
*fp
;
1189 u_int16_t
*divcookie
;
1192 struct ip
*ip
= mtod(m
, struct ip
*);
1193 register struct mbuf
*p
= 0, *q
, *nq
;
1195 int hlen
= IP_VHL_HL(ip
->ip_vhl
) << 2;
1199 * Presence of header sizes in mbufs
1200 * would confuse code below.
1205 if (m
->m_pkthdr
.csum_flags
& CSUM_TCP_SUM16
)
1206 m
->m_pkthdr
.csum_flags
= 0;
1208 * If first fragment to arrive, create a reassembly queue.
1211 if ((t
= m_get(M_DONTWAIT
, MT_FTABLE
)) == NULL
)
1213 fp
= mtod(t
, struct ipq
*);
1214 insque((void*)fp
, (void*)where
);
1217 fp
->ipq_ttl
= IPFRAGTTL
;
1218 fp
->ipq_p
= ip
->ip_p
;
1219 fp
->ipq_id
= ip
->ip_id
;
1220 fp
->ipq_src
= ip
->ip_src
;
1221 fp
->ipq_dst
= ip
->ip_dst
;
1223 m
->m_nextpkt
= NULL
;
1226 fp
->ipq_div_info
= 0;
1230 fp
->ipq_div_cookie
= 0;
1232 TAILQ_INSERT_HEAD(&ipq_list
, fp
, ipq_list
);
1238 #define GETIP(m) ((struct ip*)((m)->m_pkthdr.header))
1241 * Find a segment which begins after this one does.
1243 for (p
= NULL
, q
= fp
->ipq_frags
; q
; p
= q
, q
= q
->m_nextpkt
)
1244 if (GETIP(q
)->ip_off
> ip
->ip_off
)
1248 * If there is a preceding segment, it may provide some of
1249 * our data already. If so, drop the data from the incoming
1250 * segment. If it provides all of our data, drop us, otherwise
1251 * stick new segment in the proper place.
1253 * If some of the data is dropped from the the preceding
1254 * segment, then it's checksum is invalidated.
1257 i
= GETIP(p
)->ip_off
+ GETIP(p
)->ip_len
- ip
->ip_off
;
1259 if (i
>= ip
->ip_len
)
1262 m
->m_pkthdr
.csum_flags
= 0;
1266 m
->m_nextpkt
= p
->m_nextpkt
;
1269 m
->m_nextpkt
= fp
->ipq_frags
;
1274 * While we overlap succeeding segments trim them or,
1275 * if they are completely covered, dequeue them.
1277 for (; q
!= NULL
&& ip
->ip_off
+ ip
->ip_len
> GETIP(q
)->ip_off
;
1279 i
= (ip
->ip_off
+ ip
->ip_len
) -
1281 if (i
< GETIP(q
)->ip_len
) {
1282 GETIP(q
)->ip_len
-= i
;
1283 GETIP(q
)->ip_off
+= i
;
1285 q
->m_pkthdr
.csum_flags
= 0;
1290 ipstat
.ips_fragdropped
++;
1300 * Transfer firewall instructions to the fragment structure.
1301 * Only trust info in the fragment at offset 0.
1303 if (ip
->ip_off
== 0) {
1305 fp
->ipq_div_info
= *divinfo
;
1307 fp
->ipq_divert
= *divinfo
;
1309 fp
->ipq_div_cookie
= *divcookie
;
1316 * Check for complete reassembly and perform frag per packet
1319 * Frag limiting is performed here so that the nth frag has
1320 * a chance to complete the packet before we drop the packet.
1321 * As a result, n+1 frags are actually allowed per packet, but
1322 * only n will ever be stored. (n = maxfragsperpacket.)
1326 for (p
= NULL
, q
= fp
->ipq_frags
; q
; p
= q
, q
= q
->m_nextpkt
) {
1327 if (GETIP(q
)->ip_off
!= next
) {
1328 if (fp
->ipq_nfrags
> maxfragsperpacket
) {
1329 ipstat
.ips_fragdropped
+= fp
->ipq_nfrags
;
1334 next
+= GETIP(q
)->ip_len
;
1336 /* Make sure the last packet didn't have the IP_MF flag */
1337 if (p
->m_flags
& M_FRAG
) {
1338 if (fp
->ipq_nfrags
> maxfragsperpacket
) {
1339 ipstat
.ips_fragdropped
+= fp
->ipq_nfrags
;
1346 * Reassembly is complete. Make sure the packet is a sane size.
