2 * Copyright (c) 2000-2008 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
34 * Copyright (c) 1982, 1986, 1993
35 * The Regents of the University of California. All rights reserved.
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 4. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61 * @(#)time.h 8.5 (Berkeley) 5/4/95
65 #include <mach/mach_types.h>
68 #include <kern/sched_prim.h>
69 #include <kern/thread.h>
70 #include <kern/clock.h>
71 #include <kern/host_notify.h>
72 #include <kern/thread_call.h>
73 #include <libkern/OSAtomic.h>
75 #include <IOKit/IOPlatformExpert.h>
77 #include <machine/commpage.h>
78 #include <machine/config.h>
79 #include <machine/machine_routines.h>
81 #include <mach/mach_traps.h>
82 #include <mach/mach_time.h>
84 #include <sys/kdebug.h>
85 #include <sys/timex.h>
86 #include <kern/arithmetic_128.h>
89 uint32_t hz_tick_interval
= 1;
90 static uint64_t has_monotonic_clock
= 0;
92 decl_simple_lock_data(, clock_lock
)
93 lck_grp_attr_t
* settime_lock_grp_attr
;
94 lck_grp_t
* settime_lock_grp
;
95 lck_attr_t
* settime_lock_attr
;
96 lck_mtx_t settime_lock
;
98 #define clock_lock() \
99 simple_lock(&clock_lock, LCK_GRP_NULL)
101 #define clock_unlock() \
102 simple_unlock(&clock_lock)
104 #define clock_lock_init() \
105 simple_lock_init(&clock_lock, 0)
107 #ifdef kdp_simple_lock_is_acquired
109 kdp_clock_is_locked()
111 return kdp_simple_lock_is_acquired(&clock_lock
);
121 bintime_addx(struct bintime
*_bt
, uint64_t _x
)
127 if (_u
> _bt
->frac
) {
133 bintime_subx(struct bintime
*_bt
, uint64_t _x
)
139 if (_u
< _bt
->frac
) {
145 bintime_addns(struct bintime
*bt
, uint64_t ns
)
147 bt
->sec
+= ns
/ (uint64_t)NSEC_PER_SEC
;
148 ns
= ns
% (uint64_t)NSEC_PER_SEC
;
150 /* 18446744073 = int(2^64 / NSEC_PER_SEC) */
151 ns
= ns
* (uint64_t)18446744073LL;
152 bintime_addx(bt
, ns
);
157 bintime_subns(struct bintime
*bt
, uint64_t ns
)
159 bt
->sec
-= ns
/ (uint64_t)NSEC_PER_SEC
;
160 ns
= ns
% (uint64_t)NSEC_PER_SEC
;
162 /* 18446744073 = int(2^64 / NSEC_PER_SEC) */
163 ns
= ns
* (uint64_t)18446744073LL;
164 bintime_subx(bt
, ns
);
169 bintime_addxns(struct bintime
*bt
, uint64_t a
, int64_t xns
)
171 uint64_t uxns
= (xns
> 0)?(uint64_t)xns
:(uint64_t)-xns
;
172 uint64_t ns
= multi_overflow(a
, uxns
);
175 bintime_addns(bt
, ns
);
177 ns
= (a
* uxns
) / (uint64_t)NSEC_PER_SEC
;
178 bintime_addx(bt
, ns
);
181 bintime_subns(bt
, ns
);
183 ns
= (a
* uxns
) / (uint64_t)NSEC_PER_SEC
;
184 bintime_subx(bt
, ns
);
190 bintime_add(struct bintime
*_bt
, const struct bintime
*_bt2
)
195 _bt
->frac
+= _bt2
->frac
;
196 if (_u
> _bt
->frac
) {
199 _bt
->sec
+= _bt2
->sec
;
203 bintime_sub(struct bintime
*_bt
, const struct bintime
*_bt2
)
208 _bt
->frac
-= _bt2
->frac
;
209 if (_u
< _bt
->frac
) {
212 _bt
->sec
-= _bt2
->sec
;
216 clock2bintime(const clock_sec_t
*secs
, const clock_usec_t
*microsecs
, struct bintime
*_bt
)
219 /* 18446744073709 = int(2^64 / 1000000) */
220 _bt
->frac
= *microsecs
* (uint64_t)18446744073709LL;
224 bintime2usclock(const struct bintime
*_bt
, clock_sec_t
*secs
, clock_usec_t
*microsecs
)
227 *microsecs
= ((uint64_t)USEC_PER_SEC
* (uint32_t)(_bt
->frac
>> 32)) >> 32;
231 bintime2nsclock(const struct bintime
*_bt
, clock_sec_t
*secs
, clock_usec_t
*nanosecs
)
234 *nanosecs
= ((uint64_t)NSEC_PER_SEC
* (uint32_t)(_bt
->frac
>> 32)) >> 32;
238 bintime2absolutetime(const struct bintime
*_bt
, uint64_t *abs
)
241 nsec
= (uint64_t) _bt
->sec
* (uint64_t)NSEC_PER_SEC
+ (((uint64_t)NSEC_PER_SEC
* (uint32_t)(_bt
->frac
>> 32)) >> 32);
242 nanoseconds_to_absolutetime(nsec
, abs
);
245 struct latched_time
{
246 uint64_t monotonic_time_usec
;
251 kernel_sysctlbyname(const char *name
, void *oldp
, size_t *oldlenp
, void *newp
, size_t newlen
);
254 * Time of day (calendar) variables.
258 * TOD <- bintime + delta*scale
261 * bintime is a cumulative offset that includes bootime and scaled time elapsed betweed bootime and last scale update.
262 * delta is ticks elapsed since last scale update.
263 * scale is computed according to an adjustment provided by ntp_kern.
