]> git.saurik.com Git - apple/xnu.git/blob - osfmk/ipc/ipc_entry.c
xnu-1504.9.17.tar.gz
[apple/xnu.git] / osfmk / ipc / ipc_entry.c
1 /*
2 * Copyright (c) 2000-2004 Apple Computer, Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*
29 * @OSF_COPYRIGHT@
30 */
31 /*
32 * Mach Operating System
33 * Copyright (c) 1991,1990,1989 Carnegie Mellon University
34 * All Rights Reserved.
35 *
36 * Permission to use, copy, modify and distribute this software and its
37 * documentation is hereby granted, provided that both the copyright
38 * notice and this permission notice appear in all copies of the
39 * software, derivative works or modified versions, and any portions
40 * thereof, and that both notices appear in supporting documentation.
41 *
42 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
43 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
44 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
45 *
46 * Carnegie Mellon requests users of this software to return to
47 *
48 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
49 * School of Computer Science
50 * Carnegie Mellon University
51 * Pittsburgh PA 15213-3890
52 *
53 * any improvements or extensions that they make and grant Carnegie Mellon
54 * the rights to redistribute these changes.
55 */
56 /*
57 */
58 /*
59 * File: ipc/ipc_entry.c
60 * Author: Rich Draves
61 * Date: 1989
62 *
63 * Primitive functions to manipulate translation entries.
64 */
65
66 #include <mach_kdb.h>
67 #include <mach_debug.h>
68
69 #include <mach/kern_return.h>
70 #include <mach/port.h>
71 #include <kern/assert.h>
72 #include <kern/sched_prim.h>
73 #include <kern/zalloc.h>
74 #include <kern/misc_protos.h>
75 #if MACH_KDB
76 #include <kern/task.h>
77 #endif
78 #include <ipc/port.h>
79 #include <ipc/ipc_entry.h>
80 #include <ipc/ipc_space.h>
81 #include <ipc/ipc_splay.h>
82 #include <ipc/ipc_object.h>
83 #include <ipc/ipc_hash.h>
84 #include <ipc/ipc_table.h>
85 #include <ipc/ipc_port.h>
86 #include <string.h>
87
88 zone_t ipc_tree_entry_zone;
89
90
91
92 /*
93 * Forward declarations
94 */
95 boolean_t ipc_entry_tree_collision(
96 ipc_space_t space,
97 mach_port_name_t name);
98
99 /*
100 * Routine: ipc_entry_tree_collision
101 * Purpose:
102 * Checks if "name" collides with an allocated name
103 * in the space's tree. That is, returns TRUE
104 * if the splay tree contains a name with the same
105 * index as "name".
106 * Conditions:
107 * The space is locked (read or write) and active.
108 */
109
110 boolean_t
111 ipc_entry_tree_collision(
112 ipc_space_t space,
113 mach_port_name_t name)
114 {
115 mach_port_index_t index;
116 mach_port_name_t lower, upper;
117
118 assert(space->is_active);
119
120 /*
121 * Check if we collide with the next smaller name
122 * or the next larger name.
123 */
124
125 ipc_splay_tree_bounds(&space->is_tree, name, &lower, &upper);
126
127 index = MACH_PORT_INDEX(name);
128 return (((lower != (mach_port_name_t)~0) &&
129 (MACH_PORT_INDEX(lower) == index)) ||
130 ((upper != 0) && (MACH_PORT_INDEX(upper) == index)));
131 }
132
133 /*
134 * Routine: ipc_entry_lookup
135 * Purpose:
136 * Searches for an entry, given its name.
137 * Conditions:
138 * The space must be read or write locked throughout.
139 * The space must be active.
140 */
141
142 ipc_entry_t
143 ipc_entry_lookup(
144 ipc_space_t space,
145 mach_port_name_t name)
146 {
147 mach_port_index_t index;
148 ipc_entry_t entry;
149
150 assert(space->is_active);
151
152
153 index = MACH_PORT_INDEX(name);
154 /*
155 * If space is fast, we assume no splay tree and name within table
156 * bounds, but still check generation numbers (if enabled) and
157 * look for null entries.