1350 if (next
+ (IP_VHL_HL(ip
->ip_vhl
) << 2) > IP_MAXPACKET
) {
1351 ipstat
.ips_toolong
++;
1352 ipstat
.ips_fragdropped
+= fp
->ipq_nfrags
;
1358 * Concatenate fragments.
1366 for (q
= nq
; q
!= NULL
; q
= nq
) {
1368 q
->m_nextpkt
= NULL
;
1369 if (q
->m_pkthdr
.csum_flags
& CSUM_TCP_SUM16
)
1370 m
->m_pkthdr
.csum_flags
= 0;
1372 m
->m_pkthdr
.csum_flags
&= q
->m_pkthdr
.csum_flags
;
1373 m
->m_pkthdr
.csum_data
+= q
->m_pkthdr
.csum_data
;
1380 * Extract firewall instructions from the fragment structure.
1383 *divinfo
= fp
->ipq_div_info
;
1385 *divinfo
= fp
->ipq_divert
;
1387 *divcookie
= fp
->ipq_div_cookie
;
1391 * Create header for new ip packet by
1392 * modifying header of first packet;
1393 * dequeue and discard fragment reassembly header.
1394 * Make header visible.
1397 ip
->ip_src
= fp
->ipq_src
;
1398 ip
->ip_dst
= fp
->ipq_dst
;
1400 TAILQ_REMOVE(&ipq_list
, fp
, ipq_list
);
1401 currentfrags
-= fp
->ipq_nfrags
;
1403 (void) m_free(dtom(fp
));
1404 m
->m_len
+= (IP_VHL_HL(ip
->ip_vhl
) << 2);
1405 m
->m_data
-= (IP_VHL_HL(ip
->ip_vhl
) << 2);
1406 /* some debugging cruft by sklower, below, will go away soon */
1407 if (m
->m_flags
& M_PKTHDR
) { /* XXX this should be done elsewhere */
1408 register int plen
= 0;
1409 for (t
= m
; t
; t
= t
->m_next
)
1411 m
->m_pkthdr
.len
= plen
;
1420 ipstat
.ips_fragdropped
++;
1430 * Free a fragment reassembly header and all
1431 * associated datagrams.
1437 currentfrags
-= fp
->ipq_nfrags
;
1438 m_freem_list(fp
->ipq_frags
);
1440 TAILQ_REMOVE(&ipq_list
, fp
, ipq_list
);
1441 (void) m_free(dtom(fp
));
1446 * IP timer processing;
1447 * if a timer expires on a reassembly
1448 * queue, discard it.
1453 register struct ipq
*fp
;
1455 lck_mtx_lock(ip_mutex
);
1456 for (i
= 0; i
< IPREASS_NHASH
; i
++) {
1460 while (fp
!= &ipq
[i
]) {
1463 if (fp
->prev
->ipq_ttl
== 0) {
1464 ipstat
.ips_fragtimeout
+= fp
->prev
->ipq_nfrags
;
1470 * If we are over the maximum number of fragments
1471 * (due to the limit being lowered), drain off
1472 * enough to get down to the new limit.
1474 if (maxnipq
>= 0 && nipq
> maxnipq
) {
1475 for (i
= 0; i
< IPREASS_NHASH
; i
++) {
1476 while (nipq
> maxnipq
&&
1477 (ipq
[i
].next
!= &ipq
[i
])) {
1478 ipstat
.ips_fragdropped
+=
1479 ipq
[i
].next
->ipq_nfrags
;
1480 ip_freef(ipq
[i
].next
);
1485 lck_mtx_unlock(ip_mutex
);
1489 * Drain off all datagram fragments.
1496 lck_mtx_lock(ip_mutex
);
1497 for (i
= 0; i
< IPREASS_NHASH
; i
++) {
1498 while (ipq
[i
].next
!= &ipq
[i
]) {
1499 ipstat
.ips_fragdropped
+= ipq
[i
].next
->ipq_nfrags
;
1500 ip_freef(ipq
[i
].next
);
1503 lck_mtx_unlock(ip_mutex
);
1508 * Do option processing on a datagram,
1509 * possibly discarding it if bad options are encountered,
1510 * or forwarding it if source-routed.
1511 * The pass argument is used when operating in the IPSTEALTH
1512 * mode to tell what options to process:
1513 * [LS]SRR (pass 0) or the others (pass 1).
1514 * The reason for as many as two passes is that when doing IPSTEALTH,
1515 * non-routing options should be processed only if the packet is for us.
1516 * Returns 1 if packet has been forwarded/freed,
1517 * 0 if the packet should be processed further.
