2 * Copyright (c) 2000-2019 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
29 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
30 * The Regents of the University of California. All rights reserved.
32 * Redistribution and use in source and binary forms, with or without
33 * modification, are permitted provided that the following conditions
35 * 1. Redistributions of source code must retain the above copyright
36 * notice, this list of conditions and the following disclaimer.
37 * 2. Redistributions in binary form must reproduce the above copyright
38 * notice, this list of conditions and the following disclaimer in the
39 * documentation and/or other materials provided with the distribution.
40 * 3. All advertising materials mentioning features or use of this software
41 * must display the following acknowledgement:
42 * This product includes software developed by the University of
43 * California, Berkeley and its contributors.
44 * 4. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 * @(#)udp_usrreq.c 8.6 (Berkeley) 5/23/95
63 #include <sys/param.h>
64 #include <sys/systm.h>
65 #include <sys/kernel.h>
66 #include <sys/malloc.h>
68 #include <sys/domain.h>
69 #include <sys/protosw.h>
70 #include <sys/socket.h>
71 #include <sys/socketvar.h>
72 #include <sys/sysctl.h>
73 #include <sys/syslog.h>
74 #include <sys/mcache.h>
75 #include <net/ntstat.h>
77 #include <kern/zalloc.h>
78 #include <mach/boolean.h>
81 #include <net/if_types.h>
82 #include <net/route.h>
84 #include <net/net_api_stats.h>
86 #include <netinet/in.h>
87 #include <netinet/in_systm.h>
88 #include <netinet/in_tclass.h>
89 #include <netinet/ip.h>
91 #include <netinet/ip6.h>
93 #include <netinet/in_pcb.h>
94 #include <netinet/in_var.h>
95 #include <netinet/ip_var.h>
97 #include <netinet6/in6_pcb.h>
98 #include <netinet6/ip6_var.h>
99 #include <netinet6/udp6_var.h>
101 #include <netinet/ip_icmp.h>
102 #include <netinet/icmp_var.h>
103 #include <netinet/udp.h>
104 #include <netinet/udp_var.h>
105 #include <sys/kdebug.h>
108 #include <netinet6/ipsec.h>
109 #include <netinet6/esp.h>
110 extern int ipsec_bypass
;
111 extern int esp_udp_encap_port
;
115 #include <net/necp.h>
119 #include <netinet/flow_divert.h>
120 #endif /* FLOW_DIVERT */
123 #include <net/content_filter.h>
124 #endif /* CONTENT_FILTER */
126 #define DBG_LAYER_IN_BEG NETDBG_CODE(DBG_NETUDP, 0)
127 #define DBG_LAYER_IN_END NETDBG_CODE(DBG_NETUDP, 2)
128 #define DBG_LAYER_OUT_BEG NETDBG_CODE(DBG_NETUDP, 1)
129 #define DBG_LAYER_OUT_END NETDBG_CODE(DBG_NETUDP, 3)
130 #define DBG_FNC_UDP_INPUT NETDBG_CODE(DBG_NETUDP, (5 << 8))
131 #define DBG_FNC_UDP_OUTPUT NETDBG_CODE(DBG_NETUDP, (6 << 8) | 1)
134 * UDP protocol implementation.
135 * Per RFC 768, August, 1980.
138 static int udpcksum
= 1;
140 static int udpcksum
= 0; /* XXX */
142 SYSCTL_INT(_net_inet_udp
, UDPCTL_CHECKSUM
, checksum
,
143 CTLFLAG_RW
| CTLFLAG_LOCKED
, &udpcksum
, 0, "");
145 int udp_log_in_vain
= 0;
146 SYSCTL_INT(_net_inet_udp
, OID_AUTO
, log_in_vain
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
147 &udp_log_in_vain
, 0, "Log all incoming UDP packets");
149 static int blackhole
= 0;
150 SYSCTL_INT(_net_inet_udp
, OID_AUTO
, blackhole
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
151 &blackhole
, 0, "Do not send port unreachables for refused connects");
153 struct inpcbhead udb
; /* from udp_var.h */
154 #define udb6 udb /* for KAME src sync over BSD*'s */
155 struct inpcbinfo udbinfo
;
158 #define UDBHASHSIZE 16
161 /* Garbage collection performed during most recent udp_gc() run */
162 static boolean_t udp_gc_done
= FALSE
;
165 extern int fw_verbose
;
166 extern void ipfwsyslog(int level
, const char *format
, ...);
167 extern void ipfw_stealth_stats_incr_udp(void);
169 /* Apple logging, log to ipfw.log */
170 #define log_in_vain_log(a) { \
171 if ((udp_log_in_vain == 3) && (fw_verbose == 2)) { \
173 } else if ((udp_log_in_vain == 4) && (fw_verbose == 2)) { \
174 ipfw_stealth_stats_incr_udp(); \
179 #else /* !IPFIREWALL */
180 #define log_in_vain_log(a) { log a; }
181 #endif /* !IPFIREWALL */
183 static int udp_getstat SYSCTL_HANDLER_ARGS
;
184 struct udpstat udpstat
; /* from udp_var.h */
185 SYSCTL_PROC(_net_inet_udp
, UDPCTL_STATS
, stats
,
186 CTLTYPE_STRUCT
| CTLFLAG_RD
| CTLFLAG_LOCKED
,
187 0, 0, udp_getstat
, "S,udpstat",
188 "UDP statistics (struct udpstat, netinet/udp_var.h)");
190 SYSCTL_INT(_net_inet_udp
, OID_AUTO
, pcbcount
,
191 CTLFLAG_RD
| CTLFLAG_LOCKED
, &udbinfo
.ipi_count
, 0,
192 "Number of active PCBs");
194 __private_extern__
int udp_use_randomport
= 1;
195 SYSCTL_INT(_net_inet_udp
, OID_AUTO
, randomize_ports
,
196 CTLFLAG_RW
| CTLFLAG_LOCKED
, &udp_use_randomport
, 0,
197 "Randomize UDP port numbers");
201 struct sockaddr_in6 uin6_sin
;
202 u_char uin6_init_done
: 1;
205 struct ip6_hdr uip6_ip6
;
206 u_char uip6_init_done
: 1;
209 int udp_abort(struct socket
*);
210 int udp_attach(struct socket
*, int, struct proc
*);
211 int udp_bind(struct socket
*, struct sockaddr
*, struct proc
*);
212 int udp_connect(struct socket
*, struct sockaddr
*, struct proc
*);
213 int udp_connectx(struct socket
*, struct sockaddr
*,
214 struct sockaddr
*, struct proc
*, uint32_t, sae_associd_t
,
215 sae_connid_t
*, uint32_t, void *, uint32_t, struct uio
*, user_ssize_t
*);
216 int udp_detach(struct socket
*);
217 int udp_disconnect(struct socket
*);
218 int udp_disconnectx(struct socket
*, sae_associd_t
, sae_connid_t
);
219 int udp_send(struct socket
*, int, struct mbuf
*, struct sockaddr
*,
220 struct mbuf
*, struct proc
*);
221 static void udp_append(struct inpcb
*, struct ip
*, struct mbuf
*, int,
222 struct sockaddr_in
*, struct udp_in6
*, struct udp_ip6
*, struct ifnet
*);
224 static void udp_append(struct inpcb
*, struct ip
*, struct mbuf
*, int,
225 struct sockaddr_in
*, struct ifnet
*);
227 static int udp_input_checksum(struct mbuf
*, struct udphdr
*, int, int);
228 int udp_output(struct inpcb
*, struct mbuf
*, struct sockaddr
*,
229 struct mbuf
*, struct proc
*);
230 static void ip_2_ip6_hdr(struct ip6_hdr
*ip6
, struct ip
*ip
);
231 static void udp_gc(struct inpcbinfo
*);
233 struct pr_usrreqs udp_usrreqs
= {
234 .pru_abort
= udp_abort
,
235 .pru_attach
= udp_attach
,
236 .pru_bind
= udp_bind
,
237 .pru_connect
= udp_connect
,
238 .pru_connectx
= udp_connectx
,
239 .pru_control
= in_control
,
240 .pru_detach
= udp_detach
,
241 .pru_disconnect
= udp_disconnect
,
242 .pru_disconnectx
= udp_disconnectx
,
243 .pru_peeraddr
= in_getpeeraddr
,
244 .pru_send
= udp_send
,
245 .pru_shutdown
= udp_shutdown
,
246 .pru_sockaddr
= in_getsockaddr
,
247 .pru_sosend
= sosend
,
248 .pru_soreceive
= soreceive
,
249 .pru_soreceive_list
= soreceive_list
,
253 udp_init(struct protosw
*pp
, struct domain
*dp
)
256 static int udp_initialized
= 0;
258 struct inpcbinfo
*pcbinfo
;
260 VERIFY((pp
->pr_flags
& (PR_INITIALIZED
| PR_ATTACHED
)) == PR_ATTACHED
);
262 if (udp_initialized
) {
266 uint32_t pool_size
= (nmbclusters
<< MCLSHIFT
) >> MBSHIFT
;
267 if (pool_size
>= 96) {
268 /* Improves 10GbE UDP performance. */
269 udp_recvspace
= 786896;
272 udbinfo
.ipi_listhead
= &udb
;
273 udbinfo
.ipi_hashbase
= hashinit(UDBHASHSIZE
, M_PCB
,
274 &udbinfo
.ipi_hashmask
);
275 udbinfo
.ipi_porthashbase
= hashinit(UDBHASHSIZE
, M_PCB
,
276 &udbinfo
.ipi_porthashmask
);
277 str_size
= (vm_size_t
) sizeof(struct inpcb
);
278 udbinfo
.ipi_zone
= zinit(str_size
, 80000 * str_size
, 8192, "udpcb");
282 * allocate lock group attribute and group for udp pcb mutexes
284 pcbinfo
->ipi_lock_grp_attr
= lck_grp_attr_alloc_init();
285 pcbinfo
->ipi_lock_grp
= lck_grp_alloc_init("udppcb",
286 pcbinfo
->ipi_lock_grp_attr
);
287 pcbinfo
->ipi_lock_attr
= lck_attr_alloc_init();
288 if ((pcbinfo
->ipi_lock
= lck_rw_alloc_init(pcbinfo
->ipi_lock_grp
,
289 pcbinfo
->ipi_lock_attr
)) == NULL
) {
290 panic("%s: unable to allocate PCB lock\n", __func__
);
294 udbinfo
.ipi_gc
= udp_gc
;
295 in_pcbinfo_attach(&udbinfo
);
299 udp_input(struct mbuf
*m
, int iphlen
)
304 struct mbuf
*opts
= NULL
;
305 int len
, isbroadcast
;
307 struct sockaddr
*append_sa
;
308 struct inpcbinfo
*pcbinfo
= &udbinfo
;
309 struct sockaddr_in udp_in
;
310 struct ip_moptions
*imo
= NULL
;
311 int foundmembership
= 0, ret
= 0;
313 struct udp_in6 udp_in6
;
314 struct udp_ip6 udp_ip6
;
316 struct ifnet
*ifp
= m
->m_pkthdr
.rcvif
;
317 boolean_t cell
= IFNET_IS_CELLULAR(ifp
);
318 boolean_t wifi
= (!cell
&& IFNET_IS_WIFI(ifp
));
319 boolean_t wired
= (!wifi
&& IFNET_IS_WIRED(ifp
));
321 bzero(&udp_in
, sizeof(udp_in
));
322 udp_in
.sin_len
= sizeof(struct sockaddr_in
);
323 udp_in
.sin_family
= AF_INET
;
325 bzero(&udp_in6
, sizeof(udp_in6
));
326 udp_in6
.uin6_sin
.sin6_len
= sizeof(struct sockaddr_in6
);
327 udp_in6
.uin6_sin
.sin6_family
= AF_INET6
;
330 udpstat
.udps_ipackets
++;
332 KERNEL_DEBUG(DBG_FNC_UDP_INPUT
| DBG_FUNC_START
, 0, 0, 0, 0, 0);
334 /* Expect 32-bit aligned data pointer on strict-align platforms */
335 MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(m
);
338 * Strip IP options, if any; should skip this,
339 * make available to user, and use on returned packets,
340 * but we don't yet have a way to check the checksum
341 * with options still present.
343 if (iphlen
> sizeof(struct ip
)) {
345 iphlen
= sizeof(struct ip
);
349 * Get IP and UDP header together in first mbuf.