158 */
159 if (is_fast_space(space)) {
160 entry = &space->is_table[index];
161 if (IE_BITS_GEN(entry->ie_bits) != MACH_PORT_GEN(name) ||
162 IE_BITS_TYPE(entry->ie_bits) == MACH_PORT_TYPE_NONE)
163 entry = IE_NULL;
164 }
165 else
166 if (index < space->is_table_size) {
167 entry = &space->is_table[index];
168 if (IE_BITS_GEN(entry->ie_bits) != MACH_PORT_GEN(name))
169 if (entry->ie_bits & IE_BITS_COLLISION) {
170 assert(space->is_tree_total > 0);
171 goto tree_lookup;
172 } else
173 entry = IE_NULL;
174 else if (IE_BITS_TYPE(entry->ie_bits) == MACH_PORT_TYPE_NONE)
175 entry = IE_NULL;
176 } else if (space->is_tree_total == 0)
177 entry = IE_NULL;
178 else {
179 tree_lookup:
180 entry = (ipc_entry_t)
181 ipc_splay_tree_lookup(&space->is_tree, name);
182 /* with sub-space introduction, an entry may appear in */
183 /* the splay tree and yet not show rights for this subspace */
184 if(entry != IE_NULL) {
185 if(!(IE_BITS_TYPE(entry->ie_bits)))
186 entry = IE_NULL;
187 }
188 }
189
190 assert((entry == IE_NULL) || IE_BITS_TYPE(entry->ie_bits));
191 return entry;
192 }
193
194 /*
195 * Routine: ipc_entry_get
196 * Purpose:
197 * Tries to allocate an entry out of the space.
198 * Conditions:
199 * The space is write-locked and active throughout.
200 * An object may be locked. Will not allocate memory.
201 * Returns:
202 * KERN_SUCCESS A free entry was found.
203 * KERN_NO_SPACE No entry allocated.
204 */
205
206 kern_return_t
207 ipc_entry_get(
208 ipc_space_t space,
209 mach_port_name_t *namep,
210 ipc_entry_t *entryp)
211 {
212 ipc_entry_t table;
213 mach_port_index_t first_free;
214 ipc_entry_t free_entry;
215
216 assert(space->is_active);
217
218 {
219 table = space->is_table;
220 first_free = table->ie_next;
221
222 if (first_free == 0)
223 return KERN_NO_SPACE;
224
225 free_entry = &table[first_free];
226 table->ie_next = free_entry->ie_next;
227 }
228
229 /*
230 * Initialize the new entry. We need only
231 * increment the generation number and clear ie_request.
232 */
233 {
234 mach_port_name_t new_name;
235 mach_port_gen_t gen;
236
237 gen = IE_BITS_NEW_GEN(free_entry->ie_bits);
238 free_entry->ie_bits = gen;
239 free_entry->ie_request = 0;
240
241 /*
242 * The new name can't be MACH_PORT_NULL because index
243 * is non-zero. It can't be MACH_PORT_DEAD because
244 * the table isn't allowed to grow big enough.
245 * (See comment in ipc/ipc_table.h.)
246 */
247 new_name = MACH_PORT_MAKE(first_free, gen);
248 assert(MACH_PORT_VALID(new_name));
249 *namep = new_name;
250 }
251
252 assert(free_entry->ie_object == IO_NULL);
253
254 *entryp = free_entry;
255 return KERN_SUCCESS;
256 }
257
258 /*
259 * Routine: ipc_entry_alloc
260 * Purpose:
261 * Allocate an entry out of the space.
262 * Conditions:
263 * The space is not locked before, but it is write-locked after
264 * if the call is successful. May allocate memory.
265 * Returns:
266 * KERN_SUCCESS An entry was allocated.
267 * KERN_INVALID_TASK The space is dead.
268 * KERN_NO_SPACE No room for an entry in the space.
269 * KERN_RESOURCE_SHORTAGE Couldn't allocate memory for an entry.
270 */
271
272 kern_return_t
273 ipc_entry_alloc(
274 ipc_space_t space,
275 mach_port_name_t *namep,
276 ipc_entry_t *entryp)
277 {
278 kern_return_t kr;
279
280 is_write_lock(space);
281
282 for (;;) {
283 if (!space->is_active) {
284 is_write_unlock(space);
285 return KERN_INVALID_TASK;
286 }
287
288 kr = ipc_entry_get(space, namep, entryp);
289 if (kr == KERN_SUCCESS)
290 return kr;
291
292 kr = ipc_entry_grow_table(space, ITS_SIZE_NONE);
293 if (kr != KERN_SUCCESS)
294 return kr; /* space is unlocked */
295 }
296 }
297
298 /*
299 * Routine: ipc_entry_alloc_name
300 * Purpose:
301 * Allocates/finds an entry with a specific name.
