2 * Copyright (c) 2000-2009 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
32 * Mach Operating System
33 * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University
34 * All Rights Reserved.
36 * Permission to use, copy, modify and distribute this software and its
37 * documentation is hereby granted, provided that both the copyright
38 * notice and this permission notice appear in all copies of the
39 * software, derivative works or modified versions, and any portions
40 * thereof, and that both notices appear in supporting documentation.
42 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
43 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
44 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
46 * Carnegie Mellon requests users of this software to return to
48 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
49 * School of Computer Science
50 * Carnegie Mellon University
51 * Pittsburgh PA 15213-3890
53 * any improvements or extensions that they make and grant Carnegie Mellon
54 * the rights to redistribute these changes.
59 * File: vm/vm_pageout.c
60 * Author: Avadis Tevanian, Jr., Michael Wayne Young
63 * The proverbial page-out daemon.
69 #include <mach_pagemap.h>
70 #include <mach_cluster_stats.h>
72 #include <advisory_pageout.h>
74 #include <mach/mach_types.h>
75 #include <mach/memory_object.h>
76 #include <mach/memory_object_default.h>
77 #include <mach/memory_object_control_server.h>
78 #include <mach/mach_host_server.h>
80 #include <mach/vm_map.h>
81 #include <mach/vm_param.h>
82 #include <mach/vm_statistics.h>
85 #include <kern/kern_types.h>
86 #include <kern/counters.h>
87 #include <kern/host_statistics.h>
88 #include <kern/machine.h>
89 #include <kern/misc_protos.h>
90 #include <kern/sched.h>
91 #include <kern/thread.h>
93 #include <kern/kalloc.h>
95 #include <machine/vm_tuning.h>
96 #include <machine/commpage.h>
99 #include <sys/kern_memorystatus.h>
103 #include <vm/vm_fault.h>
104 #include <vm/vm_map.h>
105 #include <vm/vm_object.h>
106 #include <vm/vm_page.h>
107 #include <vm/vm_pageout.h>
108 #include <vm/vm_protos.h> /* must be last */
109 #include <vm/memory_object.h>
110 #include <vm/vm_purgeable_internal.h>
115 #include <../bsd/crypto/aes/aes.h>
116 extern u_int32_t
random(void); /* from <libkern/libkern.h> */
119 #include <libkern/OSDebug.h>
122 #ifndef VM_PAGEOUT_BURST_ACTIVE_THROTTLE /* maximum iterations of the active queue to move pages to inactive */
123 #define VM_PAGEOUT_BURST_ACTIVE_THROTTLE 100
126 #ifndef VM_PAGEOUT_BURST_INACTIVE_THROTTLE /* maximum iterations of the inactive queue w/o stealing/cleaning a page */
127 #ifdef CONFIG_EMBEDDED
128 #define VM_PAGEOUT_BURST_INACTIVE_THROTTLE 1024
130 #define VM_PAGEOUT_BURST_INACTIVE_THROTTLE 4096
134 #ifndef VM_PAGEOUT_DEADLOCK_RELIEF
135 #define VM_PAGEOUT_DEADLOCK_RELIEF 100 /* number of pages to move to break deadlock */
138 #ifndef VM_PAGEOUT_INACTIVE_RELIEF
139 #define VM_PAGEOUT_INACTIVE_RELIEF 50 /* minimum number of pages to move to the inactive q */
142 #ifndef VM_PAGE_LAUNDRY_MAX
143 #define VM_PAGE_LAUNDRY_MAX 16UL /* maximum pageouts on a given pageout queue */
144 #endif /* VM_PAGEOUT_LAUNDRY_MAX */
146 #ifndef VM_PAGEOUT_BURST_WAIT
147 #define VM_PAGEOUT_BURST_WAIT 30 /* milliseconds per page */
148 #endif /* VM_PAGEOUT_BURST_WAIT */
150 #ifndef VM_PAGEOUT_EMPTY_WAIT
151 #define VM_PAGEOUT_EMPTY_WAIT 200 /* milliseconds */
152 #endif /* VM_PAGEOUT_EMPTY_WAIT */
154 #ifndef VM_PAGEOUT_DEADLOCK_WAIT
155 #define VM_PAGEOUT_DEADLOCK_WAIT 300 /* milliseconds */
156 #endif /* VM_PAGEOUT_DEADLOCK_WAIT */
158 #ifndef VM_PAGEOUT_IDLE_WAIT
159 #define VM_PAGEOUT_IDLE_WAIT 10 /* milliseconds */
160 #endif /* VM_PAGEOUT_IDLE_WAIT */
162 #ifndef VM_PAGE_SPECULATIVE_TARGET
163 #define VM_PAGE_SPECULATIVE_TARGET(total) ((total) * 1 / 20)
164 #endif /* VM_PAGE_SPECULATIVE_TARGET */
166 #ifndef VM_PAGE_INACTIVE_HEALTHY_LIMIT
167 #define VM_PAGE_INACTIVE_HEALTHY_LIMIT(total) ((total) * 1 / 200)
168 #endif /* VM_PAGE_INACTIVE_HEALTHY_LIMIT */
172 * To obtain a reasonable LRU approximation, the inactive queue
173 * needs to be large enough to give pages on it a chance to be
174 * referenced a second time. This macro defines the fraction
175 * of active+inactive pages that should be inactive.
176 * The pageout daemon uses it to update vm_page_inactive_target.
178 * If vm_page_free_count falls below vm_page_free_target and
179 * vm_page_inactive_count is below vm_page_inactive_target,
180 * then the pageout daemon starts running.
183 #ifndef VM_PAGE_INACTIVE_TARGET
184 #define VM_PAGE_INACTIVE_TARGET(avail) ((avail) * 1 / 3)
185 #endif /* VM_PAGE_INACTIVE_TARGET */
188 * Once the pageout daemon starts running, it keeps going
189 * until vm_page_free_count meets or exceeds vm_page_free_target.
192 #ifndef VM_PAGE_FREE_TARGET
193 #ifdef CONFIG_EMBEDDED
194 #define VM_PAGE_FREE_TARGET(free) (15 + (free) / 100)
196 #define VM_PAGE_FREE_TARGET(free) (15 + (free) / 80)
198 #endif /* VM_PAGE_FREE_TARGET */
201 * The pageout daemon always starts running once vm_page_free_count
202 * falls below vm_page_free_min.
205 #ifndef VM_PAGE_FREE_MIN
206 #ifdef CONFIG_EMBEDDED
207 #define VM_PAGE_FREE_MIN(free) (10 + (free) / 200)
209 #define VM_PAGE_FREE_MIN(free) (10 + (free) / 100)
211 #endif /* VM_PAGE_FREE_MIN */
213 #define VM_PAGE_FREE_MIN_LIMIT 1500
214 #define VM_PAGE_FREE_TARGET_LIMIT 2000
218 * When vm_page_free_count falls below vm_page_free_reserved,
219 * only vm-privileged threads can allocate pages. vm-privilege
220 * allows the pageout daemon and default pager (and any other
221 * associated threads needed for default pageout) to continue
222 * operation by dipping into the reserved pool of pages.
225 #ifndef VM_PAGE_FREE_RESERVED
226 #define VM_PAGE_FREE_RESERVED(n) \
227 ((unsigned) (6 * VM_PAGE_LAUNDRY_MAX) + (n))
228 #endif /* VM_PAGE_FREE_RESERVED */
231 * When we dequeue pages from the inactive list, they are
232 * reactivated (ie, put back on the active queue) if referenced.
233 * However, it is possible to starve the free list if other
234 * processors are referencing pages faster than we can turn off
235 * the referenced bit. So we limit the number of reactivations
236 * we will make per call of vm_pageout_scan().
238 #define VM_PAGE_REACTIVATE_LIMIT_MAX 20000
239 #ifndef VM_PAGE_REACTIVATE_LIMIT
240 #ifdef CONFIG_EMBEDDED
241 #define VM_PAGE_REACTIVATE_LIMIT(avail) (VM_PAGE_INACTIVE_TARGET(avail) / 2)
243 #define VM_PAGE_REACTIVATE_LIMIT(avail) (MAX((avail) * 1 / 20,VM_PAGE_REACTIVATE_LIMIT_MAX))
245 #endif /* VM_PAGE_REACTIVATE_LIMIT */
246 #define VM_PAGEOUT_INACTIVE_FORCE_RECLAIM 100
250 * Exported variable used to broadcast the activation of the pageout scan
251 * Working Set uses this to throttle its use of pmap removes. In this
252 * way, code which runs within memory in an uncontested context does
253 * not keep encountering soft faults.
256 unsigned int vm_pageout_scan_event_counter
= 0;
259 * Forward declarations for internal routines.
262 static void vm_pageout_garbage_collect(int);
263 static void vm_pageout_iothread_continue(struct vm_pageout_queue
*);
264 static void vm_pageout_iothread_external(void);
265 static void vm_pageout_iothread_internal(void);
267 extern void vm_pageout_continue(void);
268 extern void vm_pageout_scan(void);
270 static thread_t vm_pageout_external_iothread
= THREAD_NULL
;
271 static thread_t vm_pageout_internal_iothread
= THREAD_NULL
;
273 unsigned int vm_pageout_reserved_internal
= 0;
274 unsigned int vm_pageout_reserved_really
= 0;
276 unsigned int vm_pageout_idle_wait
= 0; /* milliseconds */
277 unsigned int vm_pageout_empty_wait
= 0; /* milliseconds */
278 unsigned int vm_pageout_burst_wait
= 0; /* milliseconds */
279 unsigned int vm_pageout_deadlock_wait
= 0; /* milliseconds */
280 unsigned int vm_pageout_deadlock_relief
= 0;
281 unsigned int vm_pageout_inactive_relief
= 0;
282 unsigned int vm_pageout_burst_active_throttle
= 0;
283 unsigned int vm_pageout_burst_inactive_throttle
= 0;
286 * Protection against zero fill flushing live working sets derived
287 * from existing backing store and files
289 unsigned int vm_accellerate_zf_pageout_trigger
= 400;
290 unsigned int zf_queue_min_count
= 100;
291 unsigned int vm_zf_queue_count
= 0;
293 #if defined(__ppc__) /* On ppc, vm statistics are still 32-bit */
294 unsigned int vm_zf_count
= 0;
296 uint64_t vm_zf_count
__attribute__((aligned(8))) = 0;
300 * These variables record the pageout daemon's actions:
301 * how many pages it looks at and what happens to those pages.
302 * No locking needed because only one thread modifies the variables.
305 unsigned int vm_pageout_active
= 0; /* debugging */
306 unsigned int vm_pageout_inactive
= 0; /* debugging */
307 unsigned int vm_pageout_inactive_throttled
= 0; /* debugging */
308 unsigned int vm_pageout_inactive_forced
= 0; /* debugging */
309 unsigned int vm_pageout_inactive_nolock
= 0; /* debugging */
310 unsigned int vm_pageout_inactive_avoid
= 0; /* debugging */
311 unsigned int vm_pageout_inactive_busy
= 0; /* debugging */
312 unsigned int vm_pageout_inactive_absent
= 0; /* debugging */
313 unsigned int vm_pageout_inactive_used
= 0; /* debugging */
314 unsigned int vm_pageout_inactive_clean
= 0; /* debugging */
315 unsigned int vm_pageout_inactive_dirty
= 0; /* debugging */
316 unsigned int vm_pageout_inactive_deactivated
= 0; /* debugging */
317 unsigned int vm_pageout_inactive_zf
= 0; /* debugging */
318 unsigned int vm_pageout_dirty_no_pager
= 0; /* debugging */
319 unsigned int vm_pageout_purged_objects
= 0; /* debugging */
320 unsigned int vm_stat_discard
= 0; /* debugging */
321 unsigned int vm_stat_discard_sent
= 0; /* debugging */
322 unsigned int vm_stat_discard_failure
= 0; /* debugging */
323 unsigned int vm_stat_discard_throttle
= 0; /* debugging */
324 unsigned int vm_pageout_reactivation_limit_exceeded
= 0; /* debugging */
325 unsigned int vm_pageout_catch_ups
= 0; /* debugging */
326 unsigned int vm_pageout_inactive_force_reclaim
= 0; /* debugging */
328 unsigned int vm_pageout_scan_active_throttled
= 0;
329 unsigned int vm_pageout_scan_inactive_throttled
= 0;
330 unsigned int vm_pageout_scan_throttle
= 0; /* debugging */
331 unsigned int vm_pageout_scan_throttle_aborted
= 0; /* debugging */
332 unsigned int vm_pageout_scan_burst_throttle
= 0; /* debugging */
333 unsigned int vm_pageout_scan_empty_throttle
= 0; /* debugging */
334 unsigned int vm_pageout_scan_deadlock_detected
= 0; /* debugging */
335 unsigned int vm_pageout_scan_active_throttle_success
= 0; /* debugging */
336 unsigned int vm_pageout_scan_inactive_throttle_success
= 0; /* debugging */
338 unsigned int vm_page_speculative_count_drifts
= 0;
339 unsigned int vm_page_speculative_count_drift_max
= 0;
342 * Backing store throttle when BS is exhausted
344 unsigned int vm_backing_store_low
= 0;
346 unsigned int vm_pageout_out_of_line
= 0;
347 unsigned int vm_pageout_in_place
= 0;
349 unsigned int vm_page_steal_pageout_page
= 0;
353 * counters and statistics...
355 unsigned long vm_page_decrypt_counter
= 0;
356 unsigned long vm_page_decrypt_for_upl_counter
= 0;
357 unsigned long vm_page_encrypt_counter
= 0;
358 unsigned long vm_page_encrypt_abort_counter
= 0;
359 unsigned long vm_page_encrypt_already_encrypted_counter
= 0;
360 boolean_t vm_pages_encrypted
= FALSE
; /* are there encrypted pages ? */
362 struct vm_pageout_queue vm_pageout_queue_internal
;
363 struct vm_pageout_queue vm_pageout_queue_external
;
365 unsigned int vm_page_speculative_target
= 0;
367 vm_object_t vm_pageout_scan_wants_object
= VM_OBJECT_NULL
;
369 boolean_t (* volatile consider_buffer_cache_collect
)(int) = NULL
;
371 #if DEVELOPMENT || DEBUG
372 unsigned long vm_cs_validated_resets
= 0;
376 * Routine: vm_backing_store_disable
378 * Suspend non-privileged threads wishing to extend
379 * backing store when we are low on backing store
380 * (Synchronized by caller)
383 vm_backing_store_disable(
387 vm_backing_store_low
= 1;
389 if(vm_backing_store_low
) {
390 vm_backing_store_low
= 0;
391 thread_wakeup((event_t
) &vm_backing_store_low
);
397 #if MACH_CLUSTER_STATS
398 unsigned long vm_pageout_cluster_dirtied
= 0;
399 unsigned long vm_pageout_cluster_cleaned
= 0;
400 unsigned long vm_pageout_cluster_collisions
= 0;
401 unsigned long vm_pageout_cluster_clusters
= 0;
402 unsigned long vm_pageout_cluster_conversions
= 0;
403 unsigned long vm_pageout_target_collisions
= 0;
404 unsigned long vm_pageout_target_page_dirtied
= 0;
405 unsigned long vm_pageout_target_page_freed
= 0;
406 #define CLUSTER_STAT(clause) clause
407 #else /* MACH_CLUSTER_STATS */
408 #define CLUSTER_STAT(clause)
409 #endif /* MACH_CLUSTER_STATS */
412 * Routine: vm_pageout_object_terminate
414 * Destroy the pageout_object, and perform all of the
415 * required cleanup actions.
418 * The object must be locked, and will be returned locked.
421 vm_pageout_object_terminate(
424 vm_object_t shadow_object
;
427 * Deal with the deallocation (last reference) of a pageout object
428 * (used for cleaning-in-place) by dropping the paging references/
429 * freeing pages in the original object.
432 assert(object
->pageout
);
433 shadow_object
= object
->shadow
;
434 vm_object_lock(shadow_object
);
436 while (!queue_empty(&object
->memq
)) {
438 vm_object_offset_t offset
;
440 p
= (vm_page_t
) queue_first(&object
->memq
);
445 assert(!p
->cleaning
);
451 m
= vm_page_lookup(shadow_object
,
452 offset
+ object
->shadow_offset
);
454 if(m
== VM_PAGE_NULL
)
457 /* used as a trigger on upl_commit etc to recognize the */
458 /* pageout daemon's subseqent desire to pageout a cleaning */
459 /* page. When the bit is on the upl commit code will */
460 /* respect the pageout bit in the target page over the */
461 /* caller's page list indication */
462 m
->dump_cleaning
= FALSE
;
464 assert((m
->dirty
) || (m
->precious
) ||
465 (m
->busy
&& m
->cleaning
));
468 * Handle the trusted pager throttle.
469 * Also decrement the burst throttle (if external).
471 vm_page_lock_queues();
473 vm_pageout_throttle_up(m
);
477 * Handle the "target" page(s). These pages are to be freed if
478 * successfully cleaned. Target pages are always busy, and are
479 * wired exactly once. The initial target pages are not mapped,
480 * (so cannot be referenced or modified) but converted target
481 * pages may have been modified between the selection as an
482 * adjacent page and conversion to a target.
486 assert(m
->wire_count
== 1);
488 m
->encrypted_cleaning
= FALSE
;
490 #if MACH_CLUSTER_STATS
491 if (m
->wanted
) vm_pageout_target_collisions
++;
494 * Revoke all access to the page. Since the object is
495 * locked, and the page is busy, this prevents the page
496 * from being dirtied after the pmap_disconnect() call
499 * Since the page is left "dirty" but "not modifed", we
500 * can detect whether the page was redirtied during
501 * pageout by checking the modify state.
503 if (pmap_disconnect(m
->phys_page
) & VM_MEM_MODIFIED
)
509 CLUSTER_STAT(vm_pageout_target_page_dirtied
++;)
510 vm_page_unwire(m
, TRUE
); /* reactivates */
511 VM_STAT_INCR(reactivations
);
514 CLUSTER_STAT(vm_pageout_target_page_freed
++;)
515 vm_page_free(m
);/* clears busy, etc. */
517 vm_page_unlock_queues();
521 * Handle the "adjacent" pages. These pages were cleaned in
522 * place, and should be left alone.
523 * If prep_pin_count is nonzero, then someone is using the
524 * page, so make it active.
526 if (!m
->active
&& !m
->inactive
&& !m
->throttled
&& !m
->private) {
530 vm_page_deactivate(m
);
532 if((m
->busy
) && (m
->cleaning
)) {
534 /* the request_page_list case, (COPY_OUT_FROM FALSE) */
537 /* We do not re-set m->dirty ! */
538 /* The page was busy so no extraneous activity */
539 /* could have occurred. COPY_INTO is a read into the */
540 /* new pages. CLEAN_IN_PLACE does actually write */
541 /* out the pages but handling outside of this code */
542 /* will take care of resetting dirty. We clear the */
543 /* modify however for the Programmed I/O case. */
544 pmap_clear_modify(m
->phys_page
);
547 m
->overwriting
= FALSE
;
548 } else if (m
->overwriting
) {
549 /* alternate request page list, write to page_list */
550 /* case. Occurs when the original page was wired */
551 /* at the time of the list request */
552 assert(VM_PAGE_WIRED(m
));
553 vm_page_unwire(m
, TRUE
); /* reactivates */
554 m
->overwriting
= FALSE
;
557 * Set the dirty state according to whether or not the page was
558 * modified during the pageout. Note that we purposefully do
559 * NOT call pmap_clear_modify since the page is still mapped.
560 * If the page were to be dirtied between the 2 calls, this
561 * this fact would be lost. This code is only necessary to
562 * maintain statistics, since the pmap module is always
563 * consulted if m->dirty is false.
565 #if MACH_CLUSTER_STATS
566 m
->dirty
= pmap_is_modified(m
->phys_page
);
568 if (m
->dirty
) vm_pageout_cluster_dirtied
++;
569 else vm_pageout_cluster_cleaned
++;
570 if (m
->wanted
) vm_pageout_cluster_collisions
++;
576 m
->encrypted_cleaning
= FALSE
;
579 * Wakeup any thread waiting for the page to be un-cleaning.
582 vm_page_unlock_queues();
585 * Account for the paging reference taken in vm_paging_object_allocate.
587 vm_object_activity_end(shadow_object
);
588 vm_object_unlock(shadow_object
);
590 assert(object
->ref_count
== 0);
591 assert(object
->paging_in_progress
== 0);
592 assert(object
->activity_in_progress
== 0);
593 assert(object
->resident_page_count
== 0);
598 * Routine: vm_pageclean_setup
600 * Purpose: setup a page to be cleaned (made non-dirty), but not
601 * necessarily flushed from the VM page cache.
602 * This is accomplished by cleaning in place.
604 * The page must not be busy, and new_object
612 vm_object_t new_object
,
613 vm_object_offset_t new_offset
)
617 assert(!m
->cleaning
);
621 "vm_pageclean_setup, obj 0x%X off 0x%X page 0x%X new 0x%X new_off 0x%X\n",
622 m
->object
, m
->offset
, m
,
625 pmap_clear_modify(m
->phys_page
);
628 * Mark original page as cleaning in place.
635 * Convert the fictitious page to a private shadow of
638 assert(new_m
->fictitious
);
639 assert(new_m
->phys_page
== vm_page_fictitious_addr
);
640 new_m
->fictitious
= FALSE
;
641 new_m
->private = TRUE
;
642 new_m
->pageout
= TRUE
;
643 new_m
->phys_page
= m
->phys_page
;
645 vm_page_lockspin_queues();
647 vm_page_unlock_queues();
649 vm_page_insert(new_m
, new_object
, new_offset
);
650 assert(!new_m
->wanted
);
655 * Routine: vm_pageout_initialize_page
657 * Causes the specified page to be initialized in
658 * the appropriate memory object. This routine is used to push
659 * pages into a copy-object when they are modified in the
662 * The page is moved to a temporary object and paged out.
665 * The page in question must not be on any pageout queues.
666 * The object to which it belongs must be locked.
667 * The page must be busy, but not hold a paging reference.
670 * Move this page to a completely new object.
673 vm_pageout_initialize_page(
677 vm_object_offset_t paging_offset
;
678 vm_page_t holding_page
;
679 memory_object_t pager
;
682 "vm_pageout_initialize_page, page 0x%X\n",
687 * Verify that we really want to clean this page
694 * Create a paging reference to let us play with the object.
697 paging_offset
= m
->offset
+ object
->paging_offset
;
699 if (m
->absent
|| m
->error
|| m
->restart
|| (!m
->dirty
&& !m
->precious
)) {
701 panic("reservation without pageout?"); /* alan */
702 vm_object_unlock(object
);
708 * If there's no pager, then we can't clean the page. This should
709 * never happen since this should be a copy object and therefore not
710 * an external object, so the pager should always be there.
713 pager
= object
->pager
;
715 if (pager
== MEMORY_OBJECT_NULL
) {
717 panic("missing pager for copy object");
721 /* set the page for future call to vm_fault_list_request */
722 vm_object_paging_begin(object
);
725 pmap_clear_modify(m
->phys_page
);
728 m
->list_req_pending
= TRUE
;
732 vm_page_lockspin_queues();
734 vm_page_unlock_queues();
736 vm_object_unlock(object
);
739 * Write the data to its pager.
740 * Note that the data is passed by naming the new object,
741 * not a virtual address; the pager interface has been
742 * manipulated to use the "internal memory" data type.
743 * [The object reference from its allocation is donated
744 * to the eventual recipient.]
746 memory_object_data_initialize(pager
, paging_offset
, PAGE_SIZE
);
748 vm_object_lock(object
);
749 vm_object_paging_end(object
);
752 #if MACH_CLUSTER_STATS
753 #define MAXCLUSTERPAGES 16
755 unsigned long pages_in_cluster
;
756 unsigned long pages_at_higher_offsets
;
757 unsigned long pages_at_lower_offsets
;
758 } cluster_stats
[MAXCLUSTERPAGES
];
759 #endif /* MACH_CLUSTER_STATS */
763 * vm_pageout_cluster:
765 * Given a page, queue it to the appropriate I/O thread,
766 * which will page it out and attempt to clean adjacent pages
767 * in the same operation.
769 * The page must be busy, and the object and queues locked. We will take a
770 * paging reference to prevent deallocation or collapse when we
771 * release the object lock back at the call site. The I/O thread
772 * is responsible for consuming this reference
774 * The page must not be on any pageout queue.
778 vm_pageout_cluster(vm_page_t m
)
780 vm_object_t object
= m
->object
;
781 struct vm_pageout_queue
*q
;
785 "vm_pageout_cluster, object 0x%X offset 0x%X page 0x%X\n",
786 object
, m
->offset
, m
, 0, 0);
791 * Only a certain kind of page is appreciated here.
793 assert(m
->busy
&& (m
->dirty
|| m
->precious
) && (!VM_PAGE_WIRED(m
)));
794 assert(!m
->cleaning
&& !m
->pageout
&& !m
->inactive
&& !m
->active
);
795 assert(!m
->throttled
);
798 * protect the object from collapse -
799 * locking in the object's paging_offset.
801 vm_object_paging_begin(object
);
804 * set the page for future call to vm_fault_list_request
805 * page should already be marked busy
808 m
->list_req_pending
= TRUE
;
812 if (object
->internal
== TRUE
)
813 q
= &vm_pageout_queue_internal
;
815 q
= &vm_pageout_queue_external
;
818 * pgo_laundry count is tied to the laundry bit
823 m
->pageout_queue
= TRUE
;
824 queue_enter(&q
->pgo_pending
, m
, vm_page_t
, pageq
);
826 if (q
->pgo_idle
== TRUE
) {
828 thread_wakeup((event_t
) &q
->pgo_pending
);
835 unsigned long vm_pageout_throttle_up_count
= 0;
838 * A page is back from laundry or we are stealing it back from
839 * the laundering state. See if there are some pages waiting to
840 * go to laundry and if we can let some of them go now.
842 * Object and page queues must be locked.
845 vm_pageout_throttle_up(
848 struct vm_pageout_queue
*q
;
850 assert(m
->object
!= VM_OBJECT_NULL
);
851 assert(m
->object
!= kernel_object
);
853 vm_pageout_throttle_up_count
++;
855 if (m
->object
->internal
== TRUE
)
856 q
= &vm_pageout_queue_internal
;
858 q
= &vm_pageout_queue_external
;
860 if (m
->pageout_queue
== TRUE
) {
862 queue_remove(&q
->pgo_pending
, m
, vm_page_t
, pageq
);
863 m
->pageout_queue
= FALSE
;
865 m
->pageq
.next
= NULL
;
866 m
->pageq
.prev
= NULL
;
868 vm_object_paging_end(m
->object
);
870 if (m
->laundry
== TRUE
) {
874 if (q
->pgo_throttled
== TRUE
) {
875 q
->pgo_throttled
= FALSE
;
876 thread_wakeup((event_t
) &q
->pgo_laundry
);
878 if (q
->pgo_draining
== TRUE
&& q
->pgo_laundry
== 0) {
879 q
->pgo_draining
= FALSE
;
880 thread_wakeup((event_t
) (&q
->pgo_laundry
+1));
887 * vm_pageout_scan does the dirty work for the pageout daemon.
888 * It returns with vm_page_queue_free_lock held and
889 * vm_page_free_wanted == 0.
892 #define VM_PAGEOUT_DELAYED_UNLOCK_LIMIT (3 * MAX_UPL_TRANSFER)
895 #define FCS_DELAYED 1
896 #define FCS_DEADLOCK_DETECTED 2
898 struct flow_control
{
905 * VM memory pressure monitoring.
907 * vm_pageout_scan() keeps track of the number of pages it considers and
908 * reclaims, in the currently active vm_pageout_stat[vm_pageout_stat_now].
910 * compute_memory_pressure() is called every second from compute_averages()
911 * and moves "vm_pageout_stat_now" forward, to start accumulating the number
912 * of recalimed pages in a new vm_pageout_stat[] bucket.
914 * mach_vm_pressure_monitor() collects past statistics about memory pressure.
915 * The caller provides the number of seconds ("nsecs") worth of statistics
916 * it wants, up to 30 seconds.
917 * It computes the number of pages reclaimed in the past "nsecs" seconds and
918 * also returns the number of pages the system still needs to reclaim at this
921 #define VM_PAGEOUT_STAT_SIZE 31
922 struct vm_pageout_stat
{
923 unsigned int considered
;
924 unsigned int reclaimed
;
925 } vm_pageout_stats
[VM_PAGEOUT_STAT_SIZE
] = {{0,0}, };
926 unsigned int vm_pageout_stat_now
= 0;
927 unsigned int vm_memory_pressure
= 0;
929 #define VM_PAGEOUT_STAT_BEFORE(i) \
930 (((i) == 0) ? VM_PAGEOUT_STAT_SIZE - 1 : (i) - 1)
931 #define VM_PAGEOUT_STAT_AFTER(i) \
932 (((i) == VM_PAGEOUT_STAT_SIZE - 1) ? 0 : (i) + 1)
935 * Called from compute_averages().