265 static struct clock_calend
{
266 uint64_t s_scale_ns
; /* scale to apply for each second elapsed, it converts in ns */
267 int64_t s_adj_nsx
; /* additional adj to apply for each second elapsed, it is expressed in 64 bit frac of ns */
268 uint64_t tick_scale_x
; /* scale to apply for each tick elapsed, it converts in 64 bit frac of s */
269 uint64_t offset_count
; /* abs time from which apply current scales */
270 struct bintime offset
; /* cumulative offset expressed in (sec, 64 bits frac of a second) */
271 struct bintime bintime
; /* cumulative offset (it includes bootime) expressed in (sec, 64 bits frac of a second) */
272 struct bintime boottime
; /* boot time expressed in (sec, 64 bits frac of a second) */
273 struct bintime basesleep
;
276 static uint64_t ticks_per_sec
; /* ticks in a second (expressed in abs time) */
278 #if DEVELOPMENT || DEBUG
279 extern int g_should_log_clock_adjustments
;
281 static void print_all_clock_variables(const char*, clock_sec_t
* pmu_secs
, clock_usec_t
* pmu_usec
, clock_sec_t
* sys_secs
, clock_usec_t
* sys_usec
, struct clock_calend
* calend_cp
);
282 static void print_all_clock_variables_internal(const char *, struct clock_calend
* calend_cp
);
284 #define print_all_clock_variables(...) do { } while (0)
285 #define print_all_clock_variables_internal(...) do { } while (0)
292 * Unlocked calendar flipflop; this is used to track a clock_calend such
293 * that we can safely access a snapshot of a valid clock_calend structure
294 * without needing to take any locks to do it.
296 * The trick is to use a generation count and set the low bit when it is
297 * being updated/read; by doing this, we guarantee, through use of the
298 * hw_atomic functions, that the generation is incremented when the bit
299 * is cleared atomically (by using a 1 bit add).
301 static struct unlocked_clock_calend
{
302 struct clock_calend calend
; /* copy of calendar */
303 uint32_t gen
; /* generation count */
306 static void clock_track_calend_nowait(void);
310 void _clock_delay_until_deadline(uint64_t interval
, uint64_t deadline
);
311 void _clock_delay_until_deadline_with_leeway(uint64_t interval
, uint64_t deadline
, uint64_t leeway
);
313 /* Boottime variables*/
314 static uint64_t clock_boottime
;
315 static uint32_t clock_boottime_usec
;
317 #define TIME_ADD(rsecs, secs, rfrac, frac, unit) \
319 if (((rfrac) += (frac)) >= (unit)) { \
326 #define TIME_SUB(rsecs, secs, rfrac, frac, unit) \
328 if ((int)((rfrac) -= (frac)) < 0) { \
338 * Called once at boot to configure the clock subsystem.
345 settime_lock_grp_attr
= lck_grp_attr_alloc_init();
346 settime_lock_grp
= lck_grp_alloc_init("settime grp", settime_lock_grp_attr
);
347 settime_lock_attr
= lck_attr_alloc_init();
348 lck_mtx_init(&settime_lock
, settime_lock_grp
, settime_lock_attr
);
354 nanoseconds_to_absolutetime((uint64_t)NSEC_PER_SEC
, &ticks_per_sec
);
360 * Called on a processor each time started.
369 * clock_timebase_init:
371 * Called by machine dependent code
372 * to initialize areas dependent on the
373 * timebase value. May be called multiple
374 * times during start up.
377 clock_timebase_init(void)
381 nanoseconds_to_absolutetime(NSEC_PER_SEC
/ 100, &abstime
);
382 hz_tick_interval
= (uint32_t)abstime
;
384 sched_timebase_init();
388 * mach_timebase_info_trap:
390 * User trap returns timebase constant.
393 mach_timebase_info_trap(
394 struct mach_timebase_info_trap_args
*args
)
396 mach_vm_address_t out_info_addr
= args
->info
;
397 mach_timebase_info_data_t info
= {};
399 clock_timebase_info(&info
);
401 copyout((void *)&info
, out_info_addr
, sizeof(info
));
411 * clock_get_calendar_microtime:
413 * Returns the current calendar value,
414 * microseconds as the fraction.
417 clock_get_calendar_microtime(
419 clock_usec_t
*microsecs
)
421 clock_get_calendar_absolute_and_microtime(secs
, microsecs
, NULL
);
425 * get_scale_factors_from_adj:
427 * computes scale factors from the value given in adjustment.
429 * Part of the code has been taken from tc_windup of FreeBSD
430 * written by Poul-Henning Kamp <phk@FreeBSD.ORG>, Julien Ridoux and
431 * Konstantin Belousov.
432 * https://github.com/freebsd/freebsd/blob/master/sys/kern/kern_tc.c
435 get_scale_factors_from_adj(int64_t adjustment
, uint64_t* tick_scale_x
, uint64_t* s_scale_ns
, int64_t* s_adj_nsx
)
441 * Calculating the scaling factor. We want the number of 1/2^64
442 * fractions of a second per period of the hardware counter, taking
443 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
444 * processing provides us with.
446 * The th_adjustment is nanoseconds per second with 32 bit binary
447 * fraction and we want 64 bit binary fraction of second:
449 * x = a * 2^32 / 10^9 = a * 4.294967296
451 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
452 * we can only multiply by about 850 without overflowing, that
453 * leaves no suitably precise fractions for multiply before divide.
455 * Divide before multiply with a fraction of 2199/512 results in a
456 * systematic undercompensation of 10PPM of th_adjustment. On a
457 * 5000PPM adjustment this is a 0.05PPM error. This is acceptable.
459 * We happily sacrifice the lowest of the 64 bits of our result
460 * to the goddess of code clarity.
463 scale
= (uint64_t)1 << 63;
464 scale
+= (adjustment
/ 1024) * 2199;
465 scale
/= ticks_per_sec
;
466 *tick_scale_x
= scale
* 2;
470 * it contains ns (without fraction) to add to the next sec.
471 * Get ns scale factor for the next sec.
473 nano
= (adjustment
> 0)? adjustment
>> 32 : -((-adjustment
) >> 32);
474 scale
= (uint64_t) NSEC_PER_SEC
;
480 * it contains 32 bit frac of ns to add to the next sec.
481 * Keep it as additional adjustment for the next sec.
483 frac
= (adjustment
> 0)? ((uint32_t) adjustment
) : -((uint32_t) (-adjustment
));
484 *s_adj_nsx
= (frac
> 0)? frac
<< 32 : -((-frac
) << 32);
492 * returns a bintime struct representing delta scaled accordingly to the
493 * scale factors provided to this function.
495 static struct bintime
496 scale_delta(uint64_t delta
, uint64_t tick_scale_x
, uint64_t s_scale_ns
, int64_t s_adj_nsx
)
498 uint64_t sec
, new_ns
, over
;
505 * If more than one second is elapsed,
506 * scale fully elapsed seconds using scale factors for seconds.
507 * s_scale_ns -> scales sec to ns.
508 * s_adj_nsx -> additional adj expressed in 64 bit frac of ns to apply to each sec.