302 * If an existing entry is returned, its type will be nonzero.
303 * Conditions:
304 * The space is not locked before, but it is write-locked after
305 * if the call is successful. May allocate memory.
306 * Returns:
307 * KERN_SUCCESS Found existing entry with same name.
308 * KERN_SUCCESS Allocated a new entry.
309 * KERN_INVALID_TASK The space is dead.
310 * KERN_RESOURCE_SHORTAGE Couldn't allocate memory.
311 */
312
313 kern_return_t
314 ipc_entry_alloc_name(
315 ipc_space_t space,
316 mach_port_name_t name,
317 ipc_entry_t *entryp)
318 {
319 mach_port_index_t index = MACH_PORT_INDEX(name);
320 mach_port_gen_t gen = MACH_PORT_GEN(name);
321 ipc_tree_entry_t tentry = ITE_NULL;
322
323 assert(MACH_PORT_VALID(name));
324
325
326 is_write_lock(space);
327
328 for (;;) {
329 ipc_entry_t entry;
330 ipc_tree_entry_t tentry2;
331 ipc_table_size_t its;
332
333 if (!space->is_active) {
334 is_write_unlock(space);
335 if (tentry) ite_free(tentry);
336 return KERN_INVALID_TASK;
337 }
338
339 /*
340 * If we are under the table cutoff,
341 * there are usually four cases:
342 * 1) The entry is reserved (index 0)
343 * 2) The entry is inuse, for the same name
344 * 3) The entry is inuse, for a different name
345 * 4) The entry is free
346 * For a task with a "fast" IPC space, we disallow
347 * cases 1) and 3), because ports cannot be renamed.
348 */
349 if (index < space->is_table_size) {
350 ipc_entry_t table = space->is_table;
351
352 entry = &table[index];
353
354 if (index == 0) {
355 assert(!IE_BITS_TYPE(entry->ie_bits));
356 assert(!IE_BITS_GEN(entry->ie_bits));
357 } else if (IE_BITS_TYPE(entry->ie_bits)) {
358 if (IE_BITS_GEN(entry->ie_bits) == gen) {
359 *entryp = entry;
360 assert(!tentry);
361 return KERN_SUCCESS;
362 }
363 } else {
364 mach_port_index_t free_index, next_index;
365
366 /*
367 * Rip the entry out of the free list.
368 */
369
370 for (free_index = 0;
371 (next_index = table[free_index].ie_next)
372 != index;
373 free_index = next_index)
374 continue;
375
376 table[free_index].ie_next =
377 table[next_index].ie_next;
378
379 entry->ie_bits = gen;
380 entry->ie_request = 0;
381 *entryp = entry;
382
383 assert(entry->ie_object == IO_NULL);
384 if (is_fast_space(space))
385 assert(!tentry);
386 else if (tentry)
387 ite_free(tentry);
388 return KERN_SUCCESS;
389 }
390 }
391
392 /*
393 * In a fast space, ipc_entry_alloc_name may be
394 * used only to add a right to a port name already
395 * known in this space.
396 */
397 if (is_fast_space(space)) {
398 is_write_unlock(space);
399 assert(!tentry);
400 return KERN_FAILURE;
401 }
402
403 /*
404 * Before trying to allocate any memory,
405 * check if the entry already exists in the tree.
406 * This avoids spurious resource errors.
407 * The splay tree makes a subsequent lookup/insert
408 * of the same name cheap, so this costs little.
409 */
410
411 if ((space->is_tree_total > 0) &&
412 ((tentry2 = ipc_splay_tree_lookup(&space->is_tree, name))
413 != ITE_NULL)) {
414 assert(tentry2->ite_space == space);
415 assert(IE_BITS_TYPE(tentry2->ite_bits));
416
417 *entryp = &tentry2->ite_entry;
418 if (tentry) ite_free(tentry);
419 return KERN_SUCCESS;
420 }
421
422 its = space->is_table_next;
423
424 /*
425 * Check if the table should be grown.
426 *
427 * Note that if space->is_table_size == its->its_size,
428 * then we won't ever try to grow the table.