938 compute_memory_pressure(
941 unsigned int vm_pageout_next
;
944 vm_pageout_stats
[VM_PAGEOUT_STAT_BEFORE(vm_pageout_stat_now
)].reclaimed
;
946 commpage_set_memory_pressure( vm_memory_pressure
);
948 /* move "now" forward */
949 vm_pageout_next
= VM_PAGEOUT_STAT_AFTER(vm_pageout_stat_now
);
950 vm_pageout_stats
[vm_pageout_next
].considered
= 0;
951 vm_pageout_stats
[vm_pageout_next
].reclaimed
= 0;
952 vm_pageout_stat_now
= vm_pageout_next
;
956 mach_vm_ctl_page_free_wanted(void)
958 unsigned int page_free_target
, page_free_count
, page_free_wanted
;
960 page_free_target
= vm_page_free_target
;
961 page_free_count
= vm_page_free_count
;
962 if (page_free_target
> page_free_count
) {
963 page_free_wanted
= page_free_target
- page_free_count
;
965 page_free_wanted
= 0;
968 return page_free_wanted
;
972 mach_vm_pressure_monitor(
973 boolean_t wait_for_pressure
,
974 unsigned int nsecs_monitored
,
975 unsigned int *pages_reclaimed_p
,
976 unsigned int *pages_wanted_p
)
979 unsigned int vm_pageout_then
, vm_pageout_now
;
980 unsigned int pages_reclaimed
;
983 * We don't take the vm_page_queue_lock here because we don't want
984 * vm_pressure_monitor() to get in the way of the vm_pageout_scan()
985 * thread when it's trying to reclaim memory. We don't need fully
986 * accurate monitoring anyway...
989 if (wait_for_pressure
) {
990 /* wait until there's memory pressure */
991 while (vm_page_free_count
>= vm_page_free_target
) {
992 wr
= assert_wait((event_t
) &vm_page_free_wanted
,
993 THREAD_INTERRUPTIBLE
);
994 if (wr
== THREAD_WAITING
) {
995 wr
= thread_block(THREAD_CONTINUE_NULL
);
997 if (wr
== THREAD_INTERRUPTED
) {
1000 if (wr
== THREAD_AWAKENED
) {
1002 * The memory pressure might have already
1003 * been relieved but let's not block again
1004 * and let's report that there was memory
1005 * pressure at some point.
1012 /* provide the number of pages the system wants to reclaim */
1013 if (pages_wanted_p
!= NULL
) {
1014 *pages_wanted_p
= mach_vm_ctl_page_free_wanted();
1017 if (pages_reclaimed_p
== NULL
) {
1018 return KERN_SUCCESS
;
1021 /* provide number of pages reclaimed in the last "nsecs_monitored" */
1023 vm_pageout_now
= vm_pageout_stat_now
;
1024 pages_reclaimed
= 0;
1025 for (vm_pageout_then
=
1026 VM_PAGEOUT_STAT_BEFORE(vm_pageout_now
);
1027 vm_pageout_then
!= vm_pageout_now
&&
1028 nsecs_monitored
-- != 0;
1030 VM_PAGEOUT_STAT_BEFORE(vm_pageout_then
)) {
1031 pages_reclaimed
+= vm_pageout_stats
[vm_pageout_then
].reclaimed
;
1033 } while (vm_pageout_now
!= vm_pageout_stat_now
);
1034 *pages_reclaimed_p
= pages_reclaimed
;
1036 return KERN_SUCCESS
;
1039 /* Page States: Used below to maintain the page state
1040 before it's removed from it's Q. This saved state
1041 helps us do the right accounting in certain cases
1044 #define PAGE_STATE_SPECULATIVE 1
1045 #define PAGE_STATE_THROTTLED 2
1046 #define PAGE_STATE_ZEROFILL 3
1047 #define PAGE_STATE_INACTIVE 4
1049 #define VM_PAGEOUT_SCAN_HANDLE_REUSABLE_PAGE(m) \
1052 * If a "reusable" page somehow made it back into \
1053 * the active queue, it's been re-used and is not \
1054 * quite re-usable. \
1055 * If the VM object was "all_reusable", consider it \
1056 * as "all re-used" instead of converting it to \
1057 * "partially re-used", which could be expensive. \
1059 if ((m)->reusable || \
1060 (m)->object->all_reusable) { \
1061 vm_object_reuse_pages((m)->object, \
1063 (m)->offset + PAGE_SIZE_64, \
1069 vm_pageout_scan(void)
1071 unsigned int loop_count
= 0;
1072 unsigned int inactive_burst_count
= 0;
1073 unsigned int active_burst_count
= 0;
1074 unsigned int reactivated_this_call
;
1075 unsigned int reactivate_limit
;
1076 vm_page_t local_freeq
= NULL
;
1077 int local_freed
= 0;
1079 int refmod_state
= 0;
1080 int vm_pageout_deadlock_target
= 0;
1081 struct vm_pageout_queue
*iq
;
1082 struct vm_pageout_queue
*eq
;
1083 struct vm_speculative_age_q
*sq
;
1084 struct flow_control flow_control
= { 0, { 0, 0 } };
1085 boolean_t inactive_throttled
= FALSE
;
1086 boolean_t try_failed
;
1088 unsigned int msecs
= 0;
1090 vm_object_t last_object_tried
;
1091 #if defined(__ppc__) /* On ppc, vm statistics are still 32-bit */
1092 unsigned int zf_ratio
;
1093 unsigned int zf_run_count
;
1096 uint64_t zf_run_count
;
1098 uint32_t catch_up_count
= 0;
1099 uint32_t inactive_reclaim_run
;
1100 boolean_t forced_reclaim
;
1101 int page_prev_state
= 0;
1103 flow_control
.state
= FCS_IDLE
;
1104 iq
= &vm_pageout_queue_internal
;
1105 eq
= &vm_pageout_queue_external
;
1106 sq
= &vm_page_queue_speculative
[VM_PAGE_SPECULATIVE_AGED_Q
];
1109 XPR(XPR_VM_PAGEOUT
, "vm_pageout_scan\n", 0, 0, 0, 0, 0);
1112 vm_page_lock_queues();
1113 delayed_unlock
= 1; /* must be nonzero if Qs are locked, 0 if unlocked */
1116 * Calculate the max number of referenced pages on the inactive
1117 * queue that we will reactivate.
1119 reactivated_this_call
= 0;
1120 reactivate_limit
= VM_PAGE_REACTIVATE_LIMIT(vm_page_active_count
+
1121 vm_page_inactive_count
);
1122 inactive_reclaim_run
= 0;
1126 * We want to gradually dribble pages from the active queue
1127 * to the inactive queue. If we let the inactive queue get
1128 * very small, and then suddenly dump many pages into it,
1129 * those pages won't get a sufficient chance to be referenced
1130 * before we start taking them from the inactive queue.
1132 * We must limit the rate at which we send pages to the pagers.
1133 * data_write messages consume memory, for message buffers and
1134 * for map-copy objects. If we get too far ahead of the pagers,
1135 * we can potentially run out of memory.
1137 * We can use the laundry count to limit directly the number
1138 * of pages outstanding to the default pager. A similar
1139 * strategy for external pagers doesn't work, because
1140 * external pagers don't have to deallocate the pages sent them,
1141 * and because we might have to send pages to external pagers
1142 * even if they aren't processing writes. So we also
1143 * use a burst count to limit writes to external pagers.
1145 * When memory is very tight, we can't rely on external pagers to
1146 * clean pages. They probably aren't running, because they
1147 * aren't vm-privileged. If we kept sending dirty pages to them,
1148 * we could exhaust the free list.
1153 assert(delayed_unlock
!=0);
1156 * A page is "zero-filled" if it was not paged in from somewhere,
1157 * and it belongs to an object at least VM_ZF_OBJECT_SIZE_THRESHOLD big.
1158 * Recalculate the zero-filled page ratio. We use this to apportion
1159 * victimized pages between the normal and zero-filled inactive
1160 * queues according to their relative abundance in memory. Thus if a task
1161 * is flooding memory with zf pages, we begin to hunt them down.
1162 * It would be better to throttle greedy tasks at a higher level,
1163 * but at the moment mach vm cannot do this.
1166 #if defined(__ppc__) /* On ppc, vm statistics are still 32-bit */
1167 uint32_t total
= vm_page_active_count
+ vm_page_inactive_count
;
1168 uint32_t normal
= total
- vm_zf_count
;
1170 uint64_t total
= vm_page_active_count
+ vm_page_inactive_count
;
1171 uint64_t normal
= total
- vm_zf_count
;
1174 /* zf_ratio is the number of zf pages we victimize per normal page */
1176 if (vm_zf_count
< vm_accellerate_zf_pageout_trigger
)
1178 else if ((vm_zf_count
<= normal
) || (normal
== 0))
1181 zf_ratio
= vm_zf_count
/ normal
;
1187 * Recalculate vm_page_inactivate_target.
1189 vm_page_inactive_target
= VM_PAGE_INACTIVE_TARGET(vm_page_active_count
+
1190 vm_page_inactive_count
+
1191 vm_page_speculative_count
);
1193 * don't want to wake the pageout_scan thread up everytime we fall below
1194 * the targets... set a low water mark at 0.25% below the target
1196 vm_page_inactive_min
= vm_page_inactive_target
- (vm_page_inactive_target
/ 400);
1198 vm_page_speculative_target
= VM_PAGE_SPECULATIVE_TARGET(vm_page_active_count
+
1199 vm_page_inactive_count
);
1201 last_object_tried
= NULL
;
1204 if ((vm_page_inactive_count
+ vm_page_speculative_count
) < VM_PAGE_INACTIVE_HEALTHY_LIMIT(vm_page_active_count
))
1205 catch_up_count
= vm_page_inactive_count
+ vm_page_speculative_count
;
1212 DTRACE_VM2(rev
, int, 1, (uint64_t *), NULL
);
1214 if (delayed_unlock
== 0) {
1215 vm_page_lock_queues();
1220 * Don't sweep through active queue more than the throttle
1221 * which should be kept relatively low
1223 active_burst_count
= MIN(vm_pageout_burst_active_throttle
,
1224 vm_page_active_count
);
1227 * Move pages from active to inactive.
1229 if ((vm_page_inactive_count
+ vm_page_speculative_count
) >= vm_page_inactive_target
)
1230 goto done_moving_active_pages
;
1232 while (!queue_empty(&vm_page_queue_active
) && active_burst_count
) {
1234 if (active_burst_count
)
1235 active_burst_count
--;
1237 vm_pageout_active
++;
1239 m
= (vm_page_t
) queue_first(&vm_page_queue_active
);
1241 assert(m
->active
&& !m
->inactive
);
1242 assert(!m
->laundry
);
1243 assert(m
->object
!= kernel_object
);
1244 assert(m
->phys_page
!= vm_page_guard_addr
);
1246 DTRACE_VM2(scan
, int, 1, (uint64_t *), NULL
);
1249 * Try to lock object; since we've already got the
1250 * page queues lock, we can only 'try' for this one.
1251 * if the 'try' fails, we need to do a mutex_pause
1252 * to allow the owner of the object lock a chance to
1253 * run... otherwise, we're likely to trip over this
1254 * object in the same state as we work our way through
1255 * the queue... clumps of pages associated with the same
1256 * object are fairly typical on the inactive and active queues
1258 if (m
->object
!= object
) {
1259 if (object
!= NULL
) {
1260 vm_object_unlock(object
);
1262 vm_pageout_scan_wants_object
= VM_OBJECT_NULL
;
1264 if (!vm_object_lock_try_scan(m
->object
)) {
1266 * move page to end of active queue and continue
1268 queue_remove(&vm_page_queue_active
, m
,
1270 queue_enter(&vm_page_queue_active
, m
,
1275 m
= (vm_page_t
) queue_first(&vm_page_queue_active
);
1277 * this is the next object we're going to be interested in
1278 * try to make sure it's available after the mutex_yield
1281 vm_pageout_scan_wants_object
= m
->object
;
1283 goto done_with_activepage
;
1291 * if the page is BUSY, then we pull it
1292 * off the active queue and leave it alone.
1293 * when BUSY is cleared, it will get stuck
1294 * back on the appropriate queue
1297 queue_remove(&vm_page_queue_active
, m
,
1299 m
->pageq
.next
= NULL
;
1300 m
->pageq
.prev
= NULL
;
1303 vm_page_active_count
--;
1306 goto done_with_activepage
;
1309 /* deal with a rogue "reusable" page */
1310 VM_PAGEOUT_SCAN_HANDLE_REUSABLE_PAGE(m
);
1313 * Deactivate the page while holding the object
1314 * locked, so we know the page is still not busy.
1315 * This should prevent races between pmap_enter
1316 * and pmap_clear_reference. The page might be
1317 * absent or fictitious, but vm_page_deactivate
1320 vm_page_deactivate(m
);
1322 done_with_activepage
:
1323 if (delayed_unlock
++ > VM_PAGEOUT_DELAYED_UNLOCK_LIMIT
|| try_failed
== TRUE
) {
1325 if (object
!= NULL
) {
1326 vm_pageout_scan_wants_object
= VM_OBJECT_NULL
;
1327 vm_object_unlock(object
);
1331 vm_page_unlock_queues();
1332 vm_page_free_list(local_freeq
, TRUE
);
1336 vm_page_lock_queues();
1338 lck_mtx_yield(&vm_page_queue_lock
);
1343 * continue the while loop processing
1344 * the active queue... need to hold
1345 * the page queues lock
1352 /**********************************************************************
1353 * above this point we're playing with the active queue
1354 * below this point we're playing with the throttling mechanisms
1355 * and the inactive queue
1356 **********************************************************************/
1358 done_moving_active_pages
:
1361 * We are done if we have met our target *and*
1362 * nobody is still waiting for a page.
1364 if (vm_page_free_count
+ local_freed
>= vm_page_free_target
) {
1365 if (object
!= NULL
) {
1366 vm_object_unlock(object
);
1369 vm_pageout_scan_wants_object
= VM_OBJECT_NULL
;
1372 vm_page_unlock_queues();
1373 vm_page_free_list(local_freeq
, TRUE
);
1377 vm_page_lock_queues();
1380 * inactive target still not met... keep going
1381 * until we get the queues balanced
1385 * Recalculate vm_page_inactivate_target.
1387 vm_page_inactive_target
= VM_PAGE_INACTIVE_TARGET(vm_page_active_count
+
1388 vm_page_inactive_count
+
1389 vm_page_speculative_count
);
1391 #ifndef CONFIG_EMBEDDED
1393 * XXX: if no active pages can be reclaimed, pageout scan can be stuck trying
1394 * to balance the queues
1396 if (((vm_page_inactive_count
+ vm_page_speculative_count
) < vm_page_inactive_target
) &&
1397 !queue_empty(&vm_page_queue_active
))
1401 lck_mtx_lock(&vm_page_queue_free_lock
);
1403 if ((vm_page_free_count
>= vm_page_free_target
) &&
1404 (vm_page_free_wanted
== 0) && (vm_page_free_wanted_privileged
== 0)) {
1406 vm_page_unlock_queues();
1408 thread_wakeup((event_t
) &vm_pageout_garbage_collect
);
1410 assert(vm_pageout_scan_wants_object
== VM_OBJECT_NULL
);
1414 lck_mtx_unlock(&vm_page_queue_free_lock
);
1418 * Before anything, we check if we have any ripe volatile
1419 * objects around. If so, try to purge the first object.
1420 * If the purge fails, fall through to reclaim a page instead.
1421 * If the purge succeeds, go back to the top and reevalute
1422 * the new memory situation.
1424 assert (available_for_purge
>=0);
1425 if (available_for_purge
)
1427 if (object
!= NULL
) {
1428 vm_object_unlock(object
);
1431 if(TRUE
== vm_purgeable_object_purge_one()) {
1436 if (queue_empty(&sq
->age_q
) && vm_page_speculative_count
) {
1438 * try to pull pages from the aging bins
1439 * see vm_page.h for an explanation of how
1440 * this mechanism works
1442 struct vm_speculative_age_q
*aq
;
1443 mach_timespec_t ts_fully_aged
;
1444 boolean_t can_steal
= FALSE
;
1445 int num_scanned_queues
;
1447 aq
= &vm_page_queue_speculative
[speculative_steal_index
];
1449 num_scanned_queues
= 0;
1450 while (queue_empty(&aq
->age_q
) &&
1451 num_scanned_queues
++ != VM_PAGE_MAX_SPECULATIVE_AGE_Q
) {
1453 speculative_steal_index
++;
1455 if (speculative_steal_index
> VM_PAGE_MAX_SPECULATIVE_AGE_Q
)
1456 speculative_steal_index
= VM_PAGE_MIN_SPECULATIVE_AGE_Q
;
1458 aq
= &vm_page_queue_speculative
[speculative_steal_index
];
1461 if (num_scanned_queues
==
1462 VM_PAGE_MAX_SPECULATIVE_AGE_Q
+ 1) {
1464 * XXX We've scanned all the speculative
1465 * queues but still haven't found one
1466 * that is not empty, even though
1467 * vm_page_speculative_count is not 0.
1469 /* report the anomaly... */
1470 printf("vm_pageout_scan: "
1471 "all speculative queues empty "
1472 "but count=%d. Re-adjusting.\n",
1473 vm_page_speculative_count
);
1474 if (vm_page_speculative_count
>
1475 vm_page_speculative_count_drift_max
)
1476 vm_page_speculative_count_drift_max
= vm_page_speculative_count
;
1477 vm_page_speculative_count_drifts
++;
1479 Debugger("vm_pageout_scan: no speculative pages");
1482 vm_page_speculative_count
= 0;
1483 /* ... and continue */
1487 if (vm_page_speculative_count
> vm_page_speculative_target
)
1490 ts_fully_aged
.tv_sec
= (VM_PAGE_MAX_SPECULATIVE_AGE_Q
* VM_PAGE_SPECULATIVE_Q_AGE_MS
) / 1000;
1491 ts_fully_aged
.tv_nsec
= ((VM_PAGE_MAX_SPECULATIVE_AGE_Q
* VM_PAGE_SPECULATIVE_Q_AGE_MS
) % 1000)
1492 * 1000 * NSEC_PER_USEC
;
1494 ADD_MACH_TIMESPEC(&ts_fully_aged
, &aq
->age_ts
);
1498 clock_get_system_nanotime(&sec
, &nsec
);
1499 ts
.tv_sec
= (unsigned int) sec
;
1502 if (CMP_MACH_TIMESPEC(&ts
, &ts_fully_aged
) >= 0)
1505 if (can_steal
== TRUE
)
1506 vm_page_speculate_ageit(aq
);
1510 * Sometimes we have to pause:
1511 * 1) No inactive pages - nothing to do.
1512 * 2) Flow control - default pageout queue is full
1513 * 3) Loop control - no acceptable pages found on the inactive queue
1514 * within the last vm_pageout_burst_inactive_throttle iterations
1516 if (queue_empty(&vm_page_queue_inactive
) && queue_empty(&vm_page_queue_zf
) && queue_empty(&sq
->age_q
) &&
1517 (VM_PAGE_Q_THROTTLED(iq
) || queue_empty(&vm_page_queue_throttled
))) {
1518 vm_pageout_scan_empty_throttle
++;
1519 msecs
= vm_pageout_empty_wait
;
1520 goto vm_pageout_scan_delay
;
1522 } else if (inactive_burst_count
>=
1523 MIN(vm_pageout_burst_inactive_throttle
,
1524 (vm_page_inactive_count
+
1525 vm_page_speculative_count
))) {
1526 vm_pageout_scan_burst_throttle
++;
1527 msecs
= vm_pageout_burst_wait
;
1528 goto vm_pageout_scan_delay
;
1530 } else if (VM_PAGE_Q_THROTTLED(iq
) && IP_VALID(memory_manager_default
)) {
1534 switch (flow_control
.state
) {
1537 reset_deadlock_timer
:
1538 ts
.tv_sec
= vm_pageout_deadlock_wait
/ 1000;
1539 ts
.tv_nsec
= (vm_pageout_deadlock_wait
% 1000) * 1000 * NSEC_PER_USEC
;
1540 clock_get_system_nanotime(&sec
, &nsec
);
1541 flow_control
.ts
.tv_sec
= (unsigned int) sec
;
1542 flow_control
.ts
.tv_nsec
= nsec
;
1543 ADD_MACH_TIMESPEC(&flow_control
.ts
, &ts
);
1545 flow_control
.state
= FCS_DELAYED
;
1546 msecs
= vm_pageout_deadlock_wait
;
1551 clock_get_system_nanotime(&sec
, &nsec
);
1552 ts
.tv_sec
= (unsigned int) sec
;
1555 if (CMP_MACH_TIMESPEC(&ts
, &flow_control
.ts
) >= 0) {
1557 * the pageout thread for the default pager is potentially
1558 * deadlocked since the
1559 * default pager queue has been throttled for more than the
1560 * allowable time... we need to move some clean pages or dirty
1561 * pages belonging to the external pagers if they aren't throttled
1562 * vm_page_free_wanted represents the number of threads currently
1563 * blocked waiting for pages... we'll move one page for each of
1564 * these plus a fixed amount to break the logjam... once we're done
1565 * moving this number of pages, we'll re-enter the FSC_DELAYED state
1566 * with a new timeout target since we have no way of knowing
1567 * whether we've broken the deadlock except through observation
1568 * of the queue associated with the default pager... we need to
1569 * stop moving pages and allow the system to run to see what
1570 * state it settles into.
1572 vm_pageout_deadlock_target
= vm_pageout_deadlock_relief
+ vm_page_free_wanted
+ vm_page_free_wanted_privileged
;
1573 vm_pageout_scan_deadlock_detected
++;
1574 flow_control
.state
= FCS_DEADLOCK_DETECTED
;
1576 thread_wakeup((event_t
) &vm_pageout_garbage_collect
);
1577 goto consider_inactive
;
1580 * just resniff instead of trying
1581 * to compute a new delay time... we're going to be
1582 * awakened immediately upon a laundry completion,
1583 * so we won't wait any longer than necessary
1585 msecs
= vm_pageout_idle_wait
;
1588 case FCS_DEADLOCK_DETECTED
:
1589 if (vm_pageout_deadlock_target
)
1590 goto consider_inactive
;
1591 goto reset_deadlock_timer
;
1594 vm_pageout_scan_throttle
++;
1595 iq
->pgo_throttled
= TRUE
;
1596 vm_pageout_scan_delay
:
1597 if (object
!= NULL
) {
1598 vm_object_unlock(object
);
1601 vm_pageout_scan_wants_object
= VM_OBJECT_NULL
;
1604 vm_page_unlock_queues();
1605 vm_page_free_list(local_freeq
, TRUE
);
1609 vm_page_lock_queues();
1611 if (flow_control
.state
== FCS_DELAYED
&&
1612 !VM_PAGE_Q_THROTTLED(iq
)) {
1613 flow_control
.state
= FCS_IDLE
;
1614 vm_pageout_scan_throttle_aborted
++;
1615 goto consider_inactive
;
1623 * Decide if we need to send a memory status notification.
1626 (vm_page_active_count
+ vm_page_inactive_count
+
1627 vm_page_speculative_count
+ vm_page_free_count
+
1628 (IP_VALID(memory_manager_default
)?0:vm_page_purgeable_count
) ) * 100 /
1630 if (percent_avail
>= (kern_memorystatus_level
+ 5) ||
1631 percent_avail
<= (kern_memorystatus_level
- 5)) {
1632 kern_memorystatus_level
= percent_avail
;
1633 thread_wakeup((event_t
)&kern_memorystatus_wakeup
);
1637 assert_wait_timeout((event_t
) &iq
->pgo_laundry
, THREAD_INTERRUPTIBLE
, msecs
, 1000*NSEC_PER_USEC
);
1638 counter(c_vm_pageout_scan_block
++);
1640 vm_page_unlock_queues();
1642 assert(vm_pageout_scan_wants_object
== VM_OBJECT_NULL
);
1644 thread_block(THREAD_CONTINUE_NULL
);
1646 vm_page_lock_queues();
1649 iq
->pgo_throttled
= FALSE
;
1651 if (loop_count
>= vm_page_inactive_count
)
1653 inactive_burst_count
= 0;
1660 flow_control
.state
= FCS_IDLE
;
1663 inactive_burst_count
++;
1664 vm_pageout_inactive
++;
1666 /* Choose a victim. */
1671 if (IP_VALID(memory_manager_default
)) {
1672 assert(vm_page_throttled_count
== 0);
1673 assert(queue_empty(&vm_page_queue_throttled
));
1677 * The most eligible pages are ones we paged in speculatively,
1678 * but which have not yet been touched.
1680 if ( !queue_empty(&sq
->age_q
) ) {
1681 m
= (vm_page_t
) queue_first(&sq
->age_q
);
1685 * Time for a zero-filled inactive page?
1687 if ( ((zf_run_count
< zf_ratio
) && vm_zf_queue_count
>= zf_queue_min_count
) ||
1688 queue_empty(&vm_page_queue_inactive
)) {
1689 if ( !queue_empty(&vm_page_queue_zf
) ) {
1690 m
= (vm_page_t
) queue_first(&vm_page_queue_zf
);
1696 * It's either a normal inactive page or nothing.
1698 if ( !queue_empty(&vm_page_queue_inactive
) ) {
1699 m
= (vm_page_t
) queue_first(&vm_page_queue_inactive
);
1704 panic("vm_pageout: no victim");
1707 assert(!m
->active
&& (m
->inactive
|| m
->speculative
|| m
->throttled
));
1708 assert(!m
->laundry
);
1709 assert(m
->object
!= kernel_object
);
1710 assert(m
->phys_page
!= vm_page_guard_addr
);
1712 if (!m
->speculative
) {
1713 vm_pageout_stats
[vm_pageout_stat_now
].considered
++;
1716 DTRACE_VM2(scan
, int, 1, (uint64_t *), NULL
);
1719 * check to see if we currently are working
1720 * with the same object... if so, we've
1721 * already got the lock
1723 if (m
->object
!= object
) {
1725 * the object associated with candidate page is
1726 * different from the one we were just working
1727 * with... dump the lock if we still own it
1729 if (object
!= NULL
) {
1730 vm_object_unlock(object
);
1732 vm_pageout_scan_wants_object
= VM_OBJECT_NULL
;
1735 * Try to lock object; since we've alread got the
1736 * page queues lock, we can only 'try' for this one.
1737 * if the 'try' fails, we need to do a mutex_pause
1738 * to allow the owner of the object lock a chance to
1739 * run... otherwise, we're likely to trip over this
1740 * object in the same state as we work our way through
1741 * the queue... clumps of pages associated with the same
1742 * object are fairly typical on the inactive and active queues
1744 if (!vm_object_lock_try_scan(m
->object
)) {
1745 vm_pageout_inactive_nolock
++;
1749 * Move page to end and continue.
1750 * Don't re-issue ticket
1753 if (m
->speculative
) {
1754 panic("vm_pageout_scan(): page %p speculative and zero-fill !?\n", m
);
1756 assert(!m
->speculative
);
1757 queue_remove(&vm_page_queue_zf
, m
,
1759 queue_enter(&vm_page_queue_zf
, m
,
1761 } else if (m
->speculative
) {
1763 m
->speculative
= FALSE
;
1764 vm_page_speculative_count
--;
1767 * move to the head of the inactive queue
1768 * to get it out of the way... the speculative
1769 * queue is generally too small to depend
1770 * on there being enough pages from other
1771 * objects to make cycling it back on the
1772 * same queue a winning proposition
1774 queue_enter_first(&vm_page_queue_inactive
, m
,
1777 vm_page_inactive_count
++;
1778 token_new_pagecount
++;
1779 } else if (m
->throttled
) {
1780 queue_remove(&vm_page_queue_throttled
, m
,
1782 m
->throttled
= FALSE
;
1783 vm_page_throttled_count
--;
1786 * not throttled any more, so can stick
1787 * it on the inactive queue.
1789 queue_enter(&vm_page_queue_inactive
, m
,
1792 vm_page_inactive_count
++;
1793 token_new_pagecount
++;
1795 queue_remove(&vm_page_queue_inactive
, m
,
1798 vm_page_inactive_count
--; /* balance for purgeable queue asserts */
1800 vm_purgeable_q_advance_all();
1802 queue_enter(&vm_page_queue_inactive
, m
,
1805 vm_page_inactive_count
++; /* balance for purgeable queue asserts */
1807 token_new_pagecount
++;
1809 pmap_clear_reference(m
->phys_page
);
1810 m
->reference
= FALSE
;
1812 if ( !queue_empty(&sq
->age_q
) )
1813 m
= (vm_page_t
) queue_first(&sq
->age_q
);
1814 else if ( ((zf_run_count
< zf_ratio
) && vm_zf_queue_count
>= zf_queue_min_count
) ||
1815 queue_empty(&vm_page_queue_inactive
)) {
1816 if ( !queue_empty(&vm_page_queue_zf
) )
1817 m
= (vm_page_t
) queue_first(&vm_page_queue_zf
);
1818 } else if ( !queue_empty(&vm_page_queue_inactive
) ) {
1819 m
= (vm_page_t
) queue_first(&vm_page_queue_inactive
);
1822 * this is the next object we're going to be interested in
1823 * try to make sure its available after the mutex_yield
1826 vm_pageout_scan_wants_object
= m
->object
;
1829 * force us to dump any collected free pages
1830 * and to pause before moving on
1834 goto done_with_inactivepage
;
1837 vm_pageout_scan_wants_object
= VM_OBJECT_NULL
;
1843 * Paging out pages of external objects which
1844 * are currently being created must be avoided.
1845 * The pager may claim for memory, thus leading to a
1846 * possible dead lock between it and the pageout thread,
1847 * if such pages are finally chosen. The remaining assumption
1848 * is that there will finally be enough available pages in the
1849 * inactive pool to page out in order to satisfy all memory
1850 * claimed by the thread which concurrently creates the pager.
