2 * Copyright (c) 2000-2018 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
29 * Copyright (c) 1980, 1986, 1991, 1993
30 * The Regents of the University of California. All rights reserved.
32 * Redistribution and use in source and binary forms, with or without
33 * modification, are permitted provided that the following conditions
35 * 1. Redistributions of source code must retain the above copyright
36 * notice, this list of conditions and the following disclaimer.
37 * 2. Redistributions in binary form must reproduce the above copyright
38 * notice, this list of conditions and the following disclaimer in the
39 * documentation and/or other materials provided with the distribution.
40 * 3. All advertising materials mentioning features or use of this software
41 * must display the following acknowledgement:
42 * This product includes software developed by the University of
43 * California, Berkeley and its contributors.
44 * 4. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 * @(#)route.c 8.2 (Berkeley) 11/15/93
61 * $FreeBSD: src/sys/net/route.c,v 1.59.2.3 2001/07/29 19:18:02 ume Exp $
64 #include <sys/param.h>
65 #include <sys/sysctl.h>
66 #include <sys/systm.h>
67 #include <sys/malloc.h>
69 #include <sys/socket.h>
70 #include <sys/domain.h>
73 #include <sys/vnode.h>
74 #include <sys/syslog.h>
75 #include <sys/queue.h>
76 #include <sys/mcache.h>
78 #include <sys/protosw.h>
79 #include <sys/kernel.h>
80 #include <kern/locks.h>
81 #include <kern/zalloc.h>
85 #include <net/route.h>
86 #include <net/ntstat.h>
87 #include <net/nwk_wq.h>
92 #include <netinet/in.h>
93 #include <netinet/in_var.h>
94 #include <netinet/ip_var.h>
95 #include <netinet/ip.h>
96 #include <netinet/ip6.h>
97 #include <netinet/in_arp.h>
100 #include <netinet6/ip6_var.h>
101 #include <netinet6/in6_var.h>
102 #include <netinet6/nd6.h>
105 #include <net/if_dl.h>
107 #include <libkern/OSAtomic.h>
108 #include <libkern/OSDebug.h>
110 #include <pexpert/pexpert.h>
113 #include <sys/kauth.h>
117 * Synchronization notes:
119 * Routing entries fall under two locking domains: the global routing table
120 * lock (rnh_lock) and the per-entry lock (rt_lock); the latter is a mutex that
121 * resides (statically defined) in the rtentry structure.
123 * The locking domains for routing are defined as follows:
125 * The global routing lock is used to serialize all accesses to the radix
126 * trees defined by rt_tables[], as well as the tree of masks. This includes
127 * lookups, insertions and removals of nodes to/from the respective tree.
128 * It is also used to protect certain fields in the route entry that aren't
129 * often modified and/or require global serialization (more details below.)
131 * The per-route entry lock is used to serialize accesses to several routing
132 * entry fields (more details below.) Acquiring and releasing this lock is
133 * done via RT_LOCK() and RT_UNLOCK() routines.
135 * In cases where both rnh_lock and rt_lock must be held, the former must be
136 * acquired first in order to maintain lock ordering. It is not a requirement
137 * that rnh_lock be acquired first before rt_lock, but in case both must be
138 * acquired in succession, the correct lock ordering must be followed.
140 * The fields of the rtentry structure are protected in the following way:
144 * - Routing table lock (rnh_lock).
146 * rt_parent, rt_mask, rt_llinfo_free, rt_tree_genid
148 * - Set once during creation and never changes; no locks to read.
150 * rt_flags, rt_genmask, rt_llinfo, rt_rmx, rt_refcnt, rt_gwroute
152 * - Routing entry lock (rt_lock) for read/write access.
154 * - Some values of rt_flags are either set once at creation time,
155 * or aren't currently used, and thus checking against them can
156 * be done without rt_lock: RTF_GATEWAY, RTF_HOST, RTF_DYNAMIC,
157 * RTF_DONE, RTF_XRESOLVE, RTF_STATIC, RTF_BLACKHOLE, RTF_ANNOUNCE,
158 * RTF_USETRAILERS, RTF_WASCLONED, RTF_PINNED, RTF_LOCAL,
159 * RTF_BROADCAST, RTF_MULTICAST, RTF_IFSCOPE, RTF_IFREF.
161 * rt_key, rt_gateway, rt_ifp, rt_ifa
163 * - Always written/modified with both rnh_lock and rt_lock held.
165 * - May be read freely with rnh_lock held, else must hold rt_lock
166 * for read access; holding both locks for read is also okay.
168 * - In the event rnh_lock is not acquired, or is not possible to be
169 * acquired across the operation, setting RTF_CONDEMNED on a route
170 * entry will prevent its rt_key, rt_gateway, rt_ifp and rt_ifa
171 * from being modified. This is typically done on a route that
172 * has been chosen for a removal (from the tree) prior to dropping
173 * the rt_lock, so that those values will remain the same until
174 * the route is freed.
176 * When rnh_lock is held rt_setgate(), rt_setif(), and rtsetifa() are
177 * single-threaded, thus exclusive. This flag will also prevent the
178 * route from being looked up via rt_lookup().
182 * - Assumes that 32-bit writes are atomic; no locks.
186 * - Currently unused; no locks.
188 * Operations on a route entry can be described as follows:
190 * CREATE an entry with reference count set to 0 as part of RTM_ADD/RESOLVE.
192 * INSERTION of an entry into the radix tree holds the rnh_lock, checks
193 * for duplicates and then adds the entry. rtrequest returns the entry
194 * after bumping up the reference count to 1 (for the caller).
196 * LOOKUP of an entry holds the rnh_lock and bumps up the reference count
197 * before returning; it is valid to also bump up the reference count using
198 * RT_ADDREF after the lookup has returned an entry.
200 * REMOVAL of an entry from the radix tree holds the rnh_lock, removes the
201 * entry but does not decrement the reference count. Removal happens when
202 * the route is explicitly deleted (RTM_DELETE) or when it is in the cached
203 * state and it expires. The route is said to be "down" when it is no
204 * longer present in the tree. Freeing the entry will happen on the last
205 * reference release of such a "down" route.
207 * RT_ADDREF/RT_REMREF operates on the routing entry which increments/
208 * decrements the reference count, rt_refcnt, atomically on the rtentry.
209 * rt_refcnt is modified only using this routine. The general rule is to
210 * do RT_ADDREF in the function that is passing the entry as an argument,
211 * in order to prevent the entry from being freed by the callee.
214 #define equal(a1, a2) (bcmp((caddr_t)(a1), (caddr_t)(a2), (a1)->sa_len) == 0)
216 extern void kdp_set_gateway_mac(void *gatewaymac
);
218 __private_extern__
struct rtstat rtstat
= { 0, 0, 0, 0, 0, 0 };
219 struct radix_node_head
*rt_tables
[AF_MAX
+1];
221 decl_lck_mtx_data(, rnh_lock_data
); /* global routing tables mutex */
222 lck_mtx_t
*rnh_lock
= &rnh_lock_data
;
223 static lck_attr_t
*rnh_lock_attr
;
224 static lck_grp_t
*rnh_lock_grp
;
225 static lck_grp_attr_t
*rnh_lock_grp_attr
;
227 /* Lock group and attribute for routing entry locks */
228 static lck_attr_t
*rte_mtx_attr
;
229 static lck_grp_t
*rte_mtx_grp
;
230 static lck_grp_attr_t
*rte_mtx_grp_attr
;
232 int rttrash
= 0; /* routes not in table but not freed */
234 unsigned int rte_debug
= 0;
236 /* Possible flags for rte_debug */
237 #define RTD_DEBUG 0x1 /* enable or disable rtentry debug facility */
238 #define RTD_TRACE 0x2 /* trace alloc, free, refcnt and lock */
239 #define RTD_NO_FREE 0x4 /* don't free (good to catch corruptions) */
241 #define RTE_NAME "rtentry" /* name for zone and rt_lock */
243 static struct zone
*rte_zone
; /* special zone for rtentry */
244 #define RTE_ZONE_MAX 65536 /* maximum elements in zone */
245 #define RTE_ZONE_NAME RTE_NAME /* name of rtentry zone */
247 #define RTD_INUSE 0xFEEDFACE /* entry is in use */
248 #define RTD_FREED 0xDEADBEEF /* entry is freed */
250 #define MAX_SCOPE_ADDR_STR_LEN (MAX_IPv6_STR_LEN + 6)
253 __private_extern__
unsigned int ctrace_stack_size
= CTRACE_STACK_SIZE
;
254 __private_extern__
unsigned int ctrace_hist_size
= CTRACE_HIST_SIZE
;
257 * Debug variant of rtentry structure.
260 struct rtentry rtd_entry
; /* rtentry */
261 struct rtentry rtd_entry_saved
; /* saved rtentry */
262 uint32_t rtd_inuse
; /* in use pattern */
263 uint16_t rtd_refhold_cnt
; /* # of rtref */
264 uint16_t rtd_refrele_cnt
; /* # of rtunref */
265 uint32_t rtd_lock_cnt
; /* # of locks */
266 uint32_t rtd_unlock_cnt
; /* # of unlocks */
268 * Alloc and free callers.
273 * Circular lists of rtref and rtunref callers.
275 ctrace_t rtd_refhold
[CTRACE_HIST_SIZE
];
276 ctrace_t rtd_refrele
[CTRACE_HIST_SIZE
];
278 * Circular lists of locks and unlocks.