429 *
430 * Note that we are optimistically assuming that name
431 * doesn't collide with any existing names. (So if
432 * it were entered into the tree, is_tree_small would
433 * be incremented.) This is OK, because even in that
434 * case, we don't lose memory by growing the table.
435 */
436 if ((space->is_table_size <= index) &&
437 (index < its->its_size) &&
438 (((its->its_size - space->is_table_size) *
439 sizeof(struct ipc_entry)) <
440 ((space->is_tree_small + 1) *
441 sizeof(struct ipc_tree_entry)))) {
442 kern_return_t kr;
443
444 /*
445 * Can save space by growing the table.
446 * Because the space will be unlocked,
447 * we must restart.
448 */
449
450 kr = ipc_entry_grow_table(space, ITS_SIZE_NONE);
451 assert(kr != KERN_NO_SPACE);
452 if (kr != KERN_SUCCESS) {
453 /* space is unlocked */
454 if (tentry) ite_free(tentry);
455 return kr;
456 }
457
458 continue;
459 }
460
461 /*
462 * If a splay-tree entry was allocated previously,
463 * go ahead and insert it into the tree.
464 */
465
466 if (tentry != ITE_NULL) {
467
468 space->is_tree_total++;
469
470 if (index < space->is_table_size) {
471 entry = &space->is_table[index];
472 entry->ie_bits |= IE_BITS_COLLISION;
473 } else if ((index < its->its_size) &&
474 !ipc_entry_tree_collision(space, name))
475 space->is_tree_small++;
476
477 ipc_splay_tree_insert(&space->is_tree, name, tentry);
478 tentry->ite_bits = 0;
479 tentry->ite_request = 0;
480 tentry->ite_object = IO_NULL;
481 tentry->ite_space = space;
482 *entryp = &tentry->ite_entry;
483 return KERN_SUCCESS;
484 }
485
486 /*
487 * Allocate a tree entry and try again.
488 */
489
490 is_write_unlock(space);
491 tentry = ite_alloc();
492 if (tentry == ITE_NULL)
493 return KERN_RESOURCE_SHORTAGE;
494 is_write_lock(space);
495 }
496 }
497
498 /*
499 * Routine: ipc_entry_dealloc
500 * Purpose:
501 * Deallocates an entry from a space.
502 * Conditions:
503 * The space must be write-locked throughout.
504 * The space must be active.
505 */
506
507 void
508 ipc_entry_dealloc(
509 ipc_space_t space,
510 mach_port_name_t name,
511 ipc_entry_t entry)
512 {
513 ipc_entry_t table;
514 ipc_entry_num_t size;
515 mach_port_index_t index;
516
517 assert(space->is_active);
518 assert(entry->ie_object == IO_NULL);
519 assert(entry->ie_request == 0);
520
521 index = MACH_PORT_INDEX(name);
522 table = space->is_table;
523 size = space->is_table_size;
524
525 if (is_fast_space(space)) {
526 assert(index < size);
527 assert(entry == &table[index]);
528 assert(IE_BITS_GEN(entry->ie_bits) == MACH_PORT_GEN(name));
529 assert(!(entry->ie_bits & IE_BITS_COLLISION));
530 entry->ie_bits &= IE_BITS_GEN_MASK;
531 entry->ie_next = table->ie_next;
532 table->ie_next = index;
533 return;
534 }
535
536
537 if ((index < size) && (entry == &table[index])) {
538 assert(IE_BITS_GEN(entry->ie_bits) == MACH_PORT_GEN(name));
539
540 if (entry->ie_bits & IE_BITS_COLLISION) {
541 struct ipc_splay_tree small, collisions;
542 ipc_tree_entry_t tentry;
543 mach_port_name_t tname;
544 boolean_t pick;
545 ipc_object_t obj;
546
547 /* must move an entry from tree to table */
548
549 ipc_splay_tree_split(&space->is_tree,
550 MACH_PORT_MAKE(index+1, 0),
551 &collisions);
552 ipc_splay_tree_split(&collisions,
553 MACH_PORT_MAKE(index, 0),
554 &small);
555
556 pick = ipc_splay_tree_pick(&collisions,
557 &tname, &tentry);
558 assert(pick);
559 assert(MACH_PORT_INDEX(tname) == index);
560
561 entry->ie_object = obj = tentry->ite_object;
562 entry->ie_bits = tentry->ite_bits|MACH_PORT_GEN(tname);
563 entry->ie_request = tentry->ite_request;