1520 ip_dooptions(struct mbuf
*m
, int pass
, struct sockaddr_in
*next_hop
, struct route
*ipforward_rt
)
1522 register struct ip
*ip
= mtod(m
, struct ip
*);
1523 register u_char
*cp
;
1524 register struct ip_timestamp
*ipt
;
1525 register struct in_ifaddr
*ia
;
1526 int opt
, optlen
, cnt
, off
, code
, type
= ICMP_PARAMPROB
, forward
= 0;
1527 struct in_addr
*sin
, dst
;
1531 cp
= (u_char
*)(ip
+ 1);
1532 cnt
= (IP_VHL_HL(ip
->ip_vhl
) << 2) - sizeof (struct ip
);
1533 for (; cnt
> 0; cnt
-= optlen
, cp
+= optlen
) {
1534 opt
= cp
[IPOPT_OPTVAL
];
1535 if (opt
== IPOPT_EOL
)
1537 if (opt
== IPOPT_NOP
)
1540 if (cnt
< IPOPT_OLEN
+ sizeof(*cp
)) {
1541 code
= &cp
[IPOPT_OLEN
] - (u_char
*)ip
;
1544 optlen
= cp
[IPOPT_OLEN
];
1545 if (optlen
< IPOPT_OLEN
+ sizeof(*cp
) || optlen
> cnt
) {
1546 code
= &cp
[IPOPT_OLEN
] - (u_char
*)ip
;
1556 * Source routing with record.
1557 * Find interface with current destination address.
1558 * If none on this machine then drop if strictly routed,
1559 * or do nothing if loosely routed.
1560 * Record interface address and bring up next address
1561 * component. If strictly routed make sure next
1562 * address is on directly accessible net.
1566 if (optlen
< IPOPT_OFFSET
+ sizeof(*cp
)) {
1567 code
= &cp
[IPOPT_OLEN
] - (u_char
*)ip
;
1570 if ((off
= cp
[IPOPT_OFFSET
]) < IPOPT_MINOFF
) {
1571 code
= &cp
[IPOPT_OFFSET
] - (u_char
*)ip
;
1574 ipaddr
.sin_addr
= ip
->ip_dst
;
1575 ia
= (struct in_ifaddr
*)
1576 ifa_ifwithaddr((struct sockaddr
*)&ipaddr
);
1578 if (opt
== IPOPT_SSRR
) {
1579 type
= ICMP_UNREACH
;
1580 code
= ICMP_UNREACH_SRCFAIL
;
1583 if (!ip_dosourceroute
)
1584 goto nosourcerouting
;
1586 * Loose routing, and not at next destination
1587 * yet; nothing to do except forward.
1592 ifafree(&ia
->ia_ifa
);
1595 off
--; /* 0 origin */
1596 if (off
> optlen
- (int)sizeof(struct in_addr
)) {
1598 * End of source route. Should be for us.
1600 if (!ip_acceptsourceroute
)
1601 goto nosourcerouting
;
1602 save_rte(cp
, ip
->ip_src
);
1606 if (!ip_dosourceroute
) {
1608 char buf
[MAX_IPv4_STR_LEN
];
1609 char buf2
[MAX_IPv4_STR_LEN
];
1611 * Acting as a router, so generate ICMP
1615 "attempted source route from %s to %s\n",
1616 inet_ntop(AF_INET
, &ip
->ip_src
, buf
, sizeof(buf
)),
1617 inet_ntop(AF_INET
, &ip
->ip_dst
, buf2
, sizeof(buf2
)));
1618 type
= ICMP_UNREACH
;
1619 code
= ICMP_UNREACH_SRCFAIL
;
1623 * Not acting as a router, so silently drop.