280 ctrace_t rtd_lock
[CTRACE_HIST_SIZE
];
281 ctrace_t rtd_unlock
[CTRACE_HIST_SIZE
];
285 TAILQ_ENTRY(rtentry_dbg
) rtd_trash_link
;
288 /* List of trash route entries protected by rnh_lock */
289 static TAILQ_HEAD(, rtentry_dbg
) rttrash_head
;
291 static void rte_lock_init(struct rtentry
*);
292 static void rte_lock_destroy(struct rtentry
*);
293 static inline struct rtentry
*rte_alloc_debug(void);
294 static inline void rte_free_debug(struct rtentry
*);
295 static inline void rte_lock_debug(struct rtentry_dbg
*);
296 static inline void rte_unlock_debug(struct rtentry_dbg
*);
297 static void rt_maskedcopy(const struct sockaddr
*,
298 struct sockaddr
*, const struct sockaddr
*);
299 static void rtable_init(void **);
300 static inline void rtref_audit(struct rtentry_dbg
*);
301 static inline void rtunref_audit(struct rtentry_dbg
*);
302 static struct rtentry
*rtalloc1_common_locked(struct sockaddr
*, int, uint32_t,
304 static int rtrequest_common_locked(int, struct sockaddr
*,
305 struct sockaddr
*, struct sockaddr
*, int, struct rtentry
**,
307 static struct rtentry
*rtalloc1_locked(struct sockaddr
*, int, uint32_t);
308 static void rtalloc_ign_common_locked(struct route
*, uint32_t, unsigned int);
309 static inline void sin6_set_ifscope(struct sockaddr
*, unsigned int);
310 static inline void sin6_set_embedded_ifscope(struct sockaddr
*, unsigned int);
311 static inline unsigned int sin6_get_embedded_ifscope(struct sockaddr
*);
312 static struct sockaddr
*ma_copy(int, struct sockaddr
*,
313 struct sockaddr_storage
*, unsigned int);
314 static struct sockaddr
*sa_trim(struct sockaddr
*, int);
315 static struct radix_node
*node_lookup(struct sockaddr
*, struct sockaddr
*,
317 static struct radix_node
*node_lookup_default(int);
318 static struct rtentry
*rt_lookup_common(boolean_t
, boolean_t
, struct sockaddr
*,
319 struct sockaddr
*, struct radix_node_head
*, unsigned int);
320 static int rn_match_ifscope(struct radix_node
*, void *);
321 static struct ifaddr
*ifa_ifwithroute_common_locked(int,
322 const struct sockaddr
*, const struct sockaddr
*, unsigned int);
323 static struct rtentry
*rte_alloc(void);
324 static void rte_free(struct rtentry
*);
325 static void rtfree_common(struct rtentry
*, boolean_t
);
326 static void rte_if_ref(struct ifnet
*, int);
327 static void rt_set_idleref(struct rtentry
*);
328 static void rt_clear_idleref(struct rtentry
*);
329 static void route_event_callback(void *);
330 static void rt_str4(struct rtentry
*, char *, uint32_t, char *, uint32_t);
332 static void rt_str6(struct rtentry
*, char *, uint32_t, char *, uint32_t);
335 uint32_t route_genid_inet
= 0;
337 uint32_t route_genid_inet6
= 0;
340 #define ASSERT_SINIFSCOPE(sa) { \
341 if ((sa)->sa_family != AF_INET || \
342 (sa)->sa_len < sizeof (struct sockaddr_in)) \
343 panic("%s: bad sockaddr_in %p\n", __func__, sa); \
346 #define ASSERT_SIN6IFSCOPE(sa) { \
347 if ((sa)->sa_family != AF_INET6 || \
348 (sa)->sa_len < sizeof (struct sockaddr_in6)) \
349 panic("%s: bad sockaddr_in6 %p\n", __func__, sa); \
353 * Argument to leaf-matching routine; at present it is scoped routing
354 * specific but can be expanded in future to include other search filters.
356 struct matchleaf_arg
{
357 unsigned int ifscope
; /* interface scope */
361 * For looking up the non-scoped default route (sockaddr instead
362 * of sockaddr_in for convenience).
364 static struct sockaddr sin_def
= {
365 sizeof (struct sockaddr_in
), AF_INET
, { 0, }
368 static struct sockaddr_in6 sin6_def
= {
369 sizeof (struct sockaddr_in6
), AF_INET6
, 0, 0, IN6ADDR_ANY_INIT
, 0
373 * Interface index (scope) of the primary interface; determined at
374 * the time when the default, non-scoped route gets added, changed
375 * or deleted. Protected by rnh_lock.
377 static unsigned int primary_ifscope
= IFSCOPE_NONE
;
378 static unsigned int primary6_ifscope
= IFSCOPE_NONE
;
380 #define INET_DEFAULT(sa) \
381 ((sa)->sa_family == AF_INET && SIN(sa)->sin_addr.s_addr == 0)
383 #define INET6_DEFAULT(sa) \
384 ((sa)->sa_family == AF_INET6 && \
385 IN6_IS_ADDR_UNSPECIFIED(&SIN6(sa)->sin6_addr))
387 #define SA_DEFAULT(sa) (INET_DEFAULT(sa) || INET6_DEFAULT(sa))
388 #define RT(r) ((struct rtentry *)r)
389 #define RN(r) ((struct radix_node *)r)
390 #define RT_HOST(r) (RT(r)->rt_flags & RTF_HOST)
392 unsigned int rt_verbose
= 0;
393 #if (DEVELOPMENT || DEBUG)
394 SYSCTL_DECL(_net_route
);
395 SYSCTL_UINT(_net_route
, OID_AUTO
, verbose
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
397 #endif /* (DEVELOPMENT || DEBUG) */
400 rtable_init(void **table
)
404 domain_proto_mtx_lock_assert_held();
406 TAILQ_FOREACH(dom
, &domains
, dom_entry
) {
407 if (dom
->dom_rtattach
!= NULL
)
408 dom
->dom_rtattach(&table
[dom
->dom_family
],
414 * Called by route_dinit().
422 _CASSERT(offsetof(struct route
, ro_rt
) ==
423 offsetof(struct route_in6
, ro_rt
));
424 _CASSERT(offsetof(struct route
, ro_lle
) ==
425 offsetof(struct route_in6
, ro_lle
));
426 _CASSERT(offsetof(struct route
, ro_srcia
) ==
427 offsetof(struct route_in6
, ro_srcia
));
428 _CASSERT(offsetof(struct route
, ro_flags
) ==
429 offsetof(struct route_in6
, ro_flags
));
430 _CASSERT(offsetof(struct route
, ro_dst
) ==
431 offsetof(struct route_in6
, ro_dst
));
434 PE_parse_boot_argn("rte_debug", &rte_debug
, sizeof (rte_debug
));
436 rte_debug
|= RTD_DEBUG
;
438 rnh_lock_grp_attr
= lck_grp_attr_alloc_init();
439 rnh_lock_grp
= lck_grp_alloc_init("route", rnh_lock_grp_attr
);
440 rnh_lock_attr
= lck_attr_alloc_init();
441 lck_mtx_init(rnh_lock
, rnh_lock_grp
, rnh_lock_attr
);
443 rte_mtx_grp_attr
= lck_grp_attr_alloc_init();
444 rte_mtx_grp
= lck_grp_alloc_init(RTE_NAME
, rte_mtx_grp_attr
);
445 rte_mtx_attr
= lck_attr_alloc_init();
447 lck_mtx_lock(rnh_lock
);
448 rn_init(); /* initialize all zeroes, all ones, mask table */
449 lck_mtx_unlock(rnh_lock
);
450 rtable_init((void **)rt_tables
);
452 if (rte_debug
& RTD_DEBUG
)
453 size
= sizeof (struct rtentry_dbg
);
455 size
= sizeof (struct rtentry
);
457 rte_zone
= zinit(size
, RTE_ZONE_MAX
* size
, 0, RTE_ZONE_NAME
);
458 if (rte_zone
== NULL
) {
459 panic("%s: failed allocating rte_zone", __func__
);
462 zone_change(rte_zone
, Z_EXPAND
, TRUE
);
463 zone_change(rte_zone
, Z_CALLERACCT
, FALSE
);
464 zone_change(rte_zone
, Z_NOENCRYPT
, TRUE
);
466 TAILQ_INIT(&rttrash_head
);
470 * Given a route, determine whether or not it is the non-scoped default
471 * route; dst typically comes from rt_key(rt) but may be coming from
472 * a separate place when rt is in the process of being created.
475 rt_primary_default(struct rtentry
*rt
, struct sockaddr
*dst
)
477 return (SA_DEFAULT(dst
) && !(rt
->rt_flags
& RTF_IFSCOPE
));
481 * Set the ifscope of the primary interface; caller holds rnh_lock.
484 set_primary_ifscope(int af
, unsigned int ifscope
)
487 primary_ifscope
= ifscope
;
489 primary6_ifscope
= ifscope
;
493 * Return the ifscope of the primary interface; caller holds rnh_lock.
496 get_primary_ifscope(int af
)
498 return (af
== AF_INET
? primary_ifscope
: primary6_ifscope
);
502 * Set the scope ID of a given a sockaddr_in.
505 sin_set_ifscope(struct sockaddr
*sa
, unsigned int ifscope
)
507 /* Caller must pass in sockaddr_in */
508 ASSERT_SINIFSCOPE(sa
);
510 SINIFSCOPE(sa
)->sin_scope_id
= ifscope
;
514 * Set the scope ID of given a sockaddr_in6.
517 sin6_set_ifscope(struct sockaddr
*sa
, unsigned int ifscope
)
519 /* Caller must pass in sockaddr_in6 */
520 ASSERT_SIN6IFSCOPE(sa
);
522 SIN6IFSCOPE(sa
)->sin6_scope_id
= ifscope
;
526 * Given a sockaddr_in, return the scope ID to the caller.
529 sin_get_ifscope(struct sockaddr
*sa
)
531 /* Caller must pass in sockaddr_in */
532 ASSERT_SINIFSCOPE(sa
);
534 return (SINIFSCOPE(sa
)->sin_scope_id
);
538 * Given a sockaddr_in6, return the scope ID to the caller.
541 sin6_get_ifscope(struct sockaddr
*sa
)
543 /* Caller must pass in sockaddr_in6 */
544 ASSERT_SIN6IFSCOPE(sa
);
546 return (SIN6IFSCOPE(sa
)->sin6_scope_id
);
550 sin6_set_embedded_ifscope(struct sockaddr
*sa
, unsigned int ifscope
)
552 /* Caller must pass in sockaddr_in6 */
553 ASSERT_SIN6IFSCOPE(sa
);
554 VERIFY(IN6_IS_SCOPE_EMBED(&(SIN6(sa
)->sin6_addr
)));
556 SIN6(sa
)->sin6_addr
.s6_addr16
[1] = htons(ifscope
);
559 static inline unsigned int
560 sin6_get_embedded_ifscope(struct sockaddr
*sa
)
562 /* Caller must pass in sockaddr_in6 */
563 ASSERT_SIN6IFSCOPE(sa
);
565 return (ntohs(SIN6(sa
)->sin6_addr
.s6_addr16
[1]));
569 * Copy a sockaddr_{in,in6} src to a dst storage and set scope ID into dst.
571 * To clear the scope ID, pass is a NULL pifscope. To set the scope ID, pass
572 * in a non-NULL pifscope with non-zero ifscope. Otherwise if pifscope is
573 * non-NULL and ifscope is IFSCOPE_NONE, the existing scope ID is left intact.
574 * In any case, the effective scope ID value is returned to the caller via
575 * pifscope, if it is non-NULL.