510 if (delta
> ticks_per_sec
) {
511 sec
= (delta
/ ticks_per_sec
);
512 new_ns
= sec
* s_scale_ns
;
513 bintime_addns(&bt
, new_ns
);
516 /* shortcut, no overflow can occur */
518 bintime_addx(&bt
, (uint64_t)s_adj_nsx
/ (uint64_t)NSEC_PER_SEC
);
520 bintime_subx(&bt
, (uint64_t)-s_adj_nsx
/ (uint64_t)NSEC_PER_SEC
);
524 * s_adj_nsx is 64 bit frac of ns.
525 * sec*s_adj_nsx might overflow in int64_t.
526 * use bintime_addxns to not lose overflowed ns.
528 bintime_addxns(&bt
, sec
, s_adj_nsx
);
531 delta
= (delta
% ticks_per_sec
);
534 over
= multi_overflow(tick_scale_x
, delta
);
540 * scale elapsed ticks using the scale factor for ticks.
542 bintime_addx(&bt
, delta
* tick_scale_x
);
550 * returns the scaled time of the time elapsed from the last time
551 * scale factors were updated to now.
553 static struct bintime
554 get_scaled_time(uint64_t now
)
559 * Compute ticks elapsed since last scale update.
560 * This time will be scaled according to the value given by ntp kern.
562 delta
= now
- clock_calend
.offset_count
;
564 return scale_delta(delta
, clock_calend
.tick_scale_x
, clock_calend
.s_scale_ns
, clock_calend
.s_adj_nsx
);
568 clock_get_calendar_absolute_and_microtime_locked(
570 clock_usec_t
*microsecs
,
576 now
= mach_absolute_time();
581 bt
= get_scaled_time(now
);
582 bintime_add(&bt
, &clock_calend
.bintime
);
583 bintime2usclock(&bt
, secs
, microsecs
);
587 clock_get_calendar_absolute_and_nanotime_locked(
589 clock_usec_t
*nanosecs
,
595 now
= mach_absolute_time();
600 bt
= get_scaled_time(now
);
601 bintime_add(&bt
, &clock_calend
.bintime
);
602 bintime2nsclock(&bt
, secs
, nanosecs
);
606 * clock_get_calendar_absolute_and_microtime:
608 * Returns the current calendar value,
609 * microseconds as the fraction. Also
610 * returns mach_absolute_time if abstime
614 clock_get_calendar_absolute_and_microtime(
616 clock_usec_t
*microsecs
,
624 clock_get_calendar_absolute_and_microtime_locked(secs
, microsecs
, abstime
);
631 * clock_get_calendar_nanotime:
633 * Returns the current calendar value,
634 * nanoseconds as the fraction.
636 * Since we do not have an interface to
637 * set the calendar with resolution greater
638 * than a microsecond, we honor that here.
641 clock_get_calendar_nanotime(
643 clock_nsec_t
*nanosecs
)
650 clock_get_calendar_absolute_and_nanotime_locked(secs
, nanosecs
, NULL
);
657 * clock_gettimeofday:
659 * Kernel interface for commpage implementation of
660 * gettimeofday() syscall.
662 * Returns the current calendar value, and updates the
663 * commpage info as appropriate. Because most calls to
664 * gettimeofday() are handled in user mode by the commpage,
665 * this routine should be used infrequently.
670 clock_usec_t
*microsecs
)
672 clock_gettimeofday_and_absolute_time(secs
, microsecs
, NULL
);
676 clock_gettimeofday_and_absolute_time(
678 clock_usec_t
*microsecs
,
688 now
= mach_absolute_time();
689 bt
= get_scaled_time(now
);
690 bintime_add(&bt
, &clock_calend
.bintime
);
691 bintime2usclock(&bt
, secs
, microsecs
);
693 clock_gettimeofday_set_commpage(now
, bt
.sec
, bt
.frac
, clock_calend
.tick_scale_x
, ticks_per_sec
);
704 * clock_set_calendar_microtime:
706 * Sets the current calendar value by
707 * recalculating the epoch and offset
708 * from the system clock.
710 * Also adjusts the boottime to keep the
711 * value consistent, writes the new
712 * calendar value to the platform clock,
713 * and sends calendar change notifications.
716 clock_set_calendar_microtime(
718 clock_usec_t microsecs
)
720 uint64_t absolutesys
;
723 clock_usec_t newmicrosecs
;
724 clock_usec_t oldmicrosecs
;
725 uint64_t commpage_value
;
728 clock_sec_t deltasecs
;
729 clock_usec_t deltamicrosecs
;
732 newmicrosecs
= microsecs
;
735 * settime_lock mtx is used to avoid that racing settimeofdays update the wall clock and
736 * the platform clock concurrently.
738 * clock_lock cannot be used for this race because it is acquired from interrupt context
739 * and it needs interrupts disabled while instead updating the platform clock needs to be
740 * called with interrupts enabled.
742 lck_mtx_lock(&settime_lock
);
747 #if DEVELOPMENT || DEBUG
748 struct clock_calend clock_calend_cp
= clock_calend
;
750 commpage_disable_timestamp();
753 * Adjust the boottime based on the delta.
755 clock_get_calendar_absolute_and_microtime_locked(&oldsecs
, &oldmicrosecs
, &absolutesys
);
757 #if DEVELOPMENT || DEBUG
758 if (g_should_log_clock_adjustments
) {
759 os_log(OS_LOG_DEFAULT
, "%s wall %lu s %d u computed with %llu abs\n",
760 __func__
, (unsigned long)oldsecs
, oldmicrosecs
, absolutesys
);
761 os_log(OS_LOG_DEFAULT
, "%s requested %lu s %d u\n",
762 __func__
, (unsigned long)secs
, microsecs
);
766 if (oldsecs
< secs
|| (oldsecs
== secs
&& oldmicrosecs
< microsecs
)) {
769 deltamicrosecs
= microsecs
;
771 TIME_SUB(deltasecs
, oldsecs
, deltamicrosecs
, oldmicrosecs
, USEC_PER_SEC
);
773 TIME_ADD(clock_boottime
, deltasecs
, clock_boottime_usec
, deltamicrosecs
, USEC_PER_SEC
);
774 clock2bintime(&deltasecs
, &deltamicrosecs
, &bt
);
775 bintime_add(&clock_calend
.boottime
, &bt
);
779 deltamicrosecs
= oldmicrosecs
;
781 TIME_SUB(deltasecs
, secs
, deltamicrosecs
, microsecs
, USEC_PER_SEC
);
783 TIME_SUB(clock_boottime
, deltasecs
, clock_boottime_usec
, deltamicrosecs
, USEC_PER_SEC
);
784 clock2bintime(&deltasecs
, &deltamicrosecs
, &bt
);
785 bintime_sub(&clock_calend
.boottime
, &bt
);
788 clock_calend
.bintime
= clock_calend
.boottime
;
789 bintime_add(&clock_calend
.bintime
, &clock_calend
.offset
);
791 clock2bintime((clock_sec_t
*) &secs
, (clock_usec_t
*) µsecs
, &bt
);
793 clock_gettimeofday_set_commpage(absolutesys
, bt
.sec
, bt
.frac
, clock_calend
.tick_scale_x
, ticks_per_sec
);
795 #if DEVELOPMENT || DEBUG
796 struct clock_calend clock_calend_cp1
= clock_calend
;
799 commpage_value
= clock_boottime
* USEC_PER_SEC
+ clock_boottime_usec
;
805 * Set the new value for the platform clock.
