2 * Copyright (c) 2000-2019 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
29 * Copyright (c) 1988, 1991, 1993
30 * The Regents of the University of California. All rights reserved.
32 * Redistribution and use in source and binary forms, with or without
33 * modification, are permitted provided that the following conditions
35 * 1. Redistributions of source code must retain the above copyright
36 * notice, this list of conditions and the following disclaimer.
37 * 2. Redistributions in binary form must reproduce the above copyright
38 * notice, this list of conditions and the following disclaimer in the
39 * documentation and/or other materials provided with the distribution.
40 * 3. All advertising materials mentioning features or use of this software
41 * must display the following acknowledgement:
42 * This product includes software developed by the University of
43 * California, Berkeley and its contributors.
44 * 4. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 * @(#)rtsock.c 8.5 (Berkeley) 11/2/94
63 #include <sys/param.h>
64 #include <sys/systm.h>
65 #include <sys/kauth.h>
66 #include <sys/kernel.h>
67 #include <sys/sysctl.h>
69 #include <sys/malloc.h>
71 #include <sys/socket.h>
72 #include <sys/socketvar.h>
73 #include <sys/domain.h>
74 #include <sys/protosw.h>
75 #include <sys/syslog.h>
76 #include <sys/mcache.h>
77 #include <kern/locks.h>
78 #include <sys/codesign.h>
81 #include <net/route.h>
83 #include <net/raw_cb.h>
84 #include <netinet/in.h>
85 #include <netinet/in_var.h>
86 #include <netinet/in_arp.h>
87 #include <netinet/ip.h>
88 #include <netinet/ip6.h>
89 #include <netinet6/nd6.h>
91 extern struct rtstat rtstat
;
92 extern struct domain routedomain_s
;
93 static struct domain
*routedomain
= NULL
;
95 MALLOC_DEFINE(M_RTABLE
, "routetbl", "routing tables");
97 static struct sockaddr route_dst
= { 2, PF_ROUTE
, { 0, } };
98 static struct sockaddr route_src
= { 2, PF_ROUTE
, { 0, } };
99 static struct sockaddr sa_zero
= { sizeof(sa_zero
), AF_INET
, { 0, } };
102 u_int32_t ip_count
; /* attached w/ AF_INET */
103 u_int32_t ip6_count
; /* attached w/ AF_INET6 */
104 u_int32_t any_count
; /* total attached */
107 static struct route_cb route_cb
;
113 struct sysctl_req
*w_req
;
116 static void route_dinit(struct domain
*);
117 static int rts_abort(struct socket
*);
118 static int rts_attach(struct socket
*, int, struct proc
*);
119 static int rts_bind(struct socket
*, struct sockaddr
*, struct proc
*);
120 static int rts_connect(struct socket
*, struct sockaddr
*, struct proc
*);
121 static int rts_detach(struct socket
*);
122 static int rts_disconnect(struct socket
*);
123 static int rts_peeraddr(struct socket
*, struct sockaddr
**);
124 static int rts_send(struct socket
*, int, struct mbuf
*, struct sockaddr
*,
125 struct mbuf
*, struct proc
*);
126 static int rts_shutdown(struct socket
*);
127 static int rts_sockaddr(struct socket
*, struct sockaddr
**);
129 static int route_output(struct mbuf
*, struct socket
*);
130 static int rt_setmetrics(u_int32_t
, struct rt_metrics
*, struct rtentry
*);
131 static void rt_getmetrics(struct rtentry
*, struct rt_metrics
*);
132 static void rt_setif(struct rtentry
*, struct sockaddr
*, struct sockaddr
*,
133 struct sockaddr
*, unsigned int);
134 static int rt_xaddrs(caddr_t
, caddr_t
, struct rt_addrinfo
*);
135 static struct mbuf
*rt_msg1(int, struct rt_addrinfo
*);
136 static int rt_msg2(int, struct rt_addrinfo
*, caddr_t
, struct walkarg
*,
138 static int sysctl_dumpentry(struct radix_node
*rn
, void *vw
);
139 static int sysctl_dumpentry_ext(struct radix_node
*rn
, void *vw
);
140 static int sysctl_iflist(int af
, struct walkarg
*w
);
141 static int sysctl_iflist2(int af
, struct walkarg
*w
);
142 static int sysctl_rtstat(struct sysctl_req
*);
143 static int sysctl_rttrash(struct sysctl_req
*);
144 static int sysctl_rtsock SYSCTL_HANDLER_ARGS
;
146 SYSCTL_NODE(_net
, PF_ROUTE
, routetable
, CTLFLAG_RD
| CTLFLAG_LOCKED
,
149 SYSCTL_NODE(_net
, OID_AUTO
, route
, CTLFLAG_RW
| CTLFLAG_LOCKED
, 0, "routing");
151 /* Align x to 1024 (only power of 2) assuming x is positive */
152 #define ALIGN_BYTES(x) do { \
153 x = P2ALIGN(x, 1024); \
156 #define ROUNDUP32(a) \
157 ((a) > 0 ? (1 + (((a) - 1) | (sizeof (uint32_t) - 1))) : \
160 #define ADVANCE32(x, n) \
161 (x += ROUNDUP32((n)->sa_len))
164 * It really doesn't make any sense at all for this code to share much
165 * with raw_usrreq.c, since its functionality is so restricted. XXX
168 rts_abort(struct socket
*so
)
170 return raw_usrreqs
.pru_abort(so
);
173 /* pru_accept is EOPNOTSUPP */
176 rts_attach(struct socket
*so
, int proto
, struct proc
*p
)
182 VERIFY(so
->so_pcb
== NULL
);
184 MALLOC(rp
, struct rawcb
*, sizeof(*rp
), M_PCB
, M_WAITOK
| M_ZERO
);
189 so
->so_pcb
= (caddr_t
)rp
;
190 /* don't use raw_usrreqs.pru_attach, it checks for SS_PRIV */
191 error
= raw_attach(so
, proto
);
196 so
->so_flags
|= SOF_PCBCLEARING
;
200 switch (rp
->rcb_proto
.sp_protocol
) {
202 atomic_add_32(&route_cb
.ip_count
, 1);
205 atomic_add_32(&route_cb
.ip6_count
, 1);
208 rp
->rcb_faddr
= &route_src
;
209 atomic_add_32(&route_cb
.any_count
, 1);
210 /* the socket is already locked when we enter rts_attach */
212 so
->so_options
|= SO_USELOOPBACK
;
217 rts_bind(struct socket
*so
, struct sockaddr
*nam
, struct proc
*p
)
219 return raw_usrreqs
.pru_bind(so
, nam
, p
); /* xxx just EINVAL */
223 rts_connect(struct socket
*so
, struct sockaddr
*nam
, struct proc
*p
)
225 return raw_usrreqs
.pru_connect(so
, nam
, p
); /* XXX just EINVAL */
228 /* pru_connect2 is EOPNOTSUPP */
229 /* pru_control is EOPNOTSUPP */
232 rts_detach(struct socket
*so
)
234 struct rawcb
*rp
= sotorawcb(so
);
238 switch (rp
->rcb_proto
.sp_protocol
) {
240 atomic_add_32(&route_cb
.ip_count
, -1);
243 atomic_add_32(&route_cb
.ip6_count
, -1);
246 atomic_add_32(&route_cb
.any_count
, -1);
247 return raw_usrreqs
.pru_detach(so
);
251 rts_disconnect(struct socket
*so
)
253 return raw_usrreqs
.pru_disconnect(so
);
256 /* pru_listen is EOPNOTSUPP */
259 rts_peeraddr(struct socket
*so
, struct sockaddr
**nam
)
261 return raw_usrreqs
.pru_peeraddr(so
, nam
);
264 /* pru_rcvd is EOPNOTSUPP */
265 /* pru_rcvoob is EOPNOTSUPP */
268 rts_send(struct socket
*so
, int flags
, struct mbuf
*m
, struct sockaddr
*nam
,
269 struct mbuf
*control
, struct proc
*p
)
271 return raw_usrreqs
.pru_send(so
, flags
, m
, nam
, control
, p
);
274 /* pru_sense is null */
277 rts_shutdown(struct socket
*so
)
279 return raw_usrreqs
.pru_shutdown(so
);
283 rts_sockaddr(struct socket
*so
, struct sockaddr
**nam
)
285 return raw_usrreqs
.pru_sockaddr(so
, nam
);
288 static struct pr_usrreqs route_usrreqs
= {
289 .pru_abort
= rts_abort
,
290 .pru_attach
= rts_attach
,
291 .pru_bind
= rts_bind
,
292 .pru_connect
= rts_connect
,
293 .pru_detach
= rts_detach
,
294 .pru_disconnect
= rts_disconnect
,
295 .pru_peeraddr
= rts_peeraddr
,
296 .pru_send
= rts_send
,
297 .pru_shutdown
= rts_shutdown
,
298 .pru_sockaddr
= rts_sockaddr
,
299 .pru_sosend
= sosend
,
300 .pru_soreceive
= soreceive
,
305 route_output(struct mbuf
*m
, struct socket
*so
)
307 struct rt_msghdr
*rtm
= NULL
;
308 struct rtentry
*rt
= NULL
;
309 struct rtentry
*saved_nrt
= NULL
;
310 struct radix_node_head
*rnh
;
311 struct rt_addrinfo info
;
313 sa_family_t dst_sa_family
= 0;
314 struct ifnet
*ifp
= NULL
;
315 struct sockaddr_in dst_in
, gate_in
;
316 int sendonlytoself
= 0;
317 unsigned int ifscope
= IFSCOPE_NONE
;
318 struct rawcb
*rp
= NULL
;
319 boolean_t is_router
= FALSE
;
320 #define senderr(e) { error = (e); goto flush; }
321 if (m
== NULL
|| ((m
->m_len
< sizeof(intptr_t)) &&
322 (m
= m_pullup(m
, sizeof(intptr_t))) == NULL
)) {
325 VERIFY(m
->m_flags
& M_PKTHDR
);
328 * Unlock the socket (but keep a reference) it won't be
329 * accessed until raw_input appends to it.