1625 ipstat
.ips_cantforward
++;
1632 * locate outgoing interface
1634 (void)memcpy(&ipaddr
.sin_addr
, cp
+ off
,
1635 sizeof(ipaddr
.sin_addr
));
1637 if (opt
== IPOPT_SSRR
) {
1638 #define INA struct in_ifaddr *
1639 #define SA struct sockaddr *
1640 if ((ia
= (INA
)ifa_ifwithdstaddr((SA
)&ipaddr
)) == 0) {
1641 ia
= (INA
)ifa_ifwithnet((SA
)&ipaddr
);
1644 ia
= ip_rtaddr(ipaddr
.sin_addr
, ipforward_rt
);
1647 type
= ICMP_UNREACH
;
1648 code
= ICMP_UNREACH_SRCFAIL
;
1651 ip
->ip_dst
= ipaddr
.sin_addr
;
1652 (void)memcpy(cp
+ off
, &(IA_SIN(ia
)->sin_addr
),
1653 sizeof(struct in_addr
));
1654 ifafree(&ia
->ia_ifa
);
1656 cp
[IPOPT_OFFSET
] += sizeof(struct in_addr
);
1658 * Let ip_intr's mcast routing check handle mcast pkts
1660 forward
= !IN_MULTICAST(ntohl(ip
->ip_dst
.s_addr
));
1664 if (optlen
< IPOPT_OFFSET
+ sizeof(*cp
)) {
1665 code
= &cp
[IPOPT_OFFSET
] - (u_char
*)ip
;
1668 if ((off
= cp
[IPOPT_OFFSET
]) < IPOPT_MINOFF
) {
1669 code
= &cp
[IPOPT_OFFSET
] - (u_char
*)ip
;
1673 * If no space remains, ignore.
1675 off
--; /* 0 origin */
1676 if (off
> optlen
- (int)sizeof(struct in_addr
))
1678 (void)memcpy(&ipaddr
.sin_addr
, &ip
->ip_dst
,
1679 sizeof(ipaddr
.sin_addr
));
1681 * locate outgoing interface; if we're the destination,
1682 * use the incoming interface (should be same).
1684 if ((ia
= (INA
)ifa_ifwithaddr((SA
)&ipaddr
)) == 0) {
1685 if ((ia
= ip_rtaddr(ipaddr
.sin_addr
, ipforward_rt
)) == 0) {
1686 type
= ICMP_UNREACH
;
1687 code
= ICMP_UNREACH_HOST
;
1691 (void)memcpy(cp
+ off
, &(IA_SIN(ia
)->sin_addr
),
1692 sizeof(struct in_addr
));
1693 ifafree(&ia
->ia_ifa
);
1695 cp
[IPOPT_OFFSET
] += sizeof(struct in_addr
);
1699 code
= cp
- (u_char
*)ip
;
1700 ipt
= (struct ip_timestamp
*)cp
;
1701 if (ipt
->ipt_len
< 4 || ipt
->ipt_len
> 40) {
1702 code
= (u_char
*)&ipt
->ipt_len
- (u_char
*)ip
;
1705 if (ipt
->ipt_ptr
< 5) {
1706 code
= (u_char
*)&ipt
->ipt_ptr
- (u_char
*)ip
;
1710 ipt
->ipt_len
- (int)sizeof(int32_t)) {
1711 if (++ipt
->ipt_oflw
== 0) {
1712 code
= (u_char
*)&ipt
->ipt_ptr
-
1718 sin
= (struct in_addr
*)(cp
+ ipt
->ipt_ptr
- 1);
1719 switch (ipt
->ipt_flg
) {
1721 case IPOPT_TS_TSONLY
:
1724 case IPOPT_TS_TSANDADDR
:
1725 if (ipt
->ipt_ptr
- 1 + sizeof(n_time
) +
1726 sizeof(struct in_addr
) > ipt
->ipt_len
) {
1727 code
= (u_char
*)&ipt
->ipt_ptr
-
1731 ipaddr
.sin_addr
= dst
;
1732 ia
= (INA
)ifaof_ifpforaddr((SA
)&ipaddr
,
1736 (void)memcpy(sin
, &IA_SIN(ia
)->sin_addr
,
1737 sizeof(struct in_addr
));
1738 ipt
->ipt_ptr
+= sizeof(struct in_addr
);
1739 ifafree(&ia
->ia_ifa
);
1743 case IPOPT_TS_PRESPEC
:
1744 if (ipt
->ipt_ptr
- 1 + sizeof(n_time
) +
1745 sizeof(struct in_addr
) > ipt
->ipt_len
) {
1746 code
= (u_char
*)&ipt
->ipt_ptr
-
1750 (void)memcpy(&ipaddr
.sin_addr
, sin
,
1751 sizeof(struct in_addr
));
1752 if ((ia
= (struct in_ifaddr
*)ifa_ifwithaddr((SA
)&ipaddr
)) == 0)
1754 ifafree(&ia
->ia_ifa
);
1756 ipt
->ipt_ptr
+= sizeof(struct in_addr
);
1760 /* XXX can't take &ipt->ipt_flg */
1761 code
= (u_char
*)&ipt
->ipt_ptr
-
1766 (void)memcpy(cp
+ ipt
->ipt_ptr
- 1, &ntime
,
1768 ipt
->ipt_ptr
+= sizeof(n_time
);
1771 if (forward
&& ipforwarding
) {
1772 ip_forward(m
, 1, next_hop
, ipforward_rt
);
1777 ip
->ip_len
-= IP_VHL_HL(ip
->ip_vhl
) << 2; /* XXX icmp_error adds in hdr length */
1778 lck_mtx_unlock(ip_mutex
);
1779 icmp_error(m
, type
, code
, 0, 0);
1780 lck_mtx_lock(ip_mutex
);
1781 ipstat
.ips_badoptions
++;
1786 * Given address of next destination (final or next hop),
1787 * return internet address info of interface to be used to get there.