1852 if (!object
->pager_initialized
&& object
->pager_created
) {
1854 * Move page to end and continue, hoping that
1855 * there will be enough other inactive pages to
1856 * page out so that the thread which currently
1857 * initializes the pager will succeed.
1858 * Don't re-grant the ticket, the page should
1859 * pulled from the queue and paged out whenever
1860 * one of its logically adjacent fellows is
1863 vm_pageout_inactive_avoid
++;
1867 * Remove the page from its list.
1869 if (m
->speculative
) {
1871 page_prev_state
= PAGE_STATE_SPECULATIVE
;
1872 m
->speculative
= FALSE
;
1873 vm_page_speculative_count
--;
1874 } else if (m
->throttled
) {
1875 queue_remove(&vm_page_queue_throttled
, m
, vm_page_t
, pageq
);
1876 page_prev_state
= PAGE_STATE_THROTTLED
;
1877 m
->throttled
= FALSE
;
1878 vm_page_throttled_count
--;
1881 queue_remove(&vm_page_queue_zf
, m
, vm_page_t
, pageq
);
1882 page_prev_state
= PAGE_STATE_ZEROFILL
;
1883 vm_zf_queue_count
--;
1885 page_prev_state
= PAGE_STATE_INACTIVE
;
1886 queue_remove(&vm_page_queue_inactive
, m
, vm_page_t
, pageq
);
1888 m
->inactive
= FALSE
;
1890 vm_page_inactive_count
--;
1891 vm_purgeable_q_advance_all();
1894 m
->pageq
.next
= NULL
;
1895 m
->pageq
.prev
= NULL
;
1897 if ( !m
->fictitious
&& catch_up_count
)
1902 * if this page has already been picked up as part of a
1903 * page-out cluster, it will be busy because it is being
1904 * encrypted (see vm_object_upl_request()). But we still
1905 * want to demote it from "clean-in-place" (aka "adjacent")
1906 * to "clean-and-free" (aka "target"), so let's ignore its
1907 * "busy" bit here and proceed to check for "cleaning" a
1908 * little bit below...
1910 if ( !m
->encrypted_cleaning
&& (m
->busy
|| !object
->alive
)) {
1912 * Somebody is already playing with this page.
1913 * Leave it off the pageout queues.
1916 vm_pageout_inactive_busy
++;
1918 goto done_with_inactivepage
;
1922 * If it's absent or in error, we can reclaim the page.
1925 if (m
->absent
|| m
->error
) {
1926 vm_pageout_inactive_absent
++;
1928 if (vm_pageout_deadlock_target
) {
1929 vm_pageout_scan_inactive_throttle_success
++;
1930 vm_pageout_deadlock_target
--;
1933 DTRACE_VM2(dfree
, int, 1, (uint64_t *), NULL
);
1935 if (object
->internal
) {
1936 DTRACE_VM2(anonfree
, int, 1, (uint64_t *), NULL
);
1938 DTRACE_VM2(fsfree
, int, 1, (uint64_t *), NULL
);
1940 vm_page_free_prepare_queues(m
);
1943 * remove page from object here since we're already
1944 * behind the object lock... defer the rest of the work
1945 * we'd normally do in vm_page_free_prepare_object
1946 * until 'vm_page_free_list' is called
1949 vm_page_remove(m
, TRUE
);
1951 assert(m
->pageq
.next
== NULL
&&
1952 m
->pageq
.prev
== NULL
);
1953 m
->pageq
.next
= (queue_entry_t
)local_freeq
;
1957 inactive_burst_count
= 0;
1959 if(page_prev_state
!= PAGE_STATE_SPECULATIVE
) {
1960 vm_pageout_stats
[vm_pageout_stat_now
].reclaimed
++;
1961 page_prev_state
= 0;
1964 goto done_with_inactivepage
;
1967 assert(!m
->private);
1968 assert(!m
->fictitious
);
1971 * If already cleaning this page in place, convert from
1972 * "adjacent" to "target". We can leave the page mapped,
1973 * and vm_pageout_object_terminate will determine whether
1974 * to free or reactivate.
1980 m
->dump_cleaning
= TRUE
;
1983 CLUSTER_STAT(vm_pageout_cluster_conversions
++);
1985 inactive_burst_count
= 0;
1987 goto done_with_inactivepage
;
1991 * If the object is empty, the page must be reclaimed even
1993 * If the page belongs to a volatile object, we stick it back
1996 if (object
->copy
== VM_OBJECT_NULL
) {
1997 if (object
->purgable
== VM_PURGABLE_EMPTY
) {
1999 if (m
->pmapped
== TRUE
) {
2000 /* unmap the page */
2001 refmod_state
= pmap_disconnect(m
->phys_page
);
2002 if (refmod_state
& VM_MEM_MODIFIED
) {
2006 if (m
->dirty
|| m
->precious
) {
2007 /* we saved the cost of cleaning this page ! */
2008 vm_page_purged_count
++;
2012 if (object
->purgable
== VM_PURGABLE_VOLATILE
) {
2013 /* if it's wired, we can't put it on our queue */
2014 assert(!VM_PAGE_WIRED(m
));
2015 /* just stick it back on! */
2016 goto reactivate_page
;
2021 * If it's being used, reactivate.
2022 * (Fictitious pages are either busy or absent.)
2023 * First, update the reference and dirty bits
2024 * to make sure the page is unreferenced.
2028 if (m
->reference
== FALSE
&& m
->pmapped
== TRUE
) {
2029 refmod_state
= pmap_get_refmod(m
->phys_page
);
2031 if (refmod_state
& VM_MEM_REFERENCED
)
2032 m
->reference
= TRUE
;
2033 if (refmod_state
& VM_MEM_MODIFIED
)
2037 if (m
->reference
|| m
->dirty
) {
2038 /* deal with a rogue "reusable" page */
2039 VM_PAGEOUT_SCAN_HANDLE_REUSABLE_PAGE(m
);
2042 if (m
->reference
&& !m
->no_cache
) {
2044 * The page we pulled off the inactive list has
2045 * been referenced. It is possible for other
2046 * processors to be touching pages faster than we
2047 * can clear the referenced bit and traverse the
2048 * inactive queue, so we limit the number of
2051 if (++reactivated_this_call
>= reactivate_limit
) {
2052 vm_pageout_reactivation_limit_exceeded
++;
2053 } else if (catch_up_count
) {
2054 vm_pageout_catch_ups
++;
2055 } else if (++inactive_reclaim_run
>= VM_PAGEOUT_INACTIVE_FORCE_RECLAIM
) {
2056 vm_pageout_inactive_force_reclaim
++;
2060 if ( !object
->internal
&& object
->pager
!= MEMORY_OBJECT_NULL
&&
2061 vnode_pager_get_isinuse(object
->pager
, &isinuse
) == KERN_SUCCESS
&& !isinuse
) {
2063 * no explict mappings of this object exist
2064 * and it's not open via the filesystem
2066 vm_page_deactivate(m
);
2067 vm_pageout_inactive_deactivated
++;
2070 * The page was/is being used, so put back on active list.
2072 vm_page_activate(m
);
2073 VM_STAT_INCR(reactivations
);
2075 vm_pageout_inactive_used
++;
2076 inactive_burst_count
= 0;
2078 goto done_with_inactivepage
;
2081 * Make sure we call pmap_get_refmod() if it
2082 * wasn't already called just above, to update
2085 if ((refmod_state
== -1) && !m
->dirty
&& m
->pmapped
) {
2086 refmod_state
= pmap_get_refmod(m
->phys_page
);
2087 if (refmod_state
& VM_MEM_MODIFIED
)
2090 forced_reclaim
= TRUE
;
2092 forced_reclaim
= FALSE
;
2096 "vm_pageout_scan, replace object 0x%X offset 0x%X page 0x%X\n",
2097 object
, m
->offset
, m
, 0,0);
2100 * we've got a candidate page to steal...
2102 * m->dirty is up to date courtesy of the
2103 * preceding check for m->reference... if
2104 * we get here, then m->reference had to be
2105 * FALSE (or possibly "reactivate_limit" was
2106 * exceeded), but in either case we called
2107 * pmap_get_refmod() and updated both
2108 * m->reference and m->dirty
2110 * if it's dirty or precious we need to
2111 * see if the target queue is throtttled
2112 * it if is, we need to skip over it by moving it back
2113 * to the end of the inactive queue
2116 inactive_throttled
= FALSE
;
2118 if (m
->dirty
|| m
->precious
) {
2119 if (object
->internal
) {
2120 if (VM_PAGE_Q_THROTTLED(iq
))
2121 inactive_throttled
= TRUE
;
2122 } else if (VM_PAGE_Q_THROTTLED(eq
)) {
2123 inactive_throttled
= TRUE
;
2126 if (inactive_throttled
== TRUE
) {
2128 if (!IP_VALID(memory_manager_default
) &&
2129 object
->internal
&& m
->dirty
&&
2130 (object
->purgable
== VM_PURGABLE_DENY
||
2131 object
->purgable
== VM_PURGABLE_NONVOLATILE
||
2132 object
->purgable
== VM_PURGABLE_VOLATILE
)) {
2133 queue_enter(&vm_page_queue_throttled
, m
,
2135 m
->throttled
= TRUE
;
2136 vm_page_throttled_count
++;
2139 queue_enter(&vm_page_queue_zf
, m
,
2141 vm_zf_queue_count
++;
2143 queue_enter(&vm_page_queue_inactive
, m
,
2146 if (!m
->fictitious
) {
2147 vm_page_inactive_count
++;
2148 token_new_pagecount
++;
2151 vm_pageout_scan_inactive_throttled
++;
2152 goto done_with_inactivepage
;
2156 * we've got a page that we can steal...
2157 * eliminate all mappings and make sure
2158 * we have the up-to-date modified state
2159 * first take the page BUSY, so that no new
2160 * mappings can be made
2165 * if we need to do a pmap_disconnect then we
2166 * need to re-evaluate m->dirty since the pmap_disconnect
2167 * provides the true state atomically... the
2168 * page was still mapped up to the pmap_disconnect
2169 * and may have been dirtied at the last microsecond
2171 * we also check for the page being referenced 'late'
2172 * if it was, we first need to do a WAKEUP_DONE on it
2173 * since we already set m->busy = TRUE, before
2174 * going off to reactivate it
2176 * Note that if 'pmapped' is FALSE then the page is not
2177 * and has not been in any map, so there is no point calling
2178 * pmap_disconnect(). m->dirty and/or m->reference could
2179 * have been set in anticipation of likely usage of the page.
2181 if (m
->pmapped
== TRUE
) {
2182 refmod_state
= pmap_disconnect(m
->phys_page
);
2184 if (refmod_state
& VM_MEM_MODIFIED
)
2186 if (refmod_state
& VM_MEM_REFERENCED
) {
2188 /* If m->reference is already set, this page must have
2189 * already failed the reactivate_limit test, so don't
2190 * bump the counts twice.
2192 if ( ! m
->reference
) {
2193 m
->reference
= TRUE
;
2194 if (forced_reclaim
||
2195 ++reactivated_this_call
>= reactivate_limit
)
2196 vm_pageout_reactivation_limit_exceeded
++;
2198 PAGE_WAKEUP_DONE(m
);
2199 goto reactivate_page
;
2205 * reset our count of pages that have been reclaimed
2206 * since the last page was 'stolen'
2208 inactive_reclaim_run
= 0;
2211 * If it's clean and not precious, we can free the page.
2213 if (!m
->dirty
&& !m
->precious
) {
2215 vm_pageout_inactive_zf
++;
2216 vm_pageout_inactive_clean
++;
2222 * The page may have been dirtied since the last check
2223 * for a throttled target queue (which may have been skipped
2224 * if the page was clean then). With the dirty page
2225 * disconnected here, we can make one final check.
2228 boolean_t disconnect_throttled
= FALSE
;
2229 if (object
->internal
) {
2230 if (VM_PAGE_Q_THROTTLED(iq
))
2231 disconnect_throttled
= TRUE
;
2232 } else if (VM_PAGE_Q_THROTTLED(eq
)) {
2233 disconnect_throttled
= TRUE
;
2236 if (disconnect_throttled
== TRUE
) {
2237 PAGE_WAKEUP_DONE(m
);
2238 goto throttle_inactive
;
2242 vm_pageout_stats
[vm_pageout_stat_now
].reclaimed
++;
2244 vm_pageout_cluster(m
);
2247 vm_pageout_inactive_zf
++;
2248 vm_pageout_inactive_dirty
++;
2250 inactive_burst_count
= 0;
2252 done_with_inactivepage
:
2253 if (delayed_unlock
++ > VM_PAGEOUT_DELAYED_UNLOCK_LIMIT
|| try_failed
== TRUE
) {
2255 if (object
!= NULL
) {
2256 vm_pageout_scan_wants_object
= VM_OBJECT_NULL
;
2257 vm_object_unlock(object
);
2261 vm_page_unlock_queues();
2262 vm_page_free_list(local_freeq
, TRUE
);
2266 vm_page_lock_queues();
2268 lck_mtx_yield(&vm_page_queue_lock
);
2273 * back to top of pageout scan loop
2279 int vm_page_free_count_init
;
2282 vm_page_free_reserve(
2285 int free_after_reserve
;
2287 vm_page_free_reserved
+= pages
;
2289 free_after_reserve
= vm_page_free_count_init
- vm_page_free_reserved
;
2291 vm_page_free_min
= vm_page_free_reserved
+
2292 VM_PAGE_FREE_MIN(free_after_reserve
);
2294 if (vm_page_free_min
> VM_PAGE_FREE_MIN_LIMIT
)
2295 vm_page_free_min
= VM_PAGE_FREE_MIN_LIMIT
;
2297 vm_page_free_target
= vm_page_free_reserved
+
2298 VM_PAGE_FREE_TARGET(free_after_reserve
);
2300 if (vm_page_free_target
> VM_PAGE_FREE_TARGET_LIMIT
)
2301 vm_page_free_target
= VM_PAGE_FREE_TARGET_LIMIT
;
2303 if (vm_page_free_target
< vm_page_free_min
+ 5)
2304 vm_page_free_target
= vm_page_free_min
+ 5;
2306 vm_page_throttle_limit
= vm_page_free_target
- (vm_page_free_target
/ 3);
2307 vm_page_creation_throttle
= vm_page_free_target
/ 2;
2311 * vm_pageout is the high level pageout daemon.
2315 vm_pageout_continue(void)
2317 DTRACE_VM2(pgrrun
, int, 1, (uint64_t *), NULL
);
2318 vm_pageout_scan_event_counter
++;
2320 /* we hold vm_page_queue_free_lock now */
2321 assert(vm_page_free_wanted
== 0);
2322 assert(vm_page_free_wanted_privileged
== 0);
2323 assert_wait((event_t
) &vm_page_free_wanted
, THREAD_UNINT
);
2324 lck_mtx_unlock(&vm_page_queue_free_lock
);
2326 counter(c_vm_pageout_block
++);
2327 thread_block((thread_continue_t
)vm_pageout_continue
);
2332 #ifdef FAKE_DEADLOCK
2334 #define FAKE_COUNT 5000
2336 int internal_count
= 0;
2337 int fake_deadlock
= 0;
2342 vm_pageout_iothread_continue(struct vm_pageout_queue
*q
)
2346 memory_object_t pager
;
2347 thread_t self
= current_thread();
2349 if ((vm_pageout_internal_iothread
!= THREAD_NULL
)
2350 && (self
== vm_pageout_external_iothread
)
2351 && (self
->options
& TH_OPT_VMPRIV
))
2352 self
->options
&= ~TH_OPT_VMPRIV
;
2354 vm_page_lockspin_queues();
2356 while ( !queue_empty(&q
->pgo_pending
) ) {
2359 queue_remove_first(&q
->pgo_pending
, m
, vm_page_t
, pageq
);
2361 m
->pageout_queue
= FALSE
;
2362 m
->pageq
.next
= NULL
;
2363 m
->pageq
.prev
= NULL
;
2364 vm_page_unlock_queues();
2366 #ifdef FAKE_DEADLOCK
2367 if (q
== &vm_pageout_queue_internal
) {
2373 if ((internal_count
== FAKE_COUNT
)) {
2375 pg_count
= vm_page_free_count
+ vm_page_free_reserved
;
2377 if (kmem_alloc(kernel_map
, &addr
, PAGE_SIZE
* pg_count
) == KERN_SUCCESS
) {
2378 kmem_free(kernel_map
, addr
, PAGE_SIZE
* pg_count
);
2387 vm_object_lock(object
);
2389 if (!object
->pager_initialized
) {
2392 * If there is no memory object for the page, create
2393 * one and hand it to the default pager.
2396 if (!object
->pager_initialized
)
2397 vm_object_collapse(object
,
2398 (vm_object_offset_t
) 0,
2400 if (!object
->pager_initialized
)
2401 vm_object_pager_create(object
);
2402 if (!object
->pager_initialized
) {
2404 * Still no pager for the object.
2405 * Reactivate the page.
2407 * Should only happen if there is no
2410 vm_page_lockspin_queues();
2412 vm_pageout_queue_steal(m
, TRUE
);
2413 vm_pageout_dirty_no_pager
++;
2414 vm_page_activate(m
);
2416 vm_page_unlock_queues();
2419 * And we are done with it.
2421 PAGE_WAKEUP_DONE(m
);
2423 vm_object_paging_end(object
);
2424 vm_object_unlock(object
);
2426 vm_page_lockspin_queues();
2430 pager
= object
->pager
;
2431 if (pager
== MEMORY_OBJECT_NULL
) {
2433 * This pager has been destroyed by either
2434 * memory_object_destroy or vm_object_destroy, and
2435 * so there is nowhere for the page to go.
2439 * Just free the page... VM_PAGE_FREE takes
2440 * care of cleaning up all the state...
2441 * including doing the vm_pageout_throttle_up
2445 vm_page_lockspin_queues();
2447 vm_pageout_queue_steal(m
, TRUE
);
2448 vm_page_activate(m
);
2450 vm_page_unlock_queues();
2453 * And we are done with it.
2455 PAGE_WAKEUP_DONE(m
);
2457 vm_object_paging_end(object
);
2458 vm_object_unlock(object
);
2460 vm_page_lockspin_queues();
2464 vm_object_unlock(object
);
2466 * we expect the paging_in_progress reference to have
2467 * already been taken on the object before it was added
2468 * to the appropriate pageout I/O queue... this will
2469 * keep the object from being terminated and/or the
2470 * paging_offset from changing until the I/O has
2471 * completed... therefore no need to lock the object to
2472 * pull the paging_offset from it.
2474 * Send the data to the pager.
2475 * any pageout clustering happens there
2477 memory_object_data_return(pager
,
2478 m
->offset
+ object
->paging_offset
,
2486 vm_object_lock(object
);
2487 vm_object_paging_end(object
);
2488 vm_object_unlock(object
);
2490 vm_page_lockspin_queues();
2492 assert_wait((event_t
) q
, THREAD_UNINT
);
2494 if (q
->pgo_throttled
== TRUE
&& !VM_PAGE_Q_THROTTLED(q
)) {
2495 q
->pgo_throttled
= FALSE
;
2496 thread_wakeup((event_t
) &q
->pgo_laundry
);
2498 if (q
->pgo_draining
== TRUE
&& q
->pgo_laundry
== 0) {
2499 q
->pgo_draining
= FALSE
;
2500 thread_wakeup((event_t
) (&q
->pgo_laundry
+1));
2502 q
->pgo_busy
= FALSE
;
2504 vm_page_unlock_queues();
2506 thread_block_parameter((thread_continue_t
)vm_pageout_iothread_continue
, (void *) &q
->pgo_pending
);
2512 vm_pageout_iothread_external(void)
2514 thread_t self
= current_thread();
2516 self
->options
|= TH_OPT_VMPRIV
;
2518 vm_pageout_iothread_continue(&vm_pageout_queue_external
);
2524 vm_pageout_iothread_internal(void)
2526 thread_t self
= current_thread();
2528 self
->options
|= TH_OPT_VMPRIV
;
2530 vm_pageout_iothread_continue(&vm_pageout_queue_internal
);
2535 vm_set_buffer_cleanup_callout(boolean_t (*func
)(int))
2537 if (OSCompareAndSwapPtr(NULL
, func
, (void * volatile *) &consider_buffer_cache_collect
)) {
2538 return KERN_SUCCESS
;
2540 return KERN_FAILURE
; /* Already set */
2545 vm_pageout_garbage_collect(int collect
)
2548 boolean_t buf_large_zfree
= FALSE
;
2552 * consider_zone_gc should be last, because the other operations
2553 * might return memory to zones.
2555 consider_machine_collect();
2556 if (consider_buffer_cache_collect
!= NULL
) {
2557 buf_large_zfree
= (*consider_buffer_cache_collect
)(0);
2559 consider_zone_gc(buf_large_zfree
);
2561 consider_machine_adjust();
2564 assert_wait((event_t
) &vm_pageout_garbage_collect
, THREAD_UNINT
);
2566 thread_block_parameter((thread_continue_t
) vm_pageout_garbage_collect
, (void *)1);
2575 thread_t self
= current_thread();
2577 kern_return_t result
;
2581 * Set thread privileges.
2585 self
->priority
= BASEPRI_PREEMPT
- 1;
2586 set_sched_pri(self
, self
->priority
);
2587 thread_unlock(self
);
2589 if (!self
->reserved_stack
)
2590 self
->reserved_stack
= self
->kernel_stack
;
2595 * Initialize some paging parameters.
2598 if (vm_pageout_idle_wait
== 0)
2599 vm_pageout_idle_wait
= VM_PAGEOUT_IDLE_WAIT
;
2601 if (vm_pageout_burst_wait
== 0)
2602 vm_pageout_burst_wait
= VM_PAGEOUT_BURST_WAIT
;
2604 if (vm_pageout_empty_wait
== 0)
2605 vm_pageout_empty_wait
= VM_PAGEOUT_EMPTY_WAIT
;
2607 if (vm_pageout_deadlock_wait
== 0)
2608 vm_pageout_deadlock_wait
= VM_PAGEOUT_DEADLOCK_WAIT
;
2610 if (vm_pageout_deadlock_relief
== 0)
2611 vm_pageout_deadlock_relief
= VM_PAGEOUT_DEADLOCK_RELIEF
;
2613 if (vm_pageout_inactive_relief
== 0)
2614 vm_pageout_inactive_relief
= VM_PAGEOUT_INACTIVE_RELIEF
;
2616 if (vm_pageout_burst_active_throttle
== 0)
2617 vm_pageout_burst_active_throttle
= VM_PAGEOUT_BURST_ACTIVE_THROTTLE
;
2619 if (vm_pageout_burst_inactive_throttle
== 0)
2620 vm_pageout_burst_inactive_throttle
= VM_PAGEOUT_BURST_INACTIVE_THROTTLE
;
2623 * Set kernel task to low backing store privileged
2626 task_lock(kernel_task
);
2627 kernel_task
->priv_flags
|= VM_BACKING_STORE_PRIV
;
2628 task_unlock(kernel_task
);
2630 vm_page_free_count_init
= vm_page_free_count
;
2633 * even if we've already called vm_page_free_reserve
2634 * call it again here to insure that the targets are
2635 * accurately calculated (it uses vm_page_free_count_init)
2636 * calling it with an arg of 0 will not change the reserve
2637 * but will re-calculate free_min and free_target
2639 if (vm_page_free_reserved
< VM_PAGE_FREE_RESERVED(processor_count
)) {
2640 vm_page_free_reserve((VM_PAGE_FREE_RESERVED(processor_count
)) - vm_page_free_reserved
);
2642 vm_page_free_reserve(0);
2645 queue_init(&vm_pageout_queue_external
.pgo_pending
);
2646 vm_pageout_queue_external
.pgo_maxlaundry
= VM_PAGE_LAUNDRY_MAX
;
2647 vm_pageout_queue_external
.pgo_laundry
= 0;
2648 vm_pageout_queue_external
.pgo_idle
= FALSE
;
2649 vm_pageout_queue_external
.pgo_busy
= FALSE
;
2650 vm_pageout_queue_external
.pgo_throttled
= FALSE
;
2651 vm_pageout_queue_external
.pgo_draining
= FALSE
;
2653 queue_init(&vm_pageout_queue_internal
.pgo_pending
);
2654 vm_pageout_queue_internal
.pgo_maxlaundry
= 0;
2655 vm_pageout_queue_internal
.pgo_laundry
= 0;
2656 vm_pageout_queue_internal
.pgo_idle
= FALSE
;
2657 vm_pageout_queue_internal
.pgo_busy
= FALSE
;
2658 vm_pageout_queue_internal
.pgo_throttled
= FALSE
;
2659 vm_pageout_queue_internal
.pgo_draining
= FALSE
;
2662 /* internal pageout thread started when default pager registered first time */
2663 /* external pageout and garbage collection threads started here */
2665 result
= kernel_thread_start_priority((thread_continue_t
)vm_pageout_iothread_external
, NULL
,
2666 BASEPRI_PREEMPT
- 1,
2667 &vm_pageout_external_iothread
);
2668 if (result
!= KERN_SUCCESS
)
2669 panic("vm_pageout_iothread_external: create failed");
2671 thread_deallocate(vm_pageout_external_iothread
);
2673 result
= kernel_thread_start_priority((thread_continue_t
)vm_pageout_garbage_collect
, NULL
,
2676 if (result
!= KERN_SUCCESS
)
2677 panic("vm_pageout_garbage_collect: create failed");
2679 thread_deallocate(thread
);
2681 vm_object_reaper_init();
2684 vm_pageout_continue();
2689 * The vm_pageout_continue() call above never returns, so the code below is never
2690 * executed. We take advantage of this to declare several DTrace VM related probe
2691 * points that our kernel doesn't have an analog for. These are probe points that
2692 * exist in Solaris and are in the DTrace documentation, so people may have written
2693 * scripts that use them. Declaring the probe points here means their scripts will
2694 * compile and execute which we want for portability of the scripts, but since this
2695 * section of code is never reached, the probe points will simply never fire. Yes,
2696 * this is basically a hack. The problem is the DTrace probe points were chosen with
2697 * Solaris specific VM events in mind, not portability to different VM implementations.
2700 DTRACE_VM2(execfree
, int, 1, (uint64_t *), NULL
);
2701 DTRACE_VM2(execpgin
, int, 1, (uint64_t *), NULL
);
2702 DTRACE_VM2(execpgout
, int, 1, (uint64_t *), NULL
);
2703 DTRACE_VM2(pgswapin
, int, 1, (uint64_t *), NULL
);
2704 DTRACE_VM2(pgswapout
, int, 1, (uint64_t *), NULL
);
2705 DTRACE_VM2(swapin
, int, 1, (uint64_t *), NULL
);
2706 DTRACE_VM2(swapout
, int, 1, (uint64_t *), NULL
);
2711 vm_pageout_internal_start(void)
2713 kern_return_t result
;
2715 vm_pageout_queue_internal
.pgo_maxlaundry
= VM_PAGE_LAUNDRY_MAX
;
2716 result
= kernel_thread_start_priority((thread_continue_t
)vm_pageout_iothread_internal
, NULL
, BASEPRI_PREEMPT
- 1, &vm_pageout_internal_iothread
);
2717 if (result
== KERN_SUCCESS
)
2718 thread_deallocate(vm_pageout_internal_iothread
);
2724 * when marshalling pages into a UPL and subsequently committing
2725 * or aborting them, it is necessary to hold
2726 * the vm_page_queue_lock (a hot global lock) for certain operations
2727 * on the page... however, the majority of the work can be done
2728 * while merely holding the object lock... in fact there are certain
2729 * collections of pages that don't require any work brokered by the
2730 * vm_page_queue_lock... to mitigate the time spent behind the global
2731 * lock, go to a 2 pass algorithm... collect pages up to DELAYED_WORK_LIMIT
2732 * while doing all of the work that doesn't require the vm_page_queue_lock...
2733 * then call dw_do_work to acquire the vm_page_queue_lock and do the
2734 * necessary work for each page... we will grab the busy bit on the page
2735 * if it's not already held so that dw_do_work can drop the object lock
2736 * if it can't immediately take the vm_page_queue_lock in order to compete
2737 * for the locks in the same order that vm_pageout_scan takes them.