578 sa_copy(struct sockaddr
*src
, struct sockaddr_storage
*dst
,
579 unsigned int *pifscope
)
581 int af
= src
->sa_family
;
582 unsigned int ifscope
= (pifscope
!= NULL
) ? *pifscope
: IFSCOPE_NONE
;
584 VERIFY(af
== AF_INET
|| af
== AF_INET6
);
586 bzero(dst
, sizeof (*dst
));
589 bcopy(src
, dst
, sizeof (struct sockaddr_in
));
590 if (pifscope
== NULL
|| ifscope
!= IFSCOPE_NONE
)
591 sin_set_ifscope(SA(dst
), ifscope
);
593 bcopy(src
, dst
, sizeof (struct sockaddr_in6
));
594 if (pifscope
!= NULL
&&
595 IN6_IS_SCOPE_EMBED(&SIN6(dst
)->sin6_addr
)) {
596 unsigned int eifscope
;
598 * If the address contains the embedded scope ID,
599 * use that as the value for sin6_scope_id as long
600 * the caller doesn't insist on clearing it (by
601 * passing NULL) or setting it.
603 eifscope
= sin6_get_embedded_ifscope(SA(dst
));
604 if (eifscope
!= IFSCOPE_NONE
&& ifscope
== IFSCOPE_NONE
)
606 if (ifscope
!= IFSCOPE_NONE
) {
607 /* Set ifscope from pifscope or eifscope */
608 sin6_set_ifscope(SA(dst
), ifscope
);
610 /* If sin6_scope_id has a value, use that one */
611 ifscope
= sin6_get_ifscope(SA(dst
));
614 * If sin6_scope_id is set but the address doesn't
615 * contain the equivalent embedded value, set it.
617 if (ifscope
!= IFSCOPE_NONE
&& eifscope
!= ifscope
)
618 sin6_set_embedded_ifscope(SA(dst
), ifscope
);
619 } else if (pifscope
== NULL
|| ifscope
!= IFSCOPE_NONE
) {
620 sin6_set_ifscope(SA(dst
), ifscope
);
624 if (pifscope
!= NULL
) {
625 *pifscope
= (af
== AF_INET
) ? sin_get_ifscope(SA(dst
)) :
626 sin6_get_ifscope(SA(dst
));
633 * Copy a mask from src to a dst storage and set scope ID into dst.
635 static struct sockaddr
*
636 ma_copy(int af
, struct sockaddr
*src
, struct sockaddr_storage
*dst
,
637 unsigned int ifscope
)
639 VERIFY(af
== AF_INET
|| af
== AF_INET6
);
641 bzero(dst
, sizeof (*dst
));
642 rt_maskedcopy(src
, SA(dst
), src
);
645 * The length of the mask sockaddr would need to be adjusted
646 * to cover the additional {sin,sin6}_ifscope field; when ifscope
647 * is IFSCOPE_NONE, we'd end up clearing the scope ID field on
648 * the destination mask in addition to extending the length
649 * of the sockaddr, as a side effect. This is okay, as any
650 * trailing zeroes would be skipped by rn_addmask prior to
651 * inserting or looking up the mask in the mask tree.
654 SINIFSCOPE(dst
)->sin_scope_id
= ifscope
;
655 SINIFSCOPE(dst
)->sin_len
=
656 offsetof(struct sockaddr_inifscope
, sin_scope_id
) +
657 sizeof (SINIFSCOPE(dst
)->sin_scope_id
);
659 SIN6IFSCOPE(dst
)->sin6_scope_id
= ifscope
;
660 SIN6IFSCOPE(dst
)->sin6_len
=
661 offsetof(struct sockaddr_in6
, sin6_scope_id
) +
662 sizeof (SIN6IFSCOPE(dst
)->sin6_scope_id
);
669 * Trim trailing zeroes on a sockaddr and update its length.
671 static struct sockaddr
*
672 sa_trim(struct sockaddr
*sa
, int skip
)
674 caddr_t cp
, base
= (caddr_t
)sa
+ skip
;
676 if (sa
->sa_len
<= skip
)
679 for (cp
= base
+ (sa
->sa_len
- skip
); cp
> base
&& cp
[-1] == 0; )
682 sa
->sa_len
= (cp
- base
) + skip
;
683 if (sa
->sa_len
< skip
) {
684 /* Must not happen, and if so, panic */
685 panic("%s: broken logic (sa_len %d < skip %d )", __func__
,
688 } else if (sa
->sa_len
== skip
) {
689 /* If we end up with all zeroes, then there's no mask */
697 * Called by rtm_msg{1,2} routines to "scrub" socket address structures of
698 * kernel private information, so that clients of the routing socket will
699 * not be confused by the presence of the information, or the side effect of
700 * the increased length due to that. The source sockaddr is not modified;
701 * instead, the scrubbing happens on the destination sockaddr storage that
702 * is passed in by the caller.
705 * - removing embedded scope identifiers from network mask and destination
706 * IPv4 and IPv6 socket addresses
707 * - optionally removing global scope interface hardware addresses from
708 * link-layer interface addresses when the MAC framework check fails.
711 rtm_scrub(int type
, int idx
, struct sockaddr
*hint
, struct sockaddr
*sa
,
712 void *buf
, uint32_t buflen
, kauth_cred_t
*credp
)
714 struct sockaddr_storage
*ss
= (struct sockaddr_storage
*)buf
;
715 struct sockaddr
*ret
= sa
;
717 VERIFY(buf
!= NULL
&& buflen
>= sizeof (*ss
));
723 * If this is for an AF_INET/AF_INET6 destination address,
724 * call sa_copy() to clear the scope ID field.
726 if (sa
->sa_family
== AF_INET
&&
727 SINIFSCOPE(sa
)->sin_scope_id
!= IFSCOPE_NONE
) {
728 ret
= sa_copy(sa
, ss
, NULL
);
729 } else if (sa
->sa_family
== AF_INET6
&&
730 SIN6IFSCOPE(sa
)->sin6_scope_id
!= IFSCOPE_NONE
) {
731 ret
= sa_copy(sa
, ss
, NULL
);
738 * If this is for a mask, we can't tell whether or not there
739 * is an valid scope ID value, as the span of bytes between
740 * sa_len and the beginning of the mask (offset of sin_addr in
741 * the case of AF_INET, or sin6_addr for AF_INET6) may be
742 * filled with all-ones by rn_addmask(), and hence we cannot
743 * rely on sa_family. Because of this, we use the sa_family
744 * of the hint sockaddr (RTAX_{DST,IFA}) as indicator as to
745 * whether or not the mask is to be treated as one for AF_INET
746 * or AF_INET6. Clearing the scope ID field involves setting
747 * it to IFSCOPE_NONE followed by calling sa_trim() to trim
748 * trailing zeroes from the storage sockaddr, which reverses
749 * what was done earlier by ma_copy() on the source sockaddr.
752 ((af
= hint
->sa_family
) != AF_INET
&& af
!= AF_INET6
))
753 break; /* nothing to do */
755 skip
= (af
== AF_INET
) ?
756 offsetof(struct sockaddr_in
, sin_addr
) :
757 offsetof(struct sockaddr_in6
, sin6_addr
);
759 if (sa
->sa_len
> skip
&& sa
->sa_len
<= sizeof (*ss
)) {
760 bcopy(sa
, ss
, sa
->sa_len
);
762 * Don't use {sin,sin6}_set_ifscope() as sa_family
763 * and sa_len for the netmask might not be set to
764 * the corresponding expected values of the hint.
766 if (hint
->sa_family
== AF_INET
)
767 SINIFSCOPE(ss
)->sin_scope_id
= IFSCOPE_NONE
;
769 SIN6IFSCOPE(ss
)->sin6_scope_id
= IFSCOPE_NONE
;
770 ret
= sa_trim(SA(ss
), skip
);
773 * For AF_INET6 mask, set sa_len appropriately unless
774 * this is requested via systl_dumpentry(), in which
775 * case we return the raw value.
777 if (hint
->sa_family
== AF_INET6
&&
778 type
!= RTM_GET
&& type
!= RTM_GET2
)
779 SA(ret
)->sa_len
= sizeof (struct sockaddr_in6
);
785 * Break if the gateway is not AF_LINK type (indirect routes)
787 * Else, if is, check if it is resolved. If not yet resolved
788 * simply break else scrub the link layer address.
790 if ((sa
->sa_family
!= AF_LINK
) || (SDL(sa
)->sdl_alen
== 0))
795 if (sa
->sa_family
== AF_LINK
&& credp
) {
796 struct sockaddr_dl
*sdl
= SDL(buf
);
800 /* caller should handle worst case: SOCK_MAXADDRLEN */
801 VERIFY(buflen
>= sa
->sa_len
);
803 bcopy(sa
, sdl
, sa
->sa_len
);
804 bytes
= dlil_ifaddr_bytes(sdl
, &size
, credp
);
805 if (bytes
!= CONST_LLADDR(sdl
)) {
806 VERIFY(sdl
->sdl_alen
== size
);
807 bcopy(bytes
, LLADDR(sdl
), size
);
809 ret
= (struct sockaddr
*)sdl
;
821 * Callback leaf-matching routine for rn_matchaddr_args used
822 * for looking up an exact match for a scoped route entry.
825 rn_match_ifscope(struct radix_node
*rn
, void *arg
)
827 struct rtentry
*rt
= (struct rtentry
*)rn
;
828 struct matchleaf_arg
*ma
= arg
;
829 int af
= rt_key(rt
)->sa_family
;
831 if (!(rt
->rt_flags
& RTF_IFSCOPE
) || (af
!= AF_INET
&& af
!= AF_INET6
))
834 return (af
== AF_INET
?
835 (SINIFSCOPE(rt_key(rt
))->sin_scope_id
== ma
->ifscope
) :
836 (SIN6IFSCOPE(rt_key(rt
))->sin6_scope_id
== ma
->ifscope
));
840 * Atomically increment route generation counter
843 routegenid_update(void)
845 routegenid_inet_update();
847 routegenid_inet6_update();
852 routegenid_inet_update(void)
854 atomic_add_32(&route_genid_inet
, 1);
859 routegenid_inet6_update(void)
861 atomic_add_32(&route_genid_inet6
, 1);
866 * Packet routing routines.