564
565 assert(tentry->ite_space == space);
566
567 if (IE_BITS_TYPE(tentry->ite_bits)==MACH_PORT_TYPE_SEND) {
568 ipc_hash_global_delete(space, obj,
569 tname, tentry);
570 ipc_hash_local_insert(space, obj,
571 index, entry);
572 }
573
574 ipc_splay_tree_delete(&collisions, tname, tentry);
575
576 assert(space->is_tree_total > 0);
577 space->is_tree_total--;
578
579 /* check if collision bit should still be on */
580
581 pick = ipc_splay_tree_pick(&collisions,
582 &tname, &tentry);
583 if (pick) {
584 entry->ie_bits |= IE_BITS_COLLISION;
585 ipc_splay_tree_join(&space->is_tree,
586 &collisions);
587 }
588
589 ipc_splay_tree_join(&space->is_tree, &small);
590
591 } else {
592 entry->ie_bits &= IE_BITS_GEN_MASK;
593 entry->ie_next = table->ie_next;
594 table->ie_next = index;
595 }
596
597 } else {
598 ipc_tree_entry_t tentry = (ipc_tree_entry_t) entry;
599
600 assert(tentry->ite_space == space);
601
602 ipc_splay_tree_delete(&space->is_tree, name, tentry);
603
604 assert(space->is_tree_total > 0);
605 space->is_tree_total--;
606
607 if (index < size) {
608 ipc_entry_t ientry = &table[index];
609
610 assert(ientry->ie_bits & IE_BITS_COLLISION);
611
612 if (!ipc_entry_tree_collision(space, name))
613 ientry->ie_bits &= ~IE_BITS_COLLISION;
614
615 } else if ((index < space->is_table_next->its_size) &&
616 !ipc_entry_tree_collision(space, name)) {
617
618 assert(space->is_tree_small > 0);
619
620 space->is_tree_small--;
621 }
622 }
623 }
624
625 /*
626 * Routine: ipc_entry_grow_table
627 * Purpose:
628 * Grows the table in a space.
629 * Conditions:
630 * The space must be write-locked and active before.
631 * If successful, it is also returned locked.
632 * Allocates memory.
633 * Returns:
634 * KERN_SUCCESS Grew the table.
635 * KERN_SUCCESS Somebody else grew the table.
636 * KERN_SUCCESS The space died.
637 * KERN_NO_SPACE Table has maximum size already.
638 * KERN_RESOURCE_SHORTAGE Couldn't allocate a new table.
639 */
640
641 kern_return_t
642 ipc_entry_grow_table(
643 ipc_space_t space,
644 ipc_table_elems_t target_size)
645 {
646 ipc_entry_num_t osize, size, nsize, psize;
647
648 do {
649 boolean_t reallocated=FALSE;
650
651 ipc_entry_t otable, table;
652 ipc_table_size_t oits, its, nits;
653 mach_port_index_t i, free_index;
654
655 assert(space->is_active);
656
657 if (space->is_growing) {
658 /*
659 * Somebody else is growing the table.
660 * We just wait for them to finish.
661 */
662
663 is_write_sleep(space);
664 return KERN_SUCCESS;
665 }
666
667 otable = space->is_table;
668
669 its = space->is_table_next;
670 size = its->its_size;
671
672 /*
673 * Since is_table_next points to the next natural size
674 * we can identify the current size entry.
675 */
676 oits = its - 1;
677 osize = oits->its_size;
678
679 /*
680 * If there is no target size, then the new size is simply
681 * specified by is_table_next. If there is a target
682 * size, then search for the next entry.
683 */
684 if (target_size != ITS_SIZE_NONE) {
685 if (target_size <= osize) {
686 is_write_unlock(space);
687 return KERN_SUCCESS;
688 }
689
690 psize = osize;
691 while ((psize != size) && (target_size > size)) {
692 psize = size;
693 its++;
694 size = its->its_size;
695 }
696 if (psize == size) {
697 is_write_unlock(space);
698 return KERN_NO_SPACE;
699 }
700 }
701
702 if (osize == size) {
703 is_write_unlock(space);
704 return KERN_NO_SPACE;
705 }
706
707 nits = its + 1;
708 nsize = nits->its_size;
709
710 assert((osize < size) && (size <= nsize));
711
712 /*
713 * OK, we'll attempt to grow the table.