2738 * the operation names are modeled after the names of the routines that
2739 * need to be called in order to make the changes very obvious in the
2743 #define DELAYED_WORK_LIMIT 32
2745 #define DW_vm_page_unwire 0x01
2746 #define DW_vm_page_wire 0x02
2747 #define DW_vm_page_free 0x04
2748 #define DW_vm_page_activate 0x08
2749 #define DW_vm_page_deactivate_internal 0x10
2750 #define DW_vm_page_speculate 0x20
2751 #define DW_vm_page_lru 0x40
2752 #define DW_vm_pageout_throttle_up 0x80
2753 #define DW_PAGE_WAKEUP 0x100
2754 #define DW_clear_busy 0x200
2755 #define DW_clear_reference 0x400
2756 #define DW_set_reference 0x800
2764 static void dw_do_work(vm_object_t object
, struct dw
*dwp
, int dw_count
);
2769 upl_create(int type
, int flags
, upl_size_t size
)
2772 int page_field_size
= 0;
2774 int upl_size
= sizeof(struct upl
);
2776 size
= round_page_32(size
);
2778 if (type
& UPL_CREATE_LITE
) {
2779 page_field_size
= (atop(size
) + 7) >> 3;
2780 page_field_size
= (page_field_size
+ 3) & 0xFFFFFFFC;
2782 upl_flags
|= UPL_LITE
;
2784 if (type
& UPL_CREATE_INTERNAL
) {
2785 upl_size
+= (int) sizeof(struct upl_page_info
) * atop(size
);
2787 upl_flags
|= UPL_INTERNAL
;
2789 upl
= (upl_t
)kalloc(upl_size
+ page_field_size
);
2791 if (page_field_size
)
2792 bzero((char *)upl
+ upl_size
, page_field_size
);
2794 upl
->flags
= upl_flags
| flags
;
2795 upl
->src_object
= NULL
;
2796 upl
->kaddr
= (vm_offset_t
)0;
2798 upl
->map_object
= NULL
;
2800 upl
->highest_page
= 0;
2802 upl
->vector_upl
= NULL
;
2804 upl
->ubc_alias1
= 0;
2805 upl
->ubc_alias2
= 0;
2807 upl
->upl_creator
= current_thread();
2809 upl
->upl_commit_index
= 0;
2810 bzero(&upl
->upl_commit_records
[0], sizeof(upl
->upl_commit_records
));
2812 (void) OSBacktrace(&upl
->upl_create_retaddr
[0], UPL_DEBUG_STACK_FRAMES
);
2813 #endif /* UPL_DEBUG */
2819 upl_destroy(upl_t upl
)
2821 int page_field_size
; /* bit field in word size buf */
2828 if (upl
->flags
& UPL_SHADOWED
) {
2829 object
= upl
->map_object
->shadow
;
2831 object
= upl
->map_object
;
2833 vm_object_lock(object
);
2834 queue_remove(&object
->uplq
, upl
, upl_t
, uplq
);
2835 vm_object_unlock(object
);
2837 #endif /* UPL_DEBUG */
2839 * drop a reference on the map_object whether or
2840 * not a pageout object is inserted
2842 if (upl
->flags
& UPL_SHADOWED
)
2843 vm_object_deallocate(upl
->map_object
);
2845 if (upl
->flags
& UPL_DEVICE_MEMORY
)
2849 page_field_size
= 0;
2851 if (upl
->flags
& UPL_LITE
) {
2852 page_field_size
= ((size
/PAGE_SIZE
) + 7) >> 3;
2853 page_field_size
= (page_field_size
+ 3) & 0xFFFFFFFC;
2855 upl_lock_destroy(upl
);
2856 upl
->vector_upl
= (vector_upl_t
) 0xfeedbeef;
2857 if (upl
->flags
& UPL_INTERNAL
) {
2859 sizeof(struct upl
) +
2860 (sizeof(struct upl_page_info
) * (size
/PAGE_SIZE
))
2863 kfree(upl
, sizeof(struct upl
) + page_field_size
);
2867 void uc_upl_dealloc(upl_t upl
);
2868 __private_extern__
void
2869 uc_upl_dealloc(upl_t upl
)
2871 if (--upl
->ref_count
== 0)
2876 upl_deallocate(upl_t upl
)
2878 if (--upl
->ref_count
== 0) {
2879 if(vector_upl_is_valid(upl
))
2880 vector_upl_deallocate(upl
);
2885 #if DEVELOPMENT || DEBUG
2887 * Statistics about UPL enforcement of copy-on-write obligations.
2889 unsigned long upl_cow
= 0;
2890 unsigned long upl_cow_again
= 0;
2891 unsigned long upl_cow_pages
= 0;
2892 unsigned long upl_cow_again_pages
= 0;
2894 unsigned long iopl_cow
= 0;
2895 unsigned long iopl_cow_pages
= 0;
2899 * Routine: vm_object_upl_request
2901 * Cause the population of a portion of a vm_object.
2902 * Depending on the nature of the request, the pages
2903 * returned may be contain valid data or be uninitialized.
2904 * A page list structure, listing the physical pages
2905 * will be returned upon request.
2906 * This function is called by the file system or any other
2907 * supplier of backing store to a pager.
2908 * IMPORTANT NOTE: The caller must still respect the relationship
2909 * between the vm_object and its backing memory object. The
2910 * caller MUST NOT substitute changes in the backing file
2911 * without first doing a memory_object_lock_request on the
2912 * target range unless it is know that the pages are not
2913 * shared with another entity at the pager level.
2915 * if a page list structure is present
2916 * return the mapped physical pages, where a
2917 * page is not present, return a non-initialized
2918 * one. If the no_sync bit is turned on, don't
2919 * call the pager unlock to synchronize with other
2920 * possible copies of the page. Leave pages busy
2921 * in the original object, if a page list structure
2922 * was specified. When a commit of the page list
2923 * pages is done, the dirty bit will be set for each one.
2925 * If a page list structure is present, return
2926 * all mapped pages. Where a page does not exist
2927 * map a zero filled one. Leave pages busy in
2928 * the original object. If a page list structure
2929 * is not specified, this call is a no-op.
2931 * Note: access of default pager objects has a rather interesting
2932 * twist. The caller of this routine, presumably the file system
2933 * page cache handling code, will never actually make a request
2934 * against a default pager backed object. Only the default
2935 * pager will make requests on backing store related vm_objects
2936 * In this way the default pager can maintain the relationship
2937 * between backing store files (abstract memory objects) and
2938 * the vm_objects (cache objects), they support.
2942 __private_extern__ kern_return_t
2943 vm_object_upl_request(
2945 vm_object_offset_t offset
,
2948 upl_page_info_array_t user_page_list
,
2949 unsigned int *page_list_count
,
2952 vm_page_t dst_page
= VM_PAGE_NULL
;
2953 vm_object_offset_t dst_offset
;
2954 upl_size_t xfer_size
;
2959 #if MACH_CLUSTER_STATS
2960 boolean_t encountered_lrp
= FALSE
;
2962 vm_page_t alias_page
= NULL
;
2963 int refmod_state
= 0;
2964 wpl_array_t lite_list
= NULL
;
2965 vm_object_t last_copy_object
;
2966 struct dw dw_array
[DELAYED_WORK_LIMIT
];
2970 if (cntrl_flags
& ~UPL_VALID_FLAGS
) {
2972 * For forward compatibility's sake,
2973 * reject any unknown flag.
2975 return KERN_INVALID_VALUE
;
2977 if ( (!object
->internal
) && (object
->paging_offset
!= 0) )
2978 panic("vm_object_upl_request: external object with non-zero paging offset\n");
2979 if (object
->phys_contiguous
)
2980 panic("vm_object_upl_request: contiguous object specified\n");
2983 if ((size
/ PAGE_SIZE
) > MAX_UPL_SIZE
)
2984 size
= MAX_UPL_SIZE
* PAGE_SIZE
;
2986 if ( (cntrl_flags
& UPL_SET_INTERNAL
) && page_list_count
!= NULL
)
2987 *page_list_count
= MAX_UPL_SIZE
;
2989 if (cntrl_flags
& UPL_SET_INTERNAL
) {
2990 if (cntrl_flags
& UPL_SET_LITE
) {
2992 upl
= upl_create(UPL_CREATE_INTERNAL
| UPL_CREATE_LITE
, 0, size
);
2994 user_page_list
= (upl_page_info_t
*) (((uintptr_t)upl
) + sizeof(struct upl
));
2995 lite_list
= (wpl_array_t
)
2996 (((uintptr_t)user_page_list
) +
2997 ((size
/PAGE_SIZE
) * sizeof(upl_page_info_t
)));
2999 user_page_list
= NULL
;
3003 upl
= upl_create(UPL_CREATE_INTERNAL
, 0, size
);
3005 user_page_list
= (upl_page_info_t
*) (((uintptr_t)upl
) + sizeof(struct upl
));
3007 user_page_list
= NULL
;
3011 if (cntrl_flags
& UPL_SET_LITE
) {
3013 upl
= upl_create(UPL_CREATE_EXTERNAL
| UPL_CREATE_LITE
, 0, size
);
3015 lite_list
= (wpl_array_t
) (((uintptr_t)upl
) + sizeof(struct upl
));
3020 upl
= upl_create(UPL_CREATE_EXTERNAL
, 0, size
);
3026 user_page_list
[0].device
= FALSE
;
3028 if (cntrl_flags
& UPL_SET_LITE
) {
3029 upl
->map_object
= object
;
3031 upl
->map_object
= vm_object_allocate(size
);
3033 * No neeed to lock the new object: nobody else knows
3034 * about it yet, so it's all ours so far.
3036 upl
->map_object
->shadow
= object
;
3037 upl
->map_object
->pageout
= TRUE
;
3038 upl
->map_object
->can_persist
= FALSE
;
3039 upl
->map_object
->copy_strategy
= MEMORY_OBJECT_COPY_NONE
;
3040 upl
->map_object
->shadow_offset
= offset
;
3041 upl
->map_object
->wimg_bits
= object
->wimg_bits
;
3043 VM_PAGE_GRAB_FICTITIOUS(alias_page
);
3045 upl
->flags
|= UPL_SHADOWED
;
3049 * Just mark the UPL as "encrypted" here.
3050 * We'll actually encrypt the pages later,
3051 * in upl_encrypt(), when the caller has
3052 * selected which pages need to go to swap.
3054 if (cntrl_flags
& UPL_ENCRYPT
)
3055 upl
->flags
|= UPL_ENCRYPTED
;
3057 if (cntrl_flags
& UPL_FOR_PAGEOUT
)
3058 upl
->flags
|= UPL_PAGEOUT
;
3060 vm_object_lock(object
);
3061 vm_object_activity_begin(object
);
3064 * we can lock in the paging_offset once paging_in_progress is set
3067 upl
->offset
= offset
+ object
->paging_offset
;
3070 queue_enter(&object
->uplq
, upl
, upl_t
, uplq
);
3071 #endif /* UPL_DEBUG */
3073 if ((cntrl_flags
& UPL_WILL_MODIFY
) && object
->copy
!= VM_OBJECT_NULL
) {
3075 * Honor copy-on-write obligations
3077 * The caller is gathering these pages and
3078 * might modify their contents. We need to
3079 * make sure that the copy object has its own
3080 * private copies of these pages before we let
3081 * the caller modify them.
3083 vm_object_update(object
,
3088 FALSE
, /* should_return */
3089 MEMORY_OBJECT_COPY_SYNC
,
3091 #if DEVELOPMENT || DEBUG
3093 upl_cow_pages
+= size
>> PAGE_SHIFT
;
3097 * remember which copy object we synchronized with
3099 last_copy_object
= object
->copy
;
3103 dst_offset
= offset
;
3112 if ((alias_page
== NULL
) && !(cntrl_flags
& UPL_SET_LITE
)) {
3113 vm_object_unlock(object
);
3114 VM_PAGE_GRAB_FICTITIOUS(alias_page
);
3115 vm_object_lock(object
);
3117 if (cntrl_flags
& UPL_COPYOUT_FROM
) {
3118 upl
->flags
|= UPL_PAGE_SYNC_DONE
;
3120 if ( ((dst_page
= vm_page_lookup(object
, dst_offset
)) == VM_PAGE_NULL
) ||
3121 dst_page
->fictitious
||
3124 (VM_PAGE_WIRED(dst_page
) && !dst_page
->pageout
&& !dst_page
->list_req_pending
)) {
3127 user_page_list
[entry
].phys_addr
= 0;
3132 * grab this up front...
3133 * a high percentange of the time we're going to
3134 * need the hardware modification state a bit later
3135 * anyway... so we can eliminate an extra call into
3136 * the pmap layer by grabbing it here and recording it
3138 if (dst_page
->pmapped
)
3139 refmod_state
= pmap_get_refmod(dst_page
->phys_page
);
3143 if ( (refmod_state
& VM_MEM_REFERENCED
) && dst_page
->inactive
) {
3145 * page is on inactive list and referenced...
3146 * reactivate it now... this gets it out of the
3147 * way of vm_pageout_scan which would have to
3148 * reactivate it upon tripping over it
3150 dwp
->dw_mask
|= DW_vm_page_activate
;
3152 if (cntrl_flags
& UPL_RET_ONLY_DIRTY
) {
3154 * we're only asking for DIRTY pages to be returned
3156 if (dst_page
->list_req_pending
|| !(cntrl_flags
& UPL_FOR_PAGEOUT
)) {
3158 * if we were the page stolen by vm_pageout_scan to be
3159 * cleaned (as opposed to a buddy being clustered in
3160 * or this request is not being driven by a PAGEOUT cluster
3161 * then we only need to check for the page being dirty or
3162 * precious to decide whether to return it
3164 if (dst_page
->dirty
|| dst_page
->precious
|| (refmod_state
& VM_MEM_MODIFIED
))
3169 * this is a request for a PAGEOUT cluster and this page
3170 * is merely along for the ride as a 'buddy'... not only
3171 * does it have to be dirty to be returned, but it also
3172 * can't have been referenced recently... note that we've
3173 * already filtered above based on whether this page is
3174 * currently on the inactive queue or it meets the page
3175 * ticket (generation count) check
3177 if ( (cntrl_flags
& UPL_CLEAN_IN_PLACE
|| !(refmod_state
& VM_MEM_REFERENCED
)) &&
3178 ((refmod_state
& VM_MEM_MODIFIED
) || dst_page
->dirty
|| dst_page
->precious
) ) {
3183 * if we reach here, we're not to return
3184 * the page... go on to the next one
3187 user_page_list
[entry
].phys_addr
= 0;
3192 if (dst_page
->busy
&& (!(dst_page
->list_req_pending
&& (dst_page
->pageout
|| dst_page
->cleaning
)))) {
3193 if (cntrl_flags
& UPL_NOBLOCK
) {
3195 user_page_list
[entry
].phys_addr
= 0;
3200 * someone else is playing with the
3201 * page. We will have to wait.
3203 PAGE_SLEEP(object
, dst_page
, THREAD_UNINT
);
3208 * Someone else already cleaning the page?
3210 if ((dst_page
->cleaning
|| dst_page
->absent
|| VM_PAGE_WIRED(dst_page
)) && !dst_page
->list_req_pending
) {
3212 user_page_list
[entry
].phys_addr
= 0;
3218 * The caller is gathering this page and might
3219 * access its contents later on. Decrypt the
3220 * page before adding it to the UPL, so that
3221 * the caller never sees encrypted data.
3223 if (! (cntrl_flags
& UPL_ENCRYPT
) && dst_page
->encrypted
) {
3227 * save the current state of busy
3228 * mark page as busy while decrypt
3229 * is in progress since it will drop
3230 * the object lock...
3232 was_busy
= dst_page
->busy
;
3233 dst_page
->busy
= TRUE
;
3235 vm_page_decrypt(dst_page
, 0);
3236 vm_page_decrypt_for_upl_counter
++;
3238 * restore to original busy state
3240 dst_page
->busy
= was_busy
;
3242 if (dst_page
->pageout_queue
== TRUE
) {
3244 vm_page_lockspin_queues();
3247 if (dst_page
->laundry
)
3249 if (dst_page
->pageout_queue
== TRUE
)
3253 * we've buddied up a page for a clustered pageout
3254 * that has already been moved to the pageout
3255 * queue by pageout_scan... we need to remove
3256 * it from the queue and drop the laundry count
3259 vm_pageout_throttle_up(dst_page
);
3261 vm_page_unlock_queues();
3263 #if MACH_CLUSTER_STATS
3265 * pageout statistics gathering. count
3266 * all the pages we will page out that
3267 * were not counted in the initial
3268 * vm_pageout_scan work
3270 if (dst_page
->list_req_pending
)
3271 encountered_lrp
= TRUE
;
3272 if ((dst_page
->dirty
|| (dst_page
->object
->internal
&& dst_page
->precious
)) && !dst_page
->list_req_pending
) {
3273 if (encountered_lrp
)
3274 CLUSTER_STAT(pages_at_higher_offsets
++;)
3276 CLUSTER_STAT(pages_at_lower_offsets
++;)
3280 * Turn off busy indication on pending
3281 * pageout. Note: we can only get here
3282 * in the request pending case.
3284 dst_page
->list_req_pending
= FALSE
;
3285 dst_page
->busy
= FALSE
;
3287 hw_dirty
= refmod_state
& VM_MEM_MODIFIED
;
3288 dirty
= hw_dirty
? TRUE
: dst_page
->dirty
;
3290 if (dst_page
->phys_page
> upl
->highest_page
)
3291 upl
->highest_page
= dst_page
->phys_page
;
3293 if (cntrl_flags
& UPL_SET_LITE
) {
3294 unsigned int pg_num
;
3296 pg_num
= (unsigned int) ((dst_offset
-offset
)/PAGE_SIZE
);
3297 assert(pg_num
== (dst_offset
-offset
)/PAGE_SIZE
);
3298 lite_list
[pg_num
>>5] |= 1 << (pg_num
& 31);
3301 pmap_clear_modify(dst_page
->phys_page
);
3304 * Mark original page as cleaning
3307 dst_page
->cleaning
= TRUE
;
3308 dst_page
->precious
= FALSE
;
3311 * use pageclean setup, it is more
3312 * convenient even for the pageout
3315 vm_object_lock(upl
->map_object
);
3316 vm_pageclean_setup(dst_page
, alias_page
, upl
->map_object
, size
- xfer_size
);
3317 vm_object_unlock(upl
->map_object
);
3319 alias_page
->absent
= FALSE
;
3324 * Record that this page has been
3327 vm_external_state_set(object
->existence_map
, dst_page
->offset
);
3328 #endif /*MACH_PAGEMAP*/
3329 dst_page
->dirty
= dirty
;
3332 dst_page
->precious
= TRUE
;
3334 if (dst_page
->pageout
)
3335 dst_page
->busy
= TRUE
;
3337 if ( (cntrl_flags
& UPL_ENCRYPT
) ) {
3340 * We want to deny access to the target page
3341 * because its contents are about to be
3342 * encrypted and the user would be very
3343 * confused to see encrypted data instead
3345 * We also set "encrypted_cleaning" to allow
3346 * vm_pageout_scan() to demote that page
3347 * from "adjacent/clean-in-place" to
3348 * "target/clean-and-free" if it bumps into
3349 * this page during its scanning while we're
3350 * still processing this cluster.
3352 dst_page
->busy
= TRUE
;
3353 dst_page
->encrypted_cleaning
= TRUE
;
3355 if ( !(cntrl_flags
& UPL_CLEAN_IN_PLACE
) ) {
3357 * deny access to the target page
3358 * while it is being worked on
3360 if ((!dst_page
->pageout
) && ( !VM_PAGE_WIRED(dst_page
))) {
3361 dst_page
->busy
= TRUE
;
3362 dst_page
->pageout
= TRUE
;
3364 dwp
->dw_mask
|= DW_vm_page_wire
;
3368 if ((cntrl_flags
& UPL_WILL_MODIFY
) && object
->copy
!= last_copy_object
) {
3370 * Honor copy-on-write obligations
3372 * The copy object has changed since we
3373 * last synchronized for copy-on-write.
3374 * Another copy object might have been
3375 * inserted while we released the object's
3376 * lock. Since someone could have seen the
3377 * original contents of the remaining pages
3378 * through that new object, we have to
3379 * synchronize with it again for the remaining
3380 * pages only. The previous pages are "busy"
3381 * so they can not be seen through the new
3382 * mapping. The new mapping will see our
3383 * upcoming changes for those previous pages,
3384 * but that's OK since they couldn't see what
3385 * was there before. It's just a race anyway
3386 * and there's no guarantee of consistency or
3387 * atomicity. We just don't want new mappings
3388 * to see both the *before* and *after* pages.
3390 if (object
->copy
!= VM_OBJECT_NULL
) {
3393 dst_offset
,/* current offset */
3394 xfer_size
, /* remaining size */
3397 FALSE
, /* should_return */
3398 MEMORY_OBJECT_COPY_SYNC
,
3401 #if DEVELOPMENT || DEBUG
3403 upl_cow_again_pages
+= xfer_size
>> PAGE_SHIFT
;
3407 * remember the copy object we synced with
3409 last_copy_object
= object
->copy
;
3411 dst_page
= vm_page_lookup(object
, dst_offset
);
3413 if (dst_page
!= VM_PAGE_NULL
) {
3415 if ((cntrl_flags
& UPL_RET_ONLY_ABSENT
)) {
3417 if ( !(dst_page
->absent
&& dst_page
->list_req_pending
) ) {
3419 * skip over pages already present in the cache
3422 user_page_list
[entry
].phys_addr
= 0;
3427 if ( !(dst_page
->list_req_pending
) ) {
3429 if (dst_page
->cleaning
) {
3431 * someone else is writing to the page... wait...
3433 PAGE_SLEEP(object
, dst_page
, THREAD_UNINT
);
3438 if (dst_page
->fictitious
&&
3439 dst_page
->phys_page
== vm_page_fictitious_addr
) {
3440 assert( !dst_page
->speculative
);
3442 * dump the fictitious page
3444 dst_page
->list_req_pending
= FALSE
;
3446 VM_PAGE_FREE(dst_page
);
3450 } else if (dst_page
->absent
) {
3452 * the default_pager case
3454 dst_page
->list_req_pending
= FALSE
;
3455 dst_page
->busy
= FALSE
;
3457 } else if (dst_page
->pageout
|| dst_page
->cleaning
) {
3459 * page was earmarked by vm_pageout_scan
3460 * to be cleaned and stolen... we're going
3461 * to take it back since we are not attempting
3462 * to read that page and we don't want to stall
3463 * waiting for it to be cleaned for 2 reasons...
3464 * 1 - no use paging it out and back in
3465 * 2 - if we stall, we may casue a deadlock in
3466 * the FS trying to acquire the its locks
3467 * on the VNOP_PAGEOUT path presuming that
3468 * those locks are already held on the read
3469 * path before trying to create this UPL
3471 * so undo all of the state that vm_pageout_scan
3474 dst_page
->busy
= FALSE
;
3476 vm_pageout_queue_steal(dst_page
, FALSE
);
3480 if (dst_page
== VM_PAGE_NULL
) {
3481 if (object
->private) {
3483 * This is a nasty wrinkle for users
3484 * of upl who encounter device or
3485 * private memory however, it is
3486 * unavoidable, only a fault can
3487 * resolve the actual backing
3488 * physical page by asking the
3492 user_page_list
[entry
].phys_addr
= 0;
3497 * need to allocate a page
3499 dst_page
= vm_page_grab();
3501 if (dst_page
== VM_PAGE_NULL
) {
3502 if ( (cntrl_flags
& (UPL_RET_ONLY_ABSENT
| UPL_NOBLOCK
)) == (UPL_RET_ONLY_ABSENT
| UPL_NOBLOCK
)) {
3504 * we don't want to stall waiting for pages to come onto the free list
3505 * while we're already holding absent pages in this UPL
3506 * the caller will deal with the empty slots
3509 user_page_list
[entry
].phys_addr
= 0;
3514 * no pages available... wait
3515 * then try again for the same
3518 vm_object_unlock(object
);
3520 vm_object_lock(object
);
3524 vm_page_insert(dst_page
, object
, dst_offset
);
3526 dst_page
->absent
= TRUE
;
3527 dst_page
->busy
= FALSE
;
3529 if (cntrl_flags
& UPL_RET_ONLY_ABSENT
) {
3531 * if UPL_RET_ONLY_ABSENT was specified,
3532 * than we're definitely setting up a
3533 * upl for a clustered read/pagein
3534 * operation... mark the pages as clustered
3535 * so upl_commit_range can put them on the
3538 dst_page
->clustered
= TRUE
;
3541 if (dst_page
->fictitious
) {
3542 panic("need corner case for fictitious page");
3544 if (dst_page
->busy
) {
3546 * someone else is playing with the
3547 * page. We will have to wait.
3549 PAGE_SLEEP(object
, dst_page
, THREAD_UNINT
);
3556 if (cntrl_flags
& UPL_ENCRYPT
) {
3558 * The page is going to be encrypted when we
3559 * get it from the pager, so mark it so.
3561 dst_page
->encrypted
= TRUE
;
3564 * Otherwise, the page will not contain
3567 dst_page
->encrypted
= FALSE
;
3569 dst_page
->overwriting
= TRUE
;
3571 if (dst_page
->pmapped
) {
3572 if ( !(cntrl_flags
& UPL_FILE_IO
))
3574 * eliminate all mappings from the
3575 * original object and its prodigy
3577 refmod_state
= pmap_disconnect(dst_page
->phys_page
);
3579 refmod_state
= pmap_get_refmod(dst_page
->phys_page
);
3583 hw_dirty
= refmod_state
& VM_MEM_MODIFIED
;
3584 dirty
= hw_dirty
? TRUE
: dst_page
->dirty
;
3586 if (cntrl_flags
& UPL_SET_LITE
) {
3587 unsigned int pg_num
;
3589 pg_num
= (unsigned int) ((dst_offset
-offset
)/PAGE_SIZE
);
3590 assert(pg_num
== (dst_offset
-offset
)/PAGE_SIZE
);
3591 lite_list
[pg_num
>>5] |= 1 << (pg_num
& 31);
3594 pmap_clear_modify(dst_page
->phys_page
);
3597 * Mark original page as cleaning
3600 dst_page
->cleaning
= TRUE
;
3601 dst_page
->precious
= FALSE
;
3604 * use pageclean setup, it is more
3605 * convenient even for the pageout
3608 vm_object_lock(upl
->map_object
);
3609 vm_pageclean_setup(dst_page
, alias_page
, upl
->map_object
, size
- xfer_size
);
3610 vm_object_unlock(upl
->map_object
);
3612 alias_page
->absent
= FALSE
;
3616 if (cntrl_flags
& UPL_CLEAN_IN_PLACE
) {
3618 * clean in place for read implies
3619 * that a write will be done on all
3620 * the pages that are dirty before
3621 * a upl commit is done. The caller
3622 * is obligated to preserve the
3623 * contents of all pages marked dirty
3625 upl
->flags
|= UPL_CLEAR_DIRTY
;
3627 dst_page
->dirty
= dirty
;
3630 dst_page
->precious
= TRUE
;
3632 if ( !VM_PAGE_WIRED(dst_page
)) {
3634 * deny access to the target page while
3635 * it is being worked on
3637 dst_page
->busy
= TRUE
;
3639 dwp
->dw_mask
|= DW_vm_page_wire
;
3642 * We might be about to satisfy a fault which has been
3643 * requested. So no need for the "restart" bit.
3645 dst_page
->restart
= FALSE
;
3646 if (!dst_page
->absent
&& !(cntrl_flags
& UPL_WILL_MODIFY
)) {
3648 * expect the page to be used
3650 dwp
->dw_mask
|= DW_set_reference
;
3652 dst_page
->precious
= (cntrl_flags
& UPL_PRECIOUS
) ? TRUE
: FALSE
;
3654 if (dst_page
->phys_page
> upl
->highest_page
)
3655 upl
->highest_page
= dst_page
->phys_page
;
3656 if (user_page_list
) {
3657 user_page_list
[entry
].phys_addr
= dst_page
->phys_page
;
3658 user_page_list
[entry
].pageout
= dst_page
->pageout
;
3659 user_page_list
[entry
].absent
= dst_page
->absent
;
3660 user_page_list
[entry
].dirty
= dst_page
->dirty
;
3661 user_page_list
[entry
].precious
= dst_page
->precious
;
3662 user_page_list
[entry
].device
= FALSE
;
3663 if (dst_page
->clustered
== TRUE
)
3664 user_page_list
[entry
].speculative
= dst_page
->speculative
;
3666 user_page_list
[entry
].speculative
= FALSE
;
3667 user_page_list
[entry
].cs_validated
= dst_page
->cs_validated
;
3668 user_page_list
[entry
].cs_tainted
= dst_page
->cs_tainted
;
3671 * if UPL_RET_ONLY_ABSENT is set, then
3672 * we are working with a fresh page and we've
3673 * just set the clustered flag on it to
3674 * indicate that it was drug in as part of a
3675 * speculative cluster... so leave it alone
3677 if ( !(cntrl_flags
& UPL_RET_ONLY_ABSENT
)) {
3679 * someone is explicitly grabbing this page...
3680 * update clustered and speculative state
3683 VM_PAGE_CONSUME_CLUSTERED(dst_page
);
3687 if (dwp
->dw_mask
& DW_vm_page_activate
)
3688 VM_STAT_INCR(reactivations
);
3690 if (dst_page
->busy
== FALSE
) {
3692 * dw_do_work may need to drop the object lock
3693 * if it does, we need the pages it's looking at to
3694 * be held stable via the busy bit.