331 socket_unlock(so
, 0);
332 lck_mtx_lock(rnh_lock
);
334 len
= m
->m_pkthdr
.len
;
335 if (len
< sizeof(*rtm
) ||
336 len
!= mtod(m
, struct rt_msghdr
*)->rtm_msglen
) {
337 info
.rti_info
[RTAX_DST
] = NULL
;
340 R_Malloc(rtm
, struct rt_msghdr
*, len
);
342 info
.rti_info
[RTAX_DST
] = NULL
;
345 m_copydata(m
, 0, len
, (caddr_t
)rtm
);
346 if (rtm
->rtm_version
!= RTM_VERSION
) {
347 info
.rti_info
[RTAX_DST
] = NULL
;
348 senderr(EPROTONOSUPPORT
);
352 * Silent version of RTM_GET for Reachabiltiy APIs. We may change
353 * all RTM_GETs to be silent in the future, so this is private for now.
355 if (rtm
->rtm_type
== RTM_GET_SILENT
) {
356 if (!(so
->so_options
& SO_USELOOPBACK
)) {
360 rtm
->rtm_type
= RTM_GET
;
364 * Perform permission checking, only privileged sockets
365 * may perform operations other than RTM_GET
367 if (rtm
->rtm_type
!= RTM_GET
&& !(so
->so_state
& SS_PRIV
)) {
368 info
.rti_info
[RTAX_DST
] = NULL
;
372 rtm
->rtm_pid
= proc_selfpid();
373 info
.rti_addrs
= rtm
->rtm_addrs
;
374 if (rt_xaddrs((caddr_t
)(rtm
+ 1), len
+ (caddr_t
)rtm
, &info
)) {
375 info
.rti_info
[RTAX_DST
] = NULL
;
378 if (info
.rti_info
[RTAX_DST
] == NULL
||
379 info
.rti_info
[RTAX_DST
]->sa_family
>= AF_MAX
||
380 (info
.rti_info
[RTAX_GATEWAY
] != NULL
&&
381 info
.rti_info
[RTAX_GATEWAY
]->sa_family
>= AF_MAX
)) {
385 if (info
.rti_info
[RTAX_DST
]->sa_family
== AF_INET
&&
386 info
.rti_info
[RTAX_DST
]->sa_len
!= sizeof(dst_in
)) {
387 /* At minimum, we need up to sin_addr */
388 if (info
.rti_info
[RTAX_DST
]->sa_len
<
389 offsetof(struct sockaddr_in
, sin_zero
)) {
392 bzero(&dst_in
, sizeof(dst_in
));
393 dst_in
.sin_len
= sizeof(dst_in
);
394 dst_in
.sin_family
= AF_INET
;
395 dst_in
.sin_port
= SIN(info
.rti_info
[RTAX_DST
])->sin_port
;
396 dst_in
.sin_addr
= SIN(info
.rti_info
[RTAX_DST
])->sin_addr
;
397 info
.rti_info
[RTAX_DST
] = (struct sockaddr
*)&dst_in
;
398 dst_sa_family
= info
.rti_info
[RTAX_DST
]->sa_family
;
401 if (info
.rti_info
[RTAX_GATEWAY
] != NULL
&&
402 info
.rti_info
[RTAX_GATEWAY
]->sa_family
== AF_INET
&&
403 info
.rti_info
[RTAX_GATEWAY
]->sa_len
!= sizeof(gate_in
)) {
404 /* At minimum, we need up to sin_addr */
405 if (info
.rti_info
[RTAX_GATEWAY
]->sa_len
<
406 offsetof(struct sockaddr_in
, sin_zero
)) {
409 bzero(&gate_in
, sizeof(gate_in
));
410 gate_in
.sin_len
= sizeof(gate_in
);
411 gate_in
.sin_family
= AF_INET
;
412 gate_in
.sin_port
= SIN(info
.rti_info
[RTAX_GATEWAY
])->sin_port
;
413 gate_in
.sin_addr
= SIN(info
.rti_info
[RTAX_GATEWAY
])->sin_addr
;
414 info
.rti_info
[RTAX_GATEWAY
] = (struct sockaddr
*)&gate_in
;
417 if (info
.rti_info
[RTAX_GENMASK
]) {
418 struct radix_node
*t
;
419 t
= rn_addmask((caddr_t
)info
.rti_info
[RTAX_GENMASK
], 0, 1);
420 if (t
!= NULL
&& Bcmp(info
.rti_info
[RTAX_GENMASK
],
421 t
->rn_key
, *(u_char
*)info
.rti_info
[RTAX_GENMASK
]) == 0) {
422 info
.rti_info
[RTAX_GENMASK
] =
423 (struct sockaddr
*)(t
->rn_key
);
430 * If RTF_IFSCOPE flag is set, then rtm_index specifies the scope.
432 if (rtm
->rtm_flags
& RTF_IFSCOPE
) {
433 if (info
.rti_info
[RTAX_DST
]->sa_family
!= AF_INET
&&
434 info
.rti_info
[RTAX_DST
]->sa_family
!= AF_INET6
) {
437 ifscope
= rtm
->rtm_index
;
440 * Block changes on INTCOPROC interfaces.
443 unsigned int intcoproc_scope
= 0;
444 ifnet_head_lock_shared();
445 TAILQ_FOREACH(ifp
, &ifnet_head
, if_link
) {
446 if (IFNET_IS_INTCOPROC(ifp
)) {
447 intcoproc_scope
= ifp
->if_index
;
452 if (intcoproc_scope
== ifscope
&& current_proc()->p_pid
!= 0) {
458 * RTF_PROXY can only be set internally from within the kernel.
460 if (rtm
->rtm_flags
& RTF_PROXY
) {
465 * For AF_INET, always zero out the embedded scope ID. If this is
466 * a scoped request, it must be done explicitly by setting RTF_IFSCOPE
467 * flag and the corresponding rtm_index value. This is to prevent
468 * false interpretation of the scope ID because it's using the sin_zero
469 * field, which might not be properly cleared by the requestor.
471 if (info
.rti_info
[RTAX_DST
]->sa_family
== AF_INET
) {
472 sin_set_ifscope(info
.rti_info
[RTAX_DST
], IFSCOPE_NONE
);
474 if (info
.rti_info
[RTAX_GATEWAY
] != NULL
&&
475 info
.rti_info
[RTAX_GATEWAY
]->sa_family
== AF_INET
) {
476 sin_set_ifscope(info
.rti_info
[RTAX_GATEWAY
], IFSCOPE_NONE
);
478 switch (rtm
->rtm_type
) {
480 if (info
.rti_info
[RTAX_GATEWAY
] == NULL
) {
484 error
= rtrequest_scoped_locked(RTM_ADD
,
485 info
.rti_info
[RTAX_DST
], info
.rti_info
[RTAX_GATEWAY
],
486 info
.rti_info
[RTAX_NETMASK
], rtm
->rtm_flags
, &saved_nrt
,
488 if (error
== 0 && saved_nrt
!= NULL
) {
491 * If the route request specified an interface with
492 * IFA and/or IFP, we set the requested interface on
493 * the route with rt_setif. It would be much better
494 * to do this inside rtrequest, but that would
495 * require passing the desired interface, in some
496 * form, to rtrequest. Since rtrequest is called in
497 * so many places (roughly 40 in our source), adding
498 * a parameter is to much for us to swallow; this is
499 * something for the FreeBSD developers to tackle.