351 ip
= mtod(m
, struct ip
*);
352 if (m
->m_len
< iphlen
+ sizeof(struct udphdr
)) {
353 m
= m_pullup(m
, iphlen
+ sizeof(struct udphdr
));
355 udpstat
.udps_hdrops
++;
356 KERNEL_DEBUG(DBG_FNC_UDP_INPUT
| DBG_FUNC_END
,
360 ip
= mtod(m
, struct ip
*);
362 uh
= (struct udphdr
*)(void *)((caddr_t
)ip
+ iphlen
);
364 /* destination port of 0 is illegal, based on RFC768. */
365 if (uh
->uh_dport
== 0) {
366 IF_UDP_STATINC(ifp
, port0
);
370 KERNEL_DEBUG(DBG_LAYER_IN_BEG
, uh
->uh_dport
, uh
->uh_sport
,
371 ip
->ip_src
.s_addr
, ip
->ip_dst
.s_addr
, uh
->uh_ulen
);
374 * Make mbuf data length reflect UDP length.
375 * If not enough data to reflect UDP length, drop.
377 len
= ntohs((u_short
)uh
->uh_ulen
);
378 if (ip
->ip_len
!= len
) {
379 if (len
> ip
->ip_len
|| len
< sizeof(struct udphdr
)) {
380 udpstat
.udps_badlen
++;
381 IF_UDP_STATINC(ifp
, badlength
);
384 m_adj(m
, len
- ip
->ip_len
);
385 /* ip->ip_len = len; */
388 * Save a copy of the IP header in case we want restore it
389 * for sending an ICMP error message in response.
394 * Checksum extended UDP header and data.
396 if (udp_input_checksum(m
, uh
, iphlen
, len
)) {
400 isbroadcast
= in_broadcast(ip
->ip_dst
, ifp
);
402 if (IN_MULTICAST(ntohl(ip
->ip_dst
.s_addr
)) || isbroadcast
) {
403 int reuse_sock
= 0, mcast_delivered
= 0;
405 lck_rw_lock_shared(pcbinfo
->ipi_lock
);
407 * Deliver a multicast or broadcast datagram to *all* sockets
408 * for which the local and remote addresses and ports match
409 * those of the incoming datagram. This allows more than
410 * one process to receive multi/broadcasts on the same port.
411 * (This really ought to be done for unicast datagrams as
412 * well, but that would cause problems with existing
413 * applications that open both address-specific sockets and
414 * a wildcard socket listening to the same port -- they would
415 * end up receiving duplicates of every unicast datagram.
416 * Those applications open the multiple sockets to overcome an
417 * inadequacy of the UDP socket interface, but for backwards
418 * compatibility we avoid the problem here rather than
419 * fixing the interface. Maybe 4.5BSD will remedy this?)
423 * Construct sockaddr format source address.
425 udp_in
.sin_port
= uh
->uh_sport
;
426 udp_in
.sin_addr
= ip
->ip_src
;
428 * Locate pcb(s) for datagram.
429 * (Algorithm copied from raw_intr().)
432 udp_in6
.uin6_init_done
= udp_ip6
.uip6_init_done
= 0;
434 LIST_FOREACH(inp
, &udb
, inp_list
) {
439 if (inp
->inp_socket
== NULL
) {
442 if (inp
!= sotoinpcb(inp
->inp_socket
)) {
443 panic("%s: bad so back ptr inp=%p\n",
448 if ((inp
->inp_vflag
& INP_IPV4
) == 0) {
452 if (inp_restricted_recv(inp
, ifp
)) {
456 if ((inp
->inp_moptions
== NULL
) &&
457 (ntohl(ip
->ip_dst
.s_addr
) !=
458 INADDR_ALLHOSTS_GROUP
) && (isbroadcast
== 0)) {
462 if (in_pcb_checkstate(inp
, WNT_ACQUIRE
, 0) ==
467 udp_lock(inp
->inp_socket
, 1, 0);
469 if (in_pcb_checkstate(inp
, WNT_RELEASE
, 1) ==
471 udp_unlock(inp
->inp_socket
, 1, 0);
475 if (inp
->inp_lport
!= uh
->uh_dport
) {
476 udp_unlock(inp
->inp_socket
, 1, 0);
479 if (inp
->inp_laddr
.s_addr
!= INADDR_ANY
) {
480 if (inp
->inp_laddr
.s_addr
!=
482 udp_unlock(inp
->inp_socket
, 1, 0);
486 if (inp
->inp_faddr
.s_addr
!= INADDR_ANY
) {
487 if (inp
->inp_faddr
.s_addr
!=
489 inp
->inp_fport
!= uh
->uh_sport
) {
490 udp_unlock(inp
->inp_socket
, 1, 0);
495 if (isbroadcast
== 0 && (ntohl(ip
->ip_dst
.s_addr
) !=
496 INADDR_ALLHOSTS_GROUP
)) {
497 struct sockaddr_in group
;
500 if ((imo
= inp
->inp_moptions
) == NULL
) {
501 udp_unlock(inp
->inp_socket
, 1, 0);
506 bzero(&group
, sizeof(struct sockaddr_in
));
507 group
.sin_len
= sizeof(struct sockaddr_in
);
508 group
.sin_family
= AF_INET
;
509 group
.sin_addr
= ip
->ip_dst
;
511 blocked
= imo_multi_filter(imo
, ifp
,
513 if (blocked
== MCAST_PASS
) {
518 if (!foundmembership
) {
519 udp_unlock(inp
->inp_socket
, 1, 0);
520 if (blocked
== MCAST_NOTSMEMBER
||
521 blocked
== MCAST_MUTED
) {
522 udpstat
.udps_filtermcast
++;
529 reuse_sock
= (inp
->inp_socket
->so_options
&
530 (SO_REUSEPORT
| SO_REUSEADDR
));
534 if (!necp_socket_is_allowed_to_send_recv_v4(inp
,
535 uh
->uh_dport
, uh
->uh_sport
, &ip
->ip_dst
,
536 &ip
->ip_src
, ifp
, NULL
, NULL
, NULL
)) {
537 /* do not inject data to pcb */
543 struct mbuf
*n
= NULL
;
546 n
= m_copy(m
, 0, M_COPYALL
);
549 udp_append(inp
, ip
, m
,
550 iphlen
+ sizeof(struct udphdr
),
551 &udp_in
, &udp_in6
, &udp_ip6
, ifp
);
553 udp_append(inp
, ip
, m
,
554 iphlen
+ sizeof(struct udphdr
),
561 udp_unlock(inp
->inp_socket
, 1, 0);
564 * Don't look for additional matches if this one does
565 * not have either the SO_REUSEPORT or SO_REUSEADDR
566 * socket options set. This heuristic avoids searching
567 * through all pcbs in the common case of a non-shared
568 * port. It assumes that an application will never
569 * clear these options after setting them.
571 if (reuse_sock
== 0 || m
== NULL
) {
576 * Expect 32-bit aligned data pointer on strict-align
579 MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(m
);
581 * Recompute IP and UDP header pointers for new mbuf
583 ip
= mtod(m
, struct ip
*);
584 uh
= (struct udphdr
*)(void *)((caddr_t
)ip
+ iphlen
);
586 lck_rw_done(pcbinfo
->ipi_lock
);
588 if (mcast_delivered
== 0) {
590 * No matching pcb found; discard datagram.
591 * (No need to send an ICMP Port Unreachable
592 * for a broadcast or multicast datgram.)
594 udpstat
.udps_noportbcast
++;
595 IF_UDP_STATINC(ifp
, port_unreach
);
599 /* free the extra copy of mbuf or skipped by IPSec */
603 KERNEL_DEBUG(DBG_FNC_UDP_INPUT
| DBG_FUNC_END
, 0, 0, 0, 0, 0);
609 * UDP to port 4500 with a payload where the first four bytes are
610 * not zero is a UDP encapsulated IPSec packet. Packets where
611 * the payload is one byte and that byte is 0xFF are NAT keepalive
612 * packets. Decapsulate the ESP packet and carry on with IPSec input
613 * or discard the NAT keep-alive.
615 if (ipsec_bypass
== 0 && (esp_udp_encap_port
& 0xFFFF) != 0 &&
616 uh
->uh_dport
== ntohs((u_short
)esp_udp_encap_port
)) {
617 int payload_len
= len
- sizeof(struct udphdr
) > 4 ? 4 :
618 len
- sizeof(struct udphdr
);
620 if (m
->m_len
< iphlen
+ sizeof(struct udphdr
) + payload_len
) {
621 if ((m
= m_pullup(m
, iphlen
+ sizeof(struct udphdr
) +
622 payload_len
)) == NULL
) {
623 udpstat
.udps_hdrops
++;
624 KERNEL_DEBUG(DBG_FNC_UDP_INPUT
| DBG_FUNC_END
,
629 * Expect 32-bit aligned data pointer on strict-align
632 MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(m
);
634 ip
= mtod(m
, struct ip
*);
635 uh
= (struct udphdr
*)(void *)((caddr_t
)ip
+ iphlen
);
637 /* Check for NAT keepalive packet */
638 if (payload_len
== 1 && *(u_int8_t
*)
639 ((caddr_t
)uh
+ sizeof(struct udphdr
)) == 0xFF) {
641 KERNEL_DEBUG(DBG_FNC_UDP_INPUT
| DBG_FUNC_END
,
644 } else if (payload_len
== 4 && *(u_int32_t
*)(void *)
645 ((caddr_t
)uh
+ sizeof(struct udphdr
)) != 0) {
646 /* UDP encapsulated IPSec packet to pass through NAT */
647 KERNEL_DEBUG(DBG_FNC_UDP_INPUT
| DBG_FUNC_END
,
649 /* preserve the udp header */
650 esp4_input(m
, iphlen
+ sizeof(struct udphdr
));
657 * Locate pcb for datagram.
659 inp
= in_pcblookup_hash(&udbinfo
, ip
->ip_src
, uh
->uh_sport
,
660 ip
->ip_dst
, uh
->uh_dport
, 1, ifp
);
662 IF_UDP_STATINC(ifp
, port_unreach
);
664 if (udp_log_in_vain
) {
665 char buf
[MAX_IPv4_STR_LEN
];
666 char buf2
[MAX_IPv4_STR_LEN
];
668 /* check src and dst address */
669 if (udp_log_in_vain
< 3) {
670 log(LOG_INFO
, "Connection attempt to "
671 "UDP %s:%d from %s:%d\n", inet_ntop(AF_INET
,
672 &ip
->ip_dst
, buf
, sizeof(buf
)),
673 ntohs(uh
->uh_dport
), inet_ntop(AF_INET
,
674 &ip
->ip_src
, buf2
, sizeof(buf2
)),
675 ntohs(uh
->uh_sport
));
676 } else if (!(m
->m_flags
& (M_BCAST
| M_MCAST
)) &&
677 ip
->ip_dst
.s_addr
!= ip
->ip_src
.s_addr
) {
678 log_in_vain_log((LOG_INFO
,
679 "Stealth Mode connection attempt to "
680 "UDP %s:%d from %s:%d\n", inet_ntop(AF_INET
,
681 &ip
->ip_dst
, buf
, sizeof(buf
)),
682 ntohs(uh
->uh_dport
), inet_ntop(AF_INET
,
683 &ip
->ip_src
, buf2
, sizeof(buf2
)),
684 ntohs(uh
->uh_sport
)))
687 udpstat
.udps_noport
++;
688 if (m
->m_flags
& (M_BCAST
| M_MCAST
)) {
689 udpstat
.udps_noportbcast
++;
693 if (badport_bandlim(BANDLIM_ICMP_UNREACH
) < 0) {
696 #endif /* ICMP_BANDLIM */
698 if (ifp
&& ifp
->if_type
!= IFT_LOOP
) {
703 ip
->ip_len
+= iphlen
;
704 icmp_error(m
, ICMP_UNREACH
, ICMP_UNREACH_PORT
, 0, 0);
705 KERNEL_DEBUG(DBG_FNC_UDP_INPUT
| DBG_FUNC_END
, 0, 0, 0, 0, 0);
708 udp_lock(inp
->inp_socket
, 1, 0);
710 if (in_pcb_checkstate(inp
, WNT_RELEASE
, 1) == WNT_STOPUSING
) {
711 udp_unlock(inp
->inp_socket
, 1, 0);
712 IF_UDP_STATINC(ifp
, cleanup
);
716 if (!necp_socket_is_allowed_to_send_recv_v4(inp
, uh
->uh_dport
,
717 uh
->uh_sport
, &ip
->ip_dst
, &ip
->ip_src
, ifp
, NULL
, NULL
, NULL
)) {
718 udp_unlock(inp
->inp_socket
, 1, 0);
719 IF_UDP_STATINC(ifp
, badipsec
);
725 * Construct sockaddr format source address.
726 * Stuff source address and datagram in user buffer.