869 rtalloc(struct route
*ro
)
875 rtalloc_scoped(struct route
*ro
, unsigned int ifscope
)
877 rtalloc_scoped_ign(ro
, 0, ifscope
);
881 rtalloc_ign_common_locked(struct route
*ro
, uint32_t ignore
,
882 unsigned int ifscope
)
886 if ((rt
= ro
->ro_rt
) != NULL
) {
888 if (rt
->rt_ifp
!= NULL
&& !ROUTE_UNUSABLE(ro
)) {
893 ROUTE_RELEASE_LOCKED(ro
); /* rnh_lock already held */
895 ro
->ro_rt
= rtalloc1_common_locked(&ro
->ro_dst
, 1, ignore
, ifscope
);
896 if (ro
->ro_rt
!= NULL
) {
897 RT_GENID_SYNC(ro
->ro_rt
);
898 RT_LOCK_ASSERT_NOTHELD(ro
->ro_rt
);
903 rtalloc_ign(struct route
*ro
, uint32_t ignore
)
905 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_NOTOWNED
);
906 lck_mtx_lock(rnh_lock
);
907 rtalloc_ign_common_locked(ro
, ignore
, IFSCOPE_NONE
);
908 lck_mtx_unlock(rnh_lock
);
912 rtalloc_scoped_ign(struct route
*ro
, uint32_t ignore
, unsigned int ifscope
)
914 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_NOTOWNED
);
915 lck_mtx_lock(rnh_lock
);
916 rtalloc_ign_common_locked(ro
, ignore
, ifscope
);
917 lck_mtx_unlock(rnh_lock
);
920 static struct rtentry
*
921 rtalloc1_locked(struct sockaddr
*dst
, int report
, uint32_t ignflags
)
923 return (rtalloc1_common_locked(dst
, report
, ignflags
, IFSCOPE_NONE
));
927 rtalloc1_scoped_locked(struct sockaddr
*dst
, int report
, uint32_t ignflags
,
928 unsigned int ifscope
)
930 return (rtalloc1_common_locked(dst
, report
, ignflags
, ifscope
));
934 rtalloc1_common_locked(struct sockaddr
*dst
, int report
, uint32_t ignflags
,
935 unsigned int ifscope
)
937 struct radix_node_head
*rnh
= rt_tables
[dst
->sa_family
];
938 struct rtentry
*rt
, *newrt
= NULL
;
939 struct rt_addrinfo info
;
941 int err
= 0, msgtype
= RTM_MISS
;
947 * Find the longest prefix or exact (in the scoped case) address match;
948 * callee adds a reference to entry and checks for root node as well
950 rt
= rt_lookup(FALSE
, dst
, NULL
, rnh
, ifscope
);
956 nflags
= rt
->rt_flags
& ~ignflags
;
958 if (report
&& (nflags
& (RTF_CLONING
| RTF_PRCLONING
))) {
960 * We are apparently adding (report = 0 in delete).
961 * If it requires that it be cloned, do so.
962 * (This implies it wasn't a HOST route.)
964 err
= rtrequest_locked(RTM_RESOLVE
, dst
, NULL
, NULL
, 0, &newrt
);
967 * If the cloning didn't succeed, maybe what we
968 * have from lookup above will do. Return that;
969 * no need to hold another reference since it's
977 * We cloned it; drop the original route found during lookup.
978 * The resulted cloned route (newrt) would now have an extra
979 * reference held during rtrequest.
984 * If the newly created cloned route is a direct host route
985 * then also check if it is to a router or not.
986 * If it is, then set the RTF_ROUTER flag on the host route
989 * XXX It is possible for the default route to be created post
990 * cloned route creation of router's IP.
991 * We can handle that corner case by special handing for RTM_ADD
994 if ((newrt
->rt_flags
& (RTF_HOST
| RTF_LLINFO
)) ==
995 (RTF_HOST
| RTF_LLINFO
)) {
996 struct rtentry
*defrt
= NULL
;
997 struct sockaddr_storage def_key
;
999 bzero(&def_key
, sizeof(def_key
));
1000 def_key
.ss_len
= rt_key(newrt
)->sa_len
;
1001 def_key
.ss_family
= rt_key(newrt
)->sa_family
;
1003 defrt
= rtalloc1_scoped_locked((struct sockaddr
*)&def_key
,
1004 0, 0, newrt
->rt_ifp
->if_index
);
1007 if (equal(rt_key(newrt
), defrt
->rt_gateway
)) {
1008 newrt
->rt_flags
|= RTF_ROUTER
;
1010 rtfree_locked(defrt
);
1014 if ((rt
= newrt
) && (rt
->rt_flags
& RTF_XRESOLVE
)) {
1016 * If the new route specifies it be
1017 * externally resolved, then go do that.
1019 msgtype
= RTM_RESOLVE
;
1027 * Either we hit the root or couldn't find any match,
1028 * Which basically means "cant get there from here"
1030 rtstat
.rts_unreach
++;
1035 * If required, report the failure to the supervising
1037 * For a delete, this is not an error. (report == 0)
1039 bzero((caddr_t
)&info
, sizeof(info
));
1040 info
.rti_info
[RTAX_DST
] = dst
;
1041 rt_missmsg(msgtype
, &info
, 0, err
);
1048 rtalloc1(struct sockaddr
*dst
, int report
, uint32_t ignflags
)
1050 struct rtentry
*entry
;
1051 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_NOTOWNED
);
1052 lck_mtx_lock(rnh_lock
);
1053 entry
= rtalloc1_locked(dst
, report
, ignflags
);
1054 lck_mtx_unlock(rnh_lock
);
1059 rtalloc1_scoped(struct sockaddr
*dst
, int report
, uint32_t ignflags
,
1060 unsigned int ifscope
)
1062 struct rtentry
*entry
;
1063 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_NOTOWNED
);
1064 lck_mtx_lock(rnh_lock
);
1065 entry
= rtalloc1_scoped_locked(dst
, report
, ignflags
, ifscope
);
1066 lck_mtx_unlock(rnh_lock
);
1071 * Remove a reference count from an rtentry.
1072 * If the count gets low enough, take it out of the routing table
1075 rtfree_locked(struct rtentry
*rt
)
1077 rtfree_common(rt
, TRUE
);
1081 rtfree_common(struct rtentry
*rt
, boolean_t locked
)
1083 struct radix_node_head
*rnh
;
1085 LCK_MTX_ASSERT(rnh_lock
, locked
?
1086 LCK_MTX_ASSERT_OWNED
: LCK_MTX_ASSERT_NOTOWNED
);
1089 * Atomically decrement the reference count and if it reaches 0,
1090 * and there is a close function defined, call the close function.
1093 if (rtunref(rt
) > 0) {
1099 * To avoid violating lock ordering, we must drop rt_lock before
1100 * trying to acquire the global rnh_lock. If we are called with
1101 * rnh_lock held, then we already have exclusive access; otherwise
1102 * we do the lock dance.
1106 * Note that we check it again below after grabbing rnh_lock,
1107 * since it is possible that another thread doing a lookup wins
1108 * the race, grabs the rnh_lock first, and bumps up reference
1109 * count in which case the route should be left alone as it is
1110 * still in use. It's also possible that another thread frees
1111 * the route after we drop rt_lock; to prevent the route from
1112 * being freed, we hold an extra reference.
1114 RT_ADDREF_LOCKED(rt
);
1116 lck_mtx_lock(rnh_lock
);
1118 if (rtunref(rt
) > 0) {
1119 /* We've lost the race, so abort */
1126 * We may be blocked on other lock(s) as part of freeing
1127 * the entry below, so convert from spin to full mutex.
1129 RT_CONVERT_LOCK(rt
);
1131 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_OWNED
);
1133 /* Negative refcnt must never happen */
1134 if (rt
->rt_refcnt
!= 0) {
1135 panic("rt %p invalid refcnt %d", rt
, rt
->rt_refcnt
);
1138 /* Idle refcnt must have been dropped during rtunref() */
1139 VERIFY(!(rt
->rt_flags
& RTF_IFREF
));
1142 * find the tree for that address family
1143 * Note: in the case of igmp packets, there might not be an rnh
1145 rnh
= rt_tables
[rt_key(rt
)->sa_family
];
1148 * On last reference give the "close method" a chance to cleanup
1149 * private state. This also permits (for IPv4 and IPv6) a chance
1150 * to decide if the routing table entry should be purged immediately
1151 * or at a later time. When an immediate purge is to happen the
1152 * close routine typically issues RTM_DELETE which clears the RTF_UP
1153 * flag on the entry so that the code below reclaims the storage.
1155 if (rnh
!= NULL
&& rnh
->rnh_close
!= NULL
)
1156 rnh
->rnh_close((struct radix_node
*)rt
, rnh
);
1159 * If we are no longer "up" (and ref == 0) then we can free the
1160 * resources associated with the route.
1162 if (!(rt
->rt_flags
& RTF_UP
)) {
1163 struct rtentry
*rt_parent
;
1164 struct ifaddr
*rt_ifa
;
1166 rt
->rt_flags
|= RTF_DEAD
;
1167 if (rt
->rt_nodes
->rn_flags
& (RNF_ACTIVE
| RNF_ROOT
)) {
1168 panic("rt %p freed while in radix tree\n", rt
);
1172 * the rtentry must have been removed from the routing table
1173 * so it is represented in rttrash; remove that now.
1175 (void) OSDecrementAtomic(&rttrash
);
1176 if (rte_debug
& RTD_DEBUG
) {
1177 TAILQ_REMOVE(&rttrash_head
, (struct rtentry_dbg
*)rt
,
1182 * release references on items we hold them on..
1183 * e.g other routes and ifaddrs.
1185 if ((rt_parent
= rt
->rt_parent
) != NULL
)
1186 rt
->rt_parent
= NULL
;
1188 if ((rt_ifa
= rt
->rt_ifa
) != NULL
)
1192 * Now free any attached link-layer info.
1194 if (rt
->rt_llinfo
!= NULL
) {
1195 if (rt
->rt_llinfo_free
!= NULL
)
1196 (*rt
->rt_llinfo_free
)(rt
->rt_llinfo
);
1198 R_Free(rt
->rt_llinfo
);
1199 rt
->rt_llinfo
= NULL
;
1202 /* Destroy eventhandler lists context */
1203 eventhandler_lists_ctxt_destroy(&rt
->rt_evhdlr_ctxt
);
1206 * Route is no longer in the tree and refcnt is 0;
1207 * we have exclusive access, so destroy it.
1210 rte_lock_destroy(rt
);
1212 if (rt_parent
!= NULL
)
1213 rtfree_locked(rt_parent
);
1219 * The key is separately alloc'd so free it (see rt_setgate()).
1220 * This also frees the gateway, as they are always malloc'd
1226 * Free any statistics that may have been allocated
1228 nstat_route_detach(rt
);
1231 * and the rtentry itself of course
1236 * The "close method" has been called, but the route is
1237 * still in the radix tree with zero refcnt, i.e. "up"
1238 * and in the cached state.
1244 lck_mtx_unlock(rnh_lock
);
1248 rtfree(struct rtentry
*rt
)
1250 rtfree_common(rt
, FALSE
);
1254 * Decrements the refcount but does not free the route when
1255 * the refcount reaches zero. Unless you have really good reason,
1256 * use rtfree not rtunref.