500 * Instead, we let rtrequest compute whatever
501 * interface it wants, then come in behind it and
502 * stick in the interface that we really want. This
503 * works reasonably well except when rtrequest can't
504 * figure out what interface to use (with
505 * ifa_withroute) and returns ENETUNREACH. Ideally
506 * it shouldn't matter if rtrequest can't figure out
507 * the interface if we're going to explicitly set it
508 * ourselves anyway. But practically we can't
509 * recover here because rtrequest will not do any of
510 * the work necessary to add the route if it can't
511 * find an interface. As long as there is a default
512 * route that leads to some interface, rtrequest will
513 * find an interface, so this problem should be
514 * rarely encountered.
518 info
.rti_info
[RTAX_IFP
], info
.rti_info
[RTAX_IFA
],
519 info
.rti_info
[RTAX_GATEWAY
], ifscope
);
520 (void)rt_setmetrics(rtm
->rtm_inits
, &rtm
->rtm_rmx
, saved_nrt
);
521 saved_nrt
->rt_rmx
.rmx_locks
&= ~(rtm
->rtm_inits
);
522 saved_nrt
->rt_rmx
.rmx_locks
|=
523 (rtm
->rtm_inits
& rtm
->rtm_rmx
.rmx_locks
);
524 saved_nrt
->rt_genmask
= info
.rti_info
[RTAX_GENMASK
];
525 RT_REMREF_LOCKED(saved_nrt
);
526 RT_UNLOCK(saved_nrt
);
531 error
= rtrequest_scoped_locked(RTM_DELETE
,
532 info
.rti_info
[RTAX_DST
], info
.rti_info
[RTAX_GATEWAY
],
533 info
.rti_info
[RTAX_NETMASK
], rtm
->rtm_flags
, &saved_nrt
,
545 rnh
= rt_tables
[info
.rti_info
[RTAX_DST
]->sa_family
];
547 senderr(EAFNOSUPPORT
);
550 * Lookup the best match based on the key-mask pair;
551 * callee adds a reference and checks for root node.
553 rt
= rt_lookup(TRUE
, info
.rti_info
[RTAX_DST
],
554 info
.rti_info
[RTAX_NETMASK
], rnh
, ifscope
);
561 * Holding rnh_lock here prevents the possibility of
562 * ifa from changing (e.g. in_ifinit), so it is safe
563 * to access its ifa_addr (down below) without locking.
565 switch (rtm
->rtm_type
) {
571 cred
= kauth_cred_proc_ref(current_proc());
575 RT_LOCK_ASSERT_HELD(rt
);
576 info
.rti_info
[RTAX_DST
] = rt_key(rt
);
577 dst_sa_family
= info
.rti_info
[RTAX_DST
]->sa_family
;
578 info
.rti_info
[RTAX_GATEWAY
] = rt
->rt_gateway
;
579 info
.rti_info
[RTAX_NETMASK
] = rt_mask(rt
);
580 info
.rti_info
[RTAX_GENMASK
] = rt
->rt_genmask
;
581 if (rtm
->rtm_addrs
& (RTA_IFP
| RTA_IFA
)) {
584 ifnet_lock_shared(ifp
);
585 ifa2
= ifp
->if_lladdr
;
586 info
.rti_info
[RTAX_IFP
] =
589 ifnet_lock_done(ifp
);
590 info
.rti_info
[RTAX_IFA
] =
591 rt
->rt_ifa
->ifa_addr
;
592 rtm
->rtm_index
= ifp
->if_index
;
594 info
.rti_info
[RTAX_IFP
] = NULL
;
595 info
.rti_info
[RTAX_IFA
] = NULL
;
597 } else if ((ifp
= rt
->rt_ifp
) != NULL
) {
598 rtm
->rtm_index
= ifp
->if_index
;
603 len
= rt_msg2(rtm
->rtm_type
, &info
, NULL
, NULL
, credp
);
607 struct rt_msghdr
*out_rtm
;
608 R_Malloc(out_rtm
, struct rt_msghdr
*, len
);
609 if (out_rtm
== NULL
) {
616 Bcopy(rtm
, out_rtm
, sizeof(struct rt_msghdr
));
620 (void) rt_msg2(out_rtm
->rtm_type
, &info
, (caddr_t
)out_rtm
,
627 rtm
->rtm_flags
= rt
->rt_flags
;
628 rt_getmetrics(rt
, &rtm
->rtm_rmx
);
629 rtm
->rtm_addrs
= info
.rti_addrs
;
634 kauth_cred_unref(&cred
);
639 is_router
= (rt
->rt_flags
& RTF_ROUTER
) ? TRUE
: FALSE
;
641 if (info
.rti_info
[RTAX_GATEWAY
] != NULL
&&
642 (error
= rt_setgate(rt
, rt_key(rt
),
643 info
.rti_info
[RTAX_GATEWAY
]))) {
649 * If they tried to change things but didn't specify
650 * the required gateway, then just use the old one.
651 * This can happen if the user tries to change the
652 * flags on the default route without changing the
653 * default gateway. Changing flags still doesn't work.
655 if ((rt
->rt_flags
& RTF_GATEWAY
) &&
656 info
.rti_info
[RTAX_GATEWAY
] == NULL
) {
657 info
.rti_info
[RTAX_GATEWAY
] = rt
->rt_gateway
;
661 * On Darwin, we call rt_setif which contains the
662 * equivalent to the code found at this very spot
666 info
.rti_info
[RTAX_IFP
], info
.rti_info
[RTAX_IFA
],
667 info
.rti_info
[RTAX_GATEWAY
], ifscope
);
669 if ((error
= rt_setmetrics(rtm
->rtm_inits
,
670 &rtm
->rtm_rmx
, rt
))) {
675 if (info
.rti_info
[RTAX_GENMASK
]) {
676 rt
->rt_genmask
= info
.rti_info
[RTAX_GENMASK
];
680 * Enqueue work item to invoke callback for this route entry
681 * This may not be needed always, but for now issue it anytime
682 * RTM_CHANGE gets called.
684 route_event_enqueue_nwk_wq_entry(rt
, NULL
, ROUTE_ENTRY_REFRESH
, NULL
, TRUE
);
686 * If the route is for a router, walk the tree to send refresh
687 * event to protocol cloned entries
690 struct route_event rt_ev
;
691 route_event_init(&rt_ev
, rt
, NULL
, ROUTE_ENTRY_REFRESH
);
693 (void) rnh
->rnh_walktree(rnh
, route_event_walktree
, (void *)&rt_ev
);
698 rt
->rt_rmx
.rmx_locks
&= ~(rtm
->rtm_inits
);
699 rt
->rt_rmx
.rmx_locks
|=
700 (rtm
->rtm_inits
& rtm
->rtm_rmx
.rmx_locks
);
711 rtm
->rtm_errno
= error
;
713 rtm
->rtm_flags
|= RTF_DONE
;
717 RT_LOCK_ASSERT_NOTHELD(rt
);
720 lck_mtx_unlock(rnh_lock
);
722 /* relock the socket now */
725 * Check to see if we don't want our own messages.