728 udp_in
.sin_port
= uh
->uh_sport
;
729 udp_in
.sin_addr
= ip
->ip_src
;
730 if ((inp
->inp_flags
& INP_CONTROLOPTS
) != 0 ||
731 (inp
->inp_socket
->so_options
& SO_TIMESTAMP
) != 0 ||
732 (inp
->inp_socket
->so_options
& SO_TIMESTAMP_MONOTONIC
) != 0 ||
733 (inp
->inp_socket
->so_options
& SO_TIMESTAMP_CONTINUOUS
) != 0) {
735 if (inp
->inp_vflag
& INP_IPV6
) {
738 ip_2_ip6_hdr(&udp_ip6
.uip6_ip6
, ip
);
739 savedflags
= inp
->inp_flags
;
740 inp
->inp_flags
&= ~INP_UNMAPPABLEOPTS
;
741 ret
= ip6_savecontrol(inp
, m
, &opts
);
742 inp
->inp_flags
= savedflags
;
746 ret
= ip_savecontrol(inp
, &opts
, ip
, m
);
749 udp_unlock(inp
->inp_socket
, 1, 0);
753 m_adj(m
, iphlen
+ sizeof(struct udphdr
));
755 KERNEL_DEBUG(DBG_LAYER_IN_END
, uh
->uh_dport
, uh
->uh_sport
,
756 save_ip
.ip_src
.s_addr
, save_ip
.ip_dst
.s_addr
, uh
->uh_ulen
);
759 if (inp
->inp_vflag
& INP_IPV6
) {
760 in6_sin_2_v4mapsin6(&udp_in
, &udp_in6
.uin6_sin
);
761 append_sa
= (struct sockaddr
*)&udp_in6
.uin6_sin
;
765 append_sa
= (struct sockaddr
*)&udp_in
;
768 INP_ADD_STAT(inp
, cell
, wifi
, wired
, rxpackets
, 1);
769 INP_ADD_STAT(inp
, cell
, wifi
, wired
, rxbytes
, m
->m_pkthdr
.len
);
770 inp_set_activity_bitmap(inp
);
772 so_recv_data_stat(inp
->inp_socket
, m
, 0);
773 if (sbappendaddr(&inp
->inp_socket
->so_rcv
, append_sa
,
774 m
, opts
, NULL
) == 0) {
775 udpstat
.udps_fullsock
++;
777 sorwakeup(inp
->inp_socket
);
779 udp_unlock(inp
->inp_socket
, 1, 0);
780 KERNEL_DEBUG(DBG_FNC_UDP_INPUT
| DBG_FUNC_END
, 0, 0, 0, 0, 0);
787 KERNEL_DEBUG(DBG_FNC_UDP_INPUT
| DBG_FUNC_END
, 0, 0, 0, 0, 0);
792 ip_2_ip6_hdr(struct ip6_hdr
*ip6
, struct ip
*ip
)
794 bzero(ip6
, sizeof(*ip6
));
796 ip6
->ip6_vfc
= IPV6_VERSION
;
797 ip6
->ip6_plen
= ip
->ip_len
;
798 ip6
->ip6_nxt
= ip
->ip_p
;
799 ip6
->ip6_hlim
= ip
->ip_ttl
;
800 if (ip
->ip_src
.s_addr
) {
801 ip6
->ip6_src
.s6_addr32
[2] = IPV6_ADDR_INT32_SMP
;
802 ip6
->ip6_src
.s6_addr32
[3] = ip
->ip_src
.s_addr
;
804 if (ip
->ip_dst
.s_addr
) {
805 ip6
->ip6_dst
.s6_addr32
[2] = IPV6_ADDR_INT32_SMP
;
806 ip6
->ip6_dst
.s6_addr32
[3] = ip
->ip_dst
.s_addr
;
812 * subroutine of udp_input(), mainly for source code readability.
816 udp_append(struct inpcb
*last
, struct ip
*ip
, struct mbuf
*n
, int off
,
817 struct sockaddr_in
*pudp_in
, struct udp_in6
*pudp_in6
,
818 struct udp_ip6
*pudp_ip6
, struct ifnet
*ifp
)
820 udp_append(struct inpcb
*last
, struct ip
*ip
, struct mbuf
*n
, int off
,
821 struct sockaddr_in
*pudp_in
, struct ifnet
*ifp
)
824 struct sockaddr
*append_sa
;
825 struct mbuf
*opts
= 0;
826 boolean_t cell
= IFNET_IS_CELLULAR(ifp
);
827 boolean_t wifi
= (!cell
&& IFNET_IS_WIFI(ifp
));
828 boolean_t wired
= (!wifi
&& IFNET_IS_WIRED(ifp
));
832 if (mac_inpcb_check_deliver(last
, n
, AF_INET
, SOCK_DGRAM
) != 0) {
836 #endif /* CONFIG_MACF_NET */
837 if ((last
->inp_flags
& INP_CONTROLOPTS
) != 0 ||
838 (last
->inp_socket
->so_options
& SO_TIMESTAMP
) != 0 ||
839 (last
->inp_socket
->so_options
& SO_TIMESTAMP_MONOTONIC
) != 0 ||
840 (last
->inp_socket
->so_options
& SO_TIMESTAMP_CONTINUOUS
) != 0) {
842 if (last
->inp_vflag
& INP_IPV6
) {
845 if (pudp_ip6
->uip6_init_done
== 0) {
846 ip_2_ip6_hdr(&pudp_ip6
->uip6_ip6
, ip
);
847 pudp_ip6
->uip6_init_done
= 1;
849 savedflags
= last
->inp_flags
;
850 last
->inp_flags
&= ~INP_UNMAPPABLEOPTS
;
851 ret
= ip6_savecontrol(last
, n
, &opts
);
853 last
->inp_flags
= savedflags
;
856 last
->inp_flags
= savedflags
;
860 ret
= ip_savecontrol(last
, &opts
, ip
, n
);
867 if (last
->inp_vflag
& INP_IPV6
) {
868 if (pudp_in6
->uin6_init_done
== 0) {
869 in6_sin_2_v4mapsin6(pudp_in
, &pudp_in6
->uin6_sin
);
870 pudp_in6
->uin6_init_done
= 1;
872 append_sa
= (struct sockaddr
*)&pudp_in6
->uin6_sin
;
875 append_sa
= (struct sockaddr
*)pudp_in
;
877 INP_ADD_STAT(last
, cell
, wifi
, wired
, rxpackets
, 1);
878 INP_ADD_STAT(last
, cell
, wifi
, wired
, rxbytes
,
880 inp_set_activity_bitmap(last
);
882 so_recv_data_stat(last
->inp_socket
, n
, 0);
884 if (sbappendaddr(&last
->inp_socket
->so_rcv
, append_sa
,
885 n
, opts
, NULL
) == 0) {
886 udpstat
.udps_fullsock
++;
888 sorwakeup(last
->inp_socket
);
897 * Notify a udp user of an asynchronous error;
898 * just wake up so that he can collect error status.
901 udp_notify(struct inpcb
*inp
, int errno
)
903 inp
->inp_socket
->so_error
= errno
;
904 sorwakeup(inp
->inp_socket
);
905 sowwakeup(inp
->inp_socket
);
909 udp_ctlinput(int cmd
, struct sockaddr
*sa
, void *vip
, __unused
struct ifnet
* ifp
)
912 void (*notify
)(struct inpcb
*, int) = udp_notify
;
913 struct in_addr faddr
;
914 struct inpcb
*inp
= NULL
;
916 faddr
= ((struct sockaddr_in
*)(void *)sa
)->sin_addr
;
917 if (sa
->sa_family
!= AF_INET
|| faddr
.s_addr
== INADDR_ANY
) {
921 if (PRC_IS_REDIRECT(cmd
)) {
923 notify
= in_rtchange
;
924 } else if (cmd
== PRC_HOSTDEAD
) {
926 } else if ((unsigned)cmd
>= PRC_NCMDS
|| inetctlerrmap
[cmd
] == 0) {
932 bcopy(((caddr_t
)ip
+ (ip
->ip_hl
<< 2)), &uh
, sizeof(uh
));
933 inp
= in_pcblookup_hash(&udbinfo
, faddr
, uh
.uh_dport
,
934 ip
->ip_src
, uh
.uh_sport
, 0, NULL
);
935 if (inp
!= NULL
&& inp
->inp_socket
!= NULL
) {
936 udp_lock(inp
->inp_socket
, 1, 0);
937 if (in_pcb_checkstate(inp
, WNT_RELEASE
, 1) ==
939 udp_unlock(inp
->inp_socket
, 1, 0);
942 (*notify
)(inp
, inetctlerrmap
[cmd
]);
943 udp_unlock(inp
->inp_socket
, 1, 0);
946 in_pcbnotifyall(&udbinfo
, faddr
, inetctlerrmap
[cmd
], notify
);
951 udp_ctloutput(struct socket
*so
, struct sockopt
*sopt
)
953 int error
= 0, optval
= 0;
956 /* Allow <SOL_SOCKET,SO_FLUSH> at this level */
957 if (sopt
->sopt_level
!= IPPROTO_UDP
&&
958 !(sopt
->sopt_level
== SOL_SOCKET
&& sopt
->sopt_name
== SO_FLUSH
)) {
959 return ip_ctloutput(so
, sopt
);
964 switch (sopt
->sopt_dir
) {
966 switch (sopt
->sopt_name
) {
968 /* This option is settable only for UDP over IPv4 */
969 if (!(inp
->inp_vflag
& INP_IPV4
)) {
974 if ((error
= sooptcopyin(sopt
, &optval
, sizeof(optval
),
975 sizeof(optval
))) != 0) {
980 inp
->inp_flags
|= INP_UDP_NOCKSUM
;
982 inp
->inp_flags
&= ~INP_UDP_NOCKSUM
;
985 case UDP_KEEPALIVE_OFFLOAD
:
987 struct udp_keepalive_offload ka
;
989 * If the socket is not connected, the stack will
990 * not know the destination address to put in the
991 * keepalive datagram. Return an error now instead
994 if (!(so
->so_state
& SS_ISCONNECTED
)) {
998 if (sopt
->sopt_valsize
!= sizeof(ka
)) {
1002 if ((error
= sooptcopyin(sopt
, &ka
, sizeof(ka
),
1003 sizeof(ka
))) != 0) {
1007 /* application should specify the type */
1008 if (ka
.ka_type
== 0) {
1012 if (ka
.ka_interval
== 0) {
1014 * if interval is 0, disable the offload
1017 if (inp
->inp_keepalive_data
!= NULL
) {
1018 FREE(inp
->inp_keepalive_data
,
1021 inp
->inp_keepalive_data
= NULL
;
1022 inp
->inp_keepalive_datalen
= 0;
1023 inp
->inp_keepalive_interval
= 0;
1024 inp
->inp_keepalive_type
= 0;
1025 inp
->inp_flags2
&= ~INP2_KEEPALIVE_OFFLOAD
;
1027 if (inp
->inp_keepalive_data
!= NULL
) {
1028 FREE(inp
->inp_keepalive_data
,
1030 inp
->inp_keepalive_data
= NULL
;
1033 inp
->inp_keepalive_datalen
= min(
1035 UDP_KEEPALIVE_OFFLOAD_DATA_SIZE
);
1036 if (inp
->inp_keepalive_datalen
> 0) {
1037 MALLOC(inp
->inp_keepalive_data
,
1039 inp
->inp_keepalive_datalen
,
1041 if (inp
->inp_keepalive_data
== NULL
) {
1042 inp
->inp_keepalive_datalen
= 0;
1047 inp
->inp_keepalive_data
,
1048 inp
->inp_keepalive_datalen
);
1050 inp
->inp_keepalive_datalen
= 0;
1052 inp
->inp_keepalive_interval
=
1053 min(UDP_KEEPALIVE_INTERVAL_MAX_SECONDS
,
1055 inp
->inp_keepalive_type
= ka
.ka_type
;
1056 inp
->inp_flags2
|= INP2_KEEPALIVE_OFFLOAD
;
1061 if ((error
= sooptcopyin(sopt
, &optval
, sizeof(optval
),
1062 sizeof(optval
))) != 0) {
1066 error
= inp_flush(inp
, optval
);
1070 error
= ENOPROTOOPT
;
1076 switch (sopt
->sopt_name
) {
1078 optval
= inp
->inp_flags
& INP_UDP_NOCKSUM
;
1082 error
= ENOPROTOOPT
;
1086 error
= sooptcopyout(sopt
, &optval
, sizeof(optval
));
1094 udp_pcblist SYSCTL_HANDLER_ARGS
1096 #pragma unused(oidp, arg1, arg2)
1098 struct inpcb
*inp
, **inp_list
;
1103 * The process of preparing the TCB list is too time-consuming and
1104 * resource-intensive to repeat twice on every request.
1106 lck_rw_lock_exclusive(udbinfo
.ipi_lock
);
1107 if (req
->oldptr
== USER_ADDR_NULL
) {
1108 n
= udbinfo
.ipi_count
;
1109 req
->oldidx
= 2 * (sizeof(xig
))
1110 + (n
+ n
/ 8) * sizeof(struct xinpcb
);
1111 lck_rw_done(udbinfo
.ipi_lock
);
1115 if (req
->newptr
!= USER_ADDR_NULL
) {
1116 lck_rw_done(udbinfo
.ipi_lock
);
1121 * OK, now we're committed to doing something.
