2 * Copyright (c) 2007-2016 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
29 #include <arm/proc_reg.h>
30 #include <arm/machine_cpu.h>
31 #include <arm/cpu_internal.h>
32 #include <arm/cpuid.h>
33 #include <arm/io_map_entries.h>
34 #include <arm/cpu_data.h>
35 #include <arm/cpu_data_internal.h>
36 #include <arm/misc_protos.h>
37 #include <arm/rtclock.h>
38 #include <arm/caches_internal.h>
39 #include <console/serial_protos.h>
40 #include <kern/machine.h>
41 #include <prng/random.h>
42 #include <kern/startup.h>
43 #include <kern/sched.h>
44 #include <kern/thread.h>
45 #include <mach/machine.h>
46 #include <machine/atomic.h>
48 #include <vm/vm_page.h>
49 #include <sys/kdebug.h>
50 #include <kern/coalition.h>
51 #include <pexpert/device_tree.h>
52 #include <arm/cpuid_internal.h>
54 #include <IOKit/IOPlatformExpert.h>
60 static int max_cpus_initialized
= 0;
61 #define MAX_CPUS_SET 0x1
62 #define MAX_CPUS_WAIT 0x2
64 static unsigned int avail_cpus
= 0;
67 uint32_t LockTimeOutUsec
;
68 uint64_t TLockTimeOut
;
70 boolean_t is_clock_configured
= FALSE
;
72 extern int mach_assert
;
73 extern volatile uint32_t debug_enabled
;
75 void machine_conf(void);
78 machine_startup(__unused boot_args
* args
)
82 PE_parse_boot_argn("assert", &mach_assert
, sizeof(mach_assert
));
84 if (PE_parse_boot_argn("preempt", &boot_arg
, sizeof(boot_arg
))) {
85 default_preemption_rate
= boot_arg
;
87 if (PE_parse_boot_argn("bg_preempt", &boot_arg
, sizeof(boot_arg
))) {
88 default_bg_preemption_rate
= boot_arg
;
94 * Kick off the kernel bootstrap.
103 __unused vm_size_t size
)
105 return PE_boot_args();
111 machine_info
.memory_size
= mem_size
;
119 is_clock_configured
= TRUE
;
126 slave_machine_init(__unused
void *param
)
128 cpu_machine_init(); /* Initialize the processor */
129 clock_init(); /* Init the clock */
133 * Routine: machine_processor_shutdown
137 machine_processor_shutdown(
138 __unused thread_t thread
,
139 void (*doshutdown
)(processor_t
),
140 processor_t processor
)
142 return Shutdown_context(doshutdown
, processor
);
146 * Routine: ml_init_max_cpus
150 ml_init_max_cpus(unsigned int max_cpus
)
152 boolean_t current_state
;
154 current_state
= ml_set_interrupts_enabled(FALSE
);
155 if (max_cpus_initialized
!= MAX_CPUS_SET
) {
156 machine_info
.max_cpus
= max_cpus
;
157 machine_info
.physical_cpu_max
= max_cpus
;
158 machine_info
.logical_cpu_max
= max_cpus
;
159 if (max_cpus_initialized
== MAX_CPUS_WAIT
) {
160 thread_wakeup((event_t
) &max_cpus_initialized
);
162 max_cpus_initialized
= MAX_CPUS_SET
;
164 (void) ml_set_interrupts_enabled(current_state
);
168 * Routine: ml_get_max_cpus
172 ml_get_max_cpus(void)
174 boolean_t current_state
;
176 current_state
= ml_set_interrupts_enabled(FALSE
);
177 if (max_cpus_initialized
!= MAX_CPUS_SET
) {
178 max_cpus_initialized
= MAX_CPUS_WAIT
;
179 assert_wait((event_t
) &max_cpus_initialized
, THREAD_UNINT
);
180 (void) thread_block(THREAD_CONTINUE_NULL
);
182 (void) ml_set_interrupts_enabled(current_state
);
183 return machine_info
.max_cpus
;
187 * Routine: ml_init_lock_timeout
191 ml_init_lock_timeout(void)
195 uint64_t default_timeout_ns
= NSEC_PER_SEC
>> 2;
198 if (PE_parse_boot_argn("slto_us", &slto
, sizeof(slto
))) {
199 default_timeout_ns
= slto
* NSEC_PER_USEC
;
202 nanoseconds_to_absolutetime(default_timeout_ns
, &abstime
);
203 LockTimeOutUsec
= (uint32_t)(default_timeout_ns
/ NSEC_PER_USEC
);
204 LockTimeOut
= (uint32_t)abstime
;
205 TLockTimeOut
= LockTimeOut
;
207 if (PE_parse_boot_argn("mtxspin", &mtxspin
, sizeof(mtxspin
))) {
208 if (mtxspin
> USEC_PER_SEC
>> 4) {
209 mtxspin
= USEC_PER_SEC
>> 4;
211 nanoseconds_to_absolutetime(mtxspin
* NSEC_PER_USEC
, &abstime
);
213 nanoseconds_to_absolutetime(10 * NSEC_PER_USEC
, &abstime
);
219 * This is called from the machine-independent routine cpu_up()
220 * to perform machine-dependent info updates.