714 * The realloc requires that the old table
715 * remain in existence.
716 */
717
718 space->is_growing = TRUE;
719 is_write_unlock(space);
720
721 if (it_entries_reallocable(oits)) {
722 table = it_entries_realloc(oits, otable, its);
723 reallocated=TRUE;
724 }
725 else {
726 table = it_entries_alloc(its);
727 }
728
729 is_write_lock(space);
730 space->is_growing = FALSE;
731
732 /*
733 * We need to do a wakeup on the space,
734 * to rouse waiting threads. We defer
735 * this until the space is unlocked,
736 * because we don't want them to spin.
737 */
738
739 if (table == IE_NULL) {
740 is_write_unlock(space);
741 thread_wakeup((event_t) space);
742 return KERN_RESOURCE_SHORTAGE;
743 }
744
745 if (!space->is_active) {
746 /*
747 * The space died while it was unlocked.
748 */
749
750 is_write_unlock(space);
751 thread_wakeup((event_t) space);
752 it_entries_free(its, table);
753 is_write_lock(space);
754 return KERN_SUCCESS;
755 }
756
757 assert(space->is_table == otable);
758 assert((space->is_table_next == its) ||
759 (target_size != ITS_SIZE_NONE));
760 assert(space->is_table_size == osize);
761
762 space->is_table = table;
763 space->is_table_size = size;
764 space->is_table_next = nits;
765
766 /*
767 * If we did a realloc, it remapped the data.
768 * Otherwise we copy by hand first. Then we have
769 * to zero the new part and the old local hash
770 * values.
771 */
772 if (!reallocated)
773 (void) memcpy((void *) table, (const void *) otable,
774 osize * (sizeof(struct ipc_entry)));
775
776 for (i = 0; i < osize; i++)
777 table[i].ie_index = 0;
778
779 (void) memset((void *) (table + osize) , 0,
780 ((size - osize) * (sizeof(struct ipc_entry))));
781
782 /*
783 * Put old entries into the reverse hash table.
784 */
785 for (i = 0; i < osize; i++) {
786 ipc_entry_t entry = &table[i];
787
788 if (IE_BITS_TYPE(entry->ie_bits)==MACH_PORT_TYPE_SEND) {
789 ipc_hash_local_insert(space, entry->ie_object,
790 i, entry);
791 }
792 }
793
794 /*
795 * If there are entries in the splay tree,
796 * then we have work to do:
797 * 1) transfer entries to the table
798 * 2) update is_tree_small
799 */
800 assert(!is_fast_space(space) || space->is_tree_total == 0);
801 if (space->is_tree_total > 0) {
802 mach_port_index_t index;
803 boolean_t delete;
804 struct ipc_splay_tree ignore;
805 struct ipc_splay_tree move;
806 struct ipc_splay_tree small;
807 ipc_entry_num_t nosmall;
808 ipc_tree_entry_t tentry;
809
810 /*
811 * The splay tree divides into four regions,
812 * based on the index of the entries:
813 * 1) 0 <= index < osize
814 * 2) osize <= index < size
815 * 3) size <= index < nsize
816 * 4) nsize <= index
817 *
818 * Entries in the first part are ignored.
819 * Entries in the second part, that don't
820 * collide, are moved into the table.
821 * Entries in the third part, that don't
822 * collide, are counted for is_tree_small.
823 * Entries in the fourth part are ignored.