1259 rtunref(struct rtentry
*p
)
1261 RT_LOCK_ASSERT_HELD(p
);
1263 if (p
->rt_refcnt
== 0) {
1264 panic("%s(%p) bad refcnt\n", __func__
, p
);
1266 } else if (--p
->rt_refcnt
== 0) {
1268 * Release any idle reference count held on the interface;
1269 * if the route is eligible, still UP and the refcnt becomes
1270 * non-zero at some point in future before it is purged from
1271 * the routing table, rt_set_idleref() will undo this.
1273 rt_clear_idleref(p
);
1276 if (rte_debug
& RTD_DEBUG
)
1277 rtunref_audit((struct rtentry_dbg
*)p
);
1279 /* Return new value */
1280 return (p
->rt_refcnt
);
1284 rtunref_audit(struct rtentry_dbg
*rte
)
1288 if (rte
->rtd_inuse
!= RTD_INUSE
) {
1289 panic("rtunref: on freed rte=%p\n", rte
);
1292 idx
= atomic_add_16_ov(&rte
->rtd_refrele_cnt
, 1) % CTRACE_HIST_SIZE
;
1293 if (rte_debug
& RTD_TRACE
)
1294 ctrace_record(&rte
->rtd_refrele
[idx
]);
1298 * Add a reference count from an rtentry.
1301 rtref(struct rtentry
*p
)
1303 RT_LOCK_ASSERT_HELD(p
);
1305 VERIFY((p
->rt_flags
& RTF_DEAD
) == 0);
1306 if (++p
->rt_refcnt
== 0) {
1307 panic("%s(%p) bad refcnt\n", __func__
, p
);
1309 } else if (p
->rt_refcnt
== 1) {
1311 * Hold an idle reference count on the interface,
1312 * if the route is eligible for it.
1317 if (rte_debug
& RTD_DEBUG
)
1318 rtref_audit((struct rtentry_dbg
*)p
);
1322 rtref_audit(struct rtentry_dbg
*rte
)
1326 if (rte
->rtd_inuse
!= RTD_INUSE
) {
1327 panic("rtref_audit: on freed rte=%p\n", rte
);
1330 idx
= atomic_add_16_ov(&rte
->rtd_refhold_cnt
, 1) % CTRACE_HIST_SIZE
;
1331 if (rte_debug
& RTD_TRACE
)
1332 ctrace_record(&rte
->rtd_refhold
[idx
]);
1336 rtsetifa(struct rtentry
*rt
, struct ifaddr
*ifa
)
1338 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_OWNED
);
1340 RT_LOCK_ASSERT_HELD(rt
);
1342 if (rt
->rt_ifa
== ifa
)
1345 /* Become a regular mutex, just in case */
1346 RT_CONVERT_LOCK(rt
);
1348 /* Release the old ifa */
1350 IFA_REMREF(rt
->rt_ifa
);
1355 /* Take a reference to the ifa */
1357 IFA_ADDREF(rt
->rt_ifa
);
1361 * Force a routing table entry to the specified
1362 * destination to go through the given gateway.
1363 * Normally called as a result of a routing redirect
1364 * message from the network layer.
1367 rtredirect(struct ifnet
*ifp
, struct sockaddr
*dst
, struct sockaddr
*gateway
,
1368 struct sockaddr
*netmask
, int flags
, struct sockaddr
*src
,
1369 struct rtentry
**rtp
)
1371 struct rtentry
*rt
= NULL
;
1374 struct rt_addrinfo info
;
1375 struct ifaddr
*ifa
= NULL
;
1376 unsigned int ifscope
= (ifp
!= NULL
) ? ifp
->if_index
: IFSCOPE_NONE
;
1377 struct sockaddr_storage ss
;
1378 int af
= src
->sa_family
;
1380 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_NOTOWNED
);
1381 lck_mtx_lock(rnh_lock
);
1384 * Transform src into the internal routing table form for
1385 * comparison against rt_gateway below.
1388 if ((af
== AF_INET
) || (af
== AF_INET6
)) {
1390 if (af
== AF_INET
) {
1392 src
= sa_copy(src
, &ss
, &ifscope
);
1396 * Verify the gateway is directly reachable; if scoped routing
1397 * is enabled, verify that it is reachable from the interface
1398 * where the ICMP redirect arrived on.
1400 if ((ifa
= ifa_ifwithnet_scoped(gateway
, ifscope
)) == NULL
) {
1401 error
= ENETUNREACH
;
1405 /* Lookup route to the destination (from the original IP header) */
1406 rt
= rtalloc1_scoped_locked(dst
, 0, RTF_CLONING
|RTF_PRCLONING
, ifscope
);
1411 * If the redirect isn't from our current router for this dst,
1412 * it's either old or wrong. If it redirects us to ourselves,
1413 * we have a routing loop, perhaps as a result of an interface
1414 * going down recently. Holding rnh_lock here prevents the
1415 * possibility of rt_ifa/ifa's ifa_addr from changing (e.g.
1416 * in_ifinit), so okay to access ifa_addr without locking.
1418 if (!(flags
& RTF_DONE
) && rt
!= NULL
&&
1419 (!equal(src
, rt
->rt_gateway
) || !equal(rt
->rt_ifa
->ifa_addr
,
1424 if ((ifa
= ifa_ifwithaddr(gateway
))) {
1427 error
= EHOSTUNREACH
;
1443 * Create a new entry if we just got back a wildcard entry
1444 * or the the lookup failed. This is necessary for hosts
1445 * which use routing redirects generated by smart gateways
1446 * to dynamically build the routing tables.
1448 if ((rt
== NULL
) || (rt_mask(rt
) != NULL
&& rt_mask(rt
)->sa_len
< 2))
1451 * Don't listen to the redirect if it's
1452 * for a route to an interface.
1454 RT_LOCK_ASSERT_HELD(rt
);
1455 if (rt
->rt_flags
& RTF_GATEWAY
) {
1456 if (((rt
->rt_flags
& RTF_HOST
) == 0) && (flags
& RTF_HOST
)) {
1458 * Changing from route to net => route to host.
1459 * Create new route, rather than smashing route
1460 * to net; similar to cloned routes, the newly
1461 * created host route is scoped as well.
1466 flags
|= RTF_GATEWAY
| RTF_DYNAMIC
;
1467 error
= rtrequest_scoped_locked(RTM_ADD
, dst
,
1468 gateway
, netmask
, flags
, NULL
, ifscope
);
1469 stat
= &rtstat
.rts_dynamic
;
1472 * Smash the current notion of the gateway to
1473 * this destination. Should check about netmask!!!
1475 rt
->rt_flags
|= RTF_MODIFIED
;
1476 flags
|= RTF_MODIFIED
;
1477 stat
= &rtstat
.rts_newgateway
;
1479 * add the key and gateway (in one malloc'd chunk).
1481 error
= rt_setgate(rt
, rt_key(rt
), gateway
);
1486 error
= EHOSTUNREACH
;
1490 RT_LOCK_ASSERT_NOTHELD(rt
);
1492 /* Enqueue event to refresh flow route entries */
1493 route_event_enqueue_nwk_wq_entry(rt
, NULL
, ROUTE_ENTRY_REFRESH
, NULL
, FALSE
);
1504 rtstat
.rts_badredirect
++;
1510 routegenid_inet_update();
1512 else if (af
== AF_INET6
)
1513 routegenid_inet6_update();
1516 lck_mtx_unlock(rnh_lock
);
1517 bzero((caddr_t
)&info
, sizeof(info
));
1518 info
.rti_info
[RTAX_DST
] = dst
;
1519 info
.rti_info
[RTAX_GATEWAY
] = gateway
;
1520 info
.rti_info
[RTAX_NETMASK
] = netmask
;
1521 info
.rti_info
[RTAX_AUTHOR
] = src
;
1522 rt_missmsg(RTM_REDIRECT
, &info
, flags
, error
);
1526 * Routing table ioctl interface.
1529 rtioctl(unsigned long req
, caddr_t data
, struct proc
*p
)
1531 #pragma unused(p, req, data)
1538 const struct sockaddr
*dst
,
1539 const struct sockaddr
*gateway
)
1543 lck_mtx_lock(rnh_lock
);
1544 ifa
= ifa_ifwithroute_locked(flags
, dst
, gateway
);
1545 lck_mtx_unlock(rnh_lock
);
1551 ifa_ifwithroute_locked(int flags
, const struct sockaddr
*dst
,
1552 const struct sockaddr
*gateway
)
1554 return (ifa_ifwithroute_common_locked((flags
& ~RTF_IFSCOPE
), dst
,
1555 gateway
, IFSCOPE_NONE
));
1559 ifa_ifwithroute_scoped_locked(int flags
, const struct sockaddr
*dst
,
1560 const struct sockaddr
*gateway
, unsigned int ifscope
)
1562 if (ifscope
!= IFSCOPE_NONE
)
1563 flags
|= RTF_IFSCOPE
;
1565 flags
&= ~RTF_IFSCOPE
;
1567 return (ifa_ifwithroute_common_locked(flags
, dst
, gateway
, ifscope
));
1570 static struct ifaddr
*
1571 ifa_ifwithroute_common_locked(int flags
, const struct sockaddr
*dst
,
1572 const struct sockaddr
*gw
, unsigned int ifscope
)
1574 struct ifaddr
*ifa
= NULL
;
1575 struct rtentry
*rt
= NULL
;
1576 struct sockaddr_storage dst_ss
, gw_ss
;
1578 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_OWNED
);
1581 * Just in case the sockaddr passed in by the caller
1582 * contains a scope ID, make sure to clear it since
1583 * interface addresses aren't scoped.
1587 ((dst
->sa_family
== AF_INET
) ||
1588 (dst
->sa_family
== AF_INET6
)))
1590 if (dst
!= NULL
&& dst
->sa_family
== AF_INET
)
1592 dst
= sa_copy(SA((uintptr_t)dst
), &dst_ss
, NULL
);
1596 ((gw
->sa_family
== AF_INET
) ||
1597 (gw
->sa_family
== AF_INET6
)))
1599 if (gw
!= NULL
&& gw
->sa_family
== AF_INET
)
1601 gw
= sa_copy(SA((uintptr_t)gw
), &gw_ss
, NULL
);
1603 if (!(flags
& RTF_GATEWAY
)) {
1605 * If we are adding a route to an interface,
1606 * and the interface is a pt to pt link
1607 * we should search for the destination
1608 * as our clue to the interface. Otherwise
1609 * we can use the local address.