806 * This call might block, so interrupts must be enabled.
808 #if DEVELOPMENT || DEBUG
809 uint64_t now_b
= mach_absolute_time();
812 PESetUTCTimeOfDay(newsecs
, newmicrosecs
);
814 #if DEVELOPMENT || DEBUG
815 uint64_t now_a
= mach_absolute_time();
816 if (g_should_log_clock_adjustments
) {
817 os_log(OS_LOG_DEFAULT
, "%s mach bef PESet %llu mach aft %llu \n", __func__
, now_b
, now_a
);
821 print_all_clock_variables_internal(__func__
, &clock_calend_cp
);
822 print_all_clock_variables_internal(__func__
, &clock_calend_cp1
);
824 commpage_update_boottime(commpage_value
);
827 * Send host notifications.
829 host_notify_calendar_change();
830 host_notify_calendar_set();
833 clock_track_calend_nowait();
836 lck_mtx_unlock(&settime_lock
);
839 uint64_t mach_absolutetime_asleep
= 0;
840 uint64_t mach_absolutetime_last_sleep
= 0;
843 clock_get_calendar_uptime(clock_sec_t
*secs
)
852 now
= mach_absolute_time();
854 bt
= get_scaled_time(now
);
855 bintime_add(&bt
, &clock_calend
.offset
);
865 * clock_update_calendar:
867 * called by ntp timer to update scale factors.
870 clock_update_calendar(void)
880 now
= mach_absolute_time();
883 * scale the time elapsed since the last update and
886 bt
= get_scaled_time(now
);
887 bintime_add(&clock_calend
.offset
, &bt
);
890 * update the base from which apply next scale factors.
892 delta
= now
- clock_calend
.offset_count
;
893 clock_calend
.offset_count
+= delta
;
895 clock_calend
.bintime
= clock_calend
.offset
;
896 bintime_add(&clock_calend
.bintime
, &clock_calend
.boottime
);
899 * recompute next adjustment.
901 ntp_update_second(&adjustment
, clock_calend
.bintime
.sec
);
903 #if DEVELOPMENT || DEBUG
904 if (g_should_log_clock_adjustments
) {
905 os_log(OS_LOG_DEFAULT
, "%s adjustment %lld\n", __func__
, adjustment
);
910 * recomputing scale factors.
912 get_scale_factors_from_adj(adjustment
, &clock_calend
.tick_scale_x
, &clock_calend
.s_scale_ns
, &clock_calend
.s_adj_nsx
);
914 clock_gettimeofday_set_commpage(now
, clock_calend
.bintime
.sec
, clock_calend
.bintime
.frac
, clock_calend
.tick_scale_x
, ticks_per_sec
);
916 #if DEVELOPMENT || DEBUG
917 struct clock_calend calend_cp
= clock_calend
;
923 print_all_clock_variables(__func__
, NULL
, NULL
, NULL
, NULL
, &calend_cp
);
927 #if DEVELOPMENT || DEBUG
930 print_all_clock_variables_internal(const char* func
, struct clock_calend
* clock_calend_cp
)
932 clock_sec_t offset_secs
;
933 clock_usec_t offset_microsecs
;
934 clock_sec_t bintime_secs
;
935 clock_usec_t bintime_microsecs
;
936 clock_sec_t bootime_secs
;
937 clock_usec_t bootime_microsecs
;
939 if (!g_should_log_clock_adjustments
) {
943 bintime2usclock(&clock_calend_cp
->offset
, &offset_secs
, &offset_microsecs
);
944 bintime2usclock(&clock_calend_cp
->bintime
, &bintime_secs
, &bintime_microsecs
);
945 bintime2usclock(&clock_calend_cp
->boottime
, &bootime_secs
, &bootime_microsecs
);
947 os_log(OS_LOG_DEFAULT
, "%s s_scale_ns %llu s_adj_nsx %lld tick_scale_x %llu offset_count %llu\n",
948 func
, clock_calend_cp
->s_scale_ns
, clock_calend_cp
->s_adj_nsx
,
949 clock_calend_cp
->tick_scale_x
, clock_calend_cp
->offset_count
);
950 os_log(OS_LOG_DEFAULT
, "%s offset.sec %ld offset.frac %llu offset_secs %lu offset_microsecs %d\n",
951 func
, clock_calend_cp
->offset
.sec
, clock_calend_cp
->offset
.frac
,
952 (unsigned long)offset_secs
, offset_microsecs
);
953 os_log(OS_LOG_DEFAULT
, "%s bintime.sec %ld bintime.frac %llu bintime_secs %lu bintime_microsecs %d\n",
954 func
, clock_calend_cp
->bintime
.sec
, clock_calend_cp
->bintime
.frac
,
955 (unsigned long)bintime_secs
, bintime_microsecs
);
956 os_log(OS_LOG_DEFAULT
, "%s bootime.sec %ld bootime.frac %llu bootime_secs %lu bootime_microsecs %d\n",
957 func
, clock_calend_cp
->boottime
.sec
, clock_calend_cp
->boottime
.frac
,
958 (unsigned long)bootime_secs
, bootime_microsecs
);
960 clock_sec_t basesleep_secs
;
961 clock_usec_t basesleep_microsecs
;
963 bintime2usclock(&clock_calend_cp
->basesleep
, &basesleep_secs
, &basesleep_microsecs
);
964 os_log(OS_LOG_DEFAULT
, "%s basesleep.sec %ld basesleep.frac %llu basesleep_secs %lu basesleep_microsecs %d\n",
965 func
, clock_calend_cp
->basesleep
.sec
, clock_calend_cp
->basesleep
.frac
,
966 (unsigned long)basesleep_secs
, basesleep_microsecs
);
971 print_all_clock_variables(const char* func
, clock_sec_t
* pmu_secs
, clock_usec_t
* pmu_usec
, clock_sec_t
* sys_secs
, clock_usec_t
* sys_usec
, struct clock_calend
* clock_calend_cp
)
973 if (!g_should_log_clock_adjustments
) {
978 clock_sec_t wall_secs
;
979 clock_usec_t wall_microsecs
;
984 os_log(OS_LOG_DEFAULT
, "%s PMU %lu s %d u \n", func
, (unsigned long)*pmu_secs
, *pmu_usec
);
987 os_log(OS_LOG_DEFAULT
, "%s sys %lu s %d u \n", func
, (unsigned long)*sys_secs
, *sys_usec
);
990 print_all_clock_variables_internal(func
, clock_calend_cp
);
992 now
= mach_absolute_time();
993 delta
= now
- clock_calend_cp
->offset_count
;
995 bt
= scale_delta(delta
, clock_calend_cp
->tick_scale_x
, clock_calend_cp
->s_scale_ns
, clock_calend_cp
->s_adj_nsx
);
996 bintime_add(&bt
, &clock_calend_cp
->bintime
);
997 bintime2usclock(&bt
, &wall_secs
, &wall_microsecs
);
999 os_log(OS_LOG_DEFAULT
, "%s wall %lu s %d u computed with %llu abs\n",
1000 func
, (unsigned long)wall_secs
, wall_microsecs
, now
);
1004 #endif /* DEVELOPMENT || DEBUG */
1008 * clock_initialize_calendar:
1010 * Set the calendar and related clocks
1011 * from the platform clock at boot.