1123 gencnt
= udbinfo
.ipi_gencnt
;
1124 n
= udbinfo
.ipi_count
;
1126 bzero(&xig
, sizeof(xig
));
1127 xig
.xig_len
= sizeof(xig
);
1129 xig
.xig_gen
= gencnt
;
1130 xig
.xig_sogen
= so_gencnt
;
1131 error
= SYSCTL_OUT(req
, &xig
, sizeof(xig
));
1133 lck_rw_done(udbinfo
.ipi_lock
);
1137 * We are done if there is no pcb
1140 lck_rw_done(udbinfo
.ipi_lock
);
1144 inp_list
= _MALLOC(n
* sizeof(*inp_list
), M_TEMP
, M_WAITOK
);
1145 if (inp_list
== 0) {
1146 lck_rw_done(udbinfo
.ipi_lock
);
1150 for (inp
= LIST_FIRST(udbinfo
.ipi_listhead
), i
= 0; inp
&& i
< n
;
1151 inp
= LIST_NEXT(inp
, inp_list
)) {
1152 if (inp
->inp_gencnt
<= gencnt
&&
1153 inp
->inp_state
!= INPCB_STATE_DEAD
) {
1154 inp_list
[i
++] = inp
;
1160 for (i
= 0; i
< n
; i
++) {
1165 if (in_pcb_checkstate(inp
, WNT_ACQUIRE
, 0) == WNT_STOPUSING
) {
1168 udp_lock(inp
->inp_socket
, 1, 0);
1169 if (in_pcb_checkstate(inp
, WNT_RELEASE
, 1) == WNT_STOPUSING
) {
1170 udp_unlock(inp
->inp_socket
, 1, 0);
1173 if (inp
->inp_gencnt
> gencnt
) {
1174 udp_unlock(inp
->inp_socket
, 1, 0);
1178 bzero(&xi
, sizeof(xi
));
1179 xi
.xi_len
= sizeof(xi
);
1180 /* XXX should avoid extra copy */
1181 inpcb_to_compat(inp
, &xi
.xi_inp
);
1182 if (inp
->inp_socket
) {
1183 sotoxsocket(inp
->inp_socket
, &xi
.xi_socket
);
1186 udp_unlock(inp
->inp_socket
, 1, 0);
1188 error
= SYSCTL_OUT(req
, &xi
, sizeof(xi
));
1192 * Give the user an updated idea of our state.
1193 * If the generation differs from what we told
1194 * her before, she knows that something happened
1195 * while we were processing this request, and it
1196 * might be necessary to retry.
1198 bzero(&xig
, sizeof(xig
));
1199 xig
.xig_len
= sizeof(xig
);
1200 xig
.xig_gen
= udbinfo
.ipi_gencnt
;
1201 xig
.xig_sogen
= so_gencnt
;
1202 xig
.xig_count
= udbinfo
.ipi_count
;
1203 error
= SYSCTL_OUT(req
, &xig
, sizeof(xig
));
1205 FREE(inp_list
, M_TEMP
);
1206 lck_rw_done(udbinfo
.ipi_lock
);
1210 SYSCTL_PROC(_net_inet_udp
, UDPCTL_PCBLIST
, pcblist
,
1211 CTLTYPE_STRUCT
| CTLFLAG_RD
| CTLFLAG_LOCKED
, 0, 0, udp_pcblist
,
1212 "S,xinpcb", "List of active UDP sockets");
1214 #if !CONFIG_EMBEDDED
1217 udp_pcblist64 SYSCTL_HANDLER_ARGS
1219 #pragma unused(oidp, arg1, arg2)
1221 struct inpcb
*inp
, **inp_list
;
1226 * The process of preparing the TCB list is too time-consuming and
1227 * resource-intensive to repeat twice on every request.
1229 lck_rw_lock_shared(udbinfo
.ipi_lock
);
1230 if (req
->oldptr
== USER_ADDR_NULL
) {
1231 n
= udbinfo
.ipi_count
;
1233 2 * (sizeof(xig
)) + (n
+ n
/ 8) * sizeof(struct xinpcb64
);
1234 lck_rw_done(udbinfo
.ipi_lock
);
1238 if (req
->newptr
!= USER_ADDR_NULL
) {
1239 lck_rw_done(udbinfo
.ipi_lock
);
1244 * OK, now we're committed to doing something.
1246 gencnt
= udbinfo
.ipi_gencnt
;
1247 n
= udbinfo
.ipi_count
;
1249 bzero(&xig
, sizeof(xig
));
1250 xig
.xig_len
= sizeof(xig
);
1252 xig
.xig_gen
= gencnt
;
1253 xig
.xig_sogen
= so_gencnt
;
1254 error
= SYSCTL_OUT(req
, &xig
, sizeof(xig
));
1256 lck_rw_done(udbinfo
.ipi_lock
);
1260 * We are done if there is no pcb
1263 lck_rw_done(udbinfo
.ipi_lock
);
1267 inp_list
= _MALLOC(n
* sizeof(*inp_list
), M_TEMP
, M_WAITOK
);
1268 if (inp_list
== 0) {
1269 lck_rw_done(udbinfo
.ipi_lock
);
1273 for (inp
= LIST_FIRST(udbinfo
.ipi_listhead
), i
= 0; inp
&& i
< n
;
1274 inp
= LIST_NEXT(inp
, inp_list
)) {
1275 if (inp
->inp_gencnt
<= gencnt
&&
1276 inp
->inp_state
!= INPCB_STATE_DEAD
) {
1277 inp_list
[i
++] = inp
;
1283 for (i
= 0; i
< n
; i
++) {
1288 if (in_pcb_checkstate(inp
, WNT_ACQUIRE
, 0) == WNT_STOPUSING
) {
1291 udp_lock(inp
->inp_socket
, 1, 0);
1292 if (in_pcb_checkstate(inp
, WNT_RELEASE
, 1) == WNT_STOPUSING
) {
1293 udp_unlock(inp
->inp_socket
, 1, 0);
1296 if (inp
->inp_gencnt
> gencnt
) {
1297 udp_unlock(inp
->inp_socket
, 1, 0);
1301 bzero(&xi
, sizeof(xi
));
1302 xi
.xi_len
= sizeof(xi
);
1303 inpcb_to_xinpcb64(inp
, &xi
);
1304 if (inp
->inp_socket
) {
1305 sotoxsocket64(inp
->inp_socket
, &xi
.xi_socket
);
1308 udp_unlock(inp
->inp_socket
, 1, 0);
1310 error
= SYSCTL_OUT(req
, &xi
, sizeof(xi
));
1314 * Give the user an updated idea of our state.
1315 * If the generation differs from what we told
1316 * her before, she knows that something happened
1317 * while we were processing this request, and it
1318 * might be necessary to retry.
1320 bzero(&xig
, sizeof(xig
));
1321 xig
.xig_len
= sizeof(xig
);
1322 xig
.xig_gen
= udbinfo
.ipi_gencnt
;
1323 xig
.xig_sogen
= so_gencnt
;
1324 xig
.xig_count
= udbinfo
.ipi_count
;
1325 error
= SYSCTL_OUT(req
, &xig
, sizeof(xig
));
1327 FREE(inp_list
, M_TEMP
);
1328 lck_rw_done(udbinfo
.ipi_lock
);
1332 SYSCTL_PROC(_net_inet_udp
, OID_AUTO
, pcblist64
,
1333 CTLTYPE_STRUCT
| CTLFLAG_RD
| CTLFLAG_LOCKED
, 0, 0, udp_pcblist64
,
1334 "S,xinpcb64", "List of active UDP sockets");
1336 #endif /* !CONFIG_EMBEDDED */
1339 udp_pcblist_n SYSCTL_HANDLER_ARGS
1341 #pragma unused(oidp, arg1, arg2)
1342 return get_pcblist_n(IPPROTO_UDP
, req
, &udbinfo
);
1345 SYSCTL_PROC(_net_inet_udp
, OID_AUTO
, pcblist_n
,
1346 CTLTYPE_STRUCT
| CTLFLAG_RD
| CTLFLAG_LOCKED
, 0, 0, udp_pcblist_n
,
1347 "S,xinpcb_n", "List of active UDP sockets");
1349 __private_extern__
void
1350 udp_get_ports_used(uint32_t ifindex
, int protocol
, uint32_t flags
,
1353 inpcb_get_ports_used(ifindex
, protocol
, flags
, bitfield
,
1357 __private_extern__
uint32_t
1358 udp_count_opportunistic(unsigned int ifindex
, u_int32_t flags
)
1360 return inpcb_count_opportunistic(ifindex
, &udbinfo
, flags
);
1363 __private_extern__
uint32_t
1364 udp_find_anypcb_byaddr(struct ifaddr
*ifa
)
1366 return inpcb_find_anypcb_byaddr(ifa
, &udbinfo
);
1370 udp_check_pktinfo(struct mbuf
*control
, struct ifnet
**outif
,
1371 struct in_addr
*laddr
)
1373 struct cmsghdr
*cm
= 0;
1374 struct in_pktinfo
*pktinfo
;
1377 if (outif
!= NULL
) {
1382 * XXX: Currently, we assume all the optional information is stored
1385 if (control
->m_next
) {
1389 if (control
->m_len
< CMSG_LEN(0)) {
1393 for (cm
= M_FIRST_CMSGHDR(control
);
1394 is_cmsg_valid(control
, cm
);
1395 cm
= M_NXT_CMSGHDR(control
, cm
)) {
1396 if (cm
->cmsg_level
!= IPPROTO_IP
||
1397 cm
->cmsg_type
!= IP_PKTINFO
) {
1401 if (cm
->cmsg_len
!= CMSG_LEN(sizeof(struct in_pktinfo
))) {
1405 pktinfo
= (struct in_pktinfo
*)(void *)CMSG_DATA(cm
);
1407 /* Check for a valid ifindex in pktinfo */
1408 ifnet_head_lock_shared();
1410 if (pktinfo
->ipi_ifindex
> if_index
) {
1416 * If ipi_ifindex is specified it takes precedence
1417 * over ipi_spec_dst.
1419 if (pktinfo
->ipi_ifindex
) {
1420 ifp
= ifindex2ifnet
[pktinfo
->ipi_ifindex
];
1425 if (outif
!= NULL
) {
1426 ifnet_reference(ifp
);
1430 laddr
->s_addr
= INADDR_ANY
;
1437 * Use the provided ipi_spec_dst address for temp
1440 *laddr
= pktinfo
->ipi_spec_dst
;
1447 udp_output(struct inpcb
*inp
, struct mbuf
*m
, struct sockaddr
*addr
,
1448 struct mbuf
*control
, struct proc
*p
)
1450 struct udpiphdr
*ui
;
1451 int len
= m
->m_pkthdr
.len
;
1452 struct sockaddr_in
*sin
;
1453 struct in_addr origladdr
, laddr
, faddr
, pi_laddr
;
1454 u_short lport
, fport
;
1455 int error
= 0, udp_dodisconnect
= 0, pktinfo
= 0;
1456 struct socket
*so
= inp
->inp_socket
;
1458 struct mbuf
*inpopts
;
1459 struct ip_moptions
*mopts
;
1461 struct ip_out_args ipoa
;
1463 struct m_tag
*cfil_tag
= NULL
;
1464 bool cfil_faddr_use
= false;
1465 uint32_t cfil_so_state_change_cnt
= 0;
1466 short cfil_so_options
= 0;
1467 struct sockaddr
*cfil_faddr
= NULL
;
1470 bzero(&ipoa
, sizeof(ipoa
));
1471 ipoa
.ipoa_boundif
= IFSCOPE_NONE
;
1472 ipoa
.ipoa_flags
= IPOAF_SELECT_SRCIF
;
1474 struct ifnet
*outif
= NULL
;
1475 struct flowadv
*adv
= &ipoa
.ipoa_flowadv
;
1476 int sotc
= SO_TC_UNSPEC
;
1477 int netsvctype
= _NET_SERVICE_TYPE_UNSPEC
;
1478 struct ifnet
*origoutifp
= NULL
;
1481 /* Enable flow advisory only when connected */
1482 flowadv
= (so
->so_state
& SS_ISCONNECTED
) ? 1 : 0;
1483 pi_laddr
.s_addr
= INADDR_ANY
;
1485 KERNEL_DEBUG(DBG_FNC_UDP_OUTPUT
| DBG_FUNC_START
, 0, 0, 0, 0, 0);
1487 socket_lock_assert_owned(so
);
1491 * If socket is subject to UDP Content Filter and no addr is passed in,
1492 * retrieve CFIL saved state from mbuf and use it if necessary.