225 hw_atomic_add(&machine_info
.physical_cpu
, 1);
226 hw_atomic_add(&machine_info
.logical_cpu
, 1);
230 * This is called from the machine-independent routine cpu_down()
231 * to perform machine-dependent info updates.
236 cpu_data_t
*cpu_data_ptr
;
238 hw_atomic_sub(&machine_info
.physical_cpu
, 1);
239 hw_atomic_sub(&machine_info
.logical_cpu
, 1);
242 * If we want to deal with outstanding IPIs, we need to
243 * do relatively early in the processor_doshutdown path,
244 * as we pend decrementer interrupts using the IPI
245 * mechanism if we cannot immediately service them (if
246 * IRQ is masked). Do so now.
248 * We aren't on the interrupt stack here; would it make
249 * more sense to disable signaling and then enable
250 * interrupts? It might be a bit cleaner.
252 cpu_data_ptr
= getCpuDatap();
253 cpu_data_ptr
->cpu_running
= FALSE
;
255 cpu_signal_handler_internal(TRUE
);
259 * Routine: ml_cpu_get_info
263 ml_cpu_get_info(ml_cpu_info_t
* ml_cpu_info
)
265 cache_info_t
*cpuid_cache_info
;
267 cpuid_cache_info
= cache_info();
268 ml_cpu_info
->vector_unit
= 0;
269 ml_cpu_info
->cache_line_size
= cpuid_cache_info
->c_linesz
;
270 ml_cpu_info
->l1_icache_size
= cpuid_cache_info
->c_isize
;
271 ml_cpu_info
->l1_dcache_size
= cpuid_cache_info
->c_dsize
;
273 #if (__ARM_ARCH__ >= 7)
274 ml_cpu_info
->l2_settings
= 1;
275 ml_cpu_info
->l2_cache_size
= cpuid_cache_info
->c_l2size
;
277 ml_cpu_info
->l2_settings
= 0;
278 ml_cpu_info
->l2_cache_size
= 0xFFFFFFFF;
280 ml_cpu_info
->l3_settings
= 0;
281 ml_cpu_info
->l3_cache_size
= 0xFFFFFFFF;
285 ml_get_machine_mem(void)
287 return machine_info
.memory_size
;
290 /* Return max offset */
296 unsigned int pmap_max_offset_option
= 0;
299 case MACHINE_MAX_OFFSET_DEFAULT
:
300 pmap_max_offset_option
= ARM_PMAP_MAX_OFFSET_DEFAULT
;
302 case MACHINE_MAX_OFFSET_MIN
:
303 pmap_max_offset_option
= ARM_PMAP_MAX_OFFSET_MIN
;
305 case MACHINE_MAX_OFFSET_MAX
:
306 pmap_max_offset_option
= ARM_PMAP_MAX_OFFSET_MAX
;
308 case MACHINE_MAX_OFFSET_DEVICE
:
309 pmap_max_offset_option
= ARM_PMAP_MAX_OFFSET_DEVICE
;
312 panic("ml_get_max_offset(): Illegal option 0x%x\n", option
);
315 return pmap_max_offset(is64
, pmap_max_offset_option
);
319 ml_wants_panic_trap_to_debugger(void)
325 ml_panic_trap_to_debugger(__unused
const char *panic_format_str
,
326 __unused
va_list *panic_args
,
327 __unused
unsigned int reason
,
329 __unused
uint64_t panic_options_mask
,
330 __unused
unsigned long panic_caller
)
335 __attribute__((noreturn
))
337 halt_all_cpus(boolean_t reboot
)
340 printf("MACH Reboot\n");
341 PEHaltRestart(kPERestartCPU
);
343 printf("CPU halted\n");
344 PEHaltRestart(kPEHaltCPU
);
351 __attribute__((noreturn
))
355 halt_all_cpus(FALSE
);
359 * Routine: machine_signal_idle