3696 dst_page
->busy
= TRUE
;
3697 dwp
->dw_mask
|= (DW_clear_busy
| DW_PAGE_WAKEUP
);
3699 dwp
->dw_m
= dst_page
;
3703 if (dw_count
>= DELAYED_WORK_LIMIT
) {
3704 dw_do_work(object
, &dw_array
[0], dw_count
);
3711 dst_offset
+= PAGE_SIZE_64
;
3712 xfer_size
-= PAGE_SIZE
;
3715 dw_do_work(object
, &dw_array
[0], dw_count
);
3717 if (alias_page
!= NULL
) {
3718 VM_PAGE_FREE(alias_page
);
3721 if (page_list_count
!= NULL
) {
3722 if (upl
->flags
& UPL_INTERNAL
)
3723 *page_list_count
= 0;
3724 else if (*page_list_count
> entry
)
3725 *page_list_count
= entry
;
3730 vm_object_unlock(object
);
3732 return KERN_SUCCESS
;
3735 /* JMM - Backward compatability for now */
3737 vm_fault_list_request( /* forward */
3738 memory_object_control_t control
,
3739 vm_object_offset_t offset
,
3742 upl_page_info_t
**user_page_list_ptr
,
3743 unsigned int page_list_count
,
3746 vm_fault_list_request(
3747 memory_object_control_t control
,
3748 vm_object_offset_t offset
,
3751 upl_page_info_t
**user_page_list_ptr
,
3752 unsigned int page_list_count
,
3755 unsigned int local_list_count
;
3756 upl_page_info_t
*user_page_list
;
3759 if((cntrl_flags
& UPL_VECTOR
)==UPL_VECTOR
)
3760 return KERN_INVALID_ARGUMENT
;
3762 if (user_page_list_ptr
!= NULL
) {
3763 local_list_count
= page_list_count
;
3764 user_page_list
= *user_page_list_ptr
;
3766 local_list_count
= 0;
3767 user_page_list
= NULL
;
3769 kr
= memory_object_upl_request(control
,
3777 if(kr
!= KERN_SUCCESS
)
3780 if ((user_page_list_ptr
!= NULL
) && (cntrl_flags
& UPL_INTERNAL
)) {
3781 *user_page_list_ptr
= UPL_GET_INTERNAL_PAGE_LIST(*upl_ptr
);
3784 return KERN_SUCCESS
;
3790 * Routine: vm_object_super_upl_request
3792 * Cause the population of a portion of a vm_object
3793 * in much the same way as memory_object_upl_request.
3794 * Depending on the nature of the request, the pages
3795 * returned may be contain valid data or be uninitialized.
3796 * However, the region may be expanded up to the super
3797 * cluster size provided.
3800 __private_extern__ kern_return_t
3801 vm_object_super_upl_request(
3803 vm_object_offset_t offset
,
3805 upl_size_t super_cluster
,
3807 upl_page_info_t
*user_page_list
,
3808 unsigned int *page_list_count
,
3811 if (object
->paging_offset
> offset
|| ((cntrl_flags
& UPL_VECTOR
)==UPL_VECTOR
))
3812 return KERN_FAILURE
;
3814 assert(object
->paging_in_progress
);
3815 offset
= offset
- object
->paging_offset
;
3817 if (super_cluster
> size
) {
3819 vm_object_offset_t base_offset
;
3820 upl_size_t super_size
;
3821 vm_object_size_t super_size_64
;
3823 base_offset
= (offset
& ~((vm_object_offset_t
) super_cluster
- 1));
3824 super_size
= (offset
+ size
) > (base_offset
+ super_cluster
) ? super_cluster
<<1 : super_cluster
;
3825 super_size_64
= ((base_offset
+ super_size
) > object
->size
) ? (object
->size
- base_offset
) : super_size
;
3826 super_size
= (upl_size_t
) super_size_64
;
3827 assert(super_size
== super_size_64
);
3829 if (offset
> (base_offset
+ super_size
)) {
3830 panic("vm_object_super_upl_request: Missed target pageout"
3831 " %#llx,%#llx, %#x, %#x, %#x, %#llx\n",
3832 offset
, base_offset
, super_size
, super_cluster
,
3833 size
, object
->paging_offset
);
3836 * apparently there is a case where the vm requests a
3837 * page to be written out who's offset is beyond the
3840 if ((offset
+ size
) > (base_offset
+ super_size
)) {
3841 super_size_64
= (offset
+ size
) - base_offset
;
3842 super_size
= (upl_size_t
) super_size_64
;
3843 assert(super_size
== super_size_64
);
3846 offset
= base_offset
;
3849 return vm_object_upl_request(object
, offset
, size
, upl
, user_page_list
, page_list_count
, cntrl_flags
);
3856 vm_map_address_t offset
,
3857 upl_size_t
*upl_size
,
3859 upl_page_info_array_t page_list
,
3860 unsigned int *count
,
3863 vm_map_entry_t entry
;
3865 int force_data_sync
;
3867 vm_object_t local_object
;
3868 vm_map_offset_t local_offset
;
3869 vm_map_offset_t local_start
;
3872 caller_flags
= *flags
;
3874 if (caller_flags
& ~UPL_VALID_FLAGS
) {
3876 * For forward compatibility's sake,
3877 * reject any unknown flag.
3879 return KERN_INVALID_VALUE
;
3881 force_data_sync
= (caller_flags
& UPL_FORCE_DATA_SYNC
);
3882 sync_cow_data
= !(caller_flags
& UPL_COPYOUT_FROM
);
3885 return KERN_INVALID_ARGUMENT
;
3888 vm_map_lock_read(map
);
3890 if (vm_map_lookup_entry(map
, offset
, &entry
)) {
3892 if ((entry
->vme_end
- offset
) < *upl_size
) {
3893 *upl_size
= (upl_size_t
) (entry
->vme_end
- offset
);
3894 assert(*upl_size
== entry
->vme_end
- offset
);
3897 if (caller_flags
& UPL_QUERY_OBJECT_TYPE
) {
3900 if ( !entry
->is_sub_map
&& entry
->object
.vm_object
!= VM_OBJECT_NULL
) {
3901 if (entry
->object
.vm_object
->private)
3902 *flags
= UPL_DEV_MEMORY
;
3904 if (entry
->object
.vm_object
->phys_contiguous
)
3905 *flags
|= UPL_PHYS_CONTIG
;
3907 vm_map_unlock_read(map
);
3909 return KERN_SUCCESS
;
3911 if (entry
->object
.vm_object
== VM_OBJECT_NULL
|| !entry
->object
.vm_object
->phys_contiguous
) {
3912 if ((*upl_size
/PAGE_SIZE
) > MAX_UPL_SIZE
)
3913 *upl_size
= MAX_UPL_SIZE
* PAGE_SIZE
;
3916 * Create an object if necessary.
3918 if (entry
->object
.vm_object
== VM_OBJECT_NULL
) {
3920 if (vm_map_lock_read_to_write(map
))
3921 goto REDISCOVER_ENTRY
;
3923 entry
->object
.vm_object
= vm_object_allocate((vm_size_t
)(entry
->vme_end
- entry
->vme_start
));
3926 vm_map_lock_write_to_read(map
);
3928 if (!(caller_flags
& UPL_COPYOUT_FROM
)) {
3929 if (!(entry
->protection
& VM_PROT_WRITE
)) {
3930 vm_map_unlock_read(map
);
3931 return KERN_PROTECTION_FAILURE
;
3933 if (entry
->needs_copy
) {
3935 * Honor copy-on-write for COPY_SYMMETRIC
3940 vm_object_offset_t new_offset
;
3943 vm_map_version_t version
;
3948 if (vm_map_lookup_locked(&local_map
,
3949 offset
, VM_PROT_WRITE
,
3950 OBJECT_LOCK_EXCLUSIVE
,
3952 &new_offset
, &prot
, &wired
,
3954 &real_map
) != KERN_SUCCESS
) {
3955 vm_map_unlock_read(local_map
);
3956 return KERN_FAILURE
;
3958 if (real_map
!= map
)
3959 vm_map_unlock(real_map
);
3960 vm_map_unlock_read(local_map
);
3962 vm_object_unlock(object
);
3964 goto REDISCOVER_ENTRY
;
3967 if (entry
->is_sub_map
) {
3970 submap
= entry
->object
.sub_map
;
3971 local_start
= entry
->vme_start
;
3972 local_offset
= entry
->offset
;
3974 vm_map_reference(submap
);
3975 vm_map_unlock_read(map
);
3977 ret
= vm_map_create_upl(submap
,
3978 local_offset
+ (offset
- local_start
),
3979 upl_size
, upl
, page_list
, count
, flags
);
3980 vm_map_deallocate(submap
);
3984 if (sync_cow_data
) {
3985 if (entry
->object
.vm_object
->shadow
|| entry
->object
.vm_object
->copy
) {
3986 local_object
= entry
->object
.vm_object
;
3987 local_start
= entry
->vme_start
;
3988 local_offset
= entry
->offset
;
3990 vm_object_reference(local_object
);
3991 vm_map_unlock_read(map
);
3993 if (local_object
->shadow
&& local_object
->copy
) {
3994 vm_object_lock_request(
3995 local_object
->shadow
,
3996 (vm_object_offset_t
)
3997 ((offset
- local_start
) +
3999 local_object
->shadow_offset
,
4001 MEMORY_OBJECT_DATA_SYNC
,
4004 sync_cow_data
= FALSE
;
4005 vm_object_deallocate(local_object
);
4007 goto REDISCOVER_ENTRY
;
4010 if (force_data_sync
) {
4011 local_object
= entry
->object
.vm_object
;
4012 local_start
= entry
->vme_start
;
4013 local_offset
= entry
->offset
;
4015 vm_object_reference(local_object
);
4016 vm_map_unlock_read(map
);
4018 vm_object_lock_request(
4020 (vm_object_offset_t
)
4021 ((offset
- local_start
) + local_offset
),
4022 (vm_object_size_t
)*upl_size
, FALSE
,
4023 MEMORY_OBJECT_DATA_SYNC
,
4026 force_data_sync
= FALSE
;
4027 vm_object_deallocate(local_object
);
4029 goto REDISCOVER_ENTRY
;
4031 if (entry
->object
.vm_object
->private)
4032 *flags
= UPL_DEV_MEMORY
;
4036 if (entry
->object
.vm_object
->phys_contiguous
)
4037 *flags
|= UPL_PHYS_CONTIG
;
4039 local_object
= entry
->object
.vm_object
;
4040 local_offset
= entry
->offset
;
4041 local_start
= entry
->vme_start
;
4043 vm_object_reference(local_object
);
4044 vm_map_unlock_read(map
);
4046 ret
= vm_object_iopl_request(local_object
,
4047 (vm_object_offset_t
) ((offset
- local_start
) + local_offset
),
4053 vm_object_deallocate(local_object
);
4057 vm_map_unlock_read(map
);
4059 return(KERN_FAILURE
);
4063 * Internal routine to enter a UPL into a VM map.
4065 * JMM - This should just be doable through the standard
4066 * vm_map_enter() API.
4072 vm_map_offset_t
*dst_addr
)
4075 vm_object_offset_t offset
;
4076 vm_map_offset_t addr
;
4079 int isVectorUPL
= 0, curr_upl
=0;
4080 upl_t vector_upl
= NULL
;
4081 vm_offset_t vector_upl_dst_addr
= 0;
4082 vm_map_t vector_upl_submap
= NULL
;
4083 upl_offset_t subupl_offset
= 0;
4084 upl_size_t subupl_size
= 0;
4086 if (upl
== UPL_NULL
)
4087 return KERN_INVALID_ARGUMENT
;
4089 if((isVectorUPL
= vector_upl_is_valid(upl
))) {
4090 int mapped
=0,valid_upls
=0;
4093 upl_lock(vector_upl
);
4094 for(curr_upl
=0; curr_upl
< MAX_VECTOR_UPL_ELEMENTS
; curr_upl
++) {
4095 upl
= vector_upl_subupl_byindex(vector_upl
, curr_upl
);
4099 if (UPL_PAGE_LIST_MAPPED
& upl
->flags
)
4104 if(mapped
!= valid_upls
)
4105 panic("Only %d of the %d sub-upls within the Vector UPL are alread mapped\n", mapped
, valid_upls
);
4107 upl_unlock(vector_upl
);
4108 return KERN_FAILURE
;
4112 kr
= kmem_suballoc(map
, &vector_upl_dst_addr
, vector_upl
->size
, FALSE
, VM_FLAGS_ANYWHERE
, &vector_upl_submap
);
4113 if( kr
!= KERN_SUCCESS
)
4114 panic("Vector UPL submap allocation failed\n");
4115 map
= vector_upl_submap
;
4116 vector_upl_set_submap(vector_upl
, vector_upl_submap
, vector_upl_dst_addr
);
4122 process_upl_to_enter
:
4124 if(curr_upl
== MAX_VECTOR_UPL_ELEMENTS
) {
4125 *dst_addr
= vector_upl_dst_addr
;
4126 upl_unlock(vector_upl
);
4127 return KERN_SUCCESS
;
4129 upl
= vector_upl_subupl_byindex(vector_upl
, curr_upl
++ );
4131 goto process_upl_to_enter
;
4132 vector_upl_get_iostate(vector_upl
, upl
, &subupl_offset
, &subupl_size
);
4133 *dst_addr
= (vm_map_offset_t
)(vector_upl_dst_addr
+ (vm_map_offset_t
)subupl_offset
);
4137 * check to see if already mapped
4139 if (UPL_PAGE_LIST_MAPPED
& upl
->flags
) {
4141 return KERN_FAILURE
;
4144 if ((!(upl
->flags
& UPL_SHADOWED
)) && !((upl
->flags
& (UPL_DEVICE_MEMORY
| UPL_IO_WIRE
)) ||
4145 (upl
->map_object
->phys_contiguous
))) {
4147 vm_page_t alias_page
;
4148 vm_object_offset_t new_offset
;
4149 unsigned int pg_num
;
4150 wpl_array_t lite_list
;
4152 if (upl
->flags
& UPL_INTERNAL
) {
4153 lite_list
= (wpl_array_t
)
4154 ((((uintptr_t)upl
) + sizeof(struct upl
))
4155 + ((upl
->size
/PAGE_SIZE
) * sizeof(upl_page_info_t
)));
4157 lite_list
= (wpl_array_t
)(((uintptr_t)upl
) + sizeof(struct upl
));
4159 object
= upl
->map_object
;
4160 upl
->map_object
= vm_object_allocate(upl
->size
);
4162 vm_object_lock(upl
->map_object
);
4164 upl
->map_object
->shadow
= object
;
4165 upl
->map_object
->pageout
= TRUE
;
4166 upl
->map_object
->can_persist
= FALSE
;
4167 upl
->map_object
->copy_strategy
= MEMORY_OBJECT_COPY_NONE
;
4168 upl
->map_object
->shadow_offset
= upl
->offset
- object
->paging_offset
;
4169 upl
->map_object
->wimg_bits
= object
->wimg_bits
;
4170 offset
= upl
->map_object
->shadow_offset
;
4174 upl
->flags
|= UPL_SHADOWED
;
4177 pg_num
= (unsigned int) (new_offset
/ PAGE_SIZE
);
4178 assert(pg_num
== new_offset
/ PAGE_SIZE
);
4180 if (lite_list
[pg_num
>>5] & (1 << (pg_num
& 31))) {
4182 VM_PAGE_GRAB_FICTITIOUS(alias_page
);
4184 vm_object_lock(object
);
4186 m
= vm_page_lookup(object
, offset
);
4187 if (m
== VM_PAGE_NULL
) {
4188 panic("vm_upl_map: page missing\n");
4192 * Convert the fictitious page to a private
4193 * shadow of the real page.
4195 assert(alias_page
->fictitious
);
4196 alias_page
->fictitious
= FALSE
;
4197 alias_page
->private = TRUE
;
4198 alias_page
->pageout
= TRUE
;
4200 * since m is a page in the upl it must
4201 * already be wired or BUSY, so it's
4202 * safe to assign the underlying physical
4205 alias_page
->phys_page
= m
->phys_page
;
4207 vm_object_unlock(object
);
4209 vm_page_lockspin_queues();
4210 vm_page_wire(alias_page
);
4211 vm_page_unlock_queues();
4215 * The virtual page ("m") has to be wired in some way
4216 * here or its physical page ("m->phys_page") could
4217 * be recycled at any time.
4218 * Assuming this is enforced by the caller, we can't
4219 * get an encrypted page here. Since the encryption
4220 * key depends on the VM page's "pager" object and
4221 * the "paging_offset", we couldn't handle 2 pageable
4222 * VM pages (with different pagers and paging_offsets)
4223 * sharing the same physical page: we could end up
4224 * encrypting with one key (via one VM page) and
4225 * decrypting with another key (via the alias VM page).
4227 ASSERT_PAGE_DECRYPTED(m
);
4229 vm_page_insert(alias_page
, upl
->map_object
, new_offset
);
4231 assert(!alias_page
->wanted
);
4232 alias_page
->busy
= FALSE
;
4233 alias_page
->absent
= FALSE
;
4236 offset
+= PAGE_SIZE_64
;
4237 new_offset
+= PAGE_SIZE_64
;
4239 vm_object_unlock(upl
->map_object
);
4241 if ((upl
->flags
& (UPL_DEVICE_MEMORY
| UPL_IO_WIRE
)) || upl
->map_object
->phys_contiguous
)
4242 offset
= upl
->offset
- upl
->map_object
->paging_offset
;
4247 vm_object_reference(upl
->map_object
);
4252 * NEED A UPL_MAP ALIAS
4254 kr
= vm_map_enter(map
, dst_addr
, (vm_map_size_t
)size
, (vm_map_offset_t
) 0,
4255 VM_FLAGS_ANYWHERE
, upl
->map_object
, offset
, FALSE
,
4256 VM_PROT_DEFAULT
, VM_PROT_ALL
, VM_INHERIT_DEFAULT
);
4259 kr
= vm_map_enter(map
, dst_addr
, (vm_map_size_t
)size
, (vm_map_offset_t
) 0,
4260 VM_FLAGS_FIXED
, upl
->map_object
, offset
, FALSE
,
4261 VM_PROT_DEFAULT
, VM_PROT_ALL
, VM_INHERIT_DEFAULT
);
4263 panic("vm_map_enter failed for a Vector UPL\n");
4266 if (kr
!= KERN_SUCCESS
) {
4270 vm_object_lock(upl
->map_object
);
4272 for (addr
= *dst_addr
; size
> 0; size
-= PAGE_SIZE
, addr
+= PAGE_SIZE
) {
4273 m
= vm_page_lookup(upl
->map_object
, offset
);
4276 unsigned int cache_attr
;
4277 cache_attr
= ((unsigned int)m
->object
->wimg_bits
) & VM_WIMG_MASK
;
4281 /* CODE SIGNING ENFORCEMENT: page has been wpmapped,
4282 * but only in kernel space. If this was on a user map,
4283 * we'd have to set the wpmapped bit. */
4284 /* m->wpmapped = TRUE; */
4285 assert(map
==kernel_map
);
4287 PMAP_ENTER(map
->pmap
, addr
, m
, VM_PROT_ALL
, cache_attr
, TRUE
);
4289 offset
+= PAGE_SIZE_64
;
4291 vm_object_unlock(upl
->map_object
);
4294 * hold a reference for the mapping
4297 upl
->flags
|= UPL_PAGE_LIST_MAPPED
;
4298 upl
->kaddr
= (vm_offset_t
) *dst_addr
;
4299 assert(upl
->kaddr
== *dst_addr
);
4304 goto process_upl_to_enter
;
4306 return KERN_SUCCESS
;
4310 * Internal routine to remove a UPL mapping from a VM map.
4312 * XXX - This should just be doable through a standard
4313 * vm_map_remove() operation. Otherwise, implicit clean-up
4314 * of the target map won't be able to correctly remove
4315 * these (and release the reference on the UPL). Having
4316 * to do this means we can't map these into user-space
4326 int isVectorUPL
= 0, curr_upl
= 0;
4327 upl_t vector_upl
= NULL
;
4329 if (upl
== UPL_NULL
)
4330 return KERN_INVALID_ARGUMENT
;
4332 if((isVectorUPL
= vector_upl_is_valid(upl
))) {
4333 int unmapped
=0, valid_upls
=0;
4335 upl_lock(vector_upl
);
4336 for(curr_upl
=0; curr_upl
< MAX_VECTOR_UPL_ELEMENTS
; curr_upl
++) {
4337 upl
= vector_upl_subupl_byindex(vector_upl
, curr_upl
);
4341 if (!(UPL_PAGE_LIST_MAPPED
& upl
->flags
))
4346 if(unmapped
!= valid_upls
)
4347 panic("%d of the %d sub-upls within the Vector UPL is/are not mapped\n", unmapped
, valid_upls
);
4349 upl_unlock(vector_upl
);
4350 return KERN_FAILURE
;
4358 process_upl_to_remove
:
4360 if(curr_upl
== MAX_VECTOR_UPL_ELEMENTS
) {
4361 vm_map_t v_upl_submap
;
4362 vm_offset_t v_upl_submap_dst_addr
;
4363 vector_upl_get_submap(vector_upl
, &v_upl_submap
, &v_upl_submap_dst_addr
);
4365 vm_map_remove(map
, v_upl_submap_dst_addr
, v_upl_submap_dst_addr
+ vector_upl
->size
, VM_MAP_NO_FLAGS
);
4366 vm_map_deallocate(v_upl_submap
);
4367 upl_unlock(vector_upl
);
4368 return KERN_SUCCESS
;
4371 upl
= vector_upl_subupl_byindex(vector_upl
, curr_upl
++ );
4373 goto process_upl_to_remove
;
4376 if (upl
->flags
& UPL_PAGE_LIST_MAPPED
) {
4380 assert(upl
->ref_count
> 1);
4381 upl
->ref_count
--; /* removing mapping ref */
4383 upl
->flags
&= ~UPL_PAGE_LIST_MAPPED
;
4384 upl
->kaddr
= (vm_offset_t
) 0;
4390 vm_map_trunc_page(addr
),
4391 vm_map_round_page(addr
+ size
),
4394 return KERN_SUCCESS
;
4398 * If it's a Vectored UPL, we'll be removing the entire
4399 * submap anyways, so no need to remove individual UPL
4400 * element mappings from within the submap
4402 goto process_upl_to_remove
;
4407 return KERN_FAILURE
;
4417 boolean_t held_as_spin
= TRUE
;
4420 * pageout_scan takes the vm_page_lock_queues first
4421 * then tries for the object lock... to avoid what
4422 * is effectively a lock inversion, we'll go to the
4423 * trouble of taking them in that same order... otherwise
4424 * if this object contains the majority of the pages resident
4425 * in the UBC (or a small set of large objects actively being
4426 * worked on contain the majority of the pages), we could
4427 * cause the pageout_scan thread to 'starve' in its attempt
4428 * to find pages to move to the free queue, since it has to
4429 * successfully acquire the object lock of any candidate page
4430 * before it can steal/clean it.
4432 if (!vm_page_trylockspin_queues()) {
4433 vm_object_unlock(object
);
4435 vm_page_lockspin_queues();
4437 for (j
= 0; ; j
++) {
4438 if (!vm_object_lock_avoid(object
) &&
4439 _vm_object_lock_try(object
))
4441 vm_page_unlock_queues();
4443 vm_page_lockspin_queues();
4446 for (j
= 0; j
< dw_count
; j
++, dwp
++) {
4448 if (dwp
->dw_mask
& DW_vm_pageout_throttle_up
)
4449 vm_pageout_throttle_up(dwp
->dw_m
);
4451 if (dwp
->dw_mask
& DW_vm_page_wire
)
4452 vm_page_wire(dwp
->dw_m
);
4453 else if (dwp
->dw_mask
& DW_vm_page_unwire
) {
4456 queueit
= (dwp
->dw_mask
& DW_vm_page_free
) ? FALSE
: TRUE
;
4458 vm_page_unwire(dwp
->dw_m
, queueit
);
4460 if (dwp
->dw_mask
& DW_vm_page_free
) {
4461 if (held_as_spin
== TRUE
) {
4462 vm_page_lockconvert_queues();
4463 held_as_spin
= FALSE
;
4465 vm_page_free(dwp
->dw_m
);
4467 if (dwp
->dw_mask
& DW_vm_page_deactivate_internal
)
4468 vm_page_deactivate_internal(dwp
->dw_m
, FALSE
);
4469 else if (dwp
->dw_mask
& DW_vm_page_activate
)
4470 vm_page_activate(dwp
->dw_m
);
4471 else if (dwp
->dw_mask
& DW_vm_page_speculate
)
4472 vm_page_speculate(dwp
->dw_m
, TRUE
);
4473 else if (dwp
->dw_mask
& DW_vm_page_lru
)
4474 vm_page_lru(dwp
->dw_m
);
4476 if (dwp
->dw_mask
& DW_set_reference
)
4477 dwp
->dw_m
->reference
= TRUE
;
4478 else if (dwp
->dw_mask
& DW_clear_reference
)
4479 dwp
->dw_m
->reference
= FALSE
;
4481 if (dwp
->dw_mask
& DW_clear_busy
)
4482 dwp
->dw_m
->busy
= FALSE
;
4484 if (dwp
->dw_mask
& DW_PAGE_WAKEUP
)
4485 PAGE_WAKEUP(dwp
->dw_m
);
4488 vm_page_unlock_queues();
4496 upl_offset_t offset
,
4499 upl_page_info_t
*page_list
,
4500 mach_msg_type_number_t count
,
4503 upl_size_t xfer_size
, subupl_size
= size
;
4504 vm_object_t shadow_object
;
4506 vm_object_offset_t target_offset
;
4507 upl_offset_t subupl_offset
= offset
;
4509 wpl_array_t lite_list
;
4511 int clear_refmod
= 0;
4512 int pgpgout_count
= 0;
4513 struct dw dw_array
[DELAYED_WORK_LIMIT
];
4515 int dw_count
, isVectorUPL
= 0;
4516 upl_t vector_upl
= NULL
;
4520 if (upl
== UPL_NULL
)
4521 return KERN_INVALID_ARGUMENT
;
4526 if((isVectorUPL
= vector_upl_is_valid(upl
))) {
4528 upl_lock(vector_upl
);
4533 process_upl_to_commit
:
4537 offset
= subupl_offset
;
4539 upl_unlock(vector_upl
);
4540 return KERN_SUCCESS
;
4542 upl
= vector_upl_subupl_byoffset(vector_upl
, &offset
, &size
);
4544 upl_unlock(vector_upl
);
4545 return KERN_FAILURE
;
4547 page_list
= UPL_GET_INTERNAL_PAGE_LIST_SIMPLE(upl
);
4548 subupl_size
-= size
;
4549 subupl_offset
+= size
;
4553 if (upl
->upl_commit_index
< UPL_DEBUG_COMMIT_RECORDS
) {
4554 (void) OSBacktrace(&upl
->upl_commit_records
[upl
->upl_commit_index
].c_retaddr
[0], UPL_DEBUG_STACK_FRAMES
);
4556 upl
->upl_commit_records
[upl
->upl_commit_index
].c_beg
= offset
;
4557 upl
->upl_commit_records
[upl
->upl_commit_index
].c_end
= (offset
+ size
);
4559 upl
->upl_commit_index
++;
4562 if (upl
->flags
& UPL_DEVICE_MEMORY
)
4564 else if ((offset
+ size
) <= upl
->size
)
4570 upl_unlock(vector_upl
);
4572 return KERN_FAILURE
;
4574 if (upl
->flags
& UPL_CLEAR_DIRTY
)
4575 flags
|= UPL_COMMIT_CLEAR_DIRTY
;
4577 if (upl
->flags
& UPL_INTERNAL
)
4578 lite_list
= (wpl_array_t
) ((((uintptr_t)upl
) + sizeof(struct upl
))
4579 + ((upl
->size
/PAGE_SIZE
) * sizeof(upl_page_info_t
)));
4581 lite_list
= (wpl_array_t
) (((uintptr_t)upl
) + sizeof(struct upl
));
4583 object
= upl
->map_object
;
4585 if (upl
->flags
& UPL_SHADOWED
) {
4586 vm_object_lock(object
);
4587 shadow_object
= object
->shadow
;
4589 shadow_object
= object
;
4591 entry
= offset
/PAGE_SIZE
;
4592 target_offset
= (vm_object_offset_t
)offset
;
4594 if (upl
->flags
& UPL_KERNEL_OBJECT
)
4595 vm_object_lock_shared(shadow_object
);
4597 vm_object_lock(shadow_object
);
4599 if (upl
->flags
& UPL_ACCESS_BLOCKED
) {
4600 assert(shadow_object
->blocked_access
);
4601 shadow_object
->blocked_access
= FALSE
;
4602 vm_object_wakeup(object
, VM_OBJECT_EVENT_UNBLOCKED
);
4605 if (shadow_object
->code_signed
) {
4608 * If the object is code-signed, do not let this UPL tell
4609 * us if the pages are valid or not. Let the pages be
4610 * validated by VM the normal way (when they get mapped or
4613 flags
&= ~UPL_COMMIT_CS_VALIDATED
;
4617 * No page list to get the code-signing info from !?
4619 flags
&= ~UPL_COMMIT_CS_VALIDATED
;
4633 if (upl
->flags
& UPL_LITE
) {
4634 unsigned int pg_num
;
4636 pg_num
= (unsigned int) (target_offset
/PAGE_SIZE
);
4637 assert(pg_num
== target_offset
/PAGE_SIZE
);
4639 if (lite_list
[pg_num
>>5] & (1 << (pg_num
& 31))) {
4640 lite_list
[pg_num
>>5] &= ~(1 << (pg_num
& 31));
4642 if (!(upl
->flags
& UPL_KERNEL_OBJECT
))
4643 m
= vm_page_lookup(shadow_object
, target_offset
+ (upl
->offset
- shadow_object
->paging_offset
));
4646 if (upl
->flags
& UPL_SHADOWED
) {
4647 if ((t
= vm_page_lookup(object
, target_offset
)) != VM_PAGE_NULL
) {
4653 if (m
== VM_PAGE_NULL
)
4654 m
= vm_page_lookup(shadow_object
, target_offset
+ object
->shadow_offset
);
4657 if ((upl
->flags
& UPL_KERNEL_OBJECT
) || m
== VM_PAGE_NULL
)
4658 goto commit_next_page
;
4660 if (flags
& UPL_COMMIT_CS_VALIDATED
) {
4663 * Set the code signing bits according to
4664 * what the UPL says they should be.