1611 if (flags
& RTF_HOST
) {
1612 ifa
= ifa_ifwithdstaddr(dst
);
1615 ifa
= ifa_ifwithaddr_scoped(gw
, ifscope
);
1618 * If we are adding a route to a remote net
1619 * or host, the gateway may still be on the
1620 * other end of a pt to pt link.
1622 ifa
= ifa_ifwithdstaddr(gw
);
1625 ifa
= ifa_ifwithnet_scoped(gw
, ifscope
);
1627 /* Workaround to avoid gcc warning regarding const variable */
1628 rt
= rtalloc1_scoped_locked((struct sockaddr
*)(size_t)dst
,
1634 /* Become a regular mutex */
1635 RT_CONVERT_LOCK(rt
);
1638 RT_REMREF_LOCKED(rt
);
1644 * Holding rnh_lock here prevents the possibility of ifa from
1645 * changing (e.g. in_ifinit), so it is safe to access its
1646 * ifa_addr (here and down below) without locking.
1648 if (ifa
!= NULL
&& ifa
->ifa_addr
->sa_family
!= dst
->sa_family
) {
1649 struct ifaddr
*newifa
;
1650 /* Callee adds reference to newifa upon success */
1651 newifa
= ifaof_ifpforaddr(dst
, ifa
->ifa_ifp
);
1652 if (newifa
!= NULL
) {
1658 * If we are adding a gateway, it is quite possible that the
1659 * routing table has a static entry in place for the gateway,
1660 * that may not agree with info garnered from the interfaces.
1661 * The routing table should carry more precedence than the
1662 * interfaces in this matter. Must be careful not to stomp
1663 * on new entries from rtinit, hence (ifa->ifa_addr != gw).
1666 !equal(ifa
->ifa_addr
, (struct sockaddr
*)(size_t)gw
)) &&
1667 (rt
= rtalloc1_scoped_locked((struct sockaddr
*)(size_t)gw
,
1668 0, 0, ifscope
)) != NULL
) {
1674 /* Become a regular mutex */
1675 RT_CONVERT_LOCK(rt
);
1678 RT_REMREF_LOCKED(rt
);
1682 * If an interface scope was specified, the interface index of
1683 * the found ifaddr must be equivalent to that of the scope;
1684 * otherwise there is no match.
1686 if ((flags
& RTF_IFSCOPE
) &&
1687 ifa
!= NULL
&& ifa
->ifa_ifp
->if_index
!= ifscope
) {
1693 * ifa's address family must match destination's address family
1694 * after all is said and done.
1697 ifa
->ifa_addr
->sa_family
!= dst
->sa_family
) {
1705 static int rt_fixdelete(struct radix_node
*, void *);
1706 static int rt_fixchange(struct radix_node
*, void *);
1709 struct rtentry
*rt0
;
1710 struct radix_node_head
*rnh
;
1714 rtrequest_locked(int req
, struct sockaddr
*dst
, struct sockaddr
*gateway
,
1715 struct sockaddr
*netmask
, int flags
, struct rtentry
**ret_nrt
)
1717 return (rtrequest_common_locked(req
, dst
, gateway
, netmask
,
1718 (flags
& ~RTF_IFSCOPE
), ret_nrt
, IFSCOPE_NONE
));
1722 rtrequest_scoped_locked(int req
, struct sockaddr
*dst
,
1723 struct sockaddr
*gateway
, struct sockaddr
*netmask
, int flags
,
1724 struct rtentry
**ret_nrt
, unsigned int ifscope
)
1726 if (ifscope
!= IFSCOPE_NONE
)
1727 flags
|= RTF_IFSCOPE
;
1729 flags
&= ~RTF_IFSCOPE
;
1731 return (rtrequest_common_locked(req
, dst
, gateway
, netmask
,
1732 flags
, ret_nrt
, ifscope
));
1736 * Do appropriate manipulations of a routing tree given all the bits of
1739 * Storing the scope ID in the radix key is an internal job that should be
1740 * left to routines in this module. Callers should specify the scope value
1741 * to the "scoped" variants of route routines instead of manipulating the
1742 * key itself. This is typically done when creating a scoped route, e.g.
1743 * rtrequest(RTM_ADD). Once such a route is created and marked with the
1744 * RTF_IFSCOPE flag, callers can simply use its rt_key(rt) to clone it
1745 * (RTM_RESOLVE) or to remove it (RTM_DELETE). An exception to this is
1746 * during certain routing socket operations where the search key might be
1747 * derived from the routing message itself, in which case the caller must
1748 * specify the destination address and scope value for RTM_ADD/RTM_DELETE.
1751 rtrequest_common_locked(int req
, struct sockaddr
*dst0
,
1752 struct sockaddr
*gateway
, struct sockaddr
*netmask
, int flags
,
1753 struct rtentry
**ret_nrt
, unsigned int ifscope
)
1757 struct radix_node
*rn
;
1758 struct radix_node_head
*rnh
;
1759 struct ifaddr
*ifa
= NULL
;
1760 struct sockaddr
*ndst
, *dst
= dst0
;
1761 struct sockaddr_storage ss
, mask
;
1762 struct timeval caltime
;
1763 int af
= dst
->sa_family
;
1764 void (*ifa_rtrequest
)(int, struct rtentry
*, struct sockaddr
*);
1766 #define senderr(x) { error = x; goto bad; }
1768 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_OWNED
);
1770 * Find the correct routing tree to use for this Address Family
1772 if ((rnh
= rt_tables
[af
]) == NULL
)
1775 * If we are adding a host route then we don't want to put
1776 * a netmask in the tree
1778 if (flags
& RTF_HOST
)
1782 * If Scoped Routing is enabled, use a local copy of the destination
1783 * address to store the scope ID into. This logic is repeated below
1784 * in the RTM_RESOLVE handler since the caller does not normally
1785 * specify such a flag during a resolve, as well as for the handling
1786 * of IPv4 link-local address; instead, it passes in the route used for
1787 * cloning for which the scope info is derived from. Note also that
1788 * in the case of RTM_DELETE, the address passed in by the caller
1789 * might already contain the scope ID info when it is the key itself,
1790 * thus making RTF_IFSCOPE unnecessary; one instance where it is
1791 * explicitly set is inside route_output() as part of handling a
1792 * routing socket request.
1795 if (req
!= RTM_RESOLVE
&& ((af
== AF_INET
) || (af
== AF_INET6
))) {
1797 if (req
!= RTM_RESOLVE
&& af
== AF_INET
) {
1799 /* Transform dst into the internal routing table form */
1800 dst
= sa_copy(dst
, &ss
, &ifscope
);
1802 /* Transform netmask into the internal routing table form */
1803 if (netmask
!= NULL
)
1804 netmask
= ma_copy(af
, netmask
, &mask
, ifscope
);
1806 if (ifscope
!= IFSCOPE_NONE
)
1807 flags
|= RTF_IFSCOPE
;
1808 } else if ((flags
& RTF_IFSCOPE
) &&
1809 (af
!= AF_INET
&& af
!= AF_INET6
)) {
1813 if (ifscope
== IFSCOPE_NONE
)
1814 flags
&= ~RTF_IFSCOPE
;
1818 struct rtentry
*gwrt
= NULL
;
1819 boolean_t was_router
= FALSE
;
1820 uint32_t old_rt_refcnt
= 0;
1822 * Remove the item from the tree and return it.
1823 * Complain if it is not there and do no more processing.
1825 if ((rn
= rnh
->rnh_deladdr(dst
, netmask
, rnh
)) == NULL
)
1827 if (rn
->rn_flags
& (RNF_ACTIVE
| RNF_ROOT
)) {
1828 panic("rtrequest delete");
1831 rt
= (struct rtentry
*)rn
;
1834 old_rt_refcnt
= rt
->rt_refcnt
;
1835 rt
->rt_flags
&= ~RTF_UP
;
1837 * Release any idle reference count held on the interface
1838 * as this route is no longer externally visible.
1840 rt_clear_idleref(rt
);
1842 * Take an extra reference to handle the deletion of a route
1843 * entry whose reference count is already 0; e.g. an expiring
1844 * cloned route entry or an entry that was added to the table
1845 * with 0 reference. If the caller is interested in this route,
1846 * we will return it with the reference intact. Otherwise we
1847 * will decrement the reference via rtfree_locked() and then
1848 * possibly deallocate it.
1850 RT_ADDREF_LOCKED(rt
);
1853 * For consistency, in case the caller didn't set the flag.
1855 rt
->rt_flags
|= RTF_CONDEMNED
;
1858 * Clear RTF_ROUTER if it's set.
1860 if (rt
->rt_flags
& RTF_ROUTER
) {
1862 VERIFY(rt
->rt_flags
& RTF_HOST
);
1863 rt
->rt_flags
&= ~RTF_ROUTER
;
1867 * Enqueue work item to invoke callback for this route entry
1869 * If the old count is 0, it implies that last reference is being
1870 * removed and there's no one listening for this route event.
1872 if (old_rt_refcnt
!= 0)
1873 route_event_enqueue_nwk_wq_entry(rt
, NULL
,
1874 ROUTE_ENTRY_DELETED
, NULL
, TRUE
);
1877 * Now search what's left of the subtree for any cloned
1878 * routes which might have been formed from this node.
1880 if ((rt
->rt_flags
& (RTF_CLONING
| RTF_PRCLONING
)) &&
1883 rnh
->rnh_walktree_from(rnh
, dst
, rt_mask(rt
),
1889 struct route_event rt_ev
;
1890 route_event_init(&rt_ev
, rt
, NULL
, ROUTE_LLENTRY_DELETED
);
1892 (void) rnh
->rnh_walktree(rnh
,
1893 route_event_walktree
, (void *)&rt_ev
);
1898 * Remove any external references we may have.
1900 if ((gwrt
= rt
->rt_gwroute
) != NULL
)
1901 rt
->rt_gwroute
= NULL
;
1904 * give the protocol a chance to keep things in sync.
1906 if ((ifa
= rt
->rt_ifa
) != NULL
) {
1908 ifa_rtrequest
= ifa
->ifa_rtrequest
;
1910 if (ifa_rtrequest
!= NULL
)
1911 ifa_rtrequest(RTM_DELETE
, rt
, NULL
);
1912 /* keep reference on rt_ifa */
1917 * one more rtentry floating around that is not
1918 * linked to the routing table.
1920 (void) OSIncrementAtomic(&rttrash
);
1921 if (rte_debug
& RTD_DEBUG
) {
1922 TAILQ_INSERT_TAIL(&rttrash_head
,
1923 (struct rtentry_dbg
*)rt
, rtd_trash_link
);
1927 * If this is the (non-scoped) default route, clear
1928 * the interface index used for the primary ifscope.