364 processor_t processor
)
366 cpu_signal(processor_to_cpu_datap(processor
), SIGPnop
, (void *)NULL
, (void *)NULL
);
367 KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED
, MACH_REMOTE_AST
), processor
->cpu_id
, 0 /* nop */, 0, 0, 0);
371 machine_signal_idle_deferred(
372 processor_t processor
)
374 cpu_signal_deferred(processor_to_cpu_datap(processor
));
375 KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED
, MACH_REMOTE_DEFERRED_AST
), processor
->cpu_id
, 0 /* nop */, 0, 0, 0);
379 machine_signal_idle_cancel(
380 processor_t processor
)
382 cpu_signal_cancel(processor_to_cpu_datap(processor
));
383 KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED
, MACH_REMOTE_CANCEL_AST
), processor
->cpu_id
, 0 /* nop */, 0, 0, 0);
387 * Routine: ml_install_interrupt_handler
388 * Function: Initialize Interrupt Handler
391 ml_install_interrupt_handler(
395 IOInterruptHandler handler
,
398 cpu_data_t
*cpu_data_ptr
;
399 boolean_t current_state
;
401 current_state
= ml_set_interrupts_enabled(FALSE
);
402 cpu_data_ptr
= getCpuDatap();
404 cpu_data_ptr
->interrupt_nub
= nub
;
405 cpu_data_ptr
->interrupt_source
= source
;
406 cpu_data_ptr
->interrupt_target
= target
;
407 cpu_data_ptr
->interrupt_handler
= handler
;
408 cpu_data_ptr
->interrupt_refCon
= refCon
;
410 cpu_data_ptr
->interrupts_enabled
= TRUE
;
411 (void) ml_set_interrupts_enabled(current_state
);
413 initialize_screen(NULL
, kPEAcquireScreen
);
417 * Routine: ml_init_interrupt
418 * Function: Initialize Interrupts
421 ml_init_interrupt(void)
426 * Routine: ml_init_timebase
427 * Function: register and setup Timebase, Decremeter services
433 vm_offset_t int_address
,
434 vm_offset_t int_value
)
436 cpu_data_t
*cpu_data_ptr
;
438 cpu_data_ptr
= (cpu_data_t
*)args
;
440 if ((cpu_data_ptr
== &BootCpuData
)
441 && (rtclock_timebase_func
.tbd_fiq_handler
== (void *)NULL
)) {
442 rtclock_timebase_func
= *tbd_funcs
;
443 rtclock_timebase_addr
= int_address
;
444 rtclock_timebase_val
= int_value
;
449 fiq_context_bootstrap(boolean_t enable_fiq
)
451 fiq_context_init(enable_fiq
);
455 ml_parse_cpu_topology(void)
457 DTEntry entry
, child
;
458 OpaqueDTEntryIterator iter
;
459 uint32_t cpu_boot_arg
;
462 err
= DTLookupEntry(NULL
, "/cpus", &entry
);
463 assert(err
== kSuccess
);
465 err
= DTInitEntryIterator(entry
, &iter
);
466 assert(err
== kSuccess
);
468 while (kSuccess
== DTIterateEntries(&iter
, &child
)) {
470 unsigned int propSize
;
472 if (avail_cpus
== 0) {
473 if (kSuccess
!= DTGetProperty(child
, "state", &prop
, &propSize
)) {
474 panic("unable to retrieve state for cpu %u", avail_cpus
);
477 if (strncmp((char*)prop
, "running", propSize
) != 0) {
478 panic("cpu 0 has not been marked as running!");