4666 m
->cs_validated
= page_list
[entry
].cs_validated
;
4667 m
->cs_tainted
= page_list
[entry
].cs_tainted
;
4669 if (upl
->flags
& UPL_IO_WIRE
) {
4671 dwp
->dw_mask
|= DW_vm_page_unwire
;
4674 page_list
[entry
].phys_addr
= 0;
4676 if (flags
& UPL_COMMIT_SET_DIRTY
)
4678 else if (flags
& UPL_COMMIT_CLEAR_DIRTY
) {
4681 if (! (flags
& UPL_COMMIT_CS_VALIDATED
) &&
4682 m
->cs_validated
&& !m
->cs_tainted
) {
4685 * This page is no longer dirty
4686 * but could have been modified,
4687 * so it will need to be
4690 m
->cs_validated
= FALSE
;
4691 #if DEVELOPMENT || DEBUG
4692 vm_cs_validated_resets
++;
4694 pmap_disconnect(m
->phys_page
);
4696 clear_refmod
|= VM_MEM_MODIFIED
;
4698 if (flags
& UPL_COMMIT_INACTIVATE
) {
4699 dwp
->dw_mask
|= DW_vm_page_deactivate_internal
;
4700 clear_refmod
|= VM_MEM_REFERENCED
;
4702 if (upl
->flags
& UPL_ACCESS_BLOCKED
) {
4704 * We blocked access to the pages in this UPL.
4705 * Clear the "busy" bit and wake up any waiter
4708 dwp
->dw_mask
|= (DW_clear_busy
| DW_PAGE_WAKEUP
);
4711 if (flags
& UPL_COMMIT_FREE_ABSENT
)
4712 dwp
->dw_mask
|= DW_vm_page_free
;
4716 goto commit_next_page
;
4719 * make sure to clear the hardware
4720 * modify or reference bits before
4721 * releasing the BUSY bit on this page
4722 * otherwise we risk losing a legitimate
4725 if (flags
& UPL_COMMIT_CLEAR_DIRTY
) {
4728 if (! (flags
& UPL_COMMIT_CS_VALIDATED
) &&
4729 m
->cs_validated
&& !m
->cs_tainted
) {
4732 * This page is no longer dirty
4733 * but could have been modified,
4734 * so it will need to be
4737 m
->cs_validated
= FALSE
;
4738 #if DEVELOPMENT || DEBUG
4739 vm_cs_validated_resets
++;
4741 pmap_disconnect(m
->phys_page
);
4743 clear_refmod
|= VM_MEM_MODIFIED
;
4748 p
= &(page_list
[entry
]);
4750 if (p
->phys_addr
&& p
->pageout
&& !m
->pageout
) {
4754 dwp
->dw_mask
|= DW_vm_page_wire
;
4756 } else if (p
->phys_addr
&&
4757 !p
->pageout
&& m
->pageout
&&
4758 !m
->dump_cleaning
) {
4761 m
->overwriting
= FALSE
;
4763 dwp
->dw_mask
|= (DW_vm_page_unwire
| DW_clear_busy
| DW_PAGE_WAKEUP
);
4765 page_list
[entry
].phys_addr
= 0;
4767 m
->dump_cleaning
= FALSE
;
4770 dwp
->dw_mask
|= DW_vm_pageout_throttle_up
;
4773 m
->cleaning
= FALSE
;
4774 m
->encrypted_cleaning
= FALSE
;
4776 #if MACH_CLUSTER_STATS
4777 if (m
->wanted
) vm_pageout_target_collisions
++;
4781 if (! (flags
& UPL_COMMIT_CS_VALIDATED
) &&
4782 m
->cs_validated
&& !m
->cs_tainted
) {
4785 * This page is no longer dirty
4786 * but could have been modified,
4787 * so it will need to be
4790 m
->cs_validated
= FALSE
;
4791 #if DEVELOPMENT || DEBUG
4792 vm_cs_validated_resets
++;
4794 pmap_disconnect(m
->phys_page
);
4797 if ((flags
& UPL_COMMIT_SET_DIRTY
) ||
4798 (m
->pmapped
&& (pmap_disconnect(m
->phys_page
) & VM_MEM_MODIFIED
)))
4803 * page was re-dirtied after we started
4804 * the pageout... reactivate it since
4805 * we don't know whether the on-disk
4806 * copy matches what is now in memory
4808 dwp
->dw_mask
|= (DW_vm_page_unwire
| DW_clear_busy
| DW_PAGE_WAKEUP
);
4810 if (upl
->flags
& UPL_PAGEOUT
) {
4811 CLUSTER_STAT(vm_pageout_target_page_dirtied
++;)
4812 VM_STAT_INCR(reactivations
);
4813 DTRACE_VM2(pgrec
, int, 1, (uint64_t *), NULL
);
4817 * page has been successfully cleaned
4818 * go ahead and free it for other use
4821 if (m
->object
->internal
) {
4822 DTRACE_VM2(anonpgout
, int, 1, (uint64_t *), NULL
);
4824 DTRACE_VM2(fspgout
, int, 1, (uint64_t *), NULL
);
4826 dwp
->dw_mask
|= DW_vm_page_free
;
4828 if (upl
->flags
& UPL_PAGEOUT
) {
4829 CLUSTER_STAT(vm_pageout_target_page_freed
++;)
4831 if (page_list
[entry
].dirty
) {
4832 VM_STAT_INCR(pageouts
);
4833 DTRACE_VM2(pgout
, int, 1, (uint64_t *), NULL
);
4838 goto commit_next_page
;
4840 #if MACH_CLUSTER_STATS
4842 m
->dirty
= pmap_is_modified(m
->phys_page
);
4844 if (m
->dirty
) vm_pageout_cluster_dirtied
++;
4845 else vm_pageout_cluster_cleaned
++;
4846 if (m
->wanted
) vm_pageout_cluster_collisions
++;
4850 if (! (flags
& UPL_COMMIT_CS_VALIDATED
) &&
4851 m
->cs_validated
&& !m
->cs_tainted
) {
4854 * This page is no longer dirty
4855 * but could have been modified,
4856 * so it will need to be
4859 m
->cs_validated
= FALSE
;
4860 #if DEVELOPMENT || DEBUG
4861 vm_cs_validated_resets
++;
4863 pmap_disconnect(m
->phys_page
);
4866 if ((m
->busy
) && (m
->cleaning
)) {
4868 * the request_page_list case
4871 m
->overwriting
= FALSE
;
4873 dwp
->dw_mask
|= DW_clear_busy
;
4875 } else if (m
->overwriting
) {
4877 * alternate request page list, write to
4878 * page_list case. Occurs when the original
4879 * page was wired at the time of the list
4882 assert(VM_PAGE_WIRED(m
));
4883 m
->overwriting
= FALSE
;
4885 dwp
->dw_mask
|= DW_vm_page_unwire
; /* reactivates */
4887 m
->cleaning
= FALSE
;
4888 m
->encrypted_cleaning
= FALSE
;
4891 * It is a part of the semantic of COPYOUT_FROM
4892 * UPLs that a commit implies cache sync
4893 * between the vm page and the backing store
4894 * this can be used to strip the precious bit
4897 if ((upl
->flags
& UPL_PAGE_SYNC_DONE
) || (flags
& UPL_COMMIT_CLEAR_PRECIOUS
))
4898 m
->precious
= FALSE
;
4900 if (flags
& UPL_COMMIT_SET_DIRTY
)
4903 if ((flags
& UPL_COMMIT_INACTIVATE
) && !m
->clustered
&& !m
->speculative
) {
4904 dwp
->dw_mask
|= DW_vm_page_deactivate_internal
;
4905 clear_refmod
|= VM_MEM_REFERENCED
;
4907 } else if (!m
->active
&& !m
->inactive
&& !m
->speculative
) {
4909 if (m
->clustered
|| (flags
& UPL_COMMIT_SPECULATE
))
4910 dwp
->dw_mask
|= DW_vm_page_speculate
;
4911 else if (m
->reference
)
4912 dwp
->dw_mask
|= DW_vm_page_activate
;
4914 dwp
->dw_mask
|= DW_vm_page_deactivate_internal
;
4915 clear_refmod
|= VM_MEM_REFERENCED
;
4918 if (upl
->flags
& UPL_ACCESS_BLOCKED
) {
4920 * We blocked access to the pages in this URL.
4921 * Clear the "busy" bit on this page before we
4922 * wake up any waiter.
4924 dwp
->dw_mask
|= DW_clear_busy
;
4927 * Wakeup any thread waiting for the page to be un-cleaning.
4929 dwp
->dw_mask
|= DW_PAGE_WAKEUP
;
4933 pmap_clear_refmod(m
->phys_page
, clear_refmod
);
4935 target_offset
+= PAGE_SIZE_64
;
4936 xfer_size
-= PAGE_SIZE
;
4940 if (dwp
->dw_mask
& ~(DW_clear_busy
| DW_PAGE_WAKEUP
)) {
4941 if (m
->busy
== FALSE
) {
4943 * dw_do_work may need to drop the object lock
4944 * if it does, we need the pages it's looking at to
4945 * be held stable via the busy bit.
4948 dwp
->dw_mask
|= (DW_clear_busy
| DW_PAGE_WAKEUP
);
4954 if (dw_count
>= DELAYED_WORK_LIMIT
) {
4955 dw_do_work(shadow_object
, &dw_array
[0], dw_count
);
4961 if (dwp
->dw_mask
& DW_clear_busy
)
4964 if (dwp
->dw_mask
& DW_PAGE_WAKEUP
)
4970 dw_do_work(shadow_object
, &dw_array
[0], dw_count
);
4974 if (upl
->flags
& UPL_DEVICE_MEMORY
) {
4976 } else if (upl
->flags
& UPL_LITE
) {
4980 pg_num
= upl
->size
/PAGE_SIZE
;
4981 pg_num
= (pg_num
+ 31) >> 5;
4984 for (i
= 0; i
< pg_num
; i
++) {
4985 if (lite_list
[i
] != 0) {
4991 if (queue_empty(&upl
->map_object
->memq
))
4994 if (occupied
== 0) {
4996 * If this UPL element belongs to a Vector UPL and is
4997 * empty, then this is the right function to deallocate
4998 * it. So go ahead set the *empty variable. The flag
4999 * UPL_COMMIT_NOTIFY_EMPTY, from the caller's point of view
5000 * should be considered relevant for the Vector UPL and not
5001 * the internal UPLs.
5003 if ((upl
->flags
& UPL_COMMIT_NOTIFY_EMPTY
) || isVectorUPL
)
5006 if (object
== shadow_object
&& !(upl
->flags
& UPL_KERNEL_OBJECT
)) {
5008 * this is not a paging object
5009 * so we need to drop the paging reference
5010 * that was taken when we created the UPL
5011 * against this object
5013 vm_object_activity_end(shadow_object
);
5016 * we dontated the paging reference to
5017 * the map object... vm_pageout_object_terminate
5018 * will drop this reference
5022 vm_object_unlock(shadow_object
);
5023 if (object
!= shadow_object
)
5024 vm_object_unlock(object
);
5030 * If we completed our operations on an UPL that is
5031 * part of a Vectored UPL and if empty is TRUE, then
5032 * we should go ahead and deallocate this UPL element.
5033 * Then we check if this was the last of the UPL elements
5034 * within that Vectored UPL. If so, set empty to TRUE
5035 * so that in ubc_upl_commit_range or ubc_upl_commit, we
5036 * can go ahead and deallocate the Vector UPL too.
5039 *empty
= vector_upl_set_subupl(vector_upl
, upl
, 0);
5040 upl_deallocate(upl
);
5042 goto process_upl_to_commit
;
5045 if (pgpgout_count
) {
5046 DTRACE_VM2(pgpgout
, int, pgpgout_count
, (uint64_t *), NULL
);
5049 return KERN_SUCCESS
;
5055 upl_offset_t offset
,
5060 upl_size_t xfer_size
, subupl_size
= size
;
5061 vm_object_t shadow_object
;
5063 vm_object_offset_t target_offset
;
5064 upl_offset_t subupl_offset
= offset
;
5066 wpl_array_t lite_list
;
5068 struct dw dw_array
[DELAYED_WORK_LIMIT
];
5070 int dw_count
, isVectorUPL
= 0;
5071 upl_t vector_upl
= NULL
;
5075 if (upl
== UPL_NULL
)
5076 return KERN_INVALID_ARGUMENT
;
5078 if ( (upl
->flags
& UPL_IO_WIRE
) && !(error
& UPL_ABORT_DUMP_PAGES
) )
5079 return upl_commit_range(upl
, offset
, size
, UPL_COMMIT_FREE_ABSENT
, NULL
, 0, empty
);
5081 if((isVectorUPL
= vector_upl_is_valid(upl
))) {
5083 upl_lock(vector_upl
);
5088 process_upl_to_abort
:
5091 offset
= subupl_offset
;
5093 upl_unlock(vector_upl
);
5094 return KERN_SUCCESS
;
5096 upl
= vector_upl_subupl_byoffset(vector_upl
, &offset
, &size
);
5098 upl_unlock(vector_upl
);
5099 return KERN_FAILURE
;
5101 subupl_size
-= size
;
5102 subupl_offset
+= size
;
5108 if (upl
->upl_commit_index
< UPL_DEBUG_COMMIT_RECORDS
) {
5109 (void) OSBacktrace(&upl
->upl_commit_records
[upl
->upl_commit_index
].c_retaddr
[0], UPL_DEBUG_STACK_FRAMES
);
5111 upl
->upl_commit_records
[upl
->upl_commit_index
].c_beg
= offset
;
5112 upl
->upl_commit_records
[upl
->upl_commit_index
].c_end
= (offset
+ size
);
5113 upl
->upl_commit_records
[upl
->upl_commit_index
].c_aborted
= 1;
5115 upl
->upl_commit_index
++;
5118 if (upl
->flags
& UPL_DEVICE_MEMORY
)
5120 else if ((offset
+ size
) <= upl
->size
)
5126 upl_unlock(vector_upl
);
5129 return KERN_FAILURE
;
5131 if (upl
->flags
& UPL_INTERNAL
) {
5132 lite_list
= (wpl_array_t
)
5133 ((((uintptr_t)upl
) + sizeof(struct upl
))
5134 + ((upl
->size
/PAGE_SIZE
) * sizeof(upl_page_info_t
)));
5136 lite_list
= (wpl_array_t
)
5137 (((uintptr_t)upl
) + sizeof(struct upl
));
5139 object
= upl
->map_object
;
5141 if (upl
->flags
& UPL_SHADOWED
) {
5142 vm_object_lock(object
);
5143 shadow_object
= object
->shadow
;
5145 shadow_object
= object
;
5147 entry
= offset
/PAGE_SIZE
;
5148 target_offset
= (vm_object_offset_t
)offset
;
5150 if (upl
->flags
& UPL_KERNEL_OBJECT
)
5151 vm_object_lock_shared(shadow_object
);
5153 vm_object_lock(shadow_object
);
5155 if (upl
->flags
& UPL_ACCESS_BLOCKED
) {
5156 assert(shadow_object
->blocked_access
);
5157 shadow_object
->blocked_access
= FALSE
;
5158 vm_object_wakeup(object
, VM_OBJECT_EVENT_UNBLOCKED
);
5164 if ((error
& UPL_ABORT_DUMP_PAGES
) && (upl
->flags
& UPL_KERNEL_OBJECT
))
5165 panic("upl_abort_range: kernel_object being DUMPED");
5174 if (upl
->flags
& UPL_LITE
) {
5175 unsigned int pg_num
;
5177 pg_num
= (unsigned int) (target_offset
/PAGE_SIZE
);
5178 assert(pg_num
== target_offset
/PAGE_SIZE
);
5181 if (lite_list
[pg_num
>>5] & (1 << (pg_num
& 31))) {
5182 lite_list
[pg_num
>>5] &= ~(1 << (pg_num
& 31));
5184 if ( !(upl
->flags
& UPL_KERNEL_OBJECT
))
5185 m
= vm_page_lookup(shadow_object
, target_offset
+
5186 (upl
->offset
- shadow_object
->paging_offset
));
5189 if (upl
->flags
& UPL_SHADOWED
) {
5190 if ((t
= vm_page_lookup(object
, target_offset
)) != VM_PAGE_NULL
) {
5195 if (m
== VM_PAGE_NULL
)
5196 m
= vm_page_lookup(shadow_object
, target_offset
+ object
->shadow_offset
);
5199 if ((upl
->flags
& UPL_KERNEL_OBJECT
))
5200 goto abort_next_page
;
5202 if (m
!= VM_PAGE_NULL
) {
5205 boolean_t must_free
= TRUE
;
5207 m
->clustered
= FALSE
;
5209 * COPYOUT = FALSE case
5210 * check for error conditions which must
5211 * be passed back to the pages customer
5213 if (error
& UPL_ABORT_RESTART
) {
5218 } else if (error
& UPL_ABORT_UNAVAILABLE
) {
5222 } else if (error
& UPL_ABORT_ERROR
) {
5232 * If the page was already encrypted,
5233 * we don't really need to decrypt it
5234 * now. It will get decrypted later,
5235 * on demand, as soon as someone needs
5236 * to access its contents.
5239 m
->cleaning
= FALSE
;
5240 m
->encrypted_cleaning
= FALSE
;
5241 m
->overwriting
= FALSE
;
5243 dwp
->dw_mask
|= (DW_clear_busy
| DW_PAGE_WAKEUP
);
5245 if (must_free
== TRUE
)
5246 dwp
->dw_mask
|= DW_vm_page_free
;
5248 dwp
->dw_mask
|= DW_vm_page_activate
;
5251 * Handle the trusted pager throttle.
5254 dwp
->dw_mask
|= DW_vm_pageout_throttle_up
;
5258 assert(m
->wire_count
== 1);
5261 dwp
->dw_mask
|= DW_vm_page_unwire
;
5263 m
->dump_cleaning
= FALSE
;
5264 m
->cleaning
= FALSE
;
5265 m
->encrypted_cleaning
= FALSE
;
5266 m
->overwriting
= FALSE
;
5268 vm_external_state_clr(m
->object
->existence_map
, m
->offset
);
5269 #endif /* MACH_PAGEMAP */
5270 if (error
& UPL_ABORT_DUMP_PAGES
) {
5271 pmap_disconnect(m
->phys_page
);
5273 dwp
->dw_mask
|= DW_vm_page_free
;
5275 if (error
& UPL_ABORT_REFERENCE
) {
5277 * we've been told to explictly
5278 * reference this page... for
5279 * file I/O, this is done by
5280 * implementing an LRU on the inactive q
5282 dwp
->dw_mask
|= DW_vm_page_lru
;
5284 dwp
->dw_mask
|= (DW_clear_busy
| DW_PAGE_WAKEUP
);
5289 target_offset
+= PAGE_SIZE_64
;
5290 xfer_size
-= PAGE_SIZE
;
5294 if (dwp
->dw_mask
& ~(DW_clear_busy
| DW_PAGE_WAKEUP
)) {
5295 if (m
->busy
== FALSE
) {
5297 * dw_do_work may need to drop the object lock
5298 * if it does, we need the pages it's looking at to
5299 * be held stable via the busy bit.
5302 dwp
->dw_mask
|= (DW_clear_busy
| DW_PAGE_WAKEUP
);
5308 if (dw_count
>= DELAYED_WORK_LIMIT
) {
5309 dw_do_work(shadow_object
, &dw_array
[0], dw_count
);
5315 if (dwp
->dw_mask
& DW_clear_busy
)
5318 if (dwp
->dw_mask
& DW_PAGE_WAKEUP
)
5324 dw_do_work(shadow_object
, &dw_array
[0], dw_count
);
5328 if (upl
->flags
& UPL_DEVICE_MEMORY
) {
5330 } else if (upl
->flags
& UPL_LITE
) {
5334 pg_num
= upl
->size
/PAGE_SIZE
;
5335 pg_num
= (pg_num
+ 31) >> 5;
5338 for (i
= 0; i
< pg_num
; i
++) {
5339 if (lite_list
[i
] != 0) {
5345 if (queue_empty(&upl
->map_object
->memq
))
5348 if (occupied
== 0) {
5350 * If this UPL element belongs to a Vector UPL and is
5351 * empty, then this is the right function to deallocate
5352 * it. So go ahead set the *empty variable. The flag
5353 * UPL_COMMIT_NOTIFY_EMPTY, from the caller's point of view
5354 * should be considered relevant for the Vector UPL and
5355 * not the internal UPLs.
5357 if ((upl
->flags
& UPL_COMMIT_NOTIFY_EMPTY
) || isVectorUPL
)
5360 if (object
== shadow_object
&& !(upl
->flags
& UPL_KERNEL_OBJECT
)) {
5362 * this is not a paging object
5363 * so we need to drop the paging reference
5364 * that was taken when we created the UPL
5365 * against this object
5367 vm_object_activity_end(shadow_object
);
5370 * we dontated the paging reference to
5371 * the map object... vm_pageout_object_terminate
5372 * will drop this reference
5376 vm_object_unlock(shadow_object
);
5377 if (object
!= shadow_object
)
5378 vm_object_unlock(object
);
5384 * If we completed our operations on an UPL that is
5385 * part of a Vectored UPL and if empty is TRUE, then
5386 * we should go ahead and deallocate this UPL element.
5387 * Then we check if this was the last of the UPL elements
5388 * within that Vectored UPL. If so, set empty to TRUE
5389 * so that in ubc_upl_abort_range or ubc_upl_abort, we
5390 * can go ahead and deallocate the Vector UPL too.
5392 if(*empty
== TRUE
) {
5393 *empty
= vector_upl_set_subupl(vector_upl
, upl
,0);
5394 upl_deallocate(upl
);
5396 goto process_upl_to_abort
;
5399 return KERN_SUCCESS
;
5410 return upl_abort_range(upl
, 0, upl
->size
, error
, &empty
);
5414 /* an option on commit should be wire */
5418 upl_page_info_t
*page_list
,
5419 mach_msg_type_number_t count
)
5423 return upl_commit_range(upl
, 0, upl
->size
, 0, page_list
, count
, &empty
);
5427 unsigned int vm_object_iopl_request_sleep_for_cleaning
= 0;
5430 vm_object_iopl_request(
5432 vm_object_offset_t offset
,
5435 upl_page_info_array_t user_page_list
,
5436 unsigned int *page_list_count
,
5440 vm_object_offset_t dst_offset
;
5441 upl_size_t xfer_size
;
5444 wpl_array_t lite_list
= NULL
;
5445 int no_zero_fill
= FALSE
;
5449 struct vm_object_fault_info fault_info
;
5450 struct dw dw_array
[DELAYED_WORK_LIMIT
];
5455 if (cntrl_flags
& ~UPL_VALID_FLAGS
) {
5457 * For forward compatibility's sake,
5458 * reject any unknown flag.
5460 return KERN_INVALID_VALUE
;
5462 if (vm_lopage_needed
== FALSE
)
5463 cntrl_flags
&= ~UPL_NEED_32BIT_ADDR
;
5465 if (cntrl_flags
& UPL_NEED_32BIT_ADDR
) {
5466 if ( (cntrl_flags
& (UPL_SET_IO_WIRE
| UPL_SET_LITE
)) != (UPL_SET_IO_WIRE
| UPL_SET_LITE
))
5467 return KERN_INVALID_VALUE
;
5469 if (object
->phys_contiguous
) {
5470 if ((offset
+ object
->shadow_offset
) >= (vm_object_offset_t
)max_valid_dma_address
)
5471 return KERN_INVALID_ADDRESS
;
5473 if (((offset
+ object
->shadow_offset
) + size
) >= (vm_object_offset_t
)max_valid_dma_address
)
5474 return KERN_INVALID_ADDRESS
;
5478 if (cntrl_flags
& UPL_ENCRYPT
) {
5481 * The paging path doesn't use this interface,
5482 * so we don't support the UPL_ENCRYPT flag
5483 * here. We won't encrypt the pages.
5485 assert(! (cntrl_flags
& UPL_ENCRYPT
));
5487 if (cntrl_flags
& UPL_NOZEROFILL
)
5488 no_zero_fill
= TRUE
;
5490 if (cntrl_flags
& UPL_COPYOUT_FROM
)
5491 prot
= VM_PROT_READ
;
5493 prot
= VM_PROT_READ
| VM_PROT_WRITE
;
5495 if (((size
/PAGE_SIZE
) > MAX_UPL_SIZE
) && !object
->phys_contiguous
)
5496 size
= MAX_UPL_SIZE
* PAGE_SIZE
;
5498 if (cntrl_flags
& UPL_SET_INTERNAL
) {
5499 if (page_list_count
!= NULL
)
5500 *page_list_count
= MAX_UPL_SIZE
;
5502 if (((cntrl_flags
& UPL_SET_INTERNAL
) && !(object
->phys_contiguous
)) &&
5503 ((page_list_count
!= NULL
) && (*page_list_count
!= 0) && *page_list_count
< (size
/page_size
)))
5504 return KERN_INVALID_ARGUMENT
;
5506 if ((!object
->internal
) && (object
->paging_offset
!= 0))
5507 panic("vm_object_iopl_request: external object with non-zero paging offset\n");
5510 if (object
->phys_contiguous
)
5515 if (cntrl_flags
& UPL_SET_INTERNAL
) {
5516 upl
= upl_create(UPL_CREATE_INTERNAL
| UPL_CREATE_LITE
, UPL_IO_WIRE
, psize
);
5518 user_page_list
= (upl_page_info_t
*) (((uintptr_t)upl
) + sizeof(struct upl
));
5519 lite_list
= (wpl_array_t
) (((uintptr_t)user_page_list
) +
5520 ((psize
/ PAGE_SIZE
) * sizeof(upl_page_info_t
)));
5522 user_page_list
= NULL
;
5526 upl
= upl_create(UPL_CREATE_LITE
, UPL_IO_WIRE
, psize
);
5528 lite_list
= (wpl_array_t
) (((uintptr_t)upl
) + sizeof(struct upl
));
5534 user_page_list
[0].device
= FALSE
;
5537 upl
->map_object
= object
;
5540 if (object
== kernel_object
&&
5541 !(cntrl_flags
& (UPL_NEED_32BIT_ADDR
| UPL_BLOCK_ACCESS
))) {
5542 upl
->flags
|= UPL_KERNEL_OBJECT
;
5544 vm_object_lock(object
);
5546 vm_object_lock_shared(object
);
5549 vm_object_lock(object
);
5550 vm_object_activity_begin(object
);
5553 * paging in progress also protects the paging_offset
5555 upl
->offset
= offset
+ object
->paging_offset
;
5557 if (cntrl_flags
& UPL_BLOCK_ACCESS
) {
5559 * The user requested that access to the pages in this URL
5560 * be blocked until the UPL is commited or aborted.
5562 upl
->flags
|= UPL_ACCESS_BLOCKED
;
5565 if (object
->phys_contiguous
) {
5567 queue_enter(&object
->uplq
, upl
, upl_t
, uplq
);
5568 #endif /* UPL_DEBUG */
5570 if (upl
->flags
& UPL_ACCESS_BLOCKED
) {
5571 assert(!object
->blocked_access
);
5572 object
->blocked_access
= TRUE
;
5575 vm_object_unlock(object
);
5578 * don't need any shadow mappings for this one
5579 * since it is already I/O memory
5581 upl
->flags
|= UPL_DEVICE_MEMORY
;
5583 upl
->highest_page
= (ppnum_t
) ((offset
+ object
->shadow_offset
+ size
- 1)>>PAGE_SHIFT
);
5585 if (user_page_list
) {
5586 user_page_list
[0].phys_addr
= (ppnum_t
) ((offset
+ object
->shadow_offset
)>>PAGE_SHIFT
);
5587 user_page_list
[0].device
= TRUE
;
5589 if (page_list_count
!= NULL
) {
5590 if (upl
->flags
& UPL_INTERNAL
)
5591 *page_list_count
= 0;
5593 *page_list_count
= 1;
5595 return KERN_SUCCESS
;
5597 if (object
!= kernel_object
) {
5599 * Protect user space from future COW operations
5601 object
->true_share
= TRUE
;
5603 if (object
->copy_strategy
== MEMORY_OBJECT_COPY_SYMMETRIC
)
5604 object
->copy_strategy
= MEMORY_OBJECT_COPY_DELAY
;
5608 queue_enter(&object
->uplq
, upl
, upl_t
, uplq
);
5609 #endif /* UPL_DEBUG */
5611 if (!(cntrl_flags
& UPL_COPYOUT_FROM
) &&
5612 object
->copy
!= VM_OBJECT_NULL
) {
5614 * Honor copy-on-write obligations
5616 * The caller is gathering these pages and
5617 * might modify their contents. We need to
5618 * make sure that the copy object has its own
5619 * private copies of these pages before we let
5620 * the caller modify them.
5622 * NOTE: someone else could map the original object
5623 * after we've done this copy-on-write here, and they
5624 * could then see an inconsistent picture of the memory
5625 * while it's being modified via the UPL. To prevent this,
5626 * we would have to block access to these pages until the
5627 * UPL is released. We could use the UPL_BLOCK_ACCESS
5628 * code path for that...