1794 register struct sockaddr_in
*sin
;
1796 sin
= (struct sockaddr_in
*)&rt
->ro_dst
;
1798 lck_mtx_lock(rt_mtx
);
1799 if (rt
->ro_rt
== 0 || dst
.s_addr
!= sin
->sin_addr
.s_addr
||
1800 rt
->ro_rt
->generation_id
!= route_generation
) {
1802 rtfree_locked(rt
->ro_rt
);
1805 sin
->sin_family
= AF_INET
;
1806 sin
->sin_len
= sizeof(*sin
);
1807 sin
->sin_addr
= dst
;
1809 rtalloc_ign_locked(rt
, RTF_PRCLONING
);
1811 if (rt
->ro_rt
== 0) {
1812 lck_mtx_unlock(rt_mtx
);
1813 return ((struct in_ifaddr
*)0);
1816 if (rt
->ro_rt
->rt_ifa
)
1817 ifaref(rt
->ro_rt
->rt_ifa
);
1818 lck_mtx_unlock(rt_mtx
);
1819 return ((struct in_ifaddr
*) rt
->ro_rt
->rt_ifa
);
1823 * Save incoming source route for use in replies,
1824 * to be picked up later by ip_srcroute if the receiver is interested.
1827 save_rte(option
, dst
)
1833 olen
= option
[IPOPT_OLEN
];
1836 printf("save_rte: olen %d\n", olen
);
1838 if (olen
> sizeof(ip_srcrt
) - (1 + sizeof(dst
)))
1840 bcopy(option
, ip_srcrt
.srcopt
, olen
);
1841 ip_nhops
= (olen
- IPOPT_OFFSET
- 1) / sizeof(struct in_addr
);
1846 * Retrieve incoming source route for use in replies,
1847 * in the same form used by setsockopt.
1848 * The first hop is placed before the options, will be removed later.
1853 register struct in_addr
*p
, *q
;
1854 register struct mbuf
*m
;
1857 return ((struct mbuf
*)0);
1858 m
= m_get(M_DONTWAIT
, MT_HEADER
);
1860 return ((struct mbuf
*)0);
1862 #define OPTSIZ (sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
1864 /* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1865 m
->m_len
= ip_nhops
* sizeof(struct in_addr
) + sizeof(struct in_addr
) +
1869 printf("ip_srcroute: nhops %d mlen %d", ip_nhops
, m
->m_len
);
1873 * First save first hop for return route
1875 p
= &ip_srcrt
.route
[ip_nhops
- 1];
1876 *(mtod(m
, struct in_addr
*)) = *p
--;
1879 printf(" hops %lx", (u_long
)ntohl(mtod(m
, struct in_addr
*)->s_addr
));
1883 * Copy option fields and padding (nop) to mbuf.
1885 ip_srcrt
.nop
= IPOPT_NOP
;
1886 ip_srcrt
.srcopt
[IPOPT_OFFSET
] = IPOPT_MINOFF
;
1887 (void)memcpy(mtod(m
, caddr_t
) + sizeof(struct in_addr
),
1888 &ip_srcrt
.nop
, OPTSIZ
);
1889 q
= (struct in_addr
*)(mtod(m
, caddr_t
) +
1890 sizeof(struct in_addr
) + OPTSIZ
);
1893 * Record return path as an IP source route,
1894 * reversing the path (pointers are now aligned).
1896 while (p
>= ip_srcrt
.route
) {
1899 printf(" %lx", (u_long
)ntohl(q
->s_addr
));
1904 * Last hop goes to final destination.
1909 printf(" %lx\n", (u_long
)ntohl(q
->s_addr
));
1915 * Strip out IP options, at higher
1916 * level protocol in the kernel.
1917 * Second argument is buffer to which options
1918 * will be moved, and return value is their length.
1919 * XXX should be deleted; last arg currently ignored.