481 assert(kSuccess
== DTGetProperty(child
, "reg", &prop
, &propSize
));
482 assert(avail_cpus
== *((uint32_t*)prop
));
487 cpu_boot_arg
= avail_cpus
;
488 if (PE_parse_boot_argn("cpus", &cpu_boot_arg
, sizeof(cpu_boot_arg
)) &&
489 (avail_cpus
> cpu_boot_arg
)) {
490 avail_cpus
= cpu_boot_arg
;
493 if (avail_cpus
== 0) {
494 panic("No cpus found!");
499 ml_get_cpu_count(void)
505 ml_get_boot_cpu_number(void)
511 ml_get_boot_cluster(void)
513 return CLUSTER_TYPE_SMP
;
517 ml_get_cpu_number(uint32_t phys_id
)
523 ml_get_max_cpu_number(void)
525 return avail_cpus
- 1;
529 ml_processor_register(ml_processor_info_t
*in_processor_info
,
530 processor_t
* processor_out
, ipi_handler_t
*ipi_handler_out
,
531 perfmon_interrupt_handler_func
*pmi_handler_out
)
533 cpu_data_t
*this_cpu_datap
;
534 boolean_t is_boot_cpu
;
536 if (in_processor_info
->phys_id
>= MAX_CPUS
) {
538 * The physical CPU ID indicates that we have more CPUs than
539 * this xnu build support. This probably means we have an
540 * incorrect board configuration.
542 * TODO: Should this just return a failure instead? A panic
543 * is simply a convenient way to catch bugs in the pexpert
546 panic("phys_id %u is too large for MAX_CPUS (%u)", in_processor_info
->phys_id
, MAX_CPUS
);
549 /* Fail the registration if the number of CPUs has been limited by boot-arg. */
550 if ((in_processor_info
->phys_id
>= avail_cpus
) ||
551 (in_processor_info
->log_id
> (uint32_t)ml_get_max_cpu_number())) {
555 if (in_processor_info
->log_id
!= (uint32_t)ml_get_boot_cpu_number()) {
557 this_cpu_datap
= cpu_data_alloc(FALSE
);
558 cpu_data_init(this_cpu_datap
);
560 this_cpu_datap
= &BootCpuData
;
564 this_cpu_datap
->cpu_id
= in_processor_info
->cpu_id
;
566 this_cpu_datap
->cpu_console_buf
= console_cpu_alloc(is_boot_cpu
);
567 if (this_cpu_datap
->cpu_console_buf
== (void *)(NULL
)) {
568 goto processor_register_error
;
572 if (cpu_data_register(this_cpu_datap
) != KERN_SUCCESS
) {
573 goto processor_register_error
;
577 this_cpu_datap
->cpu_idle_notify
= (void *) in_processor_info
->processor_idle
;
578 this_cpu_datap
->cpu_cache_dispatch
= in_processor_info
->platform_cache_dispatch
;
579 nanoseconds_to_absolutetime((uint64_t) in_processor_info
->powergate_latency
, &this_cpu_datap
->cpu_idle_latency
);
580 this_cpu_datap
->cpu_reset_assist
= kvtophys(in_processor_info
->powergate_stub_addr
);
582 this_cpu_datap
->idle_timer_notify
= (void *) in_processor_info
->idle_timer
;
583 this_cpu_datap
->idle_timer_refcon
= in_processor_info
->idle_timer_refcon
;
585 this_cpu_datap
->platform_error_handler
= (void *) in_processor_info
->platform_error_handler
;
586 this_cpu_datap
->cpu_regmap_paddr
= in_processor_info
->regmap_paddr
;
587 this_cpu_datap
->cpu_phys_id