727 if (!(so
->so_options
& SO_USELOOPBACK
)) {
728 if (route_cb
.any_count
<= 1) {
735 /* There is another listener, so construct message */
739 m_copyback(m
, 0, rtm
->rtm_msglen
, (caddr_t
)rtm
);
740 if (m
->m_pkthdr
.len
< rtm
->rtm_msglen
) {
743 } else if (m
->m_pkthdr
.len
> rtm
->rtm_msglen
) {
744 m_adj(m
, rtm
->rtm_msglen
- m
->m_pkthdr
.len
);
748 if (sendonlytoself
&& m
!= NULL
) {
750 if (sbappendaddr(&so
->so_rcv
, &route_src
, m
,
751 NULL
, &error
) != 0) {
758 struct sockproto route_proto
= { PF_ROUTE
, 0 };
760 rp
->rcb_proto
.sp_family
= 0; /* Avoid us */
762 if (dst_sa_family
!= 0) {
763 route_proto
.sp_protocol
= dst_sa_family
;
766 socket_unlock(so
, 0);
767 raw_input(m
, &route_proto
, &route_src
, &route_dst
);
771 rp
->rcb_proto
.sp_family
= PF_ROUTE
;
778 rt_setexpire(struct rtentry
*rt
, uint64_t expiry
)
780 /* set both rt_expire and rmx_expire */
781 rt
->rt_expire
= expiry
;
783 rt
->rt_rmx
.rmx_expire
= expiry
+ rt
->base_calendartime
-
786 rt
->rt_rmx
.rmx_expire
= 0;
791 rt_setmetrics(u_int32_t which
, struct rt_metrics
*in
, struct rtentry
*out
)
793 if (!(which
& RTV_REFRESH_HOST
)) {
794 struct timeval caltime
;
795 getmicrotime(&caltime
);
796 #define metric(f, e) if (which & (f)) out->rt_rmx.e = in->e;
797 metric(RTV_RPIPE
, rmx_recvpipe
);
798 metric(RTV_SPIPE
, rmx_sendpipe
);
799 metric(RTV_SSTHRESH
, rmx_ssthresh
);
800 metric(RTV_RTT
, rmx_rtt
);
801 metric(RTV_RTTVAR
, rmx_rttvar
);
802 metric(RTV_HOPCOUNT
, rmx_hopcount
);
803 metric(RTV_MTU
, rmx_mtu
);
804 metric(RTV_EXPIRE
, rmx_expire
);
806 if (out
->rt_rmx
.rmx_expire
> 0) {
807 /* account for system time change */
808 getmicrotime(&caltime
);
809 out
->base_calendartime
+=
810 NET_CALCULATE_CLOCKSKEW(caltime
,
811 out
->base_calendartime
,
812 net_uptime(), out
->base_uptime
);
814 out
->rt_rmx
.rmx_expire
-
815 out
->base_calendartime
+
818 rt_setexpire(out
, 0);
821 VERIFY(out
->rt_expire
== 0 || out
->rt_rmx
.rmx_expire
!= 0);
822 VERIFY(out
->rt_expire
!= 0 || out
->rt_rmx
.rmx_expire
== 0);
824 /* Only RTV_REFRESH_HOST must be set */
825 if ((which
& ~RTV_REFRESH_HOST
) ||
826 (out
->rt_flags
& RTF_STATIC
) ||
827 !(out
->rt_flags
& RTF_LLINFO
)) {
831 if (out
->rt_llinfo_refresh
== NULL
) {
835 out
->rt_llinfo_refresh(out
);
841 rt_getmetrics(struct rtentry
*in
, struct rt_metrics
*out
)
843 struct timeval caltime
;
845 VERIFY(in
->rt_expire
== 0 || in
->rt_rmx
.rmx_expire
!= 0);
846 VERIFY(in
->rt_expire
!= 0 || in
->rt_rmx
.rmx_expire
== 0);
850 if (in
->rt_expire
!= 0) {
851 /* account for system time change */
852 getmicrotime(&caltime
);
854 in
->base_calendartime
+=
855 NET_CALCULATE_CLOCKSKEW(caltime
,
856 in
->base_calendartime
, net_uptime(), in
->base_uptime
);
858 out
->rmx_expire
= in
->base_calendartime
+
859 in
->rt_expire
- in
->base_uptime
;
866 * Set route's interface given info.rti_info[RTAX_IFP],
867 * info.rti_info[RTAX_IFA], and gateway.
870 rt_setif(struct rtentry
*rt
, struct sockaddr
*Ifpaddr
, struct sockaddr
*Ifaaddr
,
871 struct sockaddr
*Gate
, unsigned int ifscope
)
873 struct ifaddr
*ifa
= NULL
;
874 struct ifnet
*ifp
= NULL
;
875 void (*ifa_rtrequest
)(int, struct rtentry
*, struct sockaddr
*);
877 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_OWNED
);
879 RT_LOCK_ASSERT_HELD(rt
);
881 /* Don't update a defunct route */
882 if (rt
->rt_flags
& RTF_CONDEMNED
) {
886 /* Add an extra ref for ourselves */
887 RT_ADDREF_LOCKED(rt
);
889 /* Become a regular mutex, just in case */
893 * New gateway could require new ifaddr, ifp; flags may also
894 * be different; ifp may be specified by ll sockaddr when
895 * protocol address is ambiguous.
897 if (Ifpaddr
&& (ifa
= ifa_ifwithnet_scoped(Ifpaddr
, ifscope
)) &&
898 (ifp
= ifa
->ifa_ifp
) && (Ifaaddr
|| Gate
)) {
900 ifa
= ifaof_ifpforaddr(Ifaaddr
? Ifaaddr
: Gate
, ifp
);
906 if (Ifpaddr
&& (ifp
= if_withname(Ifpaddr
))) {
908 ifa
= ifaof_ifpforaddr(Gate
, ifp
);
910 ifnet_lock_shared(ifp
);
911 ifa
= TAILQ_FIRST(&ifp
->if_addrhead
);
915 ifnet_lock_done(ifp
);
917 } else if (Ifaaddr
&&
918 (ifa
= ifa_ifwithaddr_scoped(Ifaaddr
, ifscope
))) {
920 } else if (Gate
!= NULL
) {
922 * Safe to drop rt_lock and use rt_key, since holding
923 * rnh_lock here prevents another thread from calling
924 * rt_setgate() on this route. We cannot hold the
925 * lock across ifa_ifwithroute since the lookup done
926 * by that routine may point to the same route.
929 if ((ifa
= ifa_ifwithroute_scoped_locked(rt
->rt_flags
,
930 rt_key(rt
), Gate
, ifscope
)) != NULL
) {
934 /* Don't update a defunct route */
935 if (rt
->rt_flags
& RTF_CONDEMNED
) {
939 /* Release extra ref */
940 RT_REMREF_LOCKED(rt
);
946 /* trigger route cache reevaluation */
947 if (rt_key(rt
)->sa_family
== AF_INET
) {
948 routegenid_inet_update();
951 else if (rt_key(rt
)->sa_family
== AF_INET6
) {
952 routegenid_inet6_update();
957 struct ifaddr
*oifa
= rt
->rt_ifa
;
961 ifa_rtrequest
= oifa
->ifa_rtrequest
;
963 if (ifa_rtrequest
!= NULL
) {
964 ifa_rtrequest(RTM_DELETE
, rt
, Gate
);
969 if (rt
->rt_ifp
!= ifp
) {
971 * Purge any link-layer info caching.
973 if (rt
->rt_llinfo_purge
!= NULL
) {
974 rt
->rt_llinfo_purge(rt
);
978 * Adjust route ref count for the interfaces.
980 if (rt
->rt_if_ref_fn
!= NULL
) {
981 rt
->rt_if_ref_fn(ifp
, 1);
982 rt
->rt_if_ref_fn(rt
->rt_ifp
, -1);
987 * If this is the (non-scoped) default route, record
988 * the interface index used for the primary ifscope.
990 if (rt_primary_default(rt
, rt_key(rt
))) {
991 set_primary_ifscope(rt_key(rt
)->sa_family
,
992 rt
->rt_ifp
->if_index
);
995 * If rmx_mtu is not locked, update it
996 * to the MTU used by the new interface.
998 if (!(rt
->rt_rmx
.rmx_locks
& RTV_MTU
)) {
999 rt
->rt_rmx
.rmx_mtu
= rt
->rt_ifp
->if_mtu
;
1000 if (rt_key(rt
)->sa_family
== AF_INET
&&
1001 INTF_ADJUST_MTU_FOR_CLAT46(ifp
)) {
1002 rt
->rt_rmx
.rmx_mtu
= IN6_LINKMTU(rt
->rt_ifp
);
1003 /* Further adjust the size for CLAT46 expansion */
1004 rt
->rt_rmx
.rmx_mtu
-= CLAT46_HDR_EXPANSION_OVERHD
;
1008 if (rt
->rt_ifa
!= NULL
) {
1009 IFA_LOCK_SPIN(rt
->rt_ifa
);
1010 ifa_rtrequest
= rt
->rt_ifa
->ifa_rtrequest
;
1011 IFA_UNLOCK(rt
->rt_ifa
);
1012 if (ifa_rtrequest
!= NULL
) {
1013 ifa_rtrequest(RTM_ADD
, rt
, Gate
);
1017 /* Release extra ref */
1018 RT_REMREF_LOCKED(rt
);
1025 /* XXX: to reset gateway to correct value, at RTM_CHANGE */
1026 if (rt
->rt_ifa
!= NULL
) {
1027 IFA_LOCK_SPIN(rt
->rt_ifa
);
1028 ifa_rtrequest
= rt
->rt_ifa
->ifa_rtrequest
;
1029 IFA_UNLOCK(rt
->rt_ifa
);
1030 if (ifa_rtrequest
!= NULL
) {
1031 ifa_rtrequest(RTM_ADD
, rt
, Gate
);
1036 * Workaround for local address routes pointing to the loopback
1037 * interface added by configd, until <rdar://problem/12970142>.
1039 if ((rt
->rt_ifp
->if_flags
& IFF_LOOPBACK
) &&
1040 (rt
->rt_flags
& RTF_HOST
) && rt
->rt_ifa
->ifa_ifp
== rt
->rt_ifp
) {
1041 ifa
= ifa_ifwithaddr(rt_key(rt
));
1043 if (ifa
!= rt
->rt_ifa
) {
1050 /* Release extra ref */
1051 RT_REMREF_LOCKED(rt
);
1055 * Extract the addresses of the passed sockaddrs.
1056 * Do a little sanity checking so as to avoid bad memory references.
1057 * This data is derived straight from userland.
1060 rt_xaddrs(caddr_t cp
, caddr_t cplim
, struct rt_addrinfo
*rtinfo
)
1062 struct sockaddr
*sa
;
1065 bzero(rtinfo
->rti_info
, sizeof(rtinfo
->rti_info
));
1066 for (i
= 0; (i
< RTAX_MAX
) && (cp
< cplim
); i
++) {
1067 if ((rtinfo
->rti_addrs
& (1 << i
)) == 0) {
1070 sa
= (struct sockaddr
*)cp
;
1074 if ((cp
+ sa
->sa_len
) > cplim
) {
1078 * there are no more.. quit now
1079 * If there are more bits, they are in error.