1013 * Also sends host notifications.
1016 clock_initialize_calendar(void)
1018 clock_sec_t sys
; // sleepless time since boot in seconds
1019 clock_sec_t secs
; // Current UTC time
1020 clock_sec_t utc_offset_secs
; // Difference in current UTC time and sleepless time since boot
1021 clock_usec_t microsys
;
1022 clock_usec_t microsecs
;
1023 clock_usec_t utc_offset_microsecs
;
1026 struct bintime monotonic_bt
;
1027 struct latched_time monotonic_time
;
1028 uint64_t monotonic_usec_total
;
1029 clock_sec_t sys2
, monotonic_sec
;
1030 clock_usec_t microsys2
, monotonic_usec
;
1033 //Get the UTC time and corresponding sys time
1034 PEGetUTCTimeOfDay(&secs
, µsecs
);
1035 clock_get_system_microtime(&sys
, µsys
);
1038 * If the platform has a monotonic clock, use kern.monotonicclock_usecs
1039 * to estimate the sleep/wake time, otherwise use the UTC time to estimate
1042 size
= sizeof(monotonic_time
);
1043 if (kernel_sysctlbyname("kern.monotonicclock_usecs", &monotonic_time
, &size
, NULL
, 0) != 0) {
1044 has_monotonic_clock
= 0;
1045 os_log(OS_LOG_DEFAULT
, "%s system does not have monotonic clock\n", __func__
);
1047 has_monotonic_clock
= 1;
1048 monotonic_usec_total
= monotonic_time
.monotonic_time_usec
;
1049 absolutetime_to_microtime(monotonic_time
.mach_time
, &sys2
, µsys2
);
1050 os_log(OS_LOG_DEFAULT
, "%s system has monotonic clock\n", __func__
);
1056 commpage_disable_timestamp();
1058 utc_offset_secs
= secs
;
1059 utc_offset_microsecs
= microsecs
;
1062 * We normally expect the UTC clock to be always-on and produce
1063 * greater readings than the tick counter. There may be corner cases
1064 * due to differing clock resolutions (UTC clock is likely lower) and
1065 * and errors reading the UTC clock (some implementations return 0
1066 * on error) in which that doesn't hold true. Bring the UTC measurements
1067 * in-line with the tick counter measurements as a best effort in that case.
1069 if ((sys
> secs
) || ((sys
== secs
) && (microsys
> microsecs
))) {
1070 os_log(OS_LOG_DEFAULT
, "%s WARNING: UTC time is less then sys time, (%lu s %d u) UTC (%lu s %d u) sys\n",
1071 __func__
, (unsigned long) secs
, microsecs
, (unsigned long)sys
, microsys
);
1072 secs
= utc_offset_secs
= sys
;
1073 microsecs
= utc_offset_microsecs
= microsys
;
1077 // This macro stores the subtraction result in utc_offset_secs and utc_offset_microsecs
1078 TIME_SUB(utc_offset_secs
, sys
, utc_offset_microsecs
, microsys
, USEC_PER_SEC
);
1079 // This function converts utc_offset_secs and utc_offset_microsecs in bintime
1080 clock2bintime(&utc_offset_secs
, &utc_offset_microsecs
, &bt
);
1083 * Initialize the boot time based on the platform clock.
1085 clock_boottime
= secs
;
1086 clock_boottime_usec
= microsecs
;
1087 commpage_update_boottime(clock_boottime
* USEC_PER_SEC
+ clock_boottime_usec
);
1089 nanoseconds_to_absolutetime((uint64_t)NSEC_PER_SEC
, &ticks_per_sec
);
1090 clock_calend
.boottime
= bt
;
1091 clock_calend
.bintime
= bt
;
1092 clock_calend
.offset
.sec
= 0;
1093 clock_calend
.offset
.frac
= 0;
1095 clock_calend
.tick_scale_x
= (uint64_t)1 << 63;
1096 clock_calend
.tick_scale_x
/= ticks_per_sec
;
1097 clock_calend
.tick_scale_x
*= 2;
1099 clock_calend
.s_scale_ns
= NSEC_PER_SEC
;
1100 clock_calend
.s_adj_nsx
= 0;
1102 if (has_monotonic_clock
) {
1103 monotonic_sec
= monotonic_usec_total
/ (clock_sec_t
)USEC_PER_SEC
;
1104 monotonic_usec
= monotonic_usec_total
% (clock_usec_t
)USEC_PER_SEC
;
1106 // monotonic clock - sys
1107 // This macro stores the subtraction result in monotonic_sec and monotonic_usec
1108 TIME_SUB(monotonic_sec
, sys2
, monotonic_usec
, microsys2
, USEC_PER_SEC
);
1109 clock2bintime(&monotonic_sec
, &monotonic_usec
, &monotonic_bt
);
1111 // set the baseleep as the difference between monotonic clock - sys
1112 clock_calend
.basesleep
= monotonic_bt
;
1114 commpage_update_mach_continuous_time(mach_absolutetime_asleep
);
1116 #if DEVELOPMENT || DEBUG
1117 struct clock_calend clock_calend_cp
= clock_calend
;
1123 print_all_clock_variables(__func__
, &secs
, µsecs
, &sys
, µsys
, &clock_calend_cp
);
1126 * Send host notifications.