= in_processor_info
->phys_id
;
588 this_cpu_datap
->cpu_l2_access_penalty
= in_processor_info
->l2_access_penalty
;
591 processor_init((struct processor
*)this_cpu_datap
->cpu_processor
,
592 this_cpu_datap
->cpu_number
, processor_pset(master_processor
));
594 if (this_cpu_datap
->cpu_l2_access_penalty
) {
596 * Cores that have a non-zero L2 access penalty compared
597 * to the boot processor should be de-prioritized by the
598 * scheduler, so that threads use the cores with better L2
601 processor_set_primary(this_cpu_datap
->cpu_processor
,
606 *processor_out
= this_cpu_datap
->cpu_processor
;
607 *ipi_handler_out
= cpu_signal_handler
;
608 *pmi_handler_out
= NULL
;
609 if (in_processor_info
->idle_tickle
!= (idle_tickle_t
*) NULL
) {
610 *in_processor_info
->idle_tickle
= (idle_tickle_t
) cpu_idle_tickle
;
614 if (kpc_register_cpu(this_cpu_datap
) != TRUE
) {
615 goto processor_register_error
;
620 early_random_cpu_init(this_cpu_datap
->cpu_number
);
625 processor_register_error
:
627 kpc_unregister_cpu(this_cpu_datap
);
630 cpu_data_free(this_cpu_datap
);
636 ml_init_arm_debug_interface(
638 vm_offset_t virt_address
)
640 ((cpu_data_t
*)in_cpu_datap
)->cpu_debug_interface_map
= virt_address
;
645 * Routine: init_ast_check
650 __unused processor_t processor
)
655 * Routine: cause_ast_check
660 processor_t processor
)
662 if (current_processor() != processor
) {
663 cpu_signal(processor_to_cpu_datap(processor
), SIGPast
, (void *)NULL
, (void *)NULL
);
664 KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED
, MACH_REMOTE_AST
), processor
->cpu_id
, 1 /* ast */, 0, 0, 0);
668 extern uint32_t cpu_idle_count
;
671 ml_get_power_state(boolean_t
*icp
, boolean_t
*pidlep
)
673 *icp
= ml_at_interrupt_context();
674 *pidlep
= (cpu_idle_count
== real_ncpus
);
678 * Routine: ml_cause_interrupt
679 * Function: Generate a fake interrupt
682 ml_cause_interrupt(void)
687 /* Map memory map IO space */
690 vm_offset_t phys_addr
,
693 return io_map(phys_addr
, size
, VM_WIMG_IO
);
698 vm_offset_t phys_addr
,
701 return io_map(phys_addr
, size
, VM_WIMG_WCOMB
);
704 /* boot memory allocation */
707 __unused vm_size_t size
)
709 return (vm_offset_t
) NULL
;
714 vm_offset_t phys_addr
,
717 return pmap_map_high_window_bd(phys_addr
, len
, VM_PROT_READ
| VM_PROT_WRITE
);
724 return phystokv(paddr
);
731 if (((vm_address_t
)(vaddr
) - gVirtBase
) >= gPhysSize
) {
732 panic("ml_static_ptovirt(): illegal vaddr: %p\n", (void*)vaddr
);
734 return (vm_address_t
)(vaddr
) - gVirtBase
+ gPhysBase
;
741 return VM_KERNEL_SLIDE(vaddr
);
748 return VM_KERNEL_UNSLIDE(vaddr
);
753 vm_offset_t vaddr
, /* kernel virtual address */
757 pt_entry_t arm_prot
= 0;
758 pt_entry_t arm_block_prot
= 0;
759 vm_offset_t vaddr_cur
;