1494 if (so
->so_cfil_db
&& !addr
) {
1495 cfil_tag
= cfil_udp_get_socket_state(m
, &cfil_so_state_change_cnt
, &cfil_so_options
, &cfil_faddr
);
1497 sin
= (struct sockaddr_in
*)(void *)cfil_faddr
;
1498 if (inp
&& inp
->inp_faddr
.s_addr
== INADDR_ANY
) {
1500 * Socket is unconnected, simply use the saved faddr as 'addr' to go through
1501 * the connect/disconnect logic.
1503 addr
= (struct sockaddr
*)cfil_faddr
;
1504 } else if ((so
->so_state_change_cnt
!= cfil_so_state_change_cnt
) &&
1505 (inp
->inp_fport
!= sin
->sin_port
||
1506 inp
->inp_faddr
.s_addr
!= sin
->sin_addr
.s_addr
)) {
1508 * Socket is connected but socket state and dest addr/port changed.
1509 * We need to use the saved faddr info.
1511 cfil_faddr_use
= true;
1517 if (control
!= NULL
) {
1518 sotc
= so_tc_from_control(control
, &netsvctype
);
1519 VERIFY(outif
== NULL
);
1520 error
= udp_check_pktinfo(control
, &outif
, &pi_laddr
);
1527 if (outif
!= NULL
) {
1528 ipoa
.ipoa_boundif
= outif
->if_index
;
1531 if (sotc
== SO_TC_UNSPEC
) {
1532 sotc
= so
->so_traffic_class
;
1533 netsvctype
= so
->so_netsvctype
;
1536 KERNEL_DEBUG(DBG_LAYER_OUT_BEG
, inp
->inp_fport
, inp
->inp_lport
,
1537 inp
->inp_laddr
.s_addr
, inp
->inp_faddr
.s_addr
,
1538 (htons((u_short
)len
+ sizeof(struct udphdr
))));
1540 if (len
+ sizeof(struct udpiphdr
) > IP_MAXPACKET
) {
1545 if (flowadv
&& INP_WAIT_FOR_IF_FEEDBACK(inp
)) {
1547 * The socket is flow-controlled, drop the packets
1548 * until the inp is not flow controlled
1554 * If socket was bound to an ifindex, tell ip_output about it.
1555 * If the ancillary IP_PKTINFO option contains an interface index,
1556 * it takes precedence over the one specified by IP_BOUND_IF.
1558 if (ipoa
.ipoa_boundif
== IFSCOPE_NONE
&&
1559 (inp
->inp_flags
& INP_BOUND_IF
)) {
1560 VERIFY(inp
->inp_boundifp
!= NULL
);
1561 ifnet_reference(inp
->inp_boundifp
); /* for this routine */
1562 if (outif
!= NULL
) {
1563 ifnet_release(outif
);
1565 outif
= inp
->inp_boundifp
;
1566 ipoa
.ipoa_boundif
= outif
->if_index
;
1568 if (INP_NO_CELLULAR(inp
)) {
1569 ipoa
.ipoa_flags
|= IPOAF_NO_CELLULAR
;
1571 if (INP_NO_EXPENSIVE(inp
)) {
1572 ipoa
.ipoa_flags
|= IPOAF_NO_EXPENSIVE
;
1574 if (INP_AWDL_UNRESTRICTED(inp
)) {
1575 ipoa
.ipoa_flags
|= IPOAF_AWDL_UNRESTRICTED
;
1577 ipoa
.ipoa_sotc
= sotc
;
1578 ipoa
.ipoa_netsvctype
= netsvctype
;
1579 soopts
|= IP_OUTARGS
;
1582 * If there was a routing change, discard cached route and check
1583 * that we have a valid source address. Reacquire a new source
1584 * address if INADDR_ANY was specified.
1586 * If we are using cfil saved state, go through this cache cleanup
1587 * so that we can get a new route.
1589 if (ROUTE_UNUSABLE(&inp
->inp_route
)
1594 struct in_ifaddr
*ia
= NULL
;
1596 ROUTE_RELEASE(&inp
->inp_route
);
1598 /* src address is gone? */
1599 if (inp
->inp_laddr
.s_addr
!= INADDR_ANY
&&
1600 (ia
= ifa_foraddr(inp
->inp_laddr
.s_addr
)) == NULL
) {
1601 if (!(inp
->inp_flags
& INP_INADDR_ANY
) ||
1602 (so
->so_state
& SS_ISCONNECTED
)) {
1605 * If the source address is gone, return an
1607 * - the source was specified
1608 * - the socket was already connected
1610 soevent(so
, (SO_FILT_HINT_LOCKED
|
1611 SO_FILT_HINT_NOSRCADDR
));
1612 error
= EADDRNOTAVAIL
;
1615 /* new src will be set later */
1616 inp
->inp_laddr
.s_addr
= INADDR_ANY
;
1617 inp
->inp_last_outifp
= NULL
;
1621 IFA_REMREF(&ia
->ia_ifa
);
1626 * IP_PKTINFO option check. If a temporary scope or src address
1627 * is provided, use it for this packet only and make sure we forget
1628 * it after sending this datagram.
1630 if (pi_laddr
.s_addr
!= INADDR_ANY
||
1631 (ipoa
.ipoa_boundif
!= IFSCOPE_NONE
&& pktinfo
)) {
1632 /* temp src address for this datagram only */
1634 origladdr
.s_addr
= INADDR_ANY
;
1635 /* we don't want to keep the laddr or route */
1636 udp_dodisconnect
= 1;
1637 /* remember we don't care about src addr */
1638 inp
->inp_flags
|= INP_INADDR_ANY
;
1640 origladdr
= laddr
= inp
->inp_laddr
;
1643 origoutifp
= inp
->inp_last_outifp
;
1644 faddr
= inp
->inp_faddr
;
1645 lport
= inp
->inp_lport
;
1646 fport
= inp
->inp_fport
;
1649 if (cfil_faddr_use
) {
1650 faddr
= ((struct sockaddr_in
*)(void *)cfil_faddr
)->sin_addr
;
1651 fport
= ((struct sockaddr_in
*)(void *)cfil_faddr
)->sin_port
;
1656 sin
= (struct sockaddr_in
*)(void *)addr
;
1657 if (faddr
.s_addr
!= INADDR_ANY
) {
1663 * In case we don't have a local port set, go through
1664 * the full connect. We don't have a local port yet
1665 * (i.e., we can't be looked up), so it's not an issue
1666 * if the input runs at the same time we do this.
1668 /* if we have a source address specified, use that */
1669 if (pi_laddr
.s_addr
!= INADDR_ANY
) {
1670 inp
->inp_laddr
= pi_laddr
;
1673 * If a scope is specified, use it. Scope from
1674 * IP_PKTINFO takes precendence over the the scope
1675 * set via INP_BOUND_IF.
1677 error
= in_pcbconnect(inp
, addr
, p
, ipoa
.ipoa_boundif
,
1683 laddr
= inp
->inp_laddr
;
1684 lport
= inp
->inp_lport
;
1685 faddr
= inp
->inp_faddr
;
1686 fport
= inp
->inp_fport
;
1687 udp_dodisconnect
= 1;
1689 /* synch up in case in_pcbladdr() overrides */
1690 if (outif
!= NULL
&& ipoa
.ipoa_boundif
!= IFSCOPE_NONE
) {
1691 ipoa
.ipoa_boundif
= outif
->if_index
;
1697 * We have a full address and a local port; use those
1698 * info to build the packet without changing the pcb
1699 * and interfering with the input path. See 3851370.
1701 * Scope from IP_PKTINFO takes precendence over the
1702 * the scope set via INP_BOUND_IF.
1704 if (laddr
.s_addr
== INADDR_ANY
) {
1705 if ((error
= in_pcbladdr(inp
, addr
, &laddr
,
1706 ipoa
.ipoa_boundif
, &outif
, 0)) != 0) {
1710 * from pcbconnect: remember we don't
1711 * care about src addr.
1713 inp
->inp_flags
|= INP_INADDR_ANY
;
1715 /* synch up in case in_pcbladdr() overrides */
1716 if (outif
!= NULL
&&
1717 ipoa
.ipoa_boundif
!= IFSCOPE_NONE
) {
1718 ipoa
.ipoa_boundif
= outif
->if_index
;
1722 faddr
= sin
->sin_addr
;
1723 fport
= sin
->sin_port
;
1726 if (faddr
.s_addr
== INADDR_ANY
) {
1733 mac_mbuf_label_associate_inpcb(inp
, m
);
1734 #endif /* CONFIG_MACF_NET */
1736 if (inp
->inp_flowhash
== 0) {
1737 inp
->inp_flowhash
= inp_calc_flowhash(inp
);
1740 if (fport
== htons(53) && !(so
->so_flags1
& SOF1_DNS_COUNTED
)) {
1741 so
->so_flags1
|= SOF1_DNS_COUNTED
;
1742 INC_ATOMIC_INT64_LIM(net_api_stats
.nas_socket_inet_dgram_dns
);
1746 * Calculate data length and get a mbuf
1747 * for UDP and IP headers.
1749 M_PREPEND(m
, sizeof(struct udpiphdr
), M_DONTWAIT
, 1);
1756 * Fill in mbuf with extended UDP header
1757 * and addresses and length put into network format.
1759 ui
= mtod(m
, struct udpiphdr
*);
1760 bzero(ui
->ui_x1
, sizeof(ui
->ui_x1
)); /* XXX still needed? */
1761 ui
->ui_pr
= IPPROTO_UDP
;
1764 ui
->ui_sport
= lport
;
1765 ui
->ui_dport
= fport
;
1766 ui
->ui_ulen
= htons((u_short
)len
+ sizeof(struct udphdr
));
1769 * Set up checksum to pseudo header checksum and output datagram.
1771 * Treat flows to be CLAT46'd as IPv6 flow and compute checksum
1772 * no matter what, as IPv6 mandates checksum for UDP.
1774 * Here we only compute the one's complement sum of the pseudo header.
1775 * The payload computation and final complement is delayed to much later
1776 * in IP processing to decide if remaining computation needs to be done
1779 * That is communicated by setting CSUM_UDP in csum_flags.
1780 * The offset of checksum from the start of ULP header is communicated
1781 * through csum_data.
1783 * Note since this already contains the pseudo checksum header, any
1784 * later operation at IP layer that modify the values used here must
1785 * update the checksum as well (for example NAT etc).