1922 ip_stripoptions(m
, mopt
)
1923 register struct mbuf
*m
;
1927 struct ip
*ip
= mtod(m
, struct ip
*);
1928 register caddr_t opts
;
1931 olen
= (IP_VHL_HL(ip
->ip_vhl
) << 2) - sizeof (struct ip
);
1932 opts
= (caddr_t
)(ip
+ 1);
1933 i
= m
->m_len
- (sizeof (struct ip
) + olen
);
1934 bcopy(opts
+ olen
, opts
, (unsigned)i
);
1936 if (m
->m_flags
& M_PKTHDR
)
1937 m
->m_pkthdr
.len
-= olen
;
1938 ip
->ip_vhl
= IP_MAKE_VHL(IPVERSION
, sizeof(struct ip
) >> 2);
1941 u_char inetctlerrmap
[PRC_NCMDS
] = {
1943 0, EMSGSIZE
, EHOSTDOWN
, EHOSTUNREACH
,
1944 EHOSTUNREACH
, EHOSTUNREACH
, ECONNREFUSED
, ECONNREFUSED
,
1945 EMSGSIZE
, EHOSTUNREACH
, 0, 0,
1947 ENOPROTOOPT
, ECONNREFUSED
1951 * Forward a packet. If some error occurs return the sender
1952 * an icmp packet. Note we can't always generate a meaningful
1953 * icmp message because icmp doesn't have a large enough repertoire
1954 * of codes and types.
1956 * If not forwarding, just drop the packet. This could be confusing
1957 * if ipforwarding was zero but some routing protocol was advancing
1958 * us as a gateway to somewhere. However, we must let the routing
1959 * protocol deal with that.
1961 * The srcrt parameter indicates whether the packet is being forwarded
1962 * via a source route.
1965 ip_forward(struct mbuf
*m
, int srcrt
, struct sockaddr_in
*next_hop
, struct route
*ipforward_rt
)
1967 register struct ip
*ip
= mtod(m
, struct ip
*);
1968 register struct sockaddr_in
*sin
;
1969 register struct rtentry
*rt
;
1970 int error
, type
= 0, code
= 0;
1973 struct in_addr pkt_dst
;
1974 struct ifnet
*destifp
;
1976 struct ifnet dummyifp
;
1981 * Cache the destination address of the packet; this may be
1982 * changed by use of 'ipfw fwd'.
1984 pkt_dst
= next_hop
? next_hop
->sin_addr
: ip
->ip_dst
;
1988 printf("forward: src %lx dst %lx ttl %x\n",
1989 (u_long
)ip
->ip_src
.s_addr
, (u_long
)pkt_dst
.s_addr
,
1994 if (m
->m_flags
& (M_BCAST
|M_MCAST
) || in_canforward(pkt_dst
) == 0) {
1995 ipstat
.ips_cantforward
++;
2002 if (ip
->ip_ttl
<= IPTTLDEC
) {
2003 icmp_error(m
, ICMP_TIMXCEED
, ICMP_TIMXCEED_INTRANS
,
2011 sin
= (struct sockaddr_in
*)&ipforward_rt
->ro_dst
;
2012 if ((rt
= ipforward_rt
->ro_rt
) == 0 ||
2013 pkt_dst
.s_addr
!= sin
->sin_addr
.s_addr
||
2014 ipforward_rt
->ro_rt
->generation_id
!= route_generation
) {
2015 if (ipforward_rt
->ro_rt
) {
2016 rtfree(ipforward_rt
->ro_rt
);
2017 ipforward_rt
->ro_rt
= 0;
2019 sin
->sin_family
= AF_INET
;
2020 sin
->sin_len
= sizeof(*sin
);
2021 sin
->sin_addr
= pkt_dst
;
2023 rtalloc_ign(ipforward_rt
, RTF_PRCLONING
);
2024 if (ipforward_rt
->ro_rt
== 0) {
2025 icmp_error(m
, ICMP_UNREACH
, ICMP_UNREACH_HOST
, dest
, 0);
2028 rt
= ipforward_rt
->ro_rt
;
2032 * Save the IP header and at most 8 bytes of the payload,
2033 * in case we need to generate an ICMP message to the src.
2035 * We don't use m_copy() because it might return a reference
2036 * to a shared cluster. Both this function and ip_output()
2037 * assume exclusive access to the IP header in `m', so any
2038 * data in a cluster may change before we reach icmp_error().