761 kern_return_t result
= KERN_SUCCESS
;
763 if (vaddr
< VM_MIN_KERNEL_ADDRESS
) {
767 assert((vaddr
& (ARM_PGBYTES
- 1)) == 0); /* must be page aligned */
769 if ((new_prot
& VM_PROT_WRITE
) && (new_prot
& VM_PROT_EXECUTE
)) {
770 panic("ml_static_protect(): WX request on %p", (void *) vaddr
);
773 /* Set up the protection bits, and block bits so we can validate block mappings. */
774 if (new_prot
& VM_PROT_WRITE
) {
775 arm_prot
|= ARM_PTE_AP(AP_RWNA
);
776 arm_block_prot
|= ARM_TTE_BLOCK_AP(AP_RWNA
);
778 arm_prot
|= ARM_PTE_AP(AP_RONA
);
779 arm_block_prot
|= ARM_TTE_BLOCK_AP(AP_RONA
);
782 if (!(new_prot
& VM_PROT_EXECUTE
)) {
783 arm_prot
|= ARM_PTE_NX
;
784 arm_block_prot
|= ARM_TTE_BLOCK_NX
;
787 for (vaddr_cur
= vaddr
;
788 vaddr_cur
< ((vaddr
+ size
) & ~ARM_PGMASK
);
789 vaddr_cur
+= ARM_PGBYTES
) {
790 ppn
= pmap_find_phys(kernel_pmap
, vaddr_cur
);
791 if (ppn
!= (vm_offset_t
) NULL
) {
792 tt_entry_t
*ttp
= &kernel_pmap
->tte
[ttenum(vaddr_cur
)];
793 tt_entry_t tte
= *ttp
;
795 if ((tte
& ARM_TTE_TYPE_MASK
) != ARM_TTE_TYPE_TABLE
) {
796 if (((tte
& ARM_TTE_TYPE_MASK
) == ARM_TTE_TYPE_BLOCK
) &&
797 ((tte
& (ARM_TTE_BLOCK_APMASK
| ARM_TTE_BLOCK_NX_MASK
)) == arm_block_prot
)) {
799 * We can support ml_static_protect on a block mapping if the mapping already has
800 * the desired protections. We still want to run checks on a per-page basis.
805 result
= KERN_FAILURE
;
809 pt_entry_t
*pte_p
= (pt_entry_t
*) ttetokv(tte
) + ptenum(vaddr_cur
);
810 pt_entry_t ptmp
= *pte_p
;
812 ptmp
= (ptmp
& ~(ARM_PTE_APMASK
| ARM_PTE_NX_MASK
)) | arm_prot
;
814 #ifndef __ARM_L1_PTW__
815 FlushPoC_DcacheRegion((vm_offset_t
) pte_p
, sizeof(*pte_p
));
820 if (vaddr_cur
> vaddr
) {
821 flush_mmu_tlb_region(vaddr
, (vm_size_t
)(vaddr_cur
- vaddr
));
828 * Routine: ml_static_mfree
836 vm_offset_t vaddr_cur
;
838 uint32_t freed_pages
= 0;
840 /* It is acceptable (if bad) to fail to free. */
841 if (vaddr
< VM_MIN_KERNEL_ADDRESS
) {
845 assert((vaddr
& (PAGE_SIZE
- 1)) == 0); /* must be page aligned */
847 for (vaddr_cur
= vaddr
;
848 vaddr_cur
< trunc_page_32(vaddr
+ size
);
849 vaddr_cur
+= PAGE_SIZE
) {
850 ppn
= pmap_find_phys(kernel_pmap
, vaddr_cur
);
851 if (ppn
!= (vm_offset_t
) NULL
) {
853 * It is not acceptable to fail to update the protections on a page
854 * we will release to the VM. We need to either panic or continue.
855 * For now, we'll panic (to help flag if there is memory we can
858 if (ml_static_protect(vaddr_cur
, PAGE_SIZE
, VM_PROT_WRITE
| VM_PROT_READ
) != KERN_SUCCESS
) {
859 panic("Failed ml_static_mfree on %p", (void *) vaddr_cur
);
863 * Must NOT tear down the "V==P" mapping for vaddr_cur as the zone alias scheme
864 * relies on the persistence of these mappings for all time.