1787 if ((inp
->inp_flags2
& INP2_CLAT46_FLOW
) ||
1788 (udpcksum
&& !(inp
->inp_flags
& INP_UDP_NOCKSUM
))) {
1789 ui
->ui_sum
= in_pseudo(ui
->ui_src
.s_addr
, ui
->ui_dst
.s_addr
,
1790 htons((u_short
)len
+ sizeof(struct udphdr
) + IPPROTO_UDP
));
1791 m
->m_pkthdr
.csum_flags
= (CSUM_UDP
| CSUM_ZERO_INVERT
);
1792 m
->m_pkthdr
.csum_data
= offsetof(struct udphdr
, uh_sum
);
1796 ((struct ip
*)ui
)->ip_len
= sizeof(struct udpiphdr
) + len
;
1797 ((struct ip
*)ui
)->ip_ttl
= inp
->inp_ip_ttl
; /* XXX */
1798 ((struct ip
*)ui
)->ip_tos
= inp
->inp_ip_tos
; /* XXX */
1799 udpstat
.udps_opackets
++;
1801 KERNEL_DEBUG(DBG_LAYER_OUT_END
, ui
->ui_dport
, ui
->ui_sport
,
1802 ui
->ui_src
.s_addr
, ui
->ui_dst
.s_addr
, ui
->ui_ulen
);
1806 necp_kernel_policy_id policy_id
;
1807 necp_kernel_policy_id skip_policy_id
;
1808 u_int32_t route_rule_id
;
1811 * We need a route to perform NECP route rule checks
1813 if (net_qos_policy_restricted
!= 0 &&
1814 ROUTE_UNUSABLE(&inp
->inp_route
)) {
1815 struct sockaddr_in to
;
1816 struct sockaddr_in from
;
1818 ROUTE_RELEASE(&inp
->inp_route
);
1820 bzero(&from
, sizeof(struct sockaddr_in
));
1821 from
.sin_family
= AF_INET
;
1822 from
.sin_len
= sizeof(struct sockaddr_in
);
1823 from
.sin_addr
= laddr
;
1825 bzero(&to
, sizeof(struct sockaddr_in
));
1826 to
.sin_family
= AF_INET
;
1827 to
.sin_len
= sizeof(struct sockaddr_in
);
1828 to
.sin_addr
= faddr
;
1830 inp
->inp_route
.ro_dst
.sa_family
= AF_INET
;
1831 inp
->inp_route
.ro_dst
.sa_len
= sizeof(struct sockaddr_in
);
1832 ((struct sockaddr_in
*)(void *)&inp
->inp_route
.ro_dst
)->sin_addr
=
1835 rtalloc_scoped(&inp
->inp_route
, ipoa
.ipoa_boundif
);
1837 inp_update_necp_policy(inp
, (struct sockaddr
*)&from
,
1838 (struct sockaddr
*)&to
, ipoa
.ipoa_boundif
);
1839 inp
->inp_policyresult
.results
.qos_marking_gencount
= 0;
1842 if (!necp_socket_is_allowed_to_send_recv_v4(inp
, lport
, fport
,
1843 &laddr
, &faddr
, NULL
, &policy_id
, &route_rule_id
, &skip_policy_id
)) {
1844 error
= EHOSTUNREACH
;
1848 necp_mark_packet_from_socket(m
, inp
, policy_id
, route_rule_id
, skip_policy_id
);
1850 if (net_qos_policy_restricted
!= 0) {
1851 necp_socket_update_qos_marking(inp
,
1852 inp
->inp_route
.ro_rt
, NULL
, route_rule_id
);
1856 if ((so
->so_flags1
& SOF1_QOSMARKING_ALLOWED
)) {
1857 ipoa
.ipoa_flags
|= IPOAF_QOSMARKING_ALLOWED
;
1861 if (inp
->inp_sp
!= NULL
&& ipsec_setsocket(m
, inp
->inp_socket
) != 0) {
1867 inpopts
= inp
->inp_options
;
1869 if (cfil_tag
&& (inp
->inp_socket
->so_options
!= cfil_so_options
)) {
1870 soopts
|= (cfil_so_options
& (SO_DONTROUTE
| SO_BROADCAST
));
1873 soopts
|= (inp
->inp_socket
->so_options
& (SO_DONTROUTE
| SO_BROADCAST
));
1875 mopts
= inp
->inp_moptions
;
1876 if (mopts
!= NULL
) {
1878 IMO_ADDREF_LOCKED(mopts
);
1879 if (IN_MULTICAST(ntohl(ui
->ui_dst
.s_addr
)) &&
1880 mopts
->imo_multicast_ifp
!= NULL
) {
1881 /* no reference needed */
1882 inp
->inp_last_outifp
= mopts
->imo_multicast_ifp
;
1887 /* Copy the cached route and take an extra reference */
1888 inp_route_copyout(inp
, &ro
);
1890 set_packet_service_class(m
, so
, sotc
, 0);
1891 m
->m_pkthdr
.pkt_flowsrc
= FLOWSRC_INPCB
;
1892 m
->m_pkthdr
.pkt_flowid
= inp
->inp_flowhash
;
1893 m
->m_pkthdr
.pkt_proto
= IPPROTO_UDP
;
1894 m
->m_pkthdr
.pkt_flags
|= (PKTF_FLOW_ID
| PKTF_FLOW_LOCALSRC
);
1896 m
->m_pkthdr
.pkt_flags
|= PKTF_FLOW_ADV
;
1898 m
->m_pkthdr
.tx_udp_pid
= so
->last_pid
;
1899 if (so
->so_flags
& SOF_DELEGATED
) {
1900 m
->m_pkthdr
.tx_udp_e_pid
= so
->e_pid
;
1902 m
->m_pkthdr
.tx_udp_e_pid
= 0;
1905 if (ipoa
.ipoa_boundif
!= IFSCOPE_NONE
) {
1906 ipoa
.ipoa_flags
|= IPOAF_BOUND_IF
;
1909 if (laddr
.s_addr
!= INADDR_ANY
) {
1910 ipoa
.ipoa_flags
|= IPOAF_BOUND_SRCADDR
;
1913 inp
->inp_sndinprog_cnt
++;
1915 socket_unlock(so
, 0);
1916 error
= ip_output(m
, inpopts
, &ro
, soopts
, mopts
, &ipoa
);
1919 if (mopts
!= NULL
) {
1923 if (error
== 0 && nstat_collect
) {
1924 boolean_t cell
, wifi
, wired
;
1926 if (ro
.ro_rt
!= NULL
) {
1927 cell
= IFNET_IS_CELLULAR(ro
.ro_rt
->rt_ifp
);
1928 wifi
= (!cell
&& IFNET_IS_WIFI(ro
.ro_rt
->rt_ifp
));
1929 wired
= (!wifi
&& IFNET_IS_WIRED(ro
.ro_rt
->rt_ifp
));
1931 cell
= wifi
= wired
= FALSE
;
1933 INP_ADD_STAT(inp
, cell
, wifi
, wired
, txpackets
, 1);
1934 INP_ADD_STAT(inp
, cell
, wifi
, wired
, txbytes
, len
);
1935 inp_set_activity_bitmap(inp
);
1938 if (flowadv
&& (adv
->code
== FADV_FLOW_CONTROLLED
||
1939 adv
->code
== FADV_SUSPENDED
)) {
1941 * return a hint to the application that
1942 * the packet has been dropped
1945 inp_set_fc_state(inp
, adv
->code
);
1948 VERIFY(inp
->inp_sndinprog_cnt
> 0);
1949 if (--inp
->inp_sndinprog_cnt
== 0) {
1950 inp
->inp_flags
&= ~(INP_FC_FEEDBACK
);
1953 /* Synchronize PCB cached route */
1954 inp_route_copyin(inp
, &ro
);
1957 if (udp_dodisconnect
) {
1958 /* Always discard the cached route for unconnected socket */
1959 ROUTE_RELEASE(&inp
->inp_route
);
1960 in_pcbdisconnect(inp
);
1961 inp
->inp_laddr
= origladdr
; /* XXX rehash? */
1962 /* no reference needed */
1963 inp
->inp_last_outifp
= origoutifp
;
1964 } else if (inp
->inp_route
.ro_rt
!= NULL
) {
1965 struct rtentry
*rt
= inp
->inp_route
.ro_rt
;
1966 struct ifnet
*outifp
;
1968 if (rt
->rt_flags
& (RTF_MULTICAST
| RTF_BROADCAST
)) {
1969 rt
= NULL
; /* unusable */
1973 * Discard temporary route for cfil case
1975 if (cfil_faddr_use
) {
1976 rt
= NULL
; /* unusable */
1981 * Always discard if it is a multicast or broadcast route.
1984 ROUTE_RELEASE(&inp
->inp_route
);
1988 * If the destination route is unicast, update outifp with
1989 * that of the route interface used by IP.
1992 (outifp
= rt
->rt_ifp
) != inp
->inp_last_outifp
) {
1993 inp
->inp_last_outifp
= outifp
; /* no reference needed */
1995 so
->so_pktheadroom
= P2ROUNDUP(
1996 sizeof(struct udphdr
) +
1998 ifnet_hdrlen(outifp
) +
1999 ifnet_mbuf_packetpreamblelen(outifp
),
2003 ROUTE_RELEASE(&inp
->inp_route
);
2007 * If output interface was cellular/expensive, and this socket is
2008 * denied access to it, generate an event.
2010 if (error
!= 0 && (ipoa
.ipoa_retflags
& IPOARF_IFDENIED
) &&
2011 (INP_NO_CELLULAR(inp
) || INP_NO_EXPENSIVE(inp
))) {
2012 soevent(so
, (SO_FILT_HINT_LOCKED
| SO_FILT_HINT_IFDENIED
));
2016 KERNEL_DEBUG(DBG_FNC_UDP_OUTPUT
| DBG_FUNC_END
, error
, 0, 0, 0, 0);
2022 if (outif
!= NULL
) {
2023 ifnet_release(outif
);
2028 m_tag_free(cfil_tag
);
2035 u_int32_t udp_sendspace
= 9216; /* really max datagram size */
2036 /* 187 1K datagrams (approx 192 KB) */
2037 u_int32_t udp_recvspace
= 187 * (1024 +
2039 sizeof(struct sockaddr_in6
)
2041 sizeof(struct sockaddr_in
)
2045 /* Check that the values of udp send and recv space do not exceed sb_max */
2047 sysctl_udp_sospace(struct sysctl_oid
*oidp
, void *arg1
, int arg2
,
2048 struct sysctl_req
*req
)
2050 #pragma unused(arg1, arg2)
2051 u_int32_t new_value
= 0, *space_p
= NULL
;
2052 int changed
= 0, error
= 0;
2053 u_quad_t sb_effective_max
= (sb_max
/ (MSIZE
+ MCLBYTES
)) * MCLBYTES
;
2055 switch (oidp
->oid_number
) {
2056 case UDPCTL_RECVSPACE
:
2057 space_p
= &udp_recvspace
;
2059 case UDPCTL_MAXDGRAM
:
2060 space_p
= &udp_sendspace
;
2065 error
= sysctl_io_number(req
, *space_p
, sizeof(u_int32_t
),
2066 &new_value
, &changed
);
2068 if (new_value
> 0 && new_value
<= sb_effective_max
) {
2069 *space_p
= new_value
;
2077 SYSCTL_PROC(_net_inet_udp
, UDPCTL_RECVSPACE
, recvspace
,
2078 CTLTYPE_INT
| CTLFLAG_RW
| CTLFLAG_LOCKED
, &udp_recvspace
, 0,
2079 &sysctl_udp_sospace
, "IU", "Maximum incoming UDP datagram size");
2081 SYSCTL_PROC(_net_inet_udp
, UDPCTL_MAXDGRAM
, maxdgram
,
2082 CTLTYPE_INT
| CTLFLAG_RW
| CTLFLAG_LOCKED
, &udp_sendspace
, 0,
2083 &sysctl_udp_sospace
, "IU", "Maximum outgoing UDP datagram size");
2086 udp_abort(struct socket
*so
)
2090 inp
= sotoinpcb(so
);
2092 panic("%s: so=%p null inp\n", __func__
, so
);
2095 soisdisconnected(so
);
2101 udp_attach(struct socket
*so
, int proto
, struct proc
*p
)
2103 #pragma unused(proto)
2107 inp
= sotoinpcb(so
);
2109 panic("%s so=%p inp=%p\n", __func__
, so
, inp
);
2112 error
= in_pcballoc(so
, &udbinfo
, p
);
2116 error
= soreserve(so
, udp_sendspace
, udp_recvspace
);
2120 inp
= (struct inpcb
*)so
->so_pcb
;
2121 inp
->inp_vflag
|= INP_IPV4
;
2122 inp
->inp_ip_ttl
= ip_defttl
;
2123 if (nstat_collect
) {
2124 nstat_udp_new_pcb(inp
);
2130 udp_bind(struct socket
*so
, struct sockaddr
*nam
, struct proc
*p
)
2135 if (nam
->sa_family
!= 0 && nam
->sa_family
!= AF_INET
&&
2136 nam
->sa_family
!= AF_INET6
) {
2137 return EAFNOSUPPORT
;
2140 inp
= sotoinpcb(so
);
2144 error
= in_pcbbind(inp
, nam
, p
);
2147 /* Update NECP client with bind result if not in middle of connect */
2149 (inp
->inp_flags2
& INP2_CONNECT_IN_PROGRESS
) &&
2150 !uuid_is_null(inp
->necp_client_uuid
)) {
2151 socket_unlock(so
, 0);
2152 necp_client_assign_from_socket(so
->last_pid
, inp
->necp_client_uuid
, inp
);
2161 udp_connect(struct socket
*so
, struct sockaddr
*nam
, struct proc
*p
)
2166 inp
= sotoinpcb(so
);
2170 if (inp
->inp_faddr
.s_addr
!= INADDR_ANY
) {
2174 if (!(so
->so_flags1
& SOF1_CONNECT_COUNTED
)) {
2175 so
->so_flags1
|= SOF1_CONNECT_COUNTED
;
2176 INC_ATOMIC_INT64_LIM(net_api_stats
.nas_socket_inet_dgram_connected
);
2181 if (necp_socket_should_use_flow_divert(inp
)) {
2182 uint32_t fd_ctl_unit
=
2183 necp_socket_get_flow_divert_control_unit(inp
);
2184 if (fd_ctl_unit
> 0) {
2185 error
= flow_divert_pcb_init(so
, fd_ctl_unit
);
2187 error
= flow_divert_connect_out(so
, nam
, p
);
2194 #endif /* FLOW_DIVERT */
2197 error
= in_pcbconnect(inp
, nam
, p
, IFSCOPE_NONE
, NULL
);
2200 /* Update NECP client with connected five-tuple */
2201 if (!uuid_is_null(inp
->necp_client_uuid
)) {
2202 socket_unlock(so
, 0);
2203 necp_client_assign_from_socket(so
->last_pid
, inp
->necp_client_uuid
, inp
);
2209 if (inp
->inp_flowhash
== 0) {
2210 inp
->inp_flowhash
= inp_calc_flowhash(inp
);
2217 udp_connectx_common(struct socket
*so
, int af
, struct sockaddr
*src
, struct sockaddr
*dst
,
2218 struct proc
*p
, uint32_t ifscope
, sae_associd_t aid
, sae_connid_t
*pcid
,
2219 uint32_t flags
, void *arg
, uint32_t arglen
,
2220 struct uio
*uio
, user_ssize_t
*bytes_written
)
2222 #pragma unused(aid, flags, arg, arglen)
2223 struct inpcb
*inp
= sotoinpcb(so
);
2225 user_ssize_t datalen
= 0;
2231 VERIFY(dst
!= NULL
);
2233 ASSERT(!(inp
->inp_flags2
& INP2_CONNECT_IN_PROGRESS
));
2234 inp
->inp_flags2
|= INP2_CONNECT_IN_PROGRESS
;
2237 inp_update_necp_policy(inp
, src
, dst
, ifscope
);
2240 /* bind socket to the specified interface, if requested */
2241 if (ifscope
!= IFSCOPE_NONE
&&
2242 (error
= inp_bindif(inp
, ifscope
, NULL
)) != 0) {
2246 /* if source address and/or port is specified, bind to it */
2248 error
= sobindlock(so
, src
, 0); /* already locked */
2256 error
= udp_connect(so
, dst
, p
);
2260 error
= udp6_connect(so
, dst
, p
);
2273 * If there is data, copy it. DATA_IDEMPOTENT is ignored.