5630 vm_object_update(object
,
5635 FALSE
, /* should_return */
5636 MEMORY_OBJECT_COPY_SYNC
,
5638 #if DEVELOPMENT || DEBUG
5640 iopl_cow_pages
+= size
>> PAGE_SHIFT
;
5648 dst_offset
= offset
;
5650 fault_info
.behavior
= VM_BEHAVIOR_SEQUENTIAL
;
5651 fault_info
.user_tag
= 0;
5652 fault_info
.lo_offset
= offset
;
5653 fault_info
.hi_offset
= offset
+ xfer_size
;
5654 fault_info
.no_cache
= FALSE
;
5655 fault_info
.stealth
= FALSE
;
5656 fault_info
.mark_zf_absent
= TRUE
;
5662 vm_fault_return_t result
;
5663 unsigned int pg_num
;
5667 dst_page
= vm_page_lookup(object
, dst_offset
);
5671 * If the page is encrypted, we need to decrypt it,
5672 * so force a soft page fault.
5674 if (dst_page
== VM_PAGE_NULL
||
5676 dst_page
->encrypted
||
5678 dst_page
->restart
||
5680 dst_page
->fictitious
) {
5682 if (object
== kernel_object
)
5683 panic("vm_object_iopl_request: missing/bad page in kernel object\n");
5687 kern_return_t error_code
;
5690 if (cntrl_flags
& UPL_SET_INTERRUPTIBLE
)
5691 interruptible
= THREAD_ABORTSAFE
;
5693 interruptible
= THREAD_UNINT
;
5695 fault_info
.interruptible
= interruptible
;
5696 fault_info
.cluster_size
= xfer_size
;
5698 vm_object_paging_begin(object
);
5700 result
= vm_fault_page(object
, dst_offset
,
5701 prot
| VM_PROT_WRITE
, FALSE
,
5702 &prot
, &dst_page
, &top_page
,
5704 &error_code
, no_zero_fill
,
5705 FALSE
, &fault_info
);
5709 case VM_FAULT_SUCCESS
:
5711 PAGE_WAKEUP_DONE(dst_page
);
5713 * Release paging references and
5714 * top-level placeholder page, if any.
5716 if (top_page
!= VM_PAGE_NULL
) {
5717 vm_object_t local_object
;
5719 local_object
= top_page
->object
;
5721 if (top_page
->object
!= dst_page
->object
) {
5722 vm_object_lock(local_object
);
5723 VM_PAGE_FREE(top_page
);
5724 vm_object_paging_end(local_object
);
5725 vm_object_unlock(local_object
);
5727 VM_PAGE_FREE(top_page
);
5728 vm_object_paging_end(local_object
);
5731 vm_object_paging_end(object
);
5734 case VM_FAULT_RETRY
:
5735 vm_object_lock(object
);
5738 case VM_FAULT_FICTITIOUS_SHORTAGE
:
5739 vm_page_more_fictitious();
5741 vm_object_lock(object
);
5744 case VM_FAULT_MEMORY_SHORTAGE
:
5745 if (vm_page_wait(interruptible
)) {
5746 vm_object_lock(object
);
5751 case VM_FAULT_INTERRUPTED
:
5752 error_code
= MACH_SEND_INTERRUPTED
;
5753 case VM_FAULT_MEMORY_ERROR
:
5755 ret
= (error_code
? error_code
: KERN_MEMORY_ERROR
);
5757 vm_object_lock(object
);
5760 case VM_FAULT_SUCCESS_NO_VM_PAGE
:
5761 /* success but no page: fail */
5762 vm_object_paging_end(object
);
5763 vm_object_unlock(object
);
5767 panic("vm_object_iopl_request: unexpected error"
5768 " 0x%x from vm_fault_page()\n", result
);
5770 } while (result
!= VM_FAULT_SUCCESS
);
5774 if (upl
->flags
& UPL_KERNEL_OBJECT
)
5775 goto record_phys_addr
;
5777 if (dst_page
->cleaning
) {
5779 * Someone else is cleaning this page in place.as
5780 * In theory, we should be able to proceed and use this
5781 * page but they'll probably end up clearing the "busy"
5782 * bit on it in upl_commit_range() but they didn't set
5783 * it, so they would clear our "busy" bit and open
5784 * us to race conditions.
5785 * We'd better wait for the cleaning to complete and
5788 vm_object_iopl_request_sleep_for_cleaning
++;
5789 PAGE_SLEEP(object
, dst_page
, THREAD_UNINT
);
5792 if ( (cntrl_flags
& UPL_NEED_32BIT_ADDR
) &&
5793 dst_page
->phys_page
>= (max_valid_dma_address
>> PAGE_SHIFT
) ) {
5798 * support devices that can't DMA above 32 bits
5799 * by substituting pages from a pool of low address
5800 * memory for any pages we find above the 4G mark
5801 * can't substitute if the page is already wired because
5802 * we don't know whether that physical address has been
5803 * handed out to some other 64 bit capable DMA device to use
5805 if (VM_PAGE_WIRED(dst_page
)) {
5806 ret
= KERN_PROTECTION_FAILURE
;
5809 low_page
= vm_page_grablo();
5811 if (low_page
== VM_PAGE_NULL
) {
5812 ret
= KERN_RESOURCE_SHORTAGE
;
5816 * from here until the vm_page_replace completes
5817 * we musn't drop the object lock... we don't
5818 * want anyone refaulting this page in and using
5819 * it after we disconnect it... we want the fault
5820 * to find the new page being substituted.
5822 if (dst_page
->pmapped
)
5823 refmod
= pmap_disconnect(dst_page
->phys_page
);
5826 vm_page_copy(dst_page
, low_page
);
5828 low_page
->reference
= dst_page
->reference
;
5829 low_page
->dirty
= dst_page
->dirty
;
5831 if (refmod
& VM_MEM_REFERENCED
)
5832 low_page
->reference
= TRUE
;
5833 if (refmod
& VM_MEM_MODIFIED
)
5834 low_page
->dirty
= TRUE
;
5836 vm_page_replace(low_page
, object
, dst_offset
);
5838 dst_page
= low_page
;
5840 * vm_page_grablo returned the page marked
5841 * BUSY... we don't need a PAGE_WAKEUP_DONE
5842 * here, because we've never dropped the object lock
5844 dst_page
->busy
= FALSE
;
5846 dwp
->dw_mask
|= DW_vm_page_wire
;
5848 if (cntrl_flags
& UPL_BLOCK_ACCESS
) {
5850 * Mark the page "busy" to block any future page fault
5851 * on this page. We'll also remove the mapping
5852 * of all these pages before leaving this routine.
5854 assert(!dst_page
->fictitious
);
5855 dst_page
->busy
= TRUE
;
5858 * expect the page to be used
5859 * page queues lock must be held to set 'reference'
5861 dwp
->dw_mask
|= DW_set_reference
;
5863 if (!(cntrl_flags
& UPL_COPYOUT_FROM
))
5864 dst_page
->dirty
= TRUE
;
5866 pg_num
= (unsigned int) ((dst_offset
-offset
)/PAGE_SIZE
);
5867 assert(pg_num
== (dst_offset
-offset
)/PAGE_SIZE
);
5868 lite_list
[pg_num
>>5] |= 1 << (pg_num
& 31);
5870 if (dst_page
->phys_page
> upl
->highest_page
)
5871 upl
->highest_page
= dst_page
->phys_page
;
5873 if (user_page_list
) {
5874 user_page_list
[entry
].phys_addr
= dst_page
->phys_page
;
5875 user_page_list
[entry
].pageout
= dst_page
->pageout
;
5876 user_page_list
[entry
].absent
= dst_page
->absent
;
5877 user_page_list
[entry
].dirty
= dst_page
->dirty
;
5878 user_page_list
[entry
].precious
= dst_page
->precious
;
5879 user_page_list
[entry
].device
= FALSE
;
5880 if (dst_page
->clustered
== TRUE
)
5881 user_page_list
[entry
].speculative
= dst_page
->speculative
;
5883 user_page_list
[entry
].speculative
= FALSE
;
5884 user_page_list
[entry
].cs_validated
= dst_page
->cs_validated
;
5885 user_page_list
[entry
].cs_tainted
= dst_page
->cs_tainted
;
5887 if (object
!= kernel_object
) {
5889 * someone is explicitly grabbing this page...
5890 * update clustered and speculative state
5893 VM_PAGE_CONSUME_CLUSTERED(dst_page
);
5896 dst_offset
+= PAGE_SIZE_64
;
5897 xfer_size
-= PAGE_SIZE
;
5900 if (dst_page
->busy
== FALSE
) {
5902 * dw_do_work may need to drop the object lock
5903 * if it does, we need the pages it's looking at to
5904 * be held stable via the busy bit.
5906 dst_page
->busy
= TRUE
;
5907 dwp
->dw_mask
|= (DW_clear_busy
| DW_PAGE_WAKEUP
);
5909 dwp
->dw_m
= dst_page
;
5913 if (dw_count
>= DELAYED_WORK_LIMIT
) {
5914 dw_do_work(object
, &dw_array
[0], dw_count
);
5922 dw_do_work(object
, &dw_array
[0], dw_count
);
5924 if (page_list_count
!= NULL
) {
5925 if (upl
->flags
& UPL_INTERNAL
)
5926 *page_list_count
= 0;
5927 else if (*page_list_count
> entry
)
5928 *page_list_count
= entry
;
5930 vm_object_unlock(object
);
5932 if (cntrl_flags
& UPL_BLOCK_ACCESS
) {
5934 * We've marked all the pages "busy" so that future
5935 * page faults will block.
5936 * Now remove the mapping for these pages, so that they
5937 * can't be accessed without causing a page fault.
5939 vm_object_pmap_protect(object
, offset
, (vm_object_size_t
)size
,
5940 PMAP_NULL
, 0, VM_PROT_NONE
);
5941 assert(!object
->blocked_access
);
5942 object
->blocked_access
= TRUE
;
5944 return KERN_SUCCESS
;
5949 for (; offset
< dst_offset
; offset
+= PAGE_SIZE
) {
5950 boolean_t need_unwire
;
5952 dst_page
= vm_page_lookup(object
, offset
);
5954 if (dst_page
== VM_PAGE_NULL
)
5955 panic("vm_object_iopl_request: Wired pages missing. \n");
5958 * if we've already processed this page in an earlier
5959 * dw_do_work, we need to undo the wiring... we will
5960 * leave the dirty and reference bits on if they
5961 * were set, since we don't have a good way of knowing
5962 * what the previous state was and we won't get here
5963 * under any normal circumstances... we will always
5964 * clear BUSY and wakeup any waiters via vm_page_free
5965 * or PAGE_WAKEUP_DONE
5970 if (dw_array
[dw_index
].dw_m
== dst_page
) {
5972 * still in the deferred work list
5973 * which means we haven't yet called
5974 * vm_page_wire on this page
5976 need_unwire
= FALSE
;
5981 vm_page_lock_queues();
5983 if (need_unwire
== TRUE
) {
5986 queueit
= (dst_page
->absent
) ? FALSE
: TRUE
;
5988 vm_page_unwire(dst_page
, queueit
);
5990 if (dst_page
->absent
)
5991 vm_page_free(dst_page
);
5993 PAGE_WAKEUP_DONE(dst_page
);
5995 vm_page_unlock_queues();
5997 if (need_unwire
== TRUE
)
5998 VM_STAT_INCR(reactivations
);
6003 if (! (upl
->flags
& UPL_KERNEL_OBJECT
)) {
6004 vm_object_activity_end(object
);
6006 vm_object_unlock(object
);
6017 kern_return_t retval
;
6018 boolean_t upls_locked
;
6019 vm_object_t object1
, object2
;
6021 if (upl1
== UPL_NULL
|| upl2
== UPL_NULL
|| upl1
== upl2
|| ((upl1
->flags
& UPL_VECTOR
)==UPL_VECTOR
) || ((upl2
->flags
& UPL_VECTOR
)==UPL_VECTOR
)) {
6022 return KERN_INVALID_ARGUMENT
;
6025 upls_locked
= FALSE
;
6028 * Since we need to lock both UPLs at the same time,
6029 * avoid deadlocks by always taking locks in the same order.
6038 upls_locked
= TRUE
; /* the UPLs will need to be unlocked */
6040 object1
= upl1
->map_object
;
6041 object2
= upl2
->map_object
;
6043 if (upl1
->offset
!= 0 || upl2
->offset
!= 0 ||
6044 upl1
->size
!= upl2
->size
) {
6046 * We deal only with full objects, not subsets.
6047 * That's because we exchange the entire backing store info
6048 * for the objects: pager, resident pages, etc... We can't do
6051 retval
= KERN_INVALID_VALUE
;
6056 * Tranpose the VM objects' backing store.
6058 retval
= vm_object_transpose(object1
, object2
,
6059 (vm_object_size_t
) upl1
->size
);
6061 if (retval
== KERN_SUCCESS
) {
6063 * Make each UPL point to the correct VM object, i.e. the
6064 * object holding the pages that the UPL refers to...
6067 queue_remove(&object1
->uplq
, upl1
, upl_t
, uplq
);
6068 queue_remove(&object2
->uplq
, upl2
, upl_t
, uplq
);
6070 upl1
->map_object
= object2
;
6071 upl2
->map_object
= object1
;
6073 queue_enter(&object1
->uplq
, upl2
, upl_t
, uplq
);
6074 queue_enter(&object2
->uplq
, upl1
, upl_t
, uplq
);
6085 upls_locked
= FALSE
;
6094 * Rationale: the user might have some encrypted data on disk (via
6095 * FileVault or any other mechanism). That data is then decrypted in
6096 * memory, which is safe as long as the machine is secure. But that
6097 * decrypted data in memory could be paged out to disk by the default
6098 * pager. The data would then be stored on disk in clear (not encrypted)
6099 * and it could be accessed by anyone who gets physical access to the
6100 * disk (if the laptop or the disk gets stolen for example). This weakens
6101 * the security offered by FileVault.
6103 * Solution: the default pager will optionally request that all the
6104 * pages it gathers for pageout be encrypted, via the UPL interfaces,
6105 * before it sends this UPL to disk via the vnode_pageout() path.
6109 * To avoid disrupting the VM LRU algorithms, we want to keep the
6110 * clean-in-place mechanisms, which allow us to send some extra pages to
6111 * swap (clustering) without actually removing them from the user's
6112 * address space. We don't want the user to unknowingly access encrypted
6113 * data, so we have to actually remove the encrypted pages from the page
6114 * table. When the user accesses the data, the hardware will fail to
6115 * locate the virtual page in its page table and will trigger a page
6116 * fault. We can then decrypt the page and enter it in the page table
6117 * again. Whenever we allow the user to access the contents of a page,
6118 * we have to make sure it's not encrypted.
6124 * Reserve of virtual addresses in the kernel address space.
6125 * We need to map the physical pages in the kernel, so that we
6126 * can call the encryption/decryption routines with a kernel
6127 * virtual address. We keep this pool of pre-allocated kernel
6128 * virtual addresses so that we don't have to scan the kernel's
6129 * virtaul address space each time we need to encrypt or decrypt
6131 * It would be nice to be able to encrypt and decrypt in physical
6132 * mode but that might not always be more efficient...
6134 decl_simple_lock_data(,vm_paging_lock
)
6135 #define VM_PAGING_NUM_PAGES 64
6136 vm_map_offset_t vm_paging_base_address
= 0;
6137 boolean_t vm_paging_page_inuse
[VM_PAGING_NUM_PAGES
] = { FALSE
, };
6138 int vm_paging_max_index
= 0;
6139 int vm_paging_page_waiter
= 0;
6140 int vm_paging_page_waiter_total
= 0;
6141 unsigned long vm_paging_no_kernel_page
= 0;
6142 unsigned long vm_paging_objects_mapped
= 0;
6143 unsigned long vm_paging_pages_mapped
= 0;
6144 unsigned long vm_paging_objects_mapped_slow
= 0;
6145 unsigned long vm_paging_pages_mapped_slow
= 0;
6148 vm_paging_map_init(void)
6151 vm_map_offset_t page_map_offset
;
6152 vm_map_entry_t map_entry
;
6154 assert(vm_paging_base_address
== 0);
6157 * Initialize our pool of pre-allocated kernel
6158 * virtual addresses.
6160 page_map_offset
= 0;
6161 kr
= vm_map_find_space(kernel_map
,
6163 VM_PAGING_NUM_PAGES
* PAGE_SIZE
,
6167 if (kr
!= KERN_SUCCESS
) {
6168 panic("vm_paging_map_init: kernel_map full\n");
6170 map_entry
->object
.vm_object
= kernel_object
;
6171 map_entry
->offset
= page_map_offset
;
6172 vm_object_reference(kernel_object
);
6173 vm_map_unlock(kernel_map
);
6175 assert(vm_paging_base_address
== 0);
6176 vm_paging_base_address
= page_map_offset
;
6181 * vm_paging_map_object:
6182 * Maps part of a VM object's pages in the kernel
6183 * virtual address space, using the pre-allocated
6184 * kernel virtual addresses, if possible.
6186 * The VM object is locked. This lock will get
6187 * dropped and re-acquired though, so the caller
6188 * must make sure the VM object is kept alive
6189 * (by holding a VM map that has a reference
6190 * on it, for example, or taking an extra reference).
6191 * The page should also be kept busy to prevent
6192 * it from being reclaimed.
6195 vm_paging_map_object(
6196 vm_map_offset_t
*address
,
6199 vm_object_offset_t offset
,
6200 vm_map_size_t
*size
,
6201 vm_prot_t protection
,
6202 boolean_t can_unlock_object
)
6205 vm_map_offset_t page_map_offset
;
6206 vm_map_size_t map_size
;
6207 vm_object_offset_t object_offset
;
6211 if (page
!= VM_PAGE_NULL
&& *size
== PAGE_SIZE
) {
6214 * Use one of the pre-allocated kernel virtual addresses
6215 * and just enter the VM page in the kernel address space
6216 * at that virtual address.
6218 simple_lock(&vm_paging_lock
);
6221 * Try and find an available kernel virtual address
6222 * from our pre-allocated pool.
6224 page_map_offset
= 0;
6226 for (i
= 0; i
< VM_PAGING_NUM_PAGES
; i
++) {
6227 if (vm_paging_page_inuse
[i
] == FALSE
) {
6229 vm_paging_base_address
+
6234 if (page_map_offset
!= 0) {
6235 /* found a space to map our page ! */
6239 if (can_unlock_object
) {
6241 * If we can afford to unlock the VM object,
6242 * let's take the slow path now...
6247 * We can't afford to unlock the VM object, so
6248 * let's wait for a space to become available...
6250 vm_paging_page_waiter_total
++;
6251 vm_paging_page_waiter
++;
6252 thread_sleep_fast_usimple_lock(&vm_paging_page_waiter
,
6255 vm_paging_page_waiter
--;
6256 /* ... and try again */
6259 if (page_map_offset
!= 0) {
6261 * We found a kernel virtual address;
6262 * map the physical page to that virtual address.
6264 if (i
> vm_paging_max_index
) {
6265 vm_paging_max_index
= i
;
6267 vm_paging_page_inuse
[i
] = TRUE
;
6268 simple_unlock(&vm_paging_lock
);
6270 if (page
->pmapped
== FALSE
) {
6271 pmap_sync_page_data_phys(page
->phys_page
);
6273 page
->pmapped
= TRUE
;
6276 * Keep the VM object locked over the PMAP_ENTER
6277 * and the actual use of the page by the kernel,
6278 * or this pmap mapping might get undone by a
6279 * vm_object_pmap_protect() call...
6281 PMAP_ENTER(kernel_pmap
,
6285 ((int) page
->object
->wimg_bits
&
6288 vm_paging_objects_mapped
++;
6289 vm_paging_pages_mapped
++;
6290 *address
= page_map_offset
;
6292 /* all done and mapped, ready to use ! */
6293 return KERN_SUCCESS
;
6297 * We ran out of pre-allocated kernel virtual
6298 * addresses. Just map the page in the kernel
6299 * the slow and regular way.
6301 vm_paging_no_kernel_page
++;
6302 simple_unlock(&vm_paging_lock
);
6305 if (! can_unlock_object
) {
6306 return KERN_NOT_SUPPORTED
;
6309 object_offset
= vm_object_trunc_page(offset
);
6310 map_size
= vm_map_round_page(*size
);
6313 * Try and map the required range of the object
6317 vm_object_reference_locked(object
); /* for the map entry */
6318 vm_object_unlock(object
);
6320 kr
= vm_map_enter(kernel_map
,
6331 if (kr
!= KERN_SUCCESS
) {
6334 vm_object_deallocate(object
); /* for the map entry */
6335 vm_object_lock(object
);
6342 * Enter the mapped pages in the page table now.
6344 vm_object_lock(object
);
6346 * VM object must be kept locked from before PMAP_ENTER()
6347 * until after the kernel is done accessing the page(s).
6348 * Otherwise, the pmap mappings in the kernel could be
6349 * undone by a call to vm_object_pmap_protect().
6352 for (page_map_offset
= 0;
6354 map_size
-= PAGE_SIZE_64
, page_map_offset
+= PAGE_SIZE_64
) {
6355 unsigned int cache_attr
;
6357 page
= vm_page_lookup(object
, offset
+ page_map_offset
);
6358 if (page
== VM_PAGE_NULL
) {
6359 printf("vm_paging_map_object: no page !?");
6360 vm_object_unlock(object
);
6361 kr
= vm_map_remove(kernel_map
, *address
, *size
,
6363 assert(kr
== KERN_SUCCESS
);
6366 vm_object_lock(object
);
6367 return KERN_MEMORY_ERROR
;
6369 if (page
->pmapped
== FALSE
) {
6370 pmap_sync_page_data_phys(page
->phys_page
);
6372 page
->pmapped
= TRUE
;
6373 cache_attr
= ((unsigned int) object
->wimg_bits
) & VM_WIMG_MASK
;
6375 //assert(pmap_verify_free(page->phys_page));
6376 PMAP_ENTER(kernel_pmap
,
6377 *address
+ page_map_offset
,
6384 vm_paging_objects_mapped_slow
++;
6385 vm_paging_pages_mapped_slow
+= (unsigned long) (map_size
/ PAGE_SIZE_64
);
6387 return KERN_SUCCESS
;
6392 * vm_paging_unmap_object:
6393 * Unmaps part of a VM object's pages from the kernel
6394 * virtual address space.
6396 * The VM object is locked. This lock will get
6397 * dropped and re-acquired though.
6400 vm_paging_unmap_object(
6402 vm_map_offset_t start
,
6403 vm_map_offset_t end
)
6408 if ((vm_paging_base_address
== 0) ||
6409 (start
< vm_paging_base_address
) ||
6410 (end
> (vm_paging_base_address
6411 + (VM_PAGING_NUM_PAGES
* PAGE_SIZE
)))) {
6413 * We didn't use our pre-allocated pool of
6414 * kernel virtual address. Deallocate the
6417 if (object
!= VM_OBJECT_NULL
) {
6418 vm_object_unlock(object
);
6420 kr
= vm_map_remove(kernel_map
, start
, end
, VM_MAP_NO_FLAGS
);
6421 if (object
!= VM_OBJECT_NULL
) {
6422 vm_object_lock(object
);
6424 assert(kr
== KERN_SUCCESS
);
6427 * We used a kernel virtual address from our
6428 * pre-allocated pool. Put it back in the pool
6431 assert(end
- start
== PAGE_SIZE
);
6432 i
= (int) ((start
- vm_paging_base_address
) >> PAGE_SHIFT
);
6433 assert(i
>= 0 && i
< VM_PAGING_NUM_PAGES
);
6435 /* undo the pmap mapping */
6436 pmap_remove(kernel_pmap
, start
, end
);
6438 simple_lock(&vm_paging_lock
);
6439 vm_paging_page_inuse
[i
] = FALSE
;
6440 if (vm_paging_page_waiter
) {
6441 thread_wakeup(&vm_paging_page_waiter
);
6443 simple_unlock(&vm_paging_lock
);
6450 * "iv" is the "initial vector". Ideally, we want to
6451 * have a different one for each page we encrypt, so that
6452 * crackers can't find encryption patterns too easily.
6454 #define SWAP_CRYPT_AES_KEY_SIZE 128 /* XXX 192 and 256 don't work ! */
6455 boolean_t swap_crypt_ctx_initialized
= FALSE
;
6456 aes_32t swap_crypt_key
[8]; /* big enough for a 256 key */
6457 aes_ctx swap_crypt_ctx
;
6458 const unsigned char swap_crypt_null_iv
[AES_BLOCK_SIZE
] = {0xa, };
6461 boolean_t swap_crypt_ctx_tested
= FALSE
;
6462 unsigned char swap_crypt_test_page_ref
[4096] __attribute__((aligned(4096)));
6463 unsigned char swap_crypt_test_page_encrypt
[4096] __attribute__((aligned(4096)));
6464 unsigned char swap_crypt_test_page_decrypt
[4096] __attribute__((aligned(4096)));
6468 * Initialize the encryption context: key and key size.
6470 void swap_crypt_ctx_initialize(void); /* forward */
6472 swap_crypt_ctx_initialize(void)
6477 * No need for locking to protect swap_crypt_ctx_initialized
6478 * because the first use of encryption will come from the
6479 * pageout thread (we won't pagein before there's been a pageout)
6480 * and there's only one pageout thread.
6482 if (swap_crypt_ctx_initialized
== FALSE
) {
6484 i
< (sizeof (swap_crypt_key
) /
6485 sizeof (swap_crypt_key
[0]));
6487 swap_crypt_key
[i
] = random();
6489 aes_encrypt_key((const unsigned char *) swap_crypt_key
,
6490 SWAP_CRYPT_AES_KEY_SIZE
,
6491 &swap_crypt_ctx
.encrypt
);
6492 aes_decrypt_key((const unsigned char *) swap_crypt_key
,
6493 SWAP_CRYPT_AES_KEY_SIZE
,
6494 &swap_crypt_ctx
.decrypt
);
6495 swap_crypt_ctx_initialized
= TRUE
;
6500 * Validate the encryption algorithms.
6502 if (swap_crypt_ctx_tested
== FALSE
) {
6504 for (i
= 0; i
< 4096; i
++) {
6505 swap_crypt_test_page_ref
[i
] = (char) i
;
6508 aes_encrypt_cbc(swap_crypt_test_page_ref
,
6510 PAGE_SIZE
/ AES_BLOCK_SIZE
,
6511 swap_crypt_test_page_encrypt
,
6512 &swap_crypt_ctx
.encrypt
);
6514 aes_decrypt_cbc(swap_crypt_test_page_encrypt
,
6516 PAGE_SIZE
/ AES_BLOCK_SIZE
,
6517 swap_crypt_test_page_decrypt
,
6518 &swap_crypt_ctx
.decrypt
);
6519 /* compare result with original */
6520 for (i
= 0; i
< 4096; i
++) {
6521 if (swap_crypt_test_page_decrypt
[i
] !=
6522 swap_crypt_test_page_ref
[i
]) {
6523 panic("encryption test failed");
6528 aes_encrypt_cbc(swap_crypt_test_page_decrypt
,
6530 PAGE_SIZE
/ AES_BLOCK_SIZE
,
6531 swap_crypt_test_page_decrypt
,
6532 &swap_crypt_ctx
.encrypt
);
6533 /* decrypt in place */
6534 aes_decrypt_cbc(swap_crypt_test_page_decrypt
,
6536 PAGE_SIZE
/ AES_BLOCK_SIZE
,
6537 swap_crypt_test_page_decrypt
,
6538 &swap_crypt_ctx
.decrypt
);
6539 for (i
= 0; i
< 4096; i
++) {
6540 if (swap_crypt_test_page_decrypt
[i
] !=
6541 swap_crypt_test_page_ref
[i
]) {
6542 panic("in place encryption test failed");
6546 swap_crypt_ctx_tested
= TRUE
;
6554 * Encrypt the given page, for secure paging.
6555 * The page might already be mapped at kernel virtual
6556 * address "kernel_mapping_offset". Otherwise, we need
6560 * The page's object is locked, but this lock will be released
6562 * The page is busy and not accessible by users (not entered in any pmap).
6567 vm_map_offset_t kernel_mapping_offset
)
6570 vm_map_size_t kernel_mapping_size
;
6571 vm_offset_t kernel_vaddr
;
6573 unsigned char aes_iv
[AES_BLOCK_SIZE
];
6575 memory_object_t pager_object
;
6576 vm_object_offset_t paging_offset
;
6580 if (! vm_pages_encrypted
) {
6581 vm_pages_encrypted
= TRUE
;
6585 assert(page
->dirty
|| page
->precious
);
6587 if (page
->encrypted
) {
6589 * Already encrypted: no need to do it again.
6591 vm_page_encrypt_already_encrypted_counter
++;
6594 ASSERT_PAGE_DECRYPTED(page
);
6597 * Take a paging-in-progress reference to keep the object
6598 * alive even if we have to unlock it (in vm_paging_map_object()
6601 vm_object_paging_begin(page
->object
);
6603 if (kernel_mapping_offset
== 0) {
6605 * The page hasn't already been mapped in kernel space
6606 * by the caller. Map it now, so that we can access
6607 * its contents and encrypt them.
6609 kernel_mapping_size
= PAGE_SIZE
;
6610 kr
= vm_paging_map_object(&kernel_mapping_offset
,
6614 &kernel_mapping_size
,
6615 VM_PROT_READ
| VM_PROT_WRITE
,
6617 if (kr
!= KERN_SUCCESS
) {
6618 panic("vm_page_encrypt: "
6619 "could not map page in kernel: 0x%x\n",
6623 kernel_mapping_size
= 0;
6625 kernel_vaddr
= CAST_DOWN(vm_offset_t
, kernel_mapping_offset
);
6627 if (swap_crypt_ctx_initialized
== FALSE
) {
6628 swap_crypt_ctx_initialize();
6630 assert(swap_crypt_ctx_initialized
);
6633 * Prepare an "initial vector" for the encryption.