866 // pmap_remove(kernel_pmap, (addr64_t) vaddr_cur, (addr64_t) (vaddr_cur + PAGE_SIZE));
868 vm_page_create(ppn
, (ppn
+ 1));
872 vm_page_lockspin_queues();
873 vm_page_wire_count
-= freed_pages
;
874 vm_page_wire_count_initial
-= freed_pages
;
875 vm_page_unlock_queues();
877 kprintf("ml_static_mfree: Released 0x%x pages at VA %p, size:0x%llx, last ppn: 0x%x\n", freed_pages
, (void *)vaddr
, (uint64_t)size
, ppn
);
882 /* virtual to physical on wired pages */
884 ml_vtophys(vm_offset_t vaddr
)
886 return kvtophys(vaddr
);
890 * Routine: ml_nofault_copy
891 * Function: Perform a physical mode copy if the source and destination have
892 * valid translations in the kernel pmap. If translations are present, they are
893 * assumed to be wired; e.g., no attempt is made to guarantee that the
894 * translations obtained remain valid for the duration of the copy process.
897 ml_nofault_copy(vm_offset_t virtsrc
, vm_offset_t virtdst
, vm_size_t size
)
899 addr64_t cur_phys_dst
, cur_phys_src
;
900 uint32_t count
, nbytes
= 0;
903 if (!(cur_phys_src
= kvtophys(virtsrc
))) {
906 if (!(cur_phys_dst
= kvtophys(virtdst
))) {
909 if (!pmap_valid_address(trunc_page_64(cur_phys_dst
)) ||
910 !pmap_valid_address(trunc_page_64(cur_phys_src
))) {
913 count
= PAGE_SIZE
- (cur_phys_src
& PAGE_MASK
);
914 if (count
> (PAGE_SIZE
- (cur_phys_dst
& PAGE_MASK
))) {
915 count
= PAGE_SIZE
- (cur_phys_dst
& PAGE_MASK
);
921 bcopy_phys(cur_phys_src
, cur_phys_dst
, count
);
933 * Routine: ml_validate_nofault
934 * Function: Validate that ths address range has a valid translations
935 * in the kernel pmap. If translations are present, they are
936 * assumed to be wired; i.e. no attempt is made to guarantee
937 * that the translation persist after the check.
938 * Returns: TRUE if the range is mapped and will not cause a fault,
944 vm_offset_t virtsrc
, vm_size_t size
)
946 addr64_t cur_phys_src
;
950 if (!(cur_phys_src
= kvtophys(virtsrc
))) {
953 if (!pmap_valid_address(trunc_page_64(cur_phys_src
))) {
956 count
= (uint32_t)(PAGE_SIZE
- (cur_phys_src
& PAGE_MASK
));
958 count
= (uint32_t)size
;
969 ml_get_bouncepool_info(vm_offset_t
* phys_addr
, vm_size_t
* size
)
976 * Stubs for CPU Stepper
979 active_rt_threads(__unused boolean_t active
)
984 thread_tell_urgency(__unused thread_urgency_t urgency
,
985 __unused
uint64_t rt_period
,
986 __unused
uint64_t rt_deadline
,
987 __unused
uint64_t sched_latency
,
988 __unused thread_t nthread
)
993 machine_run_count(__unused
uint32_t count
)
998 machine_choose_processor(__unused processor_set_t pset
, processor_t processor
)
1004 machine_timeout_suspended(void)
1010 ml_interrupt_prewarm(__unused
uint64_t deadline
)
1012 return KERN_FAILURE
;
1016 ml_get_hwclock(void)
1018 uint64_t high_first
= 0;
1019 uint64_t high_second
= 0;
1022 __builtin_arm_isb(ISB_SY
);
1025 high_first
= __builtin_arm_mrrc(15, 0, 14) >> 32;
1026 low
= __builtin_arm_mrrc(15, 0, 14) & 0xFFFFFFFFULL
;
1027 high_second
= __builtin_arm_mrrc(15, 0, 14) >> 32;
1028 } while (high_first
!= high_second
);
1030 return (high_first
<< 32) | (low
);
1034 ml_delay_should_spin(uint64_t interval
)
1036 cpu_data_t
*cdp
= getCpuDatap();
1038 if (cdp
->cpu_idle_latency
) {