1080 * I've seen this. route(1) can evidently generate these.
1081 * This causes kernel to core dump.
1082 * for compatibility, If we see this, point to a safe address.
1084 if (sa
->sa_len
== 0) {
1085 rtinfo
->rti_info
[i
] = &sa_zero
;
1086 return 0; /* should be EINVAL but for compat */
1089 rtinfo
->rti_info
[i
] = sa
;
1095 static struct mbuf
*
1096 rt_msg1(int type
, struct rt_addrinfo
*rtinfo
)
1098 struct rt_msghdr
*rtm
;
1106 len
= sizeof(struct ifa_msghdr
);
1111 len
= sizeof(struct ifma_msghdr
);
1115 len
= sizeof(struct if_msghdr
);
1119 len
= sizeof(struct rt_msghdr
);
1121 m
= m_gethdr(M_DONTWAIT
, MT_DATA
);
1122 if (m
&& len
> MHLEN
) {
1123 MCLGET(m
, M_DONTWAIT
);
1124 if (!(m
->m_flags
& M_EXT
)) {
1132 m
->m_pkthdr
.len
= m
->m_len
= len
;
1133 m
->m_pkthdr
.rcvif
= NULL
;
1134 rtm
= mtod(m
, struct rt_msghdr
*);
1135 bzero((caddr_t
)rtm
, len
);
1137 for (i
= 0; i
< RTAX_MAX
; i
++) {
1138 struct sockaddr
*sa
, *hint
;
1139 uint8_t ssbuf
[SOCK_MAXADDRLEN
+ 1];
1142 * Make sure to accomodate the largest possible size of sa_len.
1144 _CASSERT(sizeof(ssbuf
) == (SOCK_MAXADDRLEN
+ 1));
1146 if ((sa
= rtinfo
->rti_info
[i
]) == NULL
) {
1153 if ((hint
= rtinfo
->rti_info
[RTAX_DST
]) == NULL
) {
1154 hint
= rtinfo
->rti_info
[RTAX_IFA
];
1157 /* Scrub away any trace of embedded interface scope */
1158 sa
= rtm_scrub(type
, i
, hint
, sa
, &ssbuf
,
1159 sizeof(ssbuf
), NULL
);
1166 rtinfo
->rti_addrs
|= (1 << i
);
1168 m_copyback(m
, off
, dlen
, (caddr_t
)sa
);
1170 off
+= ROUNDUP32(dlen
);
1172 if (m
->m_pkthdr
.len
!= len
) {
1176 rtm
->rtm_msglen
= len
;
1177 rtm
->rtm_version
= RTM_VERSION
;
1178 rtm
->rtm_type
= type
;
1183 rt_msg2(int type
, struct rt_addrinfo
*rtinfo
, caddr_t cp
, struct walkarg
*w
,
1184 kauth_cred_t
* credp
)
1187 int len
, dlen
, rlen
, second_time
= 0;
1190 rtinfo
->rti_addrs
= 0;
1195 len
= sizeof(struct ifa_msghdr
);
1200 len
= sizeof(struct ifma_msghdr
);
1204 len
= sizeof(struct if_msghdr
);
1208 len
= sizeof(struct if_msghdr2
);
1212 len
= sizeof(struct ifma_msghdr2
);
1216 len
= sizeof(struct rt_msghdr_ext
);
1220 len
= sizeof(struct rt_msghdr2
);
1224 len
= sizeof(struct rt_msghdr
);
1230 for (i
= 0; i
< RTAX_MAX
; i
++) {
1231 struct sockaddr
*sa
, *hint
;
1232 uint8_t ssbuf
[SOCK_MAXADDRLEN
+ 1];
1235 * Make sure to accomodate the largest possible size of sa_len.
1237 _CASSERT(sizeof(ssbuf
) == (SOCK_MAXADDRLEN
+ 1));
1239 if ((sa
= rtinfo
->rti_info
[i
]) == NULL
) {
1246 if ((hint
= rtinfo
->rti_info
[RTAX_DST
]) == NULL
) {
1247 hint
= rtinfo
->rti_info
[RTAX_IFA
];
1250 /* Scrub away any trace of embedded interface scope */
1251 sa
= rtm_scrub(type
, i
, hint
, sa
, &ssbuf
,
1252 sizeof(ssbuf
), NULL
);
1256 sa
= rtm_scrub(type
, i
, NULL
, sa
, &ssbuf
,
1257 sizeof(ssbuf
), credp
);
1264 rtinfo
->rti_addrs
|= (1 << i
);
1266 rlen
= ROUNDUP32(dlen
);
1268 bcopy((caddr_t
)sa
, cp
, (size_t)dlen
);
1270 bzero(cp
+ dlen
, rlen
- dlen
);
1276 if (cp
== NULL
&& w
!= NULL
&& !second_time
) {
1277 struct walkarg
*rw
= w
;
1279 if (rw
->w_req
!= NULL
) {
1280 if (rw
->w_tmemsize
< len
) {
1281 if (rw
->w_tmem
!= NULL
) {
1282 FREE(rw
->w_tmem
, M_RTABLE
);
1284 rw
->w_tmem
= _MALLOC(len
, M_RTABLE
, M_ZERO
| M_WAITOK
);
1285 if (rw
->w_tmem
!= NULL
) {
1286 rw
->w_tmemsize
= len
;
1289 if (rw
->w_tmem
!= NULL
) {
1297 struct rt_msghdr
*rtm
= (struct rt_msghdr
*)(void *)cp0
;
1299 rtm
->rtm_version
= RTM_VERSION
;
1300 rtm
->rtm_type
= type
;
1301 rtm
->rtm_msglen
= len
;
1307 * This routine is called to generate a message from the routing
1308 * socket indicating that a redirect has occurred, a routing lookup
1309 * has failed, or that a protocol has detected timeouts to a particular
1313 rt_missmsg(int type
, struct rt_addrinfo
*rtinfo
, int flags
, int error
)
1315 struct rt_msghdr
*rtm
;
1317 struct sockaddr
*sa
= rtinfo
->rti_info
[RTAX_DST
];
1318 struct sockproto route_proto
= { PF_ROUTE
, 0 };
1320 if (route_cb
.any_count
== 0) {
1323 m
= rt_msg1(type
, rtinfo
);
1327 rtm
= mtod(m
, struct rt_msghdr
*);
1328 rtm
->rtm_flags
= RTF_DONE
| flags
;
1329 rtm
->rtm_errno
= error
;
1330 rtm
->rtm_addrs
= rtinfo
->rti_addrs
;
1331 route_proto
.sp_family
= sa
? sa
->sa_family
: 0;
1332 raw_input(m
, &route_proto
, &route_src
, &route_dst
);
1336 * This routine is called to generate a message from the routing
1337 * socket indicating that the status of a network interface has changed.
1340 rt_ifmsg(struct ifnet
*ifp
)
1342 struct if_msghdr
*ifm
;
1344 struct rt_addrinfo info
;
1345 struct sockproto route_proto
= { PF_ROUTE
, 0 };
1347 if (route_cb
.any_count
== 0) {
1350 bzero((caddr_t
)&info
, sizeof(info
));
1351 m
= rt_msg1(RTM_IFINFO
, &info
);
1355 ifm
= mtod(m
, struct if_msghdr
*);
1356 ifm
->ifm_index
= ifp
->if_index
;
1357 ifm
->ifm_flags
= (u_short
)ifp
->if_flags
;
1358 if_data_internal_to_if_data(ifp
, &ifp
->if_data
, &ifm
->ifm_data
);
1360 raw_input(m
, &route_proto
, &route_src
, &route_dst
);
1364 * This is called to generate messages from the routing socket
1365 * indicating a network interface has had addresses associated with it.
1366 * if we ever reverse the logic and replace messages TO the routing
1367 * socket indicate a request to configure interfaces, then it will
1368 * be unnecessary as the routing socket will automatically generate
1371 * Since this is coming from the interface, it is expected that the
1372 * interface will be locked. Caller must hold rnh_lock and rt_lock.