824 */
825
826 ipc_splay_tree_split(&space->is_tree,
827 MACH_PORT_MAKE(nsize, 0),
828 &small);
829 ipc_splay_tree_split(&small,
830 MACH_PORT_MAKE(size, 0),
831 &move);
832 ipc_splay_tree_split(&move,
833 MACH_PORT_MAKE(osize, 0),
834 &ignore);
835
836 /* move entries into the table */
837
838 for (tentry = ipc_splay_traverse_start(&move);
839 tentry != ITE_NULL;
840 tentry = ipc_splay_traverse_next(&move, delete)) {
841
842 mach_port_name_t name;
843 mach_port_gen_t gen;
844 mach_port_type_t type;
845 ipc_entry_bits_t bits;
846 ipc_object_t obj;
847 ipc_entry_t entry;
848
849 name = tentry->ite_name;
850 gen = MACH_PORT_GEN(name);
851 index = MACH_PORT_INDEX(name);
852
853 assert(tentry->ite_space == space);
854 assert((osize <= index) && (index < size));
855
856 entry = &table[index];
857 bits = entry->ie_bits;
858 if (IE_BITS_TYPE(bits)) {
859 assert(IE_BITS_GEN(bits) != gen);
860 entry->ie_bits |= IE_BITS_COLLISION;
861 delete = FALSE;
862 continue;
863 }
864
865 bits = tentry->ite_bits;
866 type = IE_BITS_TYPE(bits);
867 assert(type != MACH_PORT_TYPE_NONE);
868
869 entry->ie_bits = bits | gen;
870 entry->ie_request = tentry->ite_request;
871 entry->ie_object = obj = tentry->ite_object;
872
873 if (type == MACH_PORT_TYPE_SEND) {
874 ipc_hash_global_delete(space, obj,
875 name, tentry);
876 ipc_hash_local_insert(space, obj,
877 index, entry);
878 }
879 space->is_tree_total--;
880 delete = TRUE;
881 }
882 ipc_splay_traverse_finish(&move);
883
884 /* count entries for is_tree_small */
885
886 nosmall = 0; index = 0;
887 for (tentry = ipc_splay_traverse_start(&small);
888 tentry != ITE_NULL;
889 tentry = ipc_splay_traverse_next(&small, FALSE)) {
890 mach_port_index_t nindex;
891
892 nindex = MACH_PORT_INDEX(tentry->ite_name);
893
894 if (nindex != index) {
895 nosmall++;
896 index = nindex;
897 }
898 }
899 ipc_splay_traverse_finish(&small);
900
901 assert(nosmall <= (nsize - size));
902 assert(nosmall <= space->is_tree_total);
903 space->is_tree_small = nosmall;
904
905 /* put the splay tree back together */
906
907 ipc_splay_tree_join(&space->is_tree, &small);
908 ipc_splay_tree_join(&space->is_tree, &move);
909 ipc_splay_tree_join(&space->is_tree, &ignore);
910 }
911
912 /*
913 * Add entries in the new part which still aren't used
914 * to the free list. Add them in reverse order,
915 * and set the generation number to -1, so that
916 * early allocations produce "natural" names.
917 */
918
919 free_index = table[0].ie_next;
920 for (i = size-1; i >= osize; --i) {
921 ipc_entry_t entry = &table[i];
922
923 if (entry->ie_bits == 0) {
924 entry->ie_bits = IE_BITS_GEN_MASK;
925 entry->ie_next = free_index;
926 free_index = i;
927 }
928 }
929 table[0].ie_next = free_index;
930
931 /*
932 * Now we need to free the old table.
933 * If the space dies or grows while unlocked,
934 * then we can quit here.
935 */
936 is_write_unlock(space);
937 thread_wakeup((event_t) space);
938
939 it_entries_free(oits, otable);
940 is_write_lock(space);
941 if (!space->is_active || (space->is_table_next != nits))
942 return KERN_SUCCESS;
943
944 /*
945 * We might have moved enough entries from
946 * the splay tree into the table that
947 * the table can be profitably grown again.
948 *
949 * Note that if size == nsize, then
950 * space->is_tree_small == 0.
951 */
952 } while ((space->is_tree_small > 0) &&
953 (((nsize - size) * sizeof(struct ipc_entry)) <
954 (space->is_tree_small * sizeof(struct ipc_tree_entry))));
955
956 return KERN_SUCCESS;
957 }
958
959
960 #if MACH_KDB
961 #include <ddb/db_output.h>
962 #define printf kdbprintf
963
964 ipc_entry_t db_ipc_object_by_name(
965 task_t task,
966 mach_port_name_t name);
967
968
969 ipc_entry_t
970 db_ipc_object_by_name(
971 task_t task,
972 mach_port_name_t name)
973 {
974 ipc_space_t space = task->itk_space;
975 ipc_entry_t entry;
976
977
978 entry = ipc_entry_lookup(space, name);
979 if(entry != IE_NULL) {
980 iprintf("(task 0x%x, name 0x%x) ==> object 0x%x\n",
981 task, name, entry->ie_object);
982 return (ipc_entry_t) entry->ie_object;
983 }
984 return entry;
985 }
986 #endif /* MACH_KDB */