1930 if (rt_primary_default(rt
, rt_key(rt
))) {
1931 set_primary_ifscope(rt_key(rt
)->sa_family
,
1937 * If this is a change in a default route, update
1938 * necp client watchers to re-evaluate
1940 if (SA_DEFAULT(rt_key(rt
))) {
1941 if (rt
->rt_ifp
!= NULL
) {
1942 ifnet_touch_lastupdown(rt
->rt_ifp
);
1944 necp_update_all_clients();
1951 * This might result in another rtentry being freed if
1952 * we held its last reference. Do this after the rtentry
1953 * lock is dropped above, as it could lead to the same
1954 * lock being acquired if gwrt is a clone of rt.
1957 rtfree_locked(gwrt
);
1960 * If the caller wants it, then it can have it,
1961 * but it's up to it to free the rtentry as we won't be
1964 if (ret_nrt
!= NULL
) {
1965 /* Return the route to caller with reference intact */
1968 /* Dereference or deallocate the route */
1972 routegenid_inet_update();
1974 else if (af
== AF_INET6
)
1975 routegenid_inet6_update();
1980 if (ret_nrt
== NULL
|| (rt
= *ret_nrt
) == NULL
)
1983 * According to the UNIX conformance tests, we need to return
1984 * ENETUNREACH when the parent route is RTF_REJECT.
1985 * However, there isn't any point in cloning RTF_REJECT
1986 * routes, so we immediately return an error.
1988 if (rt
->rt_flags
& RTF_REJECT
) {
1989 if (rt
->rt_flags
& RTF_HOST
) {
1990 senderr(EHOSTUNREACH
);
1992 senderr(ENETUNREACH
);
1996 * If cloning, we have the parent route given by the caller
1997 * and will use its rt_gateway, rt_rmx as part of the cloning
1998 * process below. Since rnh_lock is held at this point, the
1999 * parent's rt_ifa and rt_gateway will not change, and its
2000 * relevant rt_flags will not change as well. The only thing
2001 * that could change are the metrics, and thus we hold the
2002 * parent route's rt_lock later on during the actual copying
2007 flags
= rt
->rt_flags
&
2008 ~(RTF_CLONING
| RTF_PRCLONING
| RTF_STATIC
);
2009 flags
|= RTF_WASCLONED
;
2010 gateway
= rt
->rt_gateway
;
2011 if ((netmask
= rt
->rt_genmask
) == NULL
)
2015 if (af
!= AF_INET
&& af
!= AF_INET6
)
2022 * When scoped routing is enabled, cloned entries are
2023 * always scoped according to the interface portion of
2024 * the parent route. The exception to this are IPv4
2025 * link local addresses, or those routes that are cloned
2026 * from a RTF_PROXY route. For the latter, the clone
2027 * gets to keep the RTF_PROXY flag.
2029 if ((af
== AF_INET
&&
2030 IN_LINKLOCAL(ntohl(SIN(dst
)->sin_addr
.s_addr
))) ||
2031 (rt
->rt_flags
& RTF_PROXY
)) {
2032 ifscope
= IFSCOPE_NONE
;
2033 flags
&= ~RTF_IFSCOPE
;
2035 * These types of cloned routes aren't currently
2036 * eligible for idle interface reference counting.
2038 flags
|= RTF_NOIFREF
;
2040 if (flags
& RTF_IFSCOPE
) {
2041 ifscope
= (af
== AF_INET
) ?
2042 sin_get_ifscope(rt_key(rt
)) :
2043 sin6_get_ifscope(rt_key(rt
));
2045 ifscope
= rt
->rt_ifp
->if_index
;
2046 flags
|= RTF_IFSCOPE
;
2048 VERIFY(ifscope
!= IFSCOPE_NONE
);
2052 * Transform dst into the internal routing table form,
2053 * clearing out the scope ID field if ifscope isn't set.
2055 dst
= sa_copy(dst
, &ss
, (ifscope
== IFSCOPE_NONE
) ?
2058 /* Transform netmask into the internal routing table form */
2059 if (netmask
!= NULL
)
2060 netmask
= ma_copy(af
, netmask
, &mask
, ifscope
);
2065 if ((flags
& RTF_GATEWAY
) && !gateway
) {
2066 panic("rtrequest: RTF_GATEWAY but no gateway");
2069 if (flags
& RTF_IFSCOPE
) {
2070 ifa
= ifa_ifwithroute_scoped_locked(flags
, dst0
,
2073 ifa
= ifa_ifwithroute_locked(flags
, dst0
, gateway
);
2076 senderr(ENETUNREACH
);
2079 * We land up here for both RTM_RESOLVE and RTM_ADD
2080 * when we decide to create a route.
2082 if ((rt
= rte_alloc()) == NULL
)
2084 Bzero(rt
, sizeof(*rt
));
2086 eventhandler_lists_ctxt_init(&rt
->rt_evhdlr_ctxt
);
2087 getmicrotime(&caltime
);
2088 rt
->base_calendartime
= caltime
.tv_sec
;
2089 rt
->base_uptime
= net_uptime();
2091 rt
->rt_flags
= RTF_UP
| flags
;
2094 * Point the generation ID to the tree's.
2098 rt
->rt_tree_genid
= &route_genid_inet
;
2102 rt
->rt_tree_genid
= &route_genid_inet6
;
2110 * Add the gateway. Possibly re-malloc-ing the storage for it
2111 * also add the rt_gwroute if possible.
2113 if ((error
= rt_setgate(rt
, dst
, gateway
)) != 0) {
2116 nstat_route_detach(rt
);
2117 rte_lock_destroy(rt
);
2123 * point to the (possibly newly malloc'd) dest address.
2128 * make sure it contains the value we want (masked if needed).
2131 rt_maskedcopy(dst
, ndst
, netmask
);
2133 Bcopy(dst
, ndst
, dst
->sa_len
);
2136 * Note that we now have a reference to the ifa.
2137 * This moved from below so that rnh->rnh_addaddr() can
2138 * examine the ifa and ifa->ifa_ifp if it so desires.
2141 rt
->rt_ifp
= rt
->rt_ifa
->ifa_ifp
;
2143 /* XXX mtu manipulation will be done in rnh_addaddr -- itojun */
2145 rn
= rnh
->rnh_addaddr((caddr_t
)ndst
, (caddr_t
)netmask
,
2148 struct rtentry
*rt2
;
2150 * Uh-oh, we already have one of these in the tree.
2151 * We do a special hack: if the route that's already
2152 * there was generated by the protocol-cloning
2153 * mechanism, then we just blow it away and retry
2154 * the insertion of the new one.
2156 if (flags
& RTF_IFSCOPE
) {
2157 rt2
= rtalloc1_scoped_locked(dst0
, 0,
2158 RTF_CLONING
| RTF_PRCLONING
, ifscope
);
2160 rt2
= rtalloc1_locked(dst
, 0,
2161 RTF_CLONING
| RTF_PRCLONING
);
2163 if (rt2
&& rt2
->rt_parent
) {
2165 * rnh_lock is held here, so rt_key and
2166 * rt_gateway of rt2 will not change.
2168 (void) rtrequest_locked(RTM_DELETE
, rt_key(rt2
),
2169 rt2
->rt_gateway
, rt_mask(rt2
),
2172 rn
= rnh
->rnh_addaddr((caddr_t
)ndst
,
2173 (caddr_t
)netmask
, rnh
, rt
->rt_nodes
);
2175 /* undo the extra ref we got */
2181 * If it still failed to go into the tree,
2182 * then un-make it (this should be a function)
2185 /* Clear gateway route */
2186 rt_set_gwroute(rt
, rt_key(rt
), NULL
);
2188 IFA_REMREF(rt
->rt_ifa
);
2193 nstat_route_detach(rt
);
2194 rte_lock_destroy(rt
);
2199 rt
->rt_parent
= NULL
;
2202 * If we got here from RESOLVE, then we are cloning so clone
2203 * the rest, and note that we are a clone (and increment the
2204 * parent's references). rnh_lock is still held, which prevents
2205 * a lookup from returning the newly-created route. Hence
2206 * holding and releasing the parent's rt_lock while still
2207 * holding the route's rt_lock is safe since the new route
2208 * is not yet externally visible.
2210 if (req
== RTM_RESOLVE
) {
2211 RT_LOCK_SPIN(*ret_nrt
);
2212 VERIFY((*ret_nrt
)->rt_expire
== 0 ||
2213 (*ret_nrt
)->rt_rmx
.rmx_expire
!= 0);
2214 VERIFY((*ret_nrt
)->rt_expire
!= 0 ||
2215 (*ret_nrt
)->rt_rmx
.rmx_expire
== 0);
2216 rt
->rt_rmx
= (*ret_nrt
)->rt_rmx
;
2217 rt_setexpire(rt
, (*ret_nrt
)->rt_expire
);
2218 if ((*ret_nrt
)->rt_flags
&
2219 (RTF_CLONING
| RTF_PRCLONING
)) {
2220 rt
->rt_parent
= (*ret_nrt
);
2221 RT_ADDREF_LOCKED(*ret_nrt
);
2223 RT_UNLOCK(*ret_nrt
);
2227 * if this protocol has something to add to this then
2228 * allow it to do that as well.
2231 ifa_rtrequest
= ifa
->ifa_rtrequest
;
2233 if (ifa_rtrequest
!= NULL
)
2234 ifa_rtrequest(req
, rt
, SA(ret_nrt
? *ret_nrt
: NULL
));
2239 * If this is the (non-scoped) default route, record
2240 * the interface index used for the primary ifscope.
2242 if (rt_primary_default(rt
, rt_key(rt
))) {
2243 set_primary_ifscope(rt_key(rt
)->sa_family
,
2244 rt
->rt_ifp
->if_index
);
2249 * If this is a change in a default route, update
2250 * necp client watchers to re-evaluate
2252 if (SA_DEFAULT(rt_key(rt
))) {
2253 if (rt
->rt_ifp
!= NULL
) {
2254 ifnet_touch_lastupdown(rt
->rt_ifp
);
2256 necp_update_all_clients();
2261 * actually return a resultant rtentry and
2262 * give the caller a single reference.
2266 RT_ADDREF_LOCKED(rt
);
2270 routegenid_inet_update();
2272 else if (af
== AF_INET6
)
2273 routegenid_inet6_update();
2279 * We repeat the same procedures from rt_setgate() here
2280 * because they weren't completed when we called it earlier,
2281 * since the node was embryonic.