1128 host_notify_calendar_change();
1131 clock_track_calend_nowait();
1137 clock_wakeup_calendar(void)
1139 clock_sec_t wake_sys_sec
;
1140 clock_usec_t wake_sys_usec
;
1141 clock_sec_t wake_sec
;
1142 clock_usec_t wake_usec
;
1143 clock_sec_t wall_time_sec
;
1144 clock_usec_t wall_time_usec
;
1145 clock_sec_t diff_sec
;
1146 clock_usec_t diff_usec
;
1148 clock_usec_t var_us
;
1150 struct bintime bt
, last_sleep_bt
;
1151 struct latched_time monotonic_time
;
1152 uint64_t monotonic_usec_total
;
1157 * If the platform has the monotonic clock use that to
1158 * compute the sleep time. The monotonic clock does not have an offset
1159 * that can be modified, so nor kernel or userspace can change the time
1160 * of this clock, it can only monotonically increase over time.
1161 * During sleep mach_absolute_time (sys time) does not tick,
1162 * so the sleep time is the difference between the current monotonic time
1163 * less the absolute time and the previous difference stored at wake time.
1165 * basesleep = (monotonic - sys) ---> computed at last wake
1166 * sleep_time = (monotonic - sys) - basesleep
1168 * If the platform does not support monotonic clock we set the wall time to what the
1169 * UTC clock returns us.
1170 * Setting the wall time to UTC time implies that we loose all the adjustments
1171 * done during wake time through adjtime/ntp_adjustime.
1172 * The UTC time is the monotonic clock + an offset that can be set
1174 * The time slept in this case is the difference between wall time and UTC
1178 * We assume that only the kernel is setting the offset of the PMU/RTC and that
1179 * it is doing it only througth the settimeofday interface.
1181 if (has_monotonic_clock
) {
1182 #if DEVELOPMENT || DEBUG
1184 * Just for debugging, get the wake UTC time.
1186 PEGetUTCTimeOfDay(&var_s
, &var_us
);
1189 * Get monotonic time with corresponding sys time
1191 size
= sizeof(monotonic_time
);
1192 if (kernel_sysctlbyname("kern.monotonicclock_usecs", &monotonic_time
, &size
, NULL
, 0) != 0) {
1193 panic("%s: could not call kern.monotonicclock_usecs", __func__
);
1195 wake_abs
= monotonic_time
.mach_time
;
1196 absolutetime_to_microtime(wake_abs
, &wake_sys_sec
, &wake_sys_usec
);
1198 monotonic_usec_total
= monotonic_time
.monotonic_time_usec
;
1199 wake_sec
= monotonic_usec_total
/ (clock_sec_t
)USEC_PER_SEC
;
1200 wake_usec
= monotonic_usec_total
% (clock_usec_t
)USEC_PER_SEC
;
1203 * Get UTC time and corresponding sys time
1205 PEGetUTCTimeOfDay(&wake_sec
, &wake_usec
);
1206 wake_abs
= mach_absolute_time();
1207 absolutetime_to_microtime(wake_abs
, &wake_sys_sec
, &wake_sys_usec
);
1210 #if DEVELOPMENT || DEBUG
1211 os_log(OS_LOG_DEFAULT
, "time at wake %lu s %d u from %s clock, abs %llu\n", (unsigned long)wake_sec
, wake_usec
, (has_monotonic_clock
)?"monotonic":"UTC", wake_abs
);
1212 if (has_monotonic_clock
) {
1213 os_log(OS_LOG_DEFAULT
, "UTC time %lu s %d u\n", (unsigned long)var_s
, var_us
);
1215 #endif /* DEVELOPMENT || DEBUG */
1220 commpage_disable_timestamp();
1222 #if DEVELOPMENT || DEBUG
1223 struct clock_calend clock_calend_cp1
= clock_calend
;
1224 #endif /* DEVELOPMENT || DEBUG */
1227 * We normally expect the UTC/monotonic clock to be always-on and produce
1228 * greater readings than the sys counter. There may be corner cases
1229 * due to differing clock resolutions (UTC/monotonic clock is likely lower) and
1230 * and errors reading the UTC/monotonic clock (some implementations return 0
1231 * on error) in which that doesn't hold true.
1233 if ((wake_sys_sec
> wake_sec
) || ((wake_sys_sec
== wake_sec
) && (wake_sys_usec
> wake_usec
))) {
1234 os_log_error(OS_LOG_DEFAULT
, "WARNING: %s clock is less then sys clock at wake: %lu s %d u vs %lu s %d u, defaulting sleep time to zero\n", (has_monotonic_clock
)?"monotonic":"UTC", (unsigned long)wake_sec
, wake_usec
, (unsigned long)wake_sys_sec
, wake_sys_usec
);
1235 mach_absolutetime_last_sleep
= 0;
1239 if (has_monotonic_clock
) {
1241 * computer the difference monotonic - sys
1242 * we already checked that monotonic time is
1245 diff_sec
= wake_sec
;
1246 diff_usec
= wake_usec
;
1247 // This macro stores the subtraction result in diff_sec and diff_usec
1248 TIME_SUB(diff_sec
, wake_sys_sec
, diff_usec
, wake_sys_usec
, USEC_PER_SEC
);
1249 //This function converts diff_sec and diff_usec in bintime
1250 clock2bintime(&diff_sec
, &diff_usec
, &bt
);
1253 * Safety belt: the monotonic clock will likely have a lower resolution than the sys counter.
1254 * It's also possible that the device didn't fully transition to the powered-off state on
1255 * the most recent sleep, so the sys counter may not have reset or may have only briefly
1256 * turned off. In that case it's possible for the difference between the monotonic clock and the
1257 * sys counter to be less than the previously recorded value in clock.calend.basesleep.
1258 * In that case simply record that we slept for 0 ticks.