1375 rt_newaddrmsg(int cmd
, struct ifaddr
*ifa
, int error
, struct rtentry
*rt
)
1377 struct rt_addrinfo info
;
1378 struct sockaddr
*sa
= 0;
1381 struct ifnet
*ifp
= ifa
->ifa_ifp
;
1382 struct sockproto route_proto
= { PF_ROUTE
, 0 };
1384 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_OWNED
);
1385 RT_LOCK_ASSERT_HELD(rt
);
1387 if (route_cb
.any_count
== 0) {
1391 /* Become a regular mutex, just in case */
1392 RT_CONVERT_LOCK(rt
);
1393 for (pass
= 1; pass
< 3; pass
++) {
1394 bzero((caddr_t
)&info
, sizeof(info
));
1395 if ((cmd
== RTM_ADD
&& pass
== 1) ||
1396 (cmd
== RTM_DELETE
&& pass
== 2)) {
1397 struct ifa_msghdr
*ifam
;
1398 int ncmd
= cmd
== RTM_ADD
? RTM_NEWADDR
: RTM_DELADDR
;
1400 /* Lock ifp for if_lladdr */
1401 ifnet_lock_shared(ifp
);
1403 info
.rti_info
[RTAX_IFA
] = sa
= ifa
->ifa_addr
;
1405 * Holding ifnet lock here prevents the link address
1406 * from changing contents, so no need to hold its
1407 * lock. The link address is always present; it's
1410 info
.rti_info
[RTAX_IFP
] = ifp
->if_lladdr
->ifa_addr
;
1411 info
.rti_info
[RTAX_NETMASK
] = ifa
->ifa_netmask
;
1412 info
.rti_info
[RTAX_BRD
] = ifa
->ifa_dstaddr
;
1413 if ((m
= rt_msg1(ncmd
, &info
)) == NULL
) {
1415 ifnet_lock_done(ifp
);
1419 ifnet_lock_done(ifp
);
1420 ifam
= mtod(m
, struct ifa_msghdr
*);
1421 ifam
->ifam_index
= ifp
->if_index
;
1423 ifam
->ifam_metric
= ifa
->ifa_metric
;
1424 ifam
->ifam_flags
= ifa
->ifa_flags
;
1426 ifam
->ifam_addrs
= info
.rti_addrs
;
1428 if ((cmd
== RTM_ADD
&& pass
== 2) ||
1429 (cmd
== RTM_DELETE
&& pass
== 1)) {
1430 struct rt_msghdr
*rtm
;
1435 info
.rti_info
[RTAX_NETMASK
] = rt_mask(rt
);
1436 info
.rti_info
[RTAX_DST
] = sa
= rt_key(rt
);
1437 info
.rti_info
[RTAX_GATEWAY
] = rt
->rt_gateway
;
1438 if ((m
= rt_msg1(cmd
, &info
)) == NULL
) {
1441 rtm
= mtod(m
, struct rt_msghdr
*);
1442 rtm
->rtm_index
= ifp
->if_index
;
1443 rtm
->rtm_flags
|= rt
->rt_flags
;
1444 rtm
->rtm_errno
= error
;
1445 rtm
->rtm_addrs
= info
.rti_addrs
;
1447 route_proto
.sp_protocol
= sa
? sa
->sa_family
: 0;
1448 raw_input(m
, &route_proto
, &route_src
, &route_dst
);
1453 * This is the analogue to the rt_newaddrmsg which performs the same
1454 * function but for multicast group memberhips. This is easier since
1455 * there is no route state to worry about.
1458 rt_newmaddrmsg(int cmd
, struct ifmultiaddr
*ifma
)
1460 struct rt_addrinfo info
;
1462 struct ifnet
*ifp
= ifma
->ifma_ifp
;
1463 struct ifma_msghdr
*ifmam
;
1464 struct sockproto route_proto
= { PF_ROUTE
, 0 };
1466 if (route_cb
.any_count
== 0) {
1470 /* Lock ifp for if_lladdr */
1471 ifnet_lock_shared(ifp
);
1472 bzero((caddr_t
)&info
, sizeof(info
));
1474 info
.rti_info
[RTAX_IFA
] = ifma
->ifma_addr
;
1475 /* lladdr doesn't need lock */
1476 info
.rti_info
[RTAX_IFP
] = ifp
->if_lladdr
->ifa_addr
;
1479 * If a link-layer address is present, present it as a ``gateway''
1480 * (similarly to how ARP entries, e.g., are presented).
1482 info
.rti_info
[RTAX_GATEWAY
] = (ifma
->ifma_ll
!= NULL
) ?
1483 ifma
->ifma_ll
->ifma_addr
: NULL
;
1484 if ((m
= rt_msg1(cmd
, &info
)) == NULL
) {
1486 ifnet_lock_done(ifp
);
1489 ifmam
= mtod(m
, struct ifma_msghdr
*);
1490 ifmam
->ifmam_index
= ifp
->if_index
;
1491 ifmam
->ifmam_addrs
= info
.rti_addrs
;
1492 route_proto
.sp_protocol
= ifma
->ifma_addr
->sa_family
;
1494 ifnet_lock_done(ifp
);
1495 raw_input(m
, &route_proto
, &route_src
, &route_dst
);
1501 const char *c
= "RTM_?";
1552 case RTM_GET_SILENT
:
1553 c
= "RTM_GET_SILENT";
1559 c
= "RTM_NEWMADDR2";
1573 * This is used in dumping the kernel table via sysctl().
1576 sysctl_dumpentry(struct radix_node
*rn
, void *vw
)
1578 struct walkarg
*w
= vw
;
1579 struct rtentry
*rt
= (struct rtentry
*)rn
;
1580 int error
= 0, size
;
1581 struct rt_addrinfo info
;
1583 kauth_cred_t
*credp
;
1585 cred
= kauth_cred_proc_ref(current_proc());
1589 if ((w
->w_op
== NET_RT_FLAGS
|| w
->w_op
== NET_RT_FLAGS_PRIV
) &&
1590 !(rt
->rt_flags
& w
->w_arg
)) {
1595 * If the matching route has RTF_LLINFO set, then we can skip scrubbing the MAC
1596 * only if the outgoing interface is not loopback and the process has entitlement
1597 * for neighbor cache read.
1599 if (w
->w_op
== NET_RT_FLAGS_PRIV
&& (rt
->rt_flags
& RTF_LLINFO
)) {
1600 if (rt
->rt_ifp
!= lo_ifp
&&
1601 (route_op_entitlement_check(NULL
, cred
, ROUTE_OP_READ
, TRUE
) == 0)) {
1606 bzero((caddr_t
)&info
, sizeof(info
));
1607 info
.rti_info
[RTAX_DST
] = rt_key(rt
);
1608 info
.rti_info
[RTAX_GATEWAY
] = rt
->rt_gateway
;
1609 info
.rti_info
[RTAX_NETMASK
] = rt_mask(rt
);
1610 info
.rti_info
[RTAX_GENMASK
] = rt
->rt_genmask
;
1612 if (w
->w_op
!= NET_RT_DUMP2
) {
1613 size
= rt_msg2(RTM_GET
, &info
, NULL
, w
, credp
);
1614 if (w
->w_req
!= NULL
&& w
->w_tmem
!= NULL
) {
1615 struct rt_msghdr
*rtm
=
1616 (struct rt_msghdr
*)(void *)w
->w_tmem
;
1618 rtm
->rtm_flags
= rt
->rt_flags
;
1619 rtm
->rtm_use
= rt
->rt_use
;
1620 rt_getmetrics(rt
, &rtm
->rtm_rmx
);
1621 rtm
->rtm_index
= rt
->rt_ifp
->if_index
;
1625 rtm
->rtm_addrs
= info
.rti_addrs
;
1626 error
= SYSCTL_OUT(w
->w_req
, (caddr_t
)rtm
, size
);
1629 size
= rt_msg2(RTM_GET2
, &info
, NULL
, w
, credp
);
1630 if (w
->w_req
!= NULL
&& w
->w_tmem
!= NULL
) {
1631 struct rt_msghdr2
*rtm
=
1632 (struct rt_msghdr2
*)(void *)w
->w_tmem
;
1634 rtm
->rtm_flags
= rt
->rt_flags
;
1635 rtm
->rtm_use
= rt
->rt_use
;
1636 rt_getmetrics(rt
, &rtm
->rtm_rmx
);
1637 rtm
->rtm_index
= rt
->rt_ifp
->if_index
;
1638 rtm
->rtm_refcnt
= rt
->rt_refcnt
;
1639 if (rt
->rt_parent
) {
1640 rtm
->rtm_parentflags
= rt
->rt_parent
->rt_flags
;
1642 rtm
->rtm_parentflags
= 0;
1644 rtm
->rtm_reserved
= 0;
1645 rtm
->rtm_addrs
= info
.rti_addrs
;
1646 error
= SYSCTL_OUT(w
->w_req
, (caddr_t
)rtm
, size
);
1652 kauth_cred_unref(&cred
);
1657 * This is used for dumping extended information from route entries.