2274 * CONNECT_RESUME_ON_READ_WRITE is ignored.
2277 socket_unlock(so
, 0);
2279 VERIFY(bytes_written
!= NULL
);
2281 datalen
= uio_resid(uio
);
2282 error
= so
->so_proto
->pr_usrreqs
->pru_sosend(so
, NULL
,
2283 (uio_t
)uio
, NULL
, NULL
, 0);
2286 /* If error returned is EMSGSIZE, for example, disconnect */
2287 if (error
== 0 || error
== EWOULDBLOCK
) {
2288 *bytes_written
= datalen
- uio_resid(uio
);
2290 (void) so
->so_proto
->pr_usrreqs
->pru_disconnectx(so
,
2291 SAE_ASSOCID_ANY
, SAE_CONNID_ANY
);
2294 * mask the EWOULDBLOCK error so that the caller
2295 * knows that atleast the connect was successful.
2297 if (error
== EWOULDBLOCK
) {
2302 if (error
== 0 && pcid
!= NULL
) {
2303 *pcid
= 1; /* there is only 1 connection for UDP */
2306 inp
->inp_flags2
&= ~INP2_CONNECT_IN_PROGRESS
;
2311 udp_connectx(struct socket
*so
, struct sockaddr
*src
,
2312 struct sockaddr
*dst
, struct proc
*p
, uint32_t ifscope
,
2313 sae_associd_t aid
, sae_connid_t
*pcid
, uint32_t flags
, void *arg
,
2314 uint32_t arglen
, struct uio
*uio
, user_ssize_t
*bytes_written
)
2316 return udp_connectx_common(so
, AF_INET
, src
, dst
,
2317 p
, ifscope
, aid
, pcid
, flags
, arg
, arglen
, uio
, bytes_written
);
2321 udp_detach(struct socket
*so
)
2325 inp
= sotoinpcb(so
);
2327 panic("%s: so=%p null inp\n", __func__
, so
);
2332 * If this is a socket that does not want to wakeup the device
2333 * for it's traffic, the application might be waiting for
2334 * close to complete before going to sleep. Send a notification
2335 * for this kind of sockets
2337 if (so
->so_options
& SO_NOWAKEFROMSLEEP
) {
2338 socket_post_kev_msg_closed(so
);
2342 inp
->inp_state
= INPCB_STATE_DEAD
;
2347 udp_disconnect(struct socket
*so
)
2351 inp
= sotoinpcb(so
);
2354 || (necp_socket_should_use_flow_divert(inp
))
2357 return inp
== NULL
? EINVAL
: EPROTOTYPE
;
2359 if (inp
->inp_faddr
.s_addr
== INADDR_ANY
) {
2363 in_pcbdisconnect(inp
);
2365 /* reset flow controlled state, just in case */
2366 inp_reset_fc_state(inp
);
2368 inp
->inp_laddr
.s_addr
= INADDR_ANY
;
2369 so
->so_state
&= ~SS_ISCONNECTED
; /* XXX */
2370 inp
->inp_last_outifp
= NULL
;
2376 udp_disconnectx(struct socket
*so
, sae_associd_t aid
, sae_connid_t cid
)
2379 if (aid
!= SAE_ASSOCID_ANY
&& aid
!= SAE_ASSOCID_ALL
) {
2383 return udp_disconnect(so
);
2387 udp_send(struct socket
*so
, int flags
, struct mbuf
*m
,
2388 struct sockaddr
*addr
, struct mbuf
*control
, struct proc
*p
)
2391 #pragma unused(flags)
2392 #endif /* !(FLOW_DIVERT) */
2395 inp
= sotoinpcb(so
);
2400 if (control
!= NULL
) {
2408 if (necp_socket_should_use_flow_divert(inp
)) {
2409 /* Implicit connect */
2410 return flow_divert_implicit_data_out(so
, flags
, m
, addr
,
2413 #endif /* FLOW_DIVERT */
2416 return udp_output(inp
, m
, addr
, control
, p
);
2420 udp_shutdown(struct socket
*so
)
2424 inp
= sotoinpcb(so
);
2433 udp_lock(struct socket
*so
, int refcount
, void *debug
)
2437 if (debug
== NULL
) {
2438 lr_saved
= __builtin_return_address(0);
2443 if (so
->so_pcb
!= NULL
) {
2444 LCK_MTX_ASSERT(&((struct inpcb
*)so
->so_pcb
)->inpcb_mtx
,
2445 LCK_MTX_ASSERT_NOTOWNED
);
2446 lck_mtx_lock(&((struct inpcb
*)so
->so_pcb
)->inpcb_mtx
);
2448 panic("%s: so=%p NO PCB! lr=%p lrh= %s\n", __func__
,
2449 so
, lr_saved
, solockhistory_nr(so
));
2456 so
->lock_lr
[so
->next_lock_lr
] = lr_saved
;
2457 so
->next_lock_lr
= (so
->next_lock_lr
+ 1) % SO_LCKDBG_MAX
;
2462 udp_unlock(struct socket
*so
, int refcount
, void *debug
)
2466 if (debug
== NULL
) {
2467 lr_saved
= __builtin_return_address(0);
2473 VERIFY(so
->so_usecount
> 0);
2476 if (so
->so_pcb
== NULL
) {
2477 panic("%s: so=%p NO PCB! lr=%p lrh= %s\n", __func__
,
2478 so
, lr_saved
, solockhistory_nr(so
));
2481 LCK_MTX_ASSERT(&((struct inpcb
*)so
->so_pcb
)->inpcb_mtx
,
2482 LCK_MTX_ASSERT_OWNED
);
2483 so
->unlock_lr
[so
->next_unlock_lr
] = lr_saved
;
2484 so
->next_unlock_lr
= (so
->next_unlock_lr
+ 1) % SO_LCKDBG_MAX
;
2485 lck_mtx_unlock(&((struct inpcb
*)so
->so_pcb
)->inpcb_mtx
);
2491 udp_getlock(struct socket
*so
, int flags
)
2493 #pragma unused(flags)
2494 struct inpcb
*inp
= sotoinpcb(so
);
2496 if (so
->so_pcb
== NULL
) {
2497 panic("%s: so=%p NULL so_pcb lrh= %s\n", __func__
,
2498 so
, solockhistory_nr(so
));
2501 return &inp
->inpcb_mtx
;
2505 * UDP garbage collector callback (inpcb_timer_func_t).
2507 * Returns > 0 to keep timer active.
2510 udp_gc(struct inpcbinfo
*ipi
)
2512 struct inpcb
*inp
, *inpnxt
;
2515 if (lck_rw_try_lock_exclusive(ipi
->ipi_lock
) == FALSE
) {
2516 if (udp_gc_done
== TRUE
) {
2517 udp_gc_done
= FALSE
;
2518 /* couldn't get the lock, must lock next time */
2519 atomic_add_32(&ipi
->ipi_gc_req
.intimer_fast
, 1);
2522 lck_rw_lock_exclusive(ipi
->ipi_lock
);
2527 for (inp
= udb
.lh_first
; inp
!= NULL
; inp
= inpnxt
) {
2528 inpnxt
= inp
->inp_list
.le_next
;
2531 * Skip unless it's STOPUSING; garbage collector will
2532 * be triggered by in_pcb_checkstate() upon setting
2533 * wantcnt to that value. If the PCB is already dead,
2534 * keep gc active to anticipate wantcnt changing.
2536 if (inp
->inp_wantcnt
!= WNT_STOPUSING
) {
2541 * Skip if busy, no hurry for cleanup. Keep gc active
2542 * and try the lock again during next round.
2544 if (!socket_try_lock(inp
->inp_socket
)) {
2545 atomic_add_32(&ipi
->ipi_gc_req
.intimer_fast
, 1);
2550 * Keep gc active unless usecount is 0.
2552 so
= inp
->inp_socket
;
2553 if (so
->so_usecount
== 0) {
2554 if (inp
->inp_state
!= INPCB_STATE_DEAD
) {
2556 if (SOCK_CHECK_DOM(so
, PF_INET6
)) {
2564 socket_unlock(so
, 0);
2565 atomic_add_32(&ipi
->ipi_gc_req
.intimer_fast
, 1);
2568 lck_rw_done(ipi
->ipi_lock
);
2572 udp_getstat SYSCTL_HANDLER_ARGS
2574 #pragma unused(oidp, arg1, arg2)
2575 if (req
->oldptr
== USER_ADDR_NULL
) {
2576 req
->oldlen
= (size_t)sizeof(struct udpstat
);
2579 return SYSCTL_OUT(req
, &udpstat
, MIN(sizeof(udpstat
), req
->oldlen
));
2583 udp_in_cksum_stats(u_int32_t len
)
2585 udpstat
.udps_rcv_swcsum
++;
2586 udpstat
.udps_rcv_swcsum_bytes
+= len
;
2590 udp_out_cksum_stats(u_int32_t len
)
2592 udpstat
.udps_snd_swcsum
++;
2593 udpstat
.udps_snd_swcsum_bytes
+= len
;
2598 udp_in6_cksum_stats(u_int32_t len
)
2600 udpstat
.udps_rcv6_swcsum
++;
2601 udpstat
.udps_rcv6_swcsum_bytes
+= len
;
2605 udp_out6_cksum_stats(u_int32_t len
)
2607 udpstat
.udps_snd6_swcsum
++;
2608 udpstat
.udps_snd6_swcsum_bytes
+= len
;
2613 * Checksum extended UDP header and data.
2616 udp_input_checksum(struct mbuf
*m
, struct udphdr
*uh
, int off
, int ulen
)
2618 struct ifnet
*ifp
= m
->m_pkthdr
.rcvif
;
2619 struct ip
*ip
= mtod(m
, struct ip
*);
2620 struct ipovly
*ipov
= (struct ipovly
*)ip
;
2622 if (uh
->uh_sum
== 0) {
2623 udpstat
.udps_nosum
++;
2627 /* ip_stripoptions() must have been called before we get here */
2628 ASSERT((ip
->ip_hl
<< 2) == sizeof(*ip
));
2630 if ((hwcksum_rx
|| (ifp
->if_flags
& IFF_LOOPBACK
) ||
2631 (m
->m_pkthdr
.pkt_flags
& PKTF_LOOP
)) &&
2632 (m
->m_pkthdr
.csum_flags
& CSUM_DATA_VALID
)) {
2633 if (m
->m_pkthdr
.csum_flags
& CSUM_PSEUDO_HDR
) {
2634 uh
->uh_sum
= m
->m_pkthdr
.csum_rx_val
;
2636 uint32_t sum
= m
->m_pkthdr
.csum_rx_val
;
2637 uint32_t start
= m
->m_pkthdr
.csum_rx_start
;
2638 int32_t trailer
= (m_pktlen(m
) - (off
+ ulen
));
2641 * Perform 1's complement adjustment of octets
2642 * that got included/excluded in the hardware-
2643 * calculated checksum value. Ignore cases
2644 * where the value already includes the entire
2645 * IP header span, as the sum for those octets
2646 * would already be 0 by the time we get here;
2647 * IP has already performed its header checksum
2648 * checks. If we do need to adjust, restore
2649 * the original fields in the IP header when
2650 * computing the adjustment value. Also take
2651 * care of any trailing bytes and subtract out
2652 * their partial sum.