1260 if ((bt
.sec
> clock_calend
.basesleep
.sec
) ||
1261 ((bt
.sec
== clock_calend
.basesleep
.sec
) && (bt
.frac
> clock_calend
.basesleep
.frac
))) {
1262 //last_sleep is the difference between (current monotonic - abs) and (last wake monotonic - abs)
1264 bintime_sub(&last_sleep_bt
, &clock_calend
.basesleep
);
1266 bintime2absolutetime(&last_sleep_bt
, &mach_absolutetime_last_sleep
);
1267 mach_absolutetime_asleep
+= mach_absolutetime_last_sleep
;
1269 //set basesleep to current monotonic - abs
1270 clock_calend
.basesleep
= bt
;
1273 bintime_add(&clock_calend
.offset
, &last_sleep_bt
);
1274 bintime_add(&clock_calend
.bintime
, &last_sleep_bt
);
1276 bintime2usclock(&last_sleep_bt
, &var_s
, &var_us
);
1277 os_log(OS_LOG_DEFAULT
, "time_slept (%lu s %d u)\n", (unsigned long) var_s
, var_us
);
1279 bintime2usclock(&clock_calend
.basesleep
, &var_s
, &var_us
);
1280 os_log_error(OS_LOG_DEFAULT
, "WARNING: last wake monotonic-sys time (%lu s %d u) is greater then current monotonic-sys time(%lu s %d u), defaulting sleep time to zero\n", (unsigned long) var_s
, var_us
, (unsigned long) diff_sec
, diff_usec
);
1282 mach_absolutetime_last_sleep
= 0;
1286 * set the wall time to UTC value
1288 bt
= get_scaled_time(wake_abs
);
1289 bintime_add(&bt
, &clock_calend
.bintime
);
1290 bintime2usclock(&bt
, &wall_time_sec
, &wall_time_usec
);
1292 if (wall_time_sec
> wake_sec
|| (wall_time_sec
== wake_sec
&& wall_time_usec
> wake_usec
)) {
1293 os_log(OS_LOG_DEFAULT
, "WARNING: wall time (%lu s %d u) is greater than current UTC time (%lu s %d u), defaulting sleep time to zero\n", (unsigned long) wall_time_sec
, wall_time_usec
, (unsigned long) wake_sec
, wake_usec
);
1295 mach_absolutetime_last_sleep
= 0;
1297 diff_sec
= wake_sec
;
1298 diff_usec
= wake_usec
;
1299 // This macro stores the subtraction result in diff_sec and diff_usec
1300 TIME_SUB(diff_sec
, wall_time_sec
, diff_usec
, wall_time_usec
, USEC_PER_SEC
);
1301 //This function converts diff_sec and diff_usec in bintime
1302 clock2bintime(&diff_sec
, &diff_usec
, &bt
);
1304 //time slept in this case is the difference between PMU/RTC and wall time
1307 bintime2absolutetime(&last_sleep_bt
, &mach_absolutetime_last_sleep
);
1308 mach_absolutetime_asleep
+= mach_absolutetime_last_sleep
;
1311 bintime_add(&clock_calend
.offset
, &last_sleep_bt
);
1312 bintime_add(&clock_calend
.bintime
, &last_sleep_bt
);
1314 bintime2usclock(&last_sleep_bt
, &var_s
, &var_us
);
1315 os_log(OS_LOG_DEFAULT
, "time_slept (%lu s %d u)\n", (unsigned long)var_s
, var_us
);
1319 KERNEL_DEBUG_CONSTANT(
1320 MACHDBG_CODE(DBG_MACH_CLOCK
, MACH_EPOCH_CHANGE
) | DBG_FUNC_NONE
,
1321 (uintptr_t) mach_absolutetime_last_sleep
,
1322 (uintptr_t) mach_absolutetime_asleep
,
1323 (uintptr_t) (mach_absolutetime_last_sleep
>> 32),
1324 (uintptr_t) (mach_absolutetime_asleep
>> 32),
1327 commpage_update_mach_continuous_time(mach_absolutetime_asleep
);
1328 adjust_cont_time_thread_calls();
1330 #if DEVELOPMENT || DEBUG
1331 struct clock_calend clock_calend_cp
= clock_calend
;
1337 #if DEVELOPMENT || DEBUG
1338 if (g_should_log_clock_adjustments
) {
1339 print_all_clock_variables("clock_wakeup_calendar: BEFORE", NULL
, NULL
, NULL
, NULL
, &clock_calend_cp1
);
1340 print_all_clock_variables("clock_wakeup_calendar: AFTER", NULL
, NULL
, NULL
, NULL
, &clock_calend_cp
);
1342 #endif /* DEVELOPMENT || DEBUG */
1344 host_notify_calendar_change();
1347 clock_track_calend_nowait();
1353 * clock_get_boottime_nanotime:
1355 * Return the boottime, used by sysctl.
1358 clock_get_boottime_nanotime(
1360 clock_nsec_t
*nanosecs
)
1367 *secs
= (clock_sec_t
)clock_boottime
;
1368 *nanosecs
= (clock_nsec_t
)clock_boottime_usec
* NSEC_PER_USEC
;
1375 * clock_get_boottime_nanotime:
1377 * Return the boottime, used by sysctl.
1380 clock_get_boottime_microtime(
1382 clock_usec_t
*microsecs
)
1389 *secs
= (clock_sec_t
)clock_boottime
;
1390 *microsecs
= (clock_nsec_t
)clock_boottime_usec
;
1398 * Wait / delay routines.
1401 mach_wait_until_continue(
1402 __unused
void *parameter
,
1403 wait_result_t wresult
)
1405 thread_syscall_return((wresult
== THREAD_INTERRUPTED
)? KERN_ABORTED
: KERN_SUCCESS
);
1410 * mach_wait_until_trap: Suspend execution of calling thread until the specified time has passed
1412 * Parameters: args->deadline Amount of time to wait
1414 * Returns: 0 Success
1419 mach_wait_until_trap(
1420 struct mach_wait_until_trap_args
*args
)
1422 uint64_t deadline
= args
->deadline
;
1423 wait_result_t wresult
;
1425 wresult
= assert_wait_deadline_with_leeway((event_t
)mach_wait_until_trap
, THREAD_ABORTSAFE
,
1426 TIMEOUT_URGENCY_USER_NORMAL
, deadline
, 0);
1427 if (wresult
== THREAD_WAITING
) {
1428 wresult
= thread_block(mach_wait_until_continue
);
1431 return (wresult
== THREAD_INTERRUPTED
)? KERN_ABORTED
: KERN_SUCCESS
;
1438 uint64_t now
= mach_absolute_time();
1440 if (now
>= deadline
) {
1444 _clock_delay_until_deadline(deadline
- now
, deadline
);
1448 * Preserve the original precise interval that the client
1449 * requested for comparison to the spin threshold.