2040 MGET(mcopy
, M_DONTWAIT
, m
->m_type
);
2041 if (mcopy
!= NULL
) {
2042 M_COPY_PKTHDR(mcopy
, m
);
2043 mcopy
->m_len
= imin((IP_VHL_HL(ip
->ip_vhl
) << 2) + 8,
2045 m_copydata(m
, 0, mcopy
->m_len
, mtod(mcopy
, caddr_t
));
2051 ip
->ip_ttl
-= IPTTLDEC
;
2057 * If forwarding packet using same interface that it came in on,
2058 * perhaps should send a redirect to sender to shortcut a hop.
2059 * Only send redirect if source is sending directly to us,
2060 * and if packet was not source routed (or has any options).
2061 * Also, don't send redirect if forwarding using a default route
2062 * or a route modified by a redirect.
2064 #define satosin(sa) ((struct sockaddr_in *)(sa))
2065 if (rt
->rt_ifp
== m
->m_pkthdr
.rcvif
&&
2066 (rt
->rt_flags
& (RTF_DYNAMIC
|RTF_MODIFIED
)) == 0 &&
2067 satosin(rt_key(rt
))->sin_addr
.s_addr
!= 0 &&
2068 ipsendredirects
&& !srcrt
) {
2069 #define RTA(rt) ((struct in_ifaddr *)(rt->rt_ifa))
2070 u_long src
= ntohl(ip
->ip_src
.s_addr
);
2073 (src
& RTA(rt
)->ia_subnetmask
) == RTA(rt
)->ia_subnet
) {
2074 if (rt
->rt_flags
& RTF_GATEWAY
)
2075 dest
= satosin(rt
->rt_gateway
)->sin_addr
.s_addr
;
2077 dest
= pkt_dst
.s_addr
;
2078 /* Router requirements says to only send host redirects */
2079 type
= ICMP_REDIRECT
;
2080 code
= ICMP_REDIRECT_HOST
;
2083 printf("redirect (%d) to %lx\n", code
, (u_long
)dest
);
2090 /* Pass IPFORWARD info if available */
2092 struct ip_fwd_tag
*ipfwd_tag
;
2094 tag
= m_tag_alloc(KERNEL_MODULE_TAG_ID
, KERNEL_TAG_TYPE_IPFORWARD
,
2095 sizeof(struct sockaddr_in
), M_NOWAIT
);
2102 ipfwd_tag
= (struct ip_fwd_tag
*)(tag
+1);
2103 ipfwd_tag
->next_hop
= next_hop
;
2105 m_tag_prepend(m
, tag
);
2107 error
= ip_output_list(m
, 0, (struct mbuf
*)0, ipforward_rt
,
2111 ipstat
.ips_cantforward
++;
2113 ipstat
.ips_forward
++;
2115 ipstat
.ips_redirectsent
++;
2118 ipflow_create(ipforward_rt
, mcopy
);
2130 case 0: /* forwarded, but need redirect */
2131 /* type, code set above */
2134 case ENETUNREACH
: /* shouldn't happen, checked above */
2139 type
= ICMP_UNREACH
;
2140 code
= ICMP_UNREACH_HOST
;
2144 type
= ICMP_UNREACH
;
2145 code
= ICMP_UNREACH_NEEDFRAG
;
2147 if (ipforward_rt
->ro_rt
)
2148 destifp
= ipforward_rt
->ro_rt
->rt_ifp
;
2151 * If the packet is routed over IPsec tunnel, tell the
2152 * originator the tunnel MTU.
2153 * tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
2156 if (ipforward_rt
->ro_rt
) {
2157 struct secpolicy
*sp
= NULL
;
2163 destifp
= ipforward_rt
->ro_rt
->rt_ifp
;
2164 ipstat
.ips_cantfrag
++;
2167 lck_mtx_lock(sadb_mutex
);
2168 sp
= ipsec4_getpolicybyaddr(mcopy
,
2174 destifp
= ipforward_rt
->ro_rt
->rt_ifp
;
2176 /* count IPsec header size */
2177 ipsechdr
= ipsec4_hdrsiz(mcopy
,
2182 * find the correct route for outer IPv4
2183 * header, compute tunnel MTU.
2186 * The "dummyifp" code relies upon the fact
2187 * that icmp_error() touches only ifp->if_mtu.