1660 sysctl_dumpentry_ext(struct radix_node
*rn
, void *vw
)
1662 struct walkarg
*w
= vw
;
1663 struct rtentry
*rt
= (struct rtentry
*)rn
;
1664 int error
= 0, size
;
1665 struct rt_addrinfo info
;
1668 cred
= kauth_cred_proc_ref(current_proc());
1671 if (w
->w_op
== NET_RT_DUMPX_FLAGS
&& !(rt
->rt_flags
& w
->w_arg
)) {
1674 bzero(&info
, sizeof(info
));
1675 info
.rti_info
[RTAX_DST
] = rt_key(rt
);
1676 info
.rti_info
[RTAX_GATEWAY
] = rt
->rt_gateway
;
1677 info
.rti_info
[RTAX_NETMASK
] = rt_mask(rt
);
1678 info
.rti_info
[RTAX_GENMASK
] = rt
->rt_genmask
;
1680 size
= rt_msg2(RTM_GET_EXT
, &info
, NULL
, w
, &cred
);
1681 if (w
->w_req
!= NULL
&& w
->w_tmem
!= NULL
) {
1682 struct rt_msghdr_ext
*ertm
=
1683 (struct rt_msghdr_ext
*)(void *)w
->w_tmem
;
1685 ertm
->rtm_flags
= rt
->rt_flags
;
1686 ertm
->rtm_use
= rt
->rt_use
;
1687 rt_getmetrics(rt
, &ertm
->rtm_rmx
);
1688 ertm
->rtm_index
= rt
->rt_ifp
->if_index
;
1691 ertm
->rtm_errno
= 0;
1692 ertm
->rtm_addrs
= info
.rti_addrs
;
1693 if (rt
->rt_llinfo_get_ri
== NULL
) {
1694 bzero(&ertm
->rtm_ri
, sizeof(ertm
->rtm_ri
));
1695 ertm
->rtm_ri
.ri_rssi
= IFNET_RSSI_UNKNOWN
;
1696 ertm
->rtm_ri
.ri_lqm
= IFNET_LQM_THRESH_OFF
;
1697 ertm
->rtm_ri
.ri_npm
= IFNET_NPM_THRESH_UNKNOWN
;
1699 rt
->rt_llinfo_get_ri(rt
, &ertm
->rtm_ri
);
1701 error
= SYSCTL_OUT(w
->w_req
, (caddr_t
)ertm
, size
);
1706 kauth_cred_unref(&cred
);
1712 * To avoid to call copyout() while holding locks and to cause problems
1713 * in the paging path, sysctl_iflist() and sysctl_iflist2() contstruct
1714 * the list in two passes. In the first pass we compute the total
1715 * length of the data we are going to copyout, then we release
1716 * all locks to allocate a temporary buffer that gets filled
1717 * in the second pass.
1719 * Note that we are verifying the assumption that _MALLOC returns a buffer
1720 * that is at least 32 bits aligned and that the messages and addresses are
1724 sysctl_iflist(int af
, struct walkarg
*w
)
1728 struct rt_addrinfo info
;
1729 int len
= 0, error
= 0;
1731 int total_len
= 0, current_len
= 0;
1732 char *total_buffer
= NULL
, *cp
= NULL
;
1735 cred
= kauth_cred_proc_ref(current_proc());
1737 bzero((caddr_t
)&info
, sizeof(info
));
1739 for (pass
= 0; pass
< 2; pass
++) {
1740 ifnet_head_lock_shared();
1742 TAILQ_FOREACH(ifp
, &ifnet_head
, if_link
) {
1746 if (w
->w_arg
&& w
->w_arg
!= ifp
->if_index
) {
1749 ifnet_lock_shared(ifp
);
1751 * Holding ifnet lock here prevents the link address
1752 * from changing contents, so no need to hold the ifa
1753 * lock. The link address is always present; it's
1756 ifa
= ifp
->if_lladdr
;
1757 info
.rti_info
[RTAX_IFP
] = ifa
->ifa_addr
;
1758 len
= rt_msg2(RTM_IFINFO
, &info
, NULL
, NULL
, &cred
);
1762 struct if_msghdr
*ifm
;
1764 if (current_len
+ len
> total_len
) {
1765 ifnet_lock_done(ifp
);
1769 info
.rti_info
[RTAX_IFP
] = ifa
->ifa_addr
;
1770 len
= rt_msg2(RTM_IFINFO
, &info
,
1771 (caddr_t
)cp
, NULL
, &cred
);
1772 info
.rti_info
[RTAX_IFP
] = NULL
;
1774 ifm
= (struct if_msghdr
*)(void *)cp
;
1775 ifm
->ifm_index
= ifp
->if_index
;
1776 ifm
->ifm_flags
= (u_short
)ifp
->if_flags
;
1777 if_data_internal_to_if_data(ifp
, &ifp
->if_data
,
1779 ifm
->ifm_addrs
= info
.rti_addrs
;
1781 * <rdar://problem/32940901>
1782 * Round bytes only for non-platform
1784 if (!csproc_get_platform_binary(w
->w_req
->p
)) {
1785 ALIGN_BYTES(ifm
->ifm_data
.ifi_ibytes
);
1786 ALIGN_BYTES(ifm
->ifm_data
.ifi_obytes
);
1790 VERIFY(IS_P2ALIGNED(cp
, sizeof(u_int32_t
)));
1793 while ((ifa
= ifa
->ifa_link
.tqe_next
) != NULL
) {
1795 if (af
&& af
!= ifa
->ifa_addr
->sa_family
) {
1799 if (ifa
->ifa_addr
->sa_family
== AF_INET6
&&
1800 (((struct in6_ifaddr
*)ifa
)->ia6_flags
&
1801 IN6_IFF_CLAT46
) != 0) {
1805 info
.rti_info
[RTAX_IFA
] = ifa
->ifa_addr
;
1806 info
.rti_info
[RTAX_NETMASK
] = ifa
->ifa_netmask
;
1807 info
.rti_info
[RTAX_BRD
] = ifa
->ifa_dstaddr
;
1808 len
= rt_msg2(RTM_NEWADDR
, &info
, NULL
, NULL
,
1813 struct ifa_msghdr
*ifam
;
1815 if (current_len
+ len
> total_len
) {
1820 len
= rt_msg2(RTM_NEWADDR
, &info
,
1821 (caddr_t
)cp
, NULL
, &cred
);
1823 ifam
= (struct ifa_msghdr
*)(void *)cp
;
1825 ifa
->ifa_ifp
->if_index
;
1826 ifam
->ifam_flags
= ifa
->ifa_flags
;
1827 ifam
->ifam_metric
= ifa
->ifa_metric
;
1828 ifam
->ifam_addrs
= info
.rti_addrs
;
1831 VERIFY(IS_P2ALIGNED(cp
,
1832 sizeof(u_int32_t
)));
1837 ifnet_lock_done(ifp
);
1838 info
.rti_info
[RTAX_IFA
] = info
.rti_info
[RTAX_NETMASK
] =
1839 info
.rti_info
[RTAX_BRD
] = NULL
;
1845 if (error
== ENOBUFS
) {
1846 printf("%s: current_len (%d) + len (%d) > "
1847 "total_len (%d)\n", __func__
, current_len
,
1854 /* Better to return zero length buffer than ENOBUFS */
1855 if (total_len
== 0) {
1858 total_len
+= total_len
>> 3;
1859 total_buffer
= _MALLOC(total_len
, M_RTABLE
,
1861 if (total_buffer
== NULL
) {
1862 printf("%s: _MALLOC(%d) failed\n", __func__
,
1868 VERIFY(IS_P2ALIGNED(cp
, sizeof(u_int32_t
)));
1870 error
= SYSCTL_OUT(w
->w_req
, total_buffer
, current_len
);
1877 if (total_buffer
!= NULL
) {
1878 _FREE(total_buffer
, M_RTABLE
);
1881 kauth_cred_unref(&cred
);
1886 sysctl_iflist2(int af
, struct walkarg
*w
)
1890 struct rt_addrinfo info
;
1891 int len
= 0, error
= 0;
1893 int total_len
= 0, current_len
= 0;
1894 char *total_buffer
= NULL
, *cp
= NULL
;
1897 cred
= kauth_cred_proc_ref(current_proc());
1899 bzero((caddr_t
)&info
, sizeof(info
));
1901 for (pass
= 0; pass
< 2; pass
++) {
1902 struct ifmultiaddr
*ifma
;
1904 ifnet_head_lock_shared();
1906 TAILQ_FOREACH(ifp
, &ifnet_head
, if_link
) {
1910 if (w
->w_arg
&& w
->w_arg
!= ifp
->if_index
) {
1913 ifnet_lock_shared(ifp
);
1915 * Holding ifnet lock here prevents the link address
1916 * from changing contents, so no need to hold the ifa
1917 * lock. The link address is always present; it's
1920 ifa
= ifp
->if_lladdr