1452 _clock_delay_until_deadline(
1456 _clock_delay_until_deadline_with_leeway(interval
, deadline
, 0);
1460 * Like _clock_delay_until_deadline, but it accepts a
1464 _clock_delay_until_deadline_with_leeway(
1469 if (interval
== 0) {
1473 if (ml_delay_should_spin(interval
) ||
1474 get_preemption_level() != 0 ||
1475 ml_get_interrupts_enabled() == FALSE
) {
1476 machine_delay_until(interval
, deadline
);
1479 * For now, assume a leeway request of 0 means the client does not want a leeway
1480 * value. We may want to change this interpretation in the future.
1484 assert_wait_deadline_with_leeway((event_t
)clock_delay_until
, THREAD_UNINT
, TIMEOUT_URGENCY_LEEWAY
, deadline
, leeway
);
1486 assert_wait_deadline((event_t
)clock_delay_until
, THREAD_UNINT
, deadline
);
1489 thread_block(THREAD_CONTINUE_NULL
);
1496 uint32_t scale_factor
)
1500 clock_interval_to_absolutetime_interval(interval
, scale_factor
, &abstime
);
1502 _clock_delay_until_deadline(abstime
, mach_absolute_time() + abstime
);
1506 delay_for_interval_with_leeway(
1509 uint32_t scale_factor
)
1511 uint64_t abstime_interval
;
1512 uint64_t abstime_leeway
;
1514 clock_interval_to_absolutetime_interval(interval
, scale_factor
, &abstime_interval
);
1515 clock_interval_to_absolutetime_interval(leeway
, scale_factor
, &abstime_leeway
);
1517 _clock_delay_until_deadline_with_leeway(abstime_interval
, mach_absolute_time() + abstime_interval
, abstime_leeway
);
1524 delay_for_interval((usec
< 0)? -usec
: usec
, NSEC_PER_USEC
);
1528 * Miscellaneous routines.
1531 clock_interval_to_deadline(
1533 uint32_t scale_factor
,
1538 clock_interval_to_absolutetime_interval(interval
, scale_factor
, &abstime
);
1540 *result
= mach_absolute_time() + abstime
;
1544 clock_absolutetime_interval_to_deadline(
1548 *result
= mach_absolute_time() + abstime
;
1552 clock_continuoustime_interval_to_deadline(
1556 *result
= mach_continuous_time() + conttime
;
1563 *result
= mach_absolute_time();
1567 clock_deadline_for_periodic_event(
1572 assert(interval
!= 0);
1574 *deadline
+= interval
;
1576 if (*deadline
<= abstime
) {
1577 *deadline
= abstime
+ interval
;
1578 abstime
= mach_absolute_time();
1580 if (*deadline
<= abstime
) {
1581 *deadline
= abstime
+ interval
;
1587 mach_continuous_time(void)
1590 uint64_t read1
= mach_absolutetime_asleep
;
1591 uint64_t absolute
= mach_absolute_time();
1593 uint64_t read2
= mach_absolutetime_asleep
;
1595 if (__builtin_expect(read1
== read2
, 1)) {
1596 return absolute
+ read1
;
1602 mach_continuous_approximate_time(void)
1605 uint64_t read1
= mach_absolutetime_asleep
;
1606 uint64_t absolute
= mach_approximate_time();
1608 uint64_t read2
= mach_absolutetime_asleep
;
1610 if (__builtin_expect(read1
== read2
, 1)) {
1611 return absolute
+ read1
;
1617 * continuoustime_to_absolutetime
1618 * Must be called with interrupts disabled
1619 * Returned value is only valid until the next update to
1620 * mach_continuous_time
1623 continuoustime_to_absolutetime(uint64_t conttime
)
1625 if (conttime
<= mach_absolutetime_asleep
) {
1628 return conttime
- mach_absolutetime_asleep
;
1633 * absolutetime_to_continuoustime
1634 * Must be called with interrupts disabled
1635 * Returned value is only valid until the next update to
1636 * mach_continuous_time
1639 absolutetime_to_continuoustime(uint64_t abstime
)
1641 return abstime
+ mach_absolutetime_asleep
;
1647 * clock_get_calendar_nanotime_nowait
1649 * Description: Non-blocking version of clock_get_calendar_nanotime()
1651 * Notes: This function operates by separately tracking calendar time
1652 * updates using a two element structure to copy the calendar
1653 * state, which may be asynchronously modified. It utilizes
1654 * barrier instructions in the tracking process and in the local
1655 * stable snapshot process in order to ensure that a consistent
1656 * snapshot is used to perform the calculation.
1659 clock_get_calendar_nanotime_nowait(
1661 clock_nsec_t
*nanosecs
)
1665 struct unlocked_clock_calend stable
;
1669 stable
= flipflop
[i
]; /* take snapshot */
1672 * Use a barrier instructions to ensure atomicity. We AND
1673 * off the "in progress" bit to get the current generation
1676 (void)hw_atomic_and(&stable
.gen
, ~(uint32_t)1);
1679 * If an update _is_ in progress, the generation count will be
1680 * off by one, if it _was_ in progress, it will be off by two,
1681 * and if we caught it at a good time, it will be equal (and
1682 * our snapshot is threfore stable).
1684 if (flipflop
[i
].gen
== stable
.gen
) {
1688 /* Switch to the other element of the flipflop, and try again. */
1692 now
= mach_absolute_time();
1694 bt
= get_scaled_time(now
);
1696 bintime_add(&bt
, &clock_calend
.bintime
);
1698 bintime2nsclock(&bt
, secs
, nanosecs
);
1702 clock_track_calend_nowait(void)
1706 for (i
= 0; i
< 2; i
++) {
1707 struct clock_calend tmp
= clock_calend
;
1710 * Set the low bit if the generation count; since we use a
1711 * barrier instruction to do this, we are guaranteed that this
1712 * will flag an update in progress to an async caller trying
1713 * to examine the contents.
1715 (void)hw_atomic_or(&flipflop
[i
].gen
, 1);
1717 flipflop
[i
].calend
= tmp
;
1720 * Increment the generation count to clear the low bit to
1721 * signal completion. If a caller compares the generation
1722 * count after taking a copy while in progress, the count
1723 * will be off by two.
1725 (void)hw_atomic_add(&flipflop
[i
].gen
, 1);
1729 #endif /* CONFIG_DTRACE */