2654 ASSERT(trailer
>= 0);
2655 if ((m
->m_pkthdr
.csum_flags
& CSUM_PARTIAL
) &&
2656 ((start
!= 0 && start
!= off
) || trailer
!= 0)) {
2657 uint32_t swbytes
= (uint32_t)trailer
;
2660 ip
->ip_len
+= sizeof(*ip
);
2661 #if BYTE_ORDER != BIG_ENDIAN
2664 #endif /* BYTE_ORDER != BIG_ENDIAN */
2666 /* callee folds in sum */
2667 sum
= m_adj_sum16(m
, start
, off
, ulen
, sum
);
2669 swbytes
+= (off
- start
);
2671 swbytes
+= (start
- off
);
2675 #if BYTE_ORDER != BIG_ENDIAN
2678 #endif /* BYTE_ORDER != BIG_ENDIAN */
2679 ip
->ip_len
-= sizeof(*ip
);
2683 udp_in_cksum_stats(swbytes
);
2690 /* callee folds in sum */
2691 uh
->uh_sum
= in_pseudo(ip
->ip_src
.s_addr
,
2692 ip
->ip_dst
.s_addr
, sum
+ htonl(ulen
+ IPPROTO_UDP
));
2694 uh
->uh_sum
^= 0xffff;
2699 bcopy(ipov
->ih_x1
, b
, sizeof(ipov
->ih_x1
));
2700 bzero(ipov
->ih_x1
, sizeof(ipov
->ih_x1
));
2701 ip_sum
= ipov
->ih_len
;
2702 ipov
->ih_len
= uh
->uh_ulen
;
2703 uh
->uh_sum
= in_cksum(m
, ulen
+ sizeof(struct ip
));
2704 bcopy(b
, ipov
->ih_x1
, sizeof(ipov
->ih_x1
));
2705 ipov
->ih_len
= ip_sum
;
2707 udp_in_cksum_stats(ulen
);
2710 if (uh
->uh_sum
!= 0) {
2711 udpstat
.udps_badsum
++;
2712 IF_UDP_STATINC(ifp
, badchksum
);
2720 udp_fill_keepalive_offload_frames(ifnet_t ifp
,
2721 struct ifnet_keepalive_offload_frame
*frames_array
,
2722 u_int32_t frames_array_count
, size_t frame_data_offset
,
2723 u_int32_t
*used_frames_count
)
2727 u_int32_t frame_index
= *used_frames_count
;
2729 if (ifp
== NULL
|| frames_array
== NULL
||
2730 frames_array_count
== 0 ||
2731 frame_index
>= frames_array_count
||
2732 frame_data_offset
>= IFNET_KEEPALIVE_OFFLOAD_FRAME_DATA_SIZE
) {
2736 lck_rw_lock_shared(udbinfo
.ipi_lock
);
2737 gencnt
= udbinfo
.ipi_gencnt
;
2738 LIST_FOREACH(inp
, udbinfo
.ipi_listhead
, inp_list
) {
2741 struct ifnet_keepalive_offload_frame
*frame
;
2742 struct mbuf
*m
= NULL
;
2744 if (frame_index
>= frames_array_count
) {
2748 if (inp
->inp_gencnt
> gencnt
||
2749 inp
->inp_state
== INPCB_STATE_DEAD
) {
2753 if ((so
= inp
->inp_socket
) == NULL
||
2754 (so
->so_state
& SS_DEFUNCT
)) {
2758 * check for keepalive offload flag without socket
2759 * lock to avoid a deadlock
2761 if (!(inp
->inp_flags2
& INP2_KEEPALIVE_OFFLOAD
)) {
2766 if (!(inp
->inp_vflag
& (INP_IPV4
| INP_IPV6
))) {
2767 udp_unlock(so
, 1, 0);
2770 if ((inp
->inp_vflag
& INP_IPV4
) &&
2771 (inp
->inp_laddr
.s_addr
== INADDR_ANY
||
2772 inp
->inp_faddr
.s_addr
== INADDR_ANY
)) {
2773 udp_unlock(so
, 1, 0);
2776 if ((inp
->inp_vflag
& INP_IPV6
) &&
2777 (IN6_IS_ADDR_UNSPECIFIED(&inp
->in6p_laddr
) ||
2778 IN6_IS_ADDR_UNSPECIFIED(&inp
->in6p_faddr
))) {
2779 udp_unlock(so
, 1, 0);
2782 if (inp
->inp_lport
== 0 || inp
->inp_fport
== 0) {
2783 udp_unlock(so
, 1, 0);
2786 if (inp
->inp_last_outifp
== NULL
||
2787 inp
->inp_last_outifp
->if_index
!= ifp
->if_index
) {
2788 udp_unlock(so
, 1, 0);
2791 if ((inp
->inp_vflag
& INP_IPV4
)) {
2792 if ((frame_data_offset
+ sizeof(struct udpiphdr
) +
2793 inp
->inp_keepalive_datalen
) >
2794 IFNET_KEEPALIVE_OFFLOAD_FRAME_DATA_SIZE
) {
2795 udp_unlock(so
, 1, 0);
2798 if ((sizeof(struct udpiphdr
) +
2799 inp
->inp_keepalive_datalen
) > _MHLEN
) {
2800 udp_unlock(so
, 1, 0);
2804 if ((frame_data_offset
+ sizeof(struct ip6_hdr
) +
2805 sizeof(struct udphdr
) +
2806 inp
->inp_keepalive_datalen
) >
2807 IFNET_KEEPALIVE_OFFLOAD_FRAME_DATA_SIZE
) {
2808 udp_unlock(so
, 1, 0);
2811 if ((sizeof(struct ip6_hdr
) + sizeof(struct udphdr
) +
2812 inp
->inp_keepalive_datalen
) > _MHLEN
) {
2813 udp_unlock(so
, 1, 0);
2817 MGETHDR(m
, M_WAIT
, MT_HEADER
);
2819 udp_unlock(so
, 1, 0);
2823 * This inp has all the information that is needed to
2824 * generate an offload frame.
2826 if (inp
->inp_vflag
& INP_IPV4
) {
2830 frame
= &frames_array
[frame_index
];
2831 frame
->length
= frame_data_offset
+
2832 sizeof(struct udpiphdr
) +
2833 inp
->inp_keepalive_datalen
;
2835 IFNET_KEEPALIVE_OFFLOAD_FRAME_ETHERTYPE_IPV4
;
2836 frame
->interval
= inp
->inp_keepalive_interval
;
2837 switch (inp
->inp_keepalive_type
) {
2838 case UDP_KEEPALIVE_OFFLOAD_TYPE_AIRPLAY
:
2840 IFNET_KEEPALIVE_OFFLOAD_FRAME_AIRPLAY
;
2845 data
= mtod(m
, u_int8_t
*);
2846 bzero(data
, sizeof(struct udpiphdr
));
2847 ip
= (__typeof__(ip
))(void *)data
;
2848 udp
= (__typeof__(udp
))(void *) (data
+
2850 m
->m_len
= sizeof(struct udpiphdr
);
2851 data
= data
+ sizeof(struct udpiphdr
);
2852 if (inp
->inp_keepalive_datalen
> 0 &&
2853 inp
->inp_keepalive_data
!= NULL
) {
2854 bcopy(inp
->inp_keepalive_data
, data
,
2855 inp
->inp_keepalive_datalen
);
2856 m
->m_len
+= inp
->inp_keepalive_datalen
;
2858 m
->m_pkthdr
.len
= m
->m_len
;
2860 ip
->ip_v
= IPVERSION
;
2861 ip
->ip_hl
= (sizeof(struct ip
) >> 2);
2862 ip
->ip_p
= IPPROTO_UDP
;
2863 ip
->ip_len
= htons(sizeof(struct udpiphdr
) +
2864 (u_short
)inp
->inp_keepalive_datalen
);
2865 ip
->ip_ttl
= inp
->inp_ip_ttl
;
2866 ip
->ip_tos
|= (inp
->inp_ip_tos
& ~IPTOS_ECN_MASK
);
2867 ip
->ip_src
= inp
->inp_laddr
;
2868 ip
->ip_dst
= inp
->inp_faddr
;
2869 ip
->ip_sum
= in_cksum_hdr_opt(ip
);
2871 udp
->uh_sport
= inp
->inp_lport
;
2872 udp
->uh_dport
= inp
->inp_fport
;
2873 udp
->uh_ulen
= htons(sizeof(struct udphdr
) +
2874 (u_short
)inp
->inp_keepalive_datalen
);
2876 if (!(inp
->inp_flags
& INP_UDP_NOCKSUM
)) {
2877 udp
->uh_sum
= in_pseudo(ip
->ip_src
.s_addr
,
2879 htons(sizeof(struct udphdr
) +
2880 (u_short
)inp
->inp_keepalive_datalen
+
2882 m
->m_pkthdr
.csum_flags
=
2883 (CSUM_UDP
| CSUM_ZERO_INVERT
);
2884 m
->m_pkthdr
.csum_data
= offsetof(struct udphdr
,
2887 m
->m_pkthdr
.pkt_proto
= IPPROTO_UDP
;
2888 in_delayed_cksum(m
);
2889 bcopy(m
->m_data
, frame
->data
+ frame_data_offset
,
2892 struct ip6_hdr
*ip6
;
2893 struct udphdr
*udp6
;
2895 VERIFY(inp
->inp_vflag
& INP_IPV6
);
2896 frame
= &frames_array
[frame_index
];
2897 frame
->length
= frame_data_offset
+
2898 sizeof(struct ip6_hdr
) +
2899 sizeof(struct udphdr
) +
2900 inp
->inp_keepalive_datalen
;
2902 IFNET_KEEPALIVE_OFFLOAD_FRAME_ETHERTYPE_IPV6
;
2903 frame
->interval
= inp
->inp_keepalive_interval
;
2904 switch (inp
->inp_keepalive_type
) {
2905 case UDP_KEEPALIVE_OFFLOAD_TYPE_AIRPLAY
:
2907 IFNET_KEEPALIVE_OFFLOAD_FRAME_AIRPLAY
;
2912 data
= mtod(m
, u_int8_t
*);
2913 bzero(data
, sizeof(struct ip6_hdr
) + sizeof(struct udphdr
));
2914 ip6
= (__typeof__(ip6
))(void *)data
;
2915 udp6
= (__typeof__(udp6
))(void *)(data
+
2916 sizeof(struct ip6_hdr
));
2917 m
->m_len
= sizeof(struct ip6_hdr
) +
2918 sizeof(struct udphdr
);
2919 data
= data
+ (sizeof(struct ip6_hdr
) +
2920 sizeof(struct udphdr
));
2921 if (inp
->inp_keepalive_datalen
> 0 &&
2922 inp
->inp_keepalive_data
!= NULL
) {
2923 bcopy(inp
->inp_keepalive_data
, data
,
2924 inp
->inp_keepalive_datalen
);
2925 m
->m_len
+= inp
->inp_keepalive_datalen
;
2927 m
->m_pkthdr
.len
= m
->m_len
;
2928 ip6
->ip6_flow
= inp
->inp_flow
& IPV6_FLOWINFO_MASK
;
2929 ip6
->ip6_flow
= ip6
->ip6_flow
& ~IPV6_FLOW_ECN_MASK
;
2930 ip6
->ip6_vfc
&= ~IPV6_VERSION_MASK
;
2931 ip6
->ip6_vfc
|= IPV6_VERSION
;
2932 ip6
->ip6_nxt
= IPPROTO_UDP
;
2933 ip6
->ip6_hlim
= ip6_defhlim
;
2934 ip6
->ip6_plen
= htons(sizeof(struct udphdr
) +
2935 (u_short
)inp
->inp_keepalive_datalen
);
2936 ip6
->ip6_src
= inp
->in6p_laddr
;
2937 if (IN6_IS_SCOPE_EMBED(&ip6
->ip6_src
)) {
2938 ip6
->ip6_src
.s6_addr16
[1] = 0;
2941 ip6
->ip6_dst
= inp
->in6p_faddr
;
2942 if (IN6_IS_SCOPE_EMBED(&ip6
->ip6_dst
)) {
2943 ip6
->ip6_dst
.s6_addr16
[1] = 0;
2946 udp6
->uh_sport
= inp
->in6p_lport
;
2947 udp6
->uh_dport
= inp
->in6p_fport
;
2948 udp6
->uh_ulen
= htons(sizeof(struct udphdr
) +
2949 (u_short
)inp
->inp_keepalive_datalen
);
2950 if (!(inp
->inp_flags
& INP_UDP_NOCKSUM
)) {
2951 udp6
->uh_sum
= in6_pseudo(&ip6
->ip6_src
,
2953 htonl(sizeof(struct udphdr
) +
2954 (u_short
)inp
->inp_keepalive_datalen
+
2956 m
->m_pkthdr
.csum_flags
=
2957 (CSUM_UDPIPV6
| CSUM_ZERO_INVERT
);
2958 m
->m_pkthdr
.csum_data
= offsetof(struct udphdr
,
2961 m
->m_pkthdr
.pkt_proto
= IPPROTO_UDP
;
2962 in6_delayed_cksum(m
);
2963 bcopy(m
->m_data
, frame
->data
+ frame_data_offset
,
2971 udp_unlock(so
, 1, 0);
2973 lck_rw_done(udbinfo
.ipi_lock
);
2974 *used_frames_count
= frame_index
;