6634 * We use the "pager" and the "paging_offset" for that
6635 * page to obfuscate the encrypted data a bit more and
6636 * prevent crackers from finding patterns that they could
6637 * use to break the key.
6639 bzero(&encrypt_iv
.aes_iv
[0], sizeof (encrypt_iv
.aes_iv
));
6640 encrypt_iv
.vm
.pager_object
= page
->object
->pager
;
6641 encrypt_iv
.vm
.paging_offset
=
6642 page
->object
->paging_offset
+ page
->offset
;
6644 /* encrypt the "initial vector" */
6645 aes_encrypt_cbc((const unsigned char *) &encrypt_iv
.aes_iv
[0],
6648 &encrypt_iv
.aes_iv
[0],
6649 &swap_crypt_ctx
.encrypt
);
6654 aes_encrypt_cbc((const unsigned char *) kernel_vaddr
,
6655 &encrypt_iv
.aes_iv
[0],
6656 PAGE_SIZE
/ AES_BLOCK_SIZE
,
6657 (unsigned char *) kernel_vaddr
,
6658 &swap_crypt_ctx
.encrypt
);
6660 vm_page_encrypt_counter
++;
6663 * Unmap the page from the kernel's address space,
6664 * if we had to map it ourselves. Otherwise, let
6665 * the caller undo the mapping if needed.
6667 if (kernel_mapping_size
!= 0) {
6668 vm_paging_unmap_object(page
->object
,
6669 kernel_mapping_offset
,
6670 kernel_mapping_offset
+ kernel_mapping_size
);
6674 * Clear the "reference" and "modified" bits.
6675 * This should clean up any impact the encryption had
6677 * The page was kept busy and disconnected from all pmaps,
6678 * so it can't have been referenced or modified from user
6680 * The software bits will be reset later after the I/O
6681 * has completed (in upl_commit_range()).
6683 pmap_clear_refmod(page
->phys_page
, VM_MEM_REFERENCED
| VM_MEM_MODIFIED
);
6685 page
->encrypted
= TRUE
;
6687 vm_object_paging_end(page
->object
);
6693 * Decrypt the given page.
6694 * The page might already be mapped at kernel virtual
6695 * address "kernel_mapping_offset". Otherwise, we need
6699 * The page's VM object is locked but will be unlocked and relocked.
6700 * The page is busy and not accessible by users (not entered in any pmap).
6705 vm_map_offset_t kernel_mapping_offset
)
6708 vm_map_size_t kernel_mapping_size
;
6709 vm_offset_t kernel_vaddr
;
6711 unsigned char aes_iv
[AES_BLOCK_SIZE
];
6713 memory_object_t pager_object
;
6714 vm_object_offset_t paging_offset
;
6719 assert(page
->encrypted
);
6722 * Take a paging-in-progress reference to keep the object
6723 * alive even if we have to unlock it (in vm_paging_map_object()
6726 vm_object_paging_begin(page
->object
);
6728 if (kernel_mapping_offset
== 0) {
6730 * The page hasn't already been mapped in kernel space
6731 * by the caller. Map it now, so that we can access
6732 * its contents and decrypt them.
6734 kernel_mapping_size
= PAGE_SIZE
;
6735 kr
= vm_paging_map_object(&kernel_mapping_offset
,
6739 &kernel_mapping_size
,
6740 VM_PROT_READ
| VM_PROT_WRITE
,
6742 if (kr
!= KERN_SUCCESS
) {
6743 panic("vm_page_decrypt: "
6744 "could not map page in kernel: 0x%x\n",
6748 kernel_mapping_size
= 0;
6750 kernel_vaddr
= CAST_DOWN(vm_offset_t
, kernel_mapping_offset
);
6752 assert(swap_crypt_ctx_initialized
);
6755 * Prepare an "initial vector" for the decryption.
6756 * It has to be the same as the "initial vector" we
6757 * used to encrypt that page.
6759 bzero(&decrypt_iv
.aes_iv
[0], sizeof (decrypt_iv
.aes_iv
));
6760 decrypt_iv
.vm
.pager_object
= page
->object
->pager
;
6761 decrypt_iv
.vm
.paging_offset
=
6762 page
->object
->paging_offset
+ page
->offset
;
6764 /* encrypt the "initial vector" */
6765 aes_encrypt_cbc((const unsigned char *) &decrypt_iv
.aes_iv
[0],
6768 &decrypt_iv
.aes_iv
[0],
6769 &swap_crypt_ctx
.encrypt
);
6774 aes_decrypt_cbc((const unsigned char *) kernel_vaddr
,
6775 &decrypt_iv
.aes_iv
[0],
6776 PAGE_SIZE
/ AES_BLOCK_SIZE
,
6777 (unsigned char *) kernel_vaddr
,
6778 &swap_crypt_ctx
.decrypt
);
6779 vm_page_decrypt_counter
++;
6782 * Unmap the page from the kernel's address space,
6783 * if we had to map it ourselves. Otherwise, let
6784 * the caller undo the mapping if needed.
6786 if (kernel_mapping_size
!= 0) {
6787 vm_paging_unmap_object(page
->object
,
6789 kernel_vaddr
+ PAGE_SIZE
);
6793 * After decryption, the page is actually clean.
6794 * It was encrypted as part of paging, which "cleans"
6795 * the "dirty" pages.
6796 * Noone could access it after it was encrypted
6797 * and the decryption doesn't count.
6799 page
->dirty
= FALSE
;
6800 assert (page
->cs_validated
== FALSE
);
6801 pmap_clear_refmod(page
->phys_page
, VM_MEM_MODIFIED
| VM_MEM_REFERENCED
);
6802 page
->encrypted
= FALSE
;
6805 * We've just modified the page's contents via the data cache and part
6806 * of the new contents might still be in the cache and not yet in RAM.
6807 * Since the page is now available and might get gathered in a UPL to
6808 * be part of a DMA transfer from a driver that expects the memory to
6809 * be coherent at this point, we have to flush the data cache.
6811 pmap_sync_page_attributes_phys(page
->phys_page
);
6813 * Since the page is not mapped yet, some code might assume that it
6814 * doesn't need to invalidate the instruction cache when writing to
6815 * that page. That code relies on "pmapped" being FALSE, so that the
6816 * caches get synchronized when the page is first mapped.
6818 assert(pmap_verify_free(page
->phys_page
));
6819 page
->pmapped
= FALSE
;
6820 page
->wpmapped
= FALSE
;
6822 vm_object_paging_end(page
->object
);
6825 #if DEVELOPMENT || DEBUG
6826 unsigned long upl_encrypt_upls
= 0;
6827 unsigned long upl_encrypt_pages
= 0;
6834 * Encrypts all the pages in the UPL, within the specified range.
6840 upl_offset_t crypt_offset
,
6841 upl_size_t crypt_size
)
6843 upl_size_t upl_size
, subupl_size
=crypt_size
;
6844 upl_offset_t offset_in_upl
, subupl_offset
=crypt_offset
;
6845 vm_object_t upl_object
;
6846 vm_object_offset_t upl_offset
;
6848 vm_object_t shadow_object
;
6849 vm_object_offset_t shadow_offset
;
6850 vm_object_offset_t paging_offset
;
6851 vm_object_offset_t base_offset
;
6852 int isVectorUPL
= 0;
6853 upl_t vector_upl
= NULL
;
6855 if((isVectorUPL
= vector_upl_is_valid(upl
)))
6858 process_upl_to_encrypt
:
6860 crypt_size
= subupl_size
;
6861 crypt_offset
= subupl_offset
;
6862 upl
= vector_upl_subupl_byoffset(vector_upl
, &crypt_offset
, &crypt_size
);
6864 panic("upl_encrypt: Accessing a sub-upl that doesn't exist\n");
6865 subupl_size
-= crypt_size
;
6866 subupl_offset
+= crypt_size
;
6869 #if DEVELOPMENT || DEBUG
6871 upl_encrypt_pages
+= crypt_size
/ PAGE_SIZE
;
6873 upl_object
= upl
->map_object
;
6874 upl_offset
= upl
->offset
;
6875 upl_size
= upl
->size
;
6877 vm_object_lock(upl_object
);
6880 * Find the VM object that contains the actual pages.
6882 if (upl_object
->pageout
) {
6883 shadow_object
= upl_object
->shadow
;
6885 * The offset in the shadow object is actually also
6886 * accounted for in upl->offset. It possibly shouldn't be
6887 * this way, but for now don't account for it twice.
6890 assert(upl_object
->paging_offset
== 0); /* XXX ? */
6891 vm_object_lock(shadow_object
);
6893 shadow_object
= upl_object
;
6897 paging_offset
= shadow_object
->paging_offset
;
6898 vm_object_paging_begin(shadow_object
);
6900 if (shadow_object
!= upl_object
)
6901 vm_object_unlock(upl_object
);
6904 base_offset
= shadow_offset
;
6905 base_offset
+= upl_offset
;
6906 base_offset
+= crypt_offset
;
6907 base_offset
-= paging_offset
;
6909 assert(crypt_offset
+ crypt_size
<= upl_size
);
6911 for (offset_in_upl
= 0;
6912 offset_in_upl
< crypt_size
;
6913 offset_in_upl
+= PAGE_SIZE
) {
6914 page
= vm_page_lookup(shadow_object
,
6915 base_offset
+ offset_in_upl
);
6916 if (page
== VM_PAGE_NULL
) {
6917 panic("upl_encrypt: "
6918 "no page for (obj=%p,off=%lld+%d)!\n",
6924 * Disconnect the page from all pmaps, so that nobody can
6925 * access it while it's encrypted. After that point, all
6926 * accesses to this page will cause a page fault and block
6927 * while the page is busy being encrypted. After the
6928 * encryption completes, any access will cause a
6929 * page fault and the page gets decrypted at that time.
6931 pmap_disconnect(page
->phys_page
);
6932 vm_page_encrypt(page
, 0);
6934 if (vm_object_lock_avoid(shadow_object
)) {
6936 * Give vm_pageout_scan() a chance to convert more
6937 * pages from "clean-in-place" to "clean-and-free",
6938 * if it's interested in the same pages we selected
6941 vm_object_unlock(shadow_object
);
6943 vm_object_lock(shadow_object
);
6947 vm_object_paging_end(shadow_object
);
6948 vm_object_unlock(shadow_object
);
6950 if(isVectorUPL
&& subupl_size
)
6951 goto process_upl_to_encrypt
;
6958 __unused upl_offset_t crypt_offset
,
6959 __unused upl_size_t crypt_size
)
6965 __unused vm_page_t page
,
6966 __unused vm_map_offset_t kernel_mapping_offset
)
6972 __unused vm_page_t page
,
6973 __unused vm_map_offset_t kernel_mapping_offset
)
6980 vm_pageout_queue_steal(vm_page_t page
, boolean_t queues_locked
)
6984 pageout
= page
->pageout
;
6986 page
->list_req_pending
= FALSE
;
6987 page
->cleaning
= FALSE
;
6988 page
->pageout
= FALSE
;
6990 if (!queues_locked
) {
6991 vm_page_lockspin_queues();
6995 * need to drop the laundry count...
6996 * we may also need to remove it
6997 * from the I/O paging queue...
6998 * vm_pageout_throttle_up handles both cases
7000 * the laundry and pageout_queue flags are cleared...
7002 vm_pageout_throttle_up(page
);
7004 if (pageout
== TRUE
) {
7006 * toss the wire count we picked up
7007 * when we intially set this page up
7010 vm_page_unwire(page
, TRUE
);
7012 vm_page_steal_pageout_page
++;
7014 if (!queues_locked
) {
7015 vm_page_unlock_queues();
7020 vector_upl_create(vm_offset_t upl_offset
)
7022 int vector_upl_size
= sizeof(struct _vector_upl
);
7025 vector_upl_t vector_upl
= (vector_upl_t
)kalloc(vector_upl_size
);
7027 upl
= upl_create(0,UPL_VECTOR
,0);
7028 upl
->vector_upl
= vector_upl
;
7029 upl
->offset
= upl_offset
;
7030 vector_upl
->size
= 0;
7031 vector_upl
->offset
= upl_offset
;
7032 vector_upl
->invalid_upls
=0;
7033 vector_upl
->num_upls
=0;
7034 vector_upl
->pagelist
= NULL
;
7036 for(i
=0; i
< MAX_VECTOR_UPL_ELEMENTS
; i
++) {
7037 vector_upl
->upl_iostates
[i
].size
= 0;
7038 vector_upl
->upl_iostates
[i
].offset
= 0;
7045 vector_upl_deallocate(upl_t upl
)
7048 vector_upl_t vector_upl
= upl
->vector_upl
;
7050 if(vector_upl
->invalid_upls
!= vector_upl
->num_upls
)
7051 panic("Deallocating non-empty Vectored UPL\n");
7052 kfree(vector_upl
->pagelist
,(sizeof(struct upl_page_info
)*(vector_upl
->size
/PAGE_SIZE
)));
7053 vector_upl
->invalid_upls
=0;
7054 vector_upl
->num_upls
= 0;
7055 vector_upl
->pagelist
= NULL
;
7056 vector_upl
->size
= 0;
7057 vector_upl
->offset
= 0;
7058 kfree(vector_upl
, sizeof(struct _vector_upl
));
7059 vector_upl
= (vector_upl_t
)0xdeadbeef;
7062 panic("vector_upl_deallocate was passed a non-vectored upl\n");
7065 panic("vector_upl_deallocate was passed a NULL upl\n");
7069 vector_upl_is_valid(upl_t upl
)
7071 if(upl
&& ((upl
->flags
& UPL_VECTOR
)==UPL_VECTOR
)) {
7072 vector_upl_t vector_upl
= upl
->vector_upl
;
7073 if(vector_upl
== NULL
|| vector_upl
== (vector_upl_t
)0xdeadbeef || vector_upl
== (vector_upl_t
)0xfeedbeef)
7082 vector_upl_set_subupl(upl_t upl
,upl_t subupl
, uint32_t io_size
)
7084 if(vector_upl_is_valid(upl
)) {
7085 vector_upl_t vector_upl
= upl
->vector_upl
;
7090 if(io_size
< PAGE_SIZE
)
7091 io_size
= PAGE_SIZE
;
7092 subupl
->vector_upl
= (void*)vector_upl
;
7093 vector_upl
->upl_elems
[vector_upl
->num_upls
++] = subupl
;
7094 vector_upl
->size
+= io_size
;
7095 upl
->size
+= io_size
;
7098 uint32_t i
=0,invalid_upls
=0;
7099 for(i
= 0; i
< vector_upl
->num_upls
; i
++) {
7100 if(vector_upl
->upl_elems
[i
] == subupl
)
7103 if(i
== vector_upl
->num_upls
)
7104 panic("Trying to remove sub-upl when none exists");
7106 vector_upl
->upl_elems
[i
] = NULL
;
7107 invalid_upls
= hw_atomic_add(&(vector_upl
)->invalid_upls
, 1);
7108 if(invalid_upls
== vector_upl
->num_upls
)
7115 panic("vector_upl_set_subupl was passed a NULL upl element\n");
7118 panic("vector_upl_set_subupl was passed a non-vectored upl\n");
7121 panic("vector_upl_set_subupl was passed a NULL upl\n");
7127 vector_upl_set_pagelist(upl_t upl
)
7129 if(vector_upl_is_valid(upl
)) {
7131 vector_upl_t vector_upl
= upl
->vector_upl
;
7134 vm_offset_t pagelist_size
=0, cur_upl_pagelist_size
=0;
7136 vector_upl
->pagelist
= (upl_page_info_array_t
)kalloc(sizeof(struct upl_page_info
)*(vector_upl
->size
/PAGE_SIZE
));
7138 for(i
=0; i
< vector_upl
->num_upls
; i
++) {
7139 cur_upl_pagelist_size
= sizeof(struct upl_page_info
) * vector_upl
->upl_elems
[i
]->size
/PAGE_SIZE
;
7140 bcopy(UPL_GET_INTERNAL_PAGE_LIST_SIMPLE(vector_upl
->upl_elems
[i
]), (char*)vector_upl
->pagelist
+ pagelist_size
, cur_upl_pagelist_size
);
7141 pagelist_size
+= cur_upl_pagelist_size
;
7142 if(vector_upl
->upl_elems
[i
]->highest_page
> upl
->highest_page
)
7143 upl
->highest_page
= vector_upl
->upl_elems
[i
]->highest_page
;
7145 assert( pagelist_size
== (sizeof(struct upl_page_info
)*(vector_upl
->size
/PAGE_SIZE
)) );
7148 panic("vector_upl_set_pagelist was passed a non-vectored upl\n");
7151 panic("vector_upl_set_pagelist was passed a NULL upl\n");
7156 vector_upl_subupl_byindex(upl_t upl
, uint32_t index
)
7158 if(vector_upl_is_valid(upl
)) {
7159 vector_upl_t vector_upl
= upl
->vector_upl
;
7161 if(index
< vector_upl
->num_upls
)
7162 return vector_upl
->upl_elems
[index
];
7165 panic("vector_upl_subupl_byindex was passed a non-vectored upl\n");
7171 vector_upl_subupl_byoffset(upl_t upl
, upl_offset_t
*upl_offset
, upl_size_t
*upl_size
)
7173 if(vector_upl_is_valid(upl
)) {
7175 vector_upl_t vector_upl
= upl
->vector_upl
;
7178 upl_t subupl
= NULL
;
7179 vector_upl_iostates_t subupl_state
;
7181 for(i
=0; i
< vector_upl
->num_upls
; i
++) {
7182 subupl
= vector_upl
->upl_elems
[i
];
7183 subupl_state
= vector_upl
->upl_iostates
[i
];
7184 if( *upl_offset
<= (subupl_state
.offset
+ subupl_state
.size
- 1)) {
7185 /* We could have been passed an offset/size pair that belongs
7186 * to an UPL element that has already been committed/aborted.
7187 * If so, return NULL.
7191 if((subupl_state
.offset
+ subupl_state
.size
) < (*upl_offset
+ *upl_size
)) {
7192 *upl_size
= (subupl_state
.offset
+ subupl_state
.size
) - *upl_offset
;
7193 if(*upl_size
> subupl_state
.size
)
7194 *upl_size
= subupl_state
.size
;
7196 if(*upl_offset
>= subupl_state
.offset
)
7197 *upl_offset
-= subupl_state
.offset
;
7199 panic("Vector UPL offset miscalculation\n");
7205 panic("vector_upl_subupl_byoffset was passed a non-vectored UPL\n");
7211 vector_upl_get_submap(upl_t upl
, vm_map_t
*v_upl_submap
, vm_offset_t
*submap_dst_addr
)
7213 *v_upl_submap
= NULL
;
7215 if(vector_upl_is_valid(upl
)) {
7216 vector_upl_t vector_upl
= upl
->vector_upl
;
7218 *v_upl_submap
= vector_upl
->submap
;
7219 *submap_dst_addr
= vector_upl
->submap_dst_addr
;
7222 panic("vector_upl_get_submap was passed a non-vectored UPL\n");
7225 panic("vector_upl_get_submap was passed a null UPL\n");
7229 vector_upl_set_submap(upl_t upl
, vm_map_t submap
, vm_offset_t submap_dst_addr
)
7231 if(vector_upl_is_valid(upl
)) {
7232 vector_upl_t vector_upl
= upl
->vector_upl
;
7234 vector_upl
->submap
= submap
;
7235 vector_upl
->submap_dst_addr
= submap_dst_addr
;
7238 panic("vector_upl_get_submap was passed a non-vectored UPL\n");
7241 panic("vector_upl_get_submap was passed a NULL UPL\n");
7245 vector_upl_set_iostate(upl_t upl
, upl_t subupl
, upl_offset_t offset
, upl_size_t size
)
7247 if(vector_upl_is_valid(upl
)) {
7249 vector_upl_t vector_upl
= upl
->vector_upl
;
7252 for(i
= 0; i
< vector_upl
->num_upls
; i
++) {
7253 if(vector_upl
->upl_elems
[i
] == subupl
)
7257 if(i
== vector_upl
->num_upls
)
7258 panic("setting sub-upl iostate when none exists");
7260 vector_upl
->upl_iostates
[i
].offset
= offset
;
7261 if(size
< PAGE_SIZE
)
7263 vector_upl
->upl_iostates
[i
].size
= size
;
7266 panic("vector_upl_set_iostate was passed a non-vectored UPL\n");
7269 panic("vector_upl_set_iostate was passed a NULL UPL\n");
7273 vector_upl_get_iostate(upl_t upl
, upl_t subupl
, upl_offset_t
*offset
, upl_size_t
*size
)
7275 if(vector_upl_is_valid(upl
)) {
7277 vector_upl_t vector_upl
= upl
->vector_upl
;
7280 for(i
= 0; i
< vector_upl
->num_upls
; i
++) {
7281 if(vector_upl
->upl_elems
[i
] == subupl
)
7285 if(i
== vector_upl
->num_upls
)
7286 panic("getting sub-upl iostate when none exists");
7288 *offset
= vector_upl
->upl_iostates
[i
].offset
;
7289 *size
= vector_upl
->upl_iostates
[i
].size
;
7292 panic("vector_upl_get_iostate was passed a non-vectored UPL\n");
7295 panic("vector_upl_get_iostate was passed a NULL UPL\n");
7299 vector_upl_get_iostate_byindex(upl_t upl
, uint32_t index
, upl_offset_t
*offset
, upl_size_t
*size
)
7301 if(vector_upl_is_valid(upl
)) {
7302 vector_upl_t vector_upl
= upl
->vector_upl
;
7304 if(index
< vector_upl
->num_upls
) {
7305 *offset
= vector_upl
->upl_iostates
[index
].offset
;
7306 *size
= vector_upl
->upl_iostates
[index
].size
;
7309 *offset
= *size
= 0;
7312 panic("vector_upl_get_iostate_byindex was passed a non-vectored UPL\n");
7315 panic("vector_upl_get_iostate_byindex was passed a NULL UPL\n");
7319 upl_get_internal_vectorupl_pagelist(upl_t upl
)
7321 return ((vector_upl_t
)(upl
->vector_upl
))->pagelist
;
7325 upl_get_internal_vectorupl(upl_t upl
)
7327 return upl
->vector_upl
;
7331 upl_get_internal_pagelist_offset(void)
7333 return sizeof(struct upl
);
7342 upl
->flags
|= UPL_CLEAR_DIRTY
;
7344 upl
->flags
&= ~UPL_CLEAR_DIRTY
;
7351 boolean_t
upl_device_page(upl_page_info_t
*upl
)
7353 return(UPL_DEVICE_PAGE(upl
));
7355 boolean_t
upl_page_present(upl_page_info_t
*upl
, int index
)
7357 return(UPL_PAGE_PRESENT(upl
, index
));
7359 boolean_t
upl_speculative_page(upl_page_info_t
*upl
, int index
)
7361 return(UPL_SPECULATIVE_PAGE(upl
, index
));
7363 boolean_t
upl_dirty_page(upl_page_info_t
*upl
, int index
)
7365 return(UPL_DIRTY_PAGE(upl
, index
));
7367 boolean_t
upl_valid_page(upl_page_info_t
*upl
, int index
)
7369 return(UPL_VALID_PAGE(upl
, index
));
7371 ppnum_t
upl_phys_page(upl_page_info_t
*upl
, int index
)
7373 return(UPL_PHYS_PAGE(upl
, index
));
7378 vm_countdirtypages(void)
7390 vm_page_lock_queues();
7391 m
= (vm_page_t
) queue_first(&vm_page_queue_inactive
);
7393 if (m
==(vm_page_t
)0) break;
7395 if(m
->dirty
) dpages
++;
7396 if(m
->pageout
) pgopages
++;
7397 if(m
->precious
) precpages
++;
7399 assert(m
->object
!= kernel_object
);
7400 m
= (vm_page_t
) queue_next(&m
->pageq
);
7401 if (m
==(vm_page_t
)0) break;
7403 } while (!queue_end(&vm_page_queue_inactive
,(queue_entry_t
) m
));
7404 vm_page_unlock_queues();
7406 vm_page_lock_queues();
7407 m
= (vm_page_t
) queue_first(&vm_page_queue_throttled
);
7409 if (m
==(vm_page_t
)0) break;
7413 assert(!m
->pageout
);
7414 assert(m
->object
!= kernel_object
);
7415 m
= (vm_page_t
) queue_next(&m
->pageq
);
7416 if (m
==(vm_page_t
)0) break;
7418 } while (!queue_end(&vm_page_queue_throttled
,(queue_entry_t
) m
));
7419 vm_page_unlock_queues();
7421 vm_page_lock_queues();
7422 m
= (vm_page_t
) queue_first(&vm_page_queue_zf
);
7424 if (m
==(vm_page_t
)0) break;
7426 if(m
->dirty
) dpages
++;
7427 if(m
->pageout
) pgopages
++;
7428 if(m
->precious
) precpages
++;
7430 assert(m
->object
!= kernel_object
);
7431 m
= (vm_page_t
) queue_next(&m
->pageq
);
7432 if (m
==(vm_page_t
)0) break;
7434 } while (!queue_end(&vm_page_queue_zf
,(queue_entry_t
) m
));
7435 vm_page_unlock_queues();
7437 printf("IN Q: %d : %d : %d\n", dpages
, pgopages
, precpages
);
7443 vm_page_lock_queues();
7444 m
= (vm_page_t
) queue_first(&vm_page_queue_active
);
7447 if(m
== (vm_page_t
)0) break;
7448 if(m
->dirty
) dpages
++;
7449 if(m
->pageout
) pgopages
++;
7450 if(m
->precious
) precpages
++;
7452 assert(m
->object
!= kernel_object
);
7453 m
= (vm_page_t
) queue_next(&m
->pageq
);
7454 if(m
== (vm_page_t
)0) break;
7456 } while (!queue_end(&vm_page_queue_active
,(queue_entry_t
) m
));
7457 vm_page_unlock_queues();
7459 printf("AC Q: %d : %d : %d\n", dpages
, pgopages
, precpages
);
7462 #endif /* MACH_BSD */
7464 ppnum_t
upl_get_highest_page(
7467 return upl
->highest_page
;
7470 upl_size_t
upl_get_size(
7477 kern_return_t
upl_ubc_alias_set(upl_t upl
, uintptr_t alias1
, uintptr_t alias2
)
7479 upl
->ubc_alias1
= alias1
;
7480 upl
->ubc_alias2
= alias2
;
7481 return KERN_SUCCESS
;
7483 int upl_ubc_alias_get(upl_t upl
, uintptr_t * al
, uintptr_t * al2
)
7486 *al
= upl
->ubc_alias1
;
7488 *al2
= upl
->ubc_alias2
;
7489 return KERN_SUCCESS
;
7491 #endif /* UPL_DEBUG */
7496 #include <ddb/db_output.h>
7497 #include <ddb/db_print.h>
7498 #include <vm/vm_print.h>
7500 #define printf kdbprintf
7501 void db_pageout(void);
7507 iprintf("VM Statistics:\n");
7509 iprintf("pages:\n");
7511 iprintf("activ %5d inact %5d free %5d",
7512 vm_page_active_count
, vm_page_inactive_count
,
7513 vm_page_free_count
);
7514 printf(" wire %5d gobbl %5d\n",
7515 vm_page_wire_count
, vm_page_gobble_count
);
7517 iprintf("target:\n");
7519 iprintf("min %5d inact %5d free %5d",
7520 vm_page_free_min
, vm_page_inactive_target
,
7521 vm_page_free_target
);
7522 printf(" resrv %5d\n", vm_page_free_reserved
);
7524 iprintf("pause:\n");
7530 extern int c_laundry_pages_freed
;
7531 #endif /* MACH_COUNTERS */
7536 iprintf("Pageout Statistics:\n");
7538 iprintf("active %5d inactv %5d\n",
7539 vm_pageout_active
, vm_pageout_inactive
);
7540 iprintf("nolock %5d avoid %5d busy %5d absent %5d\n",
7541 vm_pageout_inactive_nolock
, vm_pageout_inactive_avoid
,
7542 vm_pageout_inactive_busy
, vm_pageout_inactive_absent
);
7543 iprintf("used %5d clean %5d dirty %5d\n",
7544 vm_pageout_inactive_used
, vm_pageout_inactive_clean
,
7545 vm_pageout_inactive_dirty
);
7547 iprintf("laundry_pages_freed %d\n", c_laundry_pages_freed
);
7548 #endif /* MACH_COUNTERS */
7549 #if MACH_CLUSTER_STATS
7550 iprintf("Cluster Statistics:\n");
7552 iprintf("dirtied %5d cleaned %5d collisions %5d\n",
7553 vm_pageout_cluster_dirtied
, vm_pageout_cluster_cleaned
,
7554 vm_pageout_cluster_collisions
);
7555 iprintf("clusters %5d conversions %5d\n",
7556 vm_pageout_cluster_clusters
, vm_pageout_cluster_conversions
);
7558 iprintf("Target Statistics:\n");
7560 iprintf("collisions %5d page_dirtied %5d page_freed %5d\n",
7561 vm_pageout_target_collisions
, vm_pageout_target_page_dirtied
,
7562 vm_pageout_target_page_freed
);
7564 #endif /* MACH_CLUSTER_STATS */
7568 #endif /* MACH_KDB */