;
1921 info
.rti_info
[RTAX_IFP
] = ifa
->ifa_addr
;
1922 len
= rt_msg2(RTM_IFINFO2
, &info
, NULL
, NULL
, &cred
);
1926 struct if_msghdr2
*ifm
;
1928 if (current_len
+ len
> total_len
) {
1929 ifnet_lock_done(ifp
);
1933 info
.rti_info
[RTAX_IFP
] = ifa
->ifa_addr
;
1934 len
= rt_msg2(RTM_IFINFO2
, &info
,
1935 (caddr_t
)cp
, NULL
, &cred
);
1936 info
.rti_info
[RTAX_IFP
] = NULL
;
1938 ifm
= (struct if_msghdr2
*)(void *)cp
;
1939 ifm
->ifm_addrs
= info
.rti_addrs
;
1940 ifm
->ifm_flags
= (u_short
)ifp
->if_flags
;
1941 ifm
->ifm_index
= ifp
->if_index
;
1942 ifm
->ifm_snd_len
= IFCQ_LEN(&ifp
->if_snd
);
1943 ifm
->ifm_snd_maxlen
= IFCQ_MAXLEN(&ifp
->if_snd
);
1944 ifm
->ifm_snd_drops
=
1945 ifp
->if_snd
.ifcq_dropcnt
.packets
;
1946 ifm
->ifm_timer
= ifp
->if_timer
;
1947 if_data_internal_to_if_data64(ifp
,
1948 &ifp
->if_data
, &ifm
->ifm_data
);
1950 * <rdar://problem/32940901>
1951 * Round bytes only for non-platform
1953 if (!csproc_get_platform_binary(w
->w_req
->p
)) {
1954 ALIGN_BYTES(ifm
->ifm_data
.ifi_ibytes
);
1955 ALIGN_BYTES(ifm
->ifm_data
.ifi_obytes
);
1959 VERIFY(IS_P2ALIGNED(cp
, sizeof(u_int32_t
)));
1962 while ((ifa
= ifa
->ifa_link
.tqe_next
) != NULL
) {
1964 if (af
&& af
!= ifa
->ifa_addr
->sa_family
) {
1968 if (ifa
->ifa_addr
->sa_family
== AF_INET6
&&
1969 (((struct in6_ifaddr
*)ifa
)->ia6_flags
&
1970 IN6_IFF_CLAT46
) != 0) {
1975 info
.rti_info
[RTAX_IFA
] = ifa
->ifa_addr
;
1976 info
.rti_info
[RTAX_NETMASK
] = ifa
->ifa_netmask
;
1977 info
.rti_info
[RTAX_BRD
] = ifa
->ifa_dstaddr
;
1978 len
= rt_msg2(RTM_NEWADDR
, &info
, NULL
, NULL
,
1983 struct ifa_msghdr
*ifam
;
1985 if (current_len
+ len
> total_len
) {
1990 len
= rt_msg2(RTM_NEWADDR
, &info
,
1991 (caddr_t
)cp
, NULL
, &cred
);
1993 ifam
= (struct ifa_msghdr
*)(void *)cp
;
1995 ifa
->ifa_ifp
->if_index
;
1996 ifam
->ifam_flags
= ifa
->ifa_flags
;
1997 ifam
->ifam_metric
= ifa
->ifa_metric
;
1998 ifam
->ifam_addrs
= info
.rti_addrs
;
2001 VERIFY(IS_P2ALIGNED(cp
,
2002 sizeof(u_int32_t
)));
2008 ifnet_lock_done(ifp
);
2012 for (ifma
= LIST_FIRST(&ifp
->if_multiaddrs
);
2013 ifma
!= NULL
; ifma
= LIST_NEXT(ifma
, ifma_link
)) {
2014 struct ifaddr
*ifa0
;
2017 if (af
&& af
!= ifma
->ifma_addr
->sa_family
) {
2021 bzero((caddr_t
)&info
, sizeof(info
));
2022 info
.rti_info
[RTAX_IFA
] = ifma
->ifma_addr
;
2024 * Holding ifnet lock here prevents the link
2025 * address from changing contents, so no need
2026 * to hold the ifa0 lock. The link address is
2027 * always present; it's never freed.
2029 ifa0
= ifp
->if_lladdr
;
2030 info
.rti_info
[RTAX_IFP
] = ifa0
->ifa_addr
;
2031 if (ifma
->ifma_ll
!= NULL
) {
2032 info
.rti_info
[RTAX_GATEWAY
] =
2033 ifma
->ifma_ll
->ifma_addr
;
2035 len
= rt_msg2(RTM_NEWMADDR2
, &info
, NULL
, NULL
,
2040 struct ifma_msghdr2
*ifmam
;
2042 if (current_len
+ len
> total_len
) {
2047 len
= rt_msg2(RTM_NEWMADDR2
, &info
,
2048 (caddr_t
)cp
, NULL
, &cred
);
2051 (struct ifma_msghdr2
*)(void *)cp
;
2052 ifmam
->ifmam_addrs
= info
.rti_addrs
;
2053 ifmam
->ifmam_flags
= 0;
2054 ifmam
->ifmam_index
=
2055 ifma
->ifma_ifp
->if_index
;
2056 ifmam
->ifmam_refcount
=
2060 VERIFY(IS_P2ALIGNED(cp
,
2061 sizeof(u_int32_t
)));
2066 ifnet_lock_done(ifp
);
2067 info
.rti_info
[RTAX_IFA
] = info
.rti_info
[RTAX_NETMASK
] =
2068 info
.rti_info
[RTAX_BRD
] = NULL
;
2073 if (error
== ENOBUFS
) {
2074 printf("%s: current_len (%d) + len (%d) > "
2075 "total_len (%d)\n", __func__
, current_len
,
2082 /* Better to return zero length buffer than ENOBUFS */
2083 if (total_len
== 0) {
2086 total_len
+= total_len
>> 3;
2087 total_buffer
= _MALLOC(total_len
, M_RTABLE
,
2089 if (total_buffer
== NULL
) {
2090 printf("%s: _MALLOC(%d) failed\n", __func__
,
2096 VERIFY(IS_P2ALIGNED(cp
, sizeof(u_int32_t
)));
2098 error
= SYSCTL_OUT(w
->w_req
, total_buffer
, current_len
);
2105 if (total_buffer
!= NULL
) {
2106 _FREE(total_buffer
, M_RTABLE
);
2109 kauth_cred_unref(&cred
);
2115 sysctl_rtstat(struct sysctl_req
*req
)
2117 return SYSCTL_OUT(req
, &rtstat
, sizeof(struct rtstat
));
2121 sysctl_rttrash(struct sysctl_req
*req
)
2123 return SYSCTL_OUT(req
, &rttrash
, sizeof(rttrash
));
2127 sysctl_rtsock SYSCTL_HANDLER_ARGS
2129 #pragma unused(oidp)
2130 int *name
= (int *)arg1
;
2131 u_int namelen
= arg2
;
2132 struct radix_node_head
*rnh
;
2133 int i
, error
= EINVAL
;
2146 Bzero(&w
, sizeof(w
));
2155 case NET_RT_FLAGS_PRIV
:
2156 lck_mtx_lock(rnh_lock
);
2157 for (i
= 1; i
<= AF_MAX
; i
++) {
2158 if ((rnh
= rt_tables
[i
]) && (af
== 0 || af
== i
) &&
2159 (error
= rnh
->rnh_walktree(rnh
,
2160 sysctl_dumpentry
, &w
))) {
2164 lck_mtx_unlock(rnh_lock
);
2167 case NET_RT_DUMPX_FLAGS
:
2168 lck_mtx_lock(rnh_lock
);
2169 for (i
= 1; i
<= AF_MAX
; i
++) {
2170 if ((rnh
= rt_tables
[i
]) && (af
== 0 || af
== i
) &&
2171 (error
= rnh
->rnh_walktree(rnh
,
2172 sysctl_dumpentry_ext
, &w
))) {
2176 lck_mtx_unlock(rnh_lock
);
2179 error
= sysctl_iflist(af
, &w
);
2181 case NET_RT_IFLIST2
:
2182 error
= sysctl_iflist2(af
, &w
);
2185 error
= sysctl_rtstat(req
);
2188 error
= sysctl_rttrash(req
);
2191 if (w
.w_tmem
!= NULL
) {
2192 FREE(w
.w_tmem
, M_RTABLE
);
2198 * Definitions of protocols supported in the ROUTE domain.
2200 static struct protosw routesw
[] = {
2202 .pr_type
= SOCK_RAW
,
2204 .pr_flags
= PR_ATOMIC
| PR_ADDR
,
2205 .pr_output
= route_output
,
2206 .pr_ctlinput
= raw_ctlinput
,
2207 .pr_init
= raw_init
,
2208 .pr_usrreqs
= &route_usrreqs
,
2212 static int route_proto_count
= (sizeof(routesw
) / sizeof(struct protosw
));
2214 struct domain routedomain_s
= {
2215 .dom_family
= PF_ROUTE
,
2216 .dom_name
= "route",
2217 .dom_init
= route_dinit
,
2221 route_dinit(struct domain
*dp
)
2226 VERIFY(!(dp
->dom_flags
& DOM_INITIALIZED
));
2227 VERIFY(routedomain
== NULL
);
2231 for (i
= 0, pr
= &routesw
[0]; i
< route_proto_count
; i
++, pr
++) {
2232 net_add_proto(pr
, dp
, 1);