1039 return (interval
< cdp
->cpu_idle_latency
) ? TRUE
: FALSE
;
1042 * Early boot, latency is unknown. Err on the side of blocking,
1043 * which should always be safe, even if slow
1050 ml_delay_on_yield(void)
1055 ml_thread_is64bit(thread_t thread
)
1057 return thread_is_64bit_addr(thread
);
1061 ml_timer_evaluate(void)
1066 ml_timer_forced_evaluation(void)
1072 ml_energy_stat(__unused thread_t t
)
1079 ml_gpu_stat_update(__unused
uint64_t gpu_ns_delta
)
1083 * For now: update the resource coalition stats of the
1084 * current thread's coalition
1086 task_coalition_update_gpu_stats(current_task(), gpu_ns_delta
);
1091 ml_gpu_stat(__unused thread_t t
)
1096 #if !CONFIG_SKIP_PRECISE_USER_KERNEL_TIME
1098 timer_state_event(boolean_t switch_to_kernel
)
1100 thread_t thread
= current_thread();
1101 if (!thread
->precise_user_kernel_time
) {
1105 processor_data_t
*pd
= &getCpuDatap()->cpu_processor
->processor_data
;
1106 uint64_t now
= ml_get_timebase();
1108 timer_stop(pd
->current_state
, now
);
1109 pd
->current_state
= (switch_to_kernel
) ? &pd
->system_state
: &pd
->user_state
;
1110 timer_start(pd
->current_state
, now
);
1112 timer_stop(pd
->thread_timer
, now
);
1113 pd
->thread_timer
= (switch_to_kernel
) ? &thread
->system_timer
: &thread
->user_timer
;
1114 timer_start(pd
->thread_timer
, now
);
1118 timer_state_event_user_to_kernel(void)
1120 timer_state_event(TRUE
);
1124 timer_state_event_kernel_to_user(void)
1126 timer_state_event(FALSE
);
1128 #endif /* !CONFIG_SKIP_PRECISE_USER_KERNEL_TIME */
1131 get_arm_cpu_version(void)
1133 uint32_t value
= machine_read_midr();
1135 /* Compose the register values into 8 bits; variant[7:4], revision[3:0]. */
1136 return ((value
& MIDR_REV_MASK
) >> MIDR_REV_SHIFT
) | ((value
& MIDR_VAR_MASK
) >> (MIDR_VAR_SHIFT
- 4));
1140 user_cont_hwclock_allowed(void)
1146 user_timebase_allowed(void)
1156 * The following are required for parts of the kernel
1157 * that cannot resolve these functions as inlines:
1159 extern thread_t
current_act(void);
1163 return current_thread_fast();
1166 #undef current_thread
1167 extern thread_t
current_thread(void);
1169 current_thread(void)
1171 return current_thread_fast();
1174 #if __ARM_USER_PROTECT__
1176 arm_user_protect_begin(thread_t thread
)
1178 uintptr_t ttbr0
, asid
= 0; // kernel asid
1180 ttbr0
= __builtin_arm_mrc(15, 0, 2, 0, 0); // Get TTBR0
1181 if (ttbr0
!= thread
->machine
.kptw_ttb
) {
1182 __builtin_arm_mcr(15, 0, thread
->machine
.kptw_ttb
, 2, 0, 0); // Set TTBR0
1183 __builtin_arm_mcr(15, 0, asid
, 13, 0, 1); // Set CONTEXTIDR
1184 __builtin_arm_isb(ISB_SY
);
1190 arm_user_protect_end(thread_t thread
, uintptr_t ttbr0
, boolean_t disable_interrupts
)
1192 if ((ttbr0
!= thread
->machine
.kptw_ttb
) && (thread
->machine
.uptw_ttb
!= thread
->machine
.kptw_ttb
)) {
1193 if (disable_interrupts
) {
1194 __asm__
volatile ("cpsid if" ::: "memory"); // Disable FIQ/IRQ
1196 __builtin_arm_mcr(15, 0, thread
->machine
.uptw_ttb
, 2, 0, 0); // Set TTBR0
1197 __builtin_arm_mcr(15, 0, thread
->machine
.asid
, 13, 0, 1); // Set CONTEXTIDR with thread asid
1198 __builtin_arm_dsb(DSB_ISH
);
1199 __builtin_arm_isb(ISB_SY
);
1202 #endif // __ARM_USER_PROTECT__