2192 && sp
->req
->sav
!= NULL
2193 && sp
->req
->sav
->sah
!= NULL
) {
2194 ro
= &sp
->req
->sav
->sah
->sa_route
;
2195 if (ro
->ro_rt
&& ro
->ro_rt
->rt_ifp
) {
2197 ro
->ro_rt
->rt_ifp
->if_mtu
;
2198 dummyifp
.if_mtu
-= ipsechdr
;
2199 destifp
= &dummyifp
;
2205 lck_mtx_unlock(sadb_mutex
);
2208 ipstat
.ips_cantfrag
++;
2212 type
= ICMP_SOURCEQUENCH
;
2216 case EACCES
: /* ipfw denied packet */
2220 icmp_error(mcopy
, type
, code
, dest
, destifp
);
2225 register struct inpcb
*inp
,
2226 register struct mbuf
**mp
,
2227 register struct ip
*ip
,
2228 register struct mbuf
*m
)
2230 if (inp
->inp_socket
->so_options
& SO_TIMESTAMP
) {
2234 *mp
= sbcreatecontrol((caddr_t
) &tv
, sizeof(tv
),
2235 SCM_TIMESTAMP
, SOL_SOCKET
);
2237 mp
= &(*mp
)->m_next
;
2239 if (inp
->inp_flags
& INP_RECVDSTADDR
) {
2240 *mp
= sbcreatecontrol((caddr_t
) &ip
->ip_dst
,
2241 sizeof(struct in_addr
), IP_RECVDSTADDR
, IPPROTO_IP
);
2243 mp
= &(*mp
)->m_next
;
2247 * Moving these out of udp_input() made them even more broken
2248 * than they already were.
2250 /* options were tossed already */
2251 if (inp
->inp_flags
& INP_RECVOPTS
) {
2252 *mp
= sbcreatecontrol((caddr_t
) opts_deleted_above
,
2253 sizeof(struct in_addr
), IP_RECVOPTS
, IPPROTO_IP
);
2255 mp
= &(*mp
)->m_next
;
2257 /* ip_srcroute doesn't do what we want here, need to fix */
2258 if (inp
->inp_flags
& INP_RECVRETOPTS
) {
2259 *mp
= sbcreatecontrol((caddr_t
) ip_srcroute(),
2260 sizeof(struct in_addr
), IP_RECVRETOPTS
, IPPROTO_IP
);
2262 mp
= &(*mp
)->m_next
;
2265 if (inp
->inp_flags
& INP_RECVIF
) {
2268 struct sockaddr_dl sdl
;
2271 struct sockaddr_dl
*sdp
;
2272 struct sockaddr_dl
*sdl2
= &sdlbuf
.sdl
;
2274 ifnet_head_lock_shared();
2275 if (((ifp
= m
->m_pkthdr
.rcvif
))
2276 && ( ifp
->if_index
&& (ifp
->if_index
<= if_index
))) {
2277 struct ifaddr
*ifa
= ifnet_addrs
[ifp
->if_index
- 1];
2279 if (!ifa
|| !ifa
->ifa_addr
)
2282 sdp
= (struct sockaddr_dl
*)ifa
->ifa_addr
;
2284 * Change our mind and don't try copy.
2286 if ((sdp
->sdl_family
!= AF_LINK
)
2287 || (sdp
->sdl_len
> sizeof(sdlbuf
))) {
2290 bcopy(sdp
, sdl2
, sdp
->sdl_len
);
2294 = offsetof(struct sockaddr_dl
, sdl_data
[0]);
2295 sdl2
->sdl_family
= AF_LINK
;
2296 sdl2
->sdl_index
= 0;
2297 sdl2
->sdl_nlen
= sdl2
->sdl_alen
= sdl2
->sdl_slen
= 0;
2300 *mp
= sbcreatecontrol((caddr_t
) sdl2
, sdl2
->sdl_len
,
2301 IP_RECVIF
, IPPROTO_IP
);
2303 mp
= &(*mp
)->m_next
;
2305 if (inp
->inp_flags
& INP_RECVTTL
) {
2306 *mp
= sbcreatecontrol((caddr_t
)&ip
->ip_ttl
, sizeof(ip
->ip_ttl
), IP_RECVTTL
, IPPROTO_IP
);
2307 if (*mp
) mp
= &(*mp
)->m_next
;
2312 ip_rsvp_init(struct socket
*so
)
2314 if (so
->so_type
!= SOCK_RAW
||
2315 so
->so_proto
->pr_protocol
!= IPPROTO_RSVP
)
2318 if (ip_rsvpd
!= NULL
)
2323 * This may seem silly, but we need to be sure we don't over-increment
2324 * the RSVP counter, in case something slips up.
2339 * This may seem silly, but we need to be sure we don't over-decrement
2340 * the RSVP counter, in case something slips up.