2283 if ((rt
->rt_flags
& RTF_GATEWAY
) && rt
->rt_gwroute
!= NULL
)
2284 rt_set_gwroute(rt
, rt_key(rt
), rt
->rt_gwroute
);
2286 if (req
== RTM_ADD
&&
2287 !(rt
->rt_flags
& RTF_HOST
) && rt_mask(rt
) != NULL
) {
2288 struct rtfc_arg arg
;
2292 rnh
->rnh_walktree_from(rnh
, rt_key(rt
), rt_mask(rt
),
2293 rt_fixchange
, &arg
);
2298 nstat_route_new_entry(rt
);
2309 rtrequest(int req
, struct sockaddr
*dst
, struct sockaddr
*gateway
,
2310 struct sockaddr
*netmask
, int flags
, struct rtentry
**ret_nrt
)
2313 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_NOTOWNED
);
2314 lck_mtx_lock(rnh_lock
);
2315 error
= rtrequest_locked(req
, dst
, gateway
, netmask
, flags
, ret_nrt
);
2316 lck_mtx_unlock(rnh_lock
);
2321 rtrequest_scoped(int req
, struct sockaddr
*dst
, struct sockaddr
*gateway
,
2322 struct sockaddr
*netmask
, int flags
, struct rtentry
**ret_nrt
,
2323 unsigned int ifscope
)
2326 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_NOTOWNED
);
2327 lck_mtx_lock(rnh_lock
);
2328 error
= rtrequest_scoped_locked(req
, dst
, gateway
, netmask
, flags
,
2330 lck_mtx_unlock(rnh_lock
);
2335 * Called from rtrequest(RTM_DELETE, ...) to fix up the route's ``family''
2336 * (i.e., the routes related to it by the operation of cloning). This
2337 * routine is iterated over all potential former-child-routes by way of
2338 * rnh->rnh_walktree_from() above, and those that actually are children of
2339 * the late parent (passed in as VP here) are themselves deleted.
2342 rt_fixdelete(struct radix_node
*rn
, void *vp
)
2344 struct rtentry
*rt
= (struct rtentry
*)rn
;
2345 struct rtentry
*rt0
= vp
;
2347 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_OWNED
);
2350 if (rt
->rt_parent
== rt0
&&
2351 !(rt
->rt_flags
& (RTF_CLONING
| RTF_PRCLONING
))) {
2353 * Safe to drop rt_lock and use rt_key, since holding
2354 * rnh_lock here prevents another thread from calling
2355 * rt_setgate() on this route.
2358 return (rtrequest_locked(RTM_DELETE
, rt_key(rt
), NULL
,
2359 rt_mask(rt
), rt
->rt_flags
, NULL
));
2366 * This routine is called from rt_setgate() to do the analogous thing for
2367 * adds and changes. There is the added complication in this case of a
2368 * middle insert; i.e., insertion of a new network route between an older
2369 * network route and (cloned) host routes. For this reason, a simple check
2370 * of rt->rt_parent is insufficient; each candidate route must be tested
2371 * against the (mask, value) of the new route (passed as before in vp)
2372 * to see if the new route matches it.
2374 * XXX - it may be possible to do fixdelete() for changes and reserve this
2375 * routine just for adds. I'm not sure why I thought it was necessary to do
2379 rt_fixchange(struct radix_node
*rn
, void *vp
)
2381 struct rtentry
*rt
= (struct rtentry
*)rn
;
2382 struct rtfc_arg
*ap
= vp
;
2383 struct rtentry
*rt0
= ap
->rt0
;
2384 struct radix_node_head
*rnh
= ap
->rnh
;
2385 u_char
*xk1
, *xm1
, *xk2
, *xmp
;
2388 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_OWNED
);
2392 if (!rt
->rt_parent
||
2393 (rt
->rt_flags
& (RTF_CLONING
| RTF_PRCLONING
))) {
2398 if (rt
->rt_parent
== rt0
)
2402 * There probably is a function somewhere which does this...
2403 * if not, there should be.
2405 len
= imin(rt_key(rt0
)->sa_len
, rt_key(rt
)->sa_len
);
2407 xk1
= (u_char
*)rt_key(rt0
);
2408 xm1
= (u_char
*)rt_mask(rt0
);
2409 xk2
= (u_char
*)rt_key(rt
);
2412 * Avoid applying a less specific route; do this only if the parent
2413 * route (rt->rt_parent) is a network route, since otherwise its mask
2414 * will be NULL if it is a cloning host route.
2416 if ((xmp
= (u_char
*)rt_mask(rt
->rt_parent
)) != NULL
) {
2417 int mlen
= rt_mask(rt
->rt_parent
)->sa_len
;
2418 if (mlen
> rt_mask(rt0
)->sa_len
) {
2423 for (i
= rnh
->rnh_treetop
->rn_offset
; i
< mlen
; i
++) {
2424 if ((xmp
[i
] & ~(xmp
[i
] ^ xm1
[i
])) != xmp
[i
]) {
2431 for (i
= rnh
->rnh_treetop
->rn_offset
; i
< len
; i
++) {
2432 if ((xk2
[i
] & xm1
[i
]) != xk1
[i
]) {
2439 * OK, this node is a clone, and matches the node currently being
2440 * changed/added under the node's mask. So, get rid of it.
2444 * Safe to drop rt_lock and use rt_key, since holding rnh_lock here
2445 * prevents another thread from calling rt_setgate() on this route.
2448 return (rtrequest_locked(RTM_DELETE
, rt_key(rt
), NULL
,
2449 rt_mask(rt
), rt
->rt_flags
, NULL
));
2453 * Round up sockaddr len to multiples of 32-bytes. This will reduce
2454 * or even eliminate the need to re-allocate the chunk of memory used
2455 * for rt_key and rt_gateway in the event the gateway portion changes.
2456 * Certain code paths (e.g. IPSec) are notorious for caching the address
2457 * of rt_gateway; this rounding-up would help ensure that the gateway
2458 * portion never gets deallocated (though it may change contents) and
2459 * thus greatly simplifies things.
2461 #define SA_SIZE(x) (-(-((uintptr_t)(x)) & -(32)))
2464 * Sets the gateway and/or gateway route portion of a route; may be
2465 * called on an existing route to modify the gateway portion. Both
2466 * rt_key and rt_gateway are allocated out of the same memory chunk.
2467 * Route entry lock must be held by caller; this routine will return
2468 * with the lock held.
2471 rt_setgate(struct rtentry
*rt
, struct sockaddr
*dst
, struct sockaddr
*gate
)
2473 int dlen
= SA_SIZE(dst
->sa_len
), glen
= SA_SIZE(gate
->sa_len
);
2474 struct radix_node_head
*rnh
= NULL
;
2475 boolean_t loop
= FALSE
;
2477 if (dst
->sa_family
!= AF_INET
&& dst
->sa_family
!= AF_INET6
) {
2481 rnh
= rt_tables
[dst
->sa_family
];
2482 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_OWNED
);
2483 RT_LOCK_ASSERT_HELD(rt
);
2486 * If this is for a route that is on its way of being removed,
2487 * or is temporarily frozen, reject the modification request.
2489 if (rt
->rt_flags
& RTF_CONDEMNED
) {
2493 /* Add an extra ref for ourselves */
2494 RT_ADDREF_LOCKED(rt
);
2496 if (rt
->rt_flags
& RTF_GATEWAY
) {
2497 if ((dst
->sa_len
== gate
->sa_len
) &&
2498 (dst
->sa_family
== AF_INET
|| dst
->sa_family
== AF_INET6
)) {
2499 struct sockaddr_storage dst_ss
, gate_ss
;
2501 (void) sa_copy(dst
, &dst_ss
, NULL
);
2502 (void) sa_copy(gate
, &gate_ss
, NULL
);
2504 loop
= equal(SA(&dst_ss
), SA(&gate_ss
));
2506 loop
= (dst
->sa_len
== gate
->sa_len
&&
2512 * A (cloning) network route with the destination equal to the gateway
2513 * will create an endless loop (see notes below), so disallow it.
2515 if (((rt
->rt_flags
& (RTF_HOST
|RTF_GATEWAY
|RTF_LLINFO
)) ==
2516 RTF_GATEWAY
) && loop
) {
2517 /* Release extra ref */
2518 RT_REMREF_LOCKED(rt
);
2519 return (EADDRNOTAVAIL
);
2523 * A host route with the destination equal to the gateway
2524 * will interfere with keeping LLINFO in the routing
2525 * table, so disallow it.
2527 if (((rt
->rt_flags
& (RTF_HOST
|RTF_GATEWAY
|RTF_LLINFO
)) ==
2528 (RTF_HOST
|RTF_GATEWAY
)) && loop
) {
2530 * The route might already exist if this is an RTM_CHANGE
2531 * or a routing redirect, so try to delete it.
2533 if (rt_key(rt
) != NULL
) {
2535 * Safe to drop rt_lock and use rt_key, rt_gateway,
2536 * since holding rnh_lock here prevents another thread
2537 * from calling rt_setgate() on this route.
2540 (void) rtrequest_locked(RTM_DELETE
, rt_key(rt
),
2541 rt
->rt_gateway
, rt_mask(rt
), rt
->rt_flags
, NULL
);
2544 /* Release extra ref */
2545 RT_REMREF_LOCKED(rt
);
2546 return (EADDRNOTAVAIL
);
2550 * The destination is not directly reachable. Get a route
2551 * to the next-hop gateway and store it in rt_gwroute.
2553 if (rt
->rt_flags
& RTF_GATEWAY
) {
2554 struct rtentry
*gwrt
;
2555 unsigned int ifscope
;
2557 if (dst
->sa_family
== AF_INET
)
2558 ifscope
= sin_get_ifscope(dst
);
2559 else if (dst
->sa_family
== AF_INET6
)
2560 ifscope
= sin6_get_ifscope(dst
);
2562 ifscope
= IFSCOPE_NONE
;
2566 * Don't ignore RTF_CLONING, since we prefer that rt_gwroute
2567 * points to a clone rather than a cloning route; see above
2568 * check for cloning loop avoidance (dst == gate).
2570 gwrt
= rtalloc1_scoped_locked(gate
, 1, RTF_PRCLONING
, ifscope
);
2572 RT_LOCK_ASSERT_NOTHELD(gwrt
);
2576 * Cloning loop avoidance:
2578 * In the presence of protocol-cloning and bad configuration,
2579 * it is possible to get stuck in bottomless mutual recursion
2580 * (rtrequest rt_setgate rtalloc1). We avoid this by not
2581 * allowing protocol-cloning to operate for gateways (which
2582 * is probably the correct choice anyway), and avoid the
2583 * resulting reference loops by disallowing any route to run
2584 * through itself as a gateway. This is obviously mandatory
2585 * when we get rt->rt_output(). It implies that a route to
2586 * the gateway must already be present in the system in order
2587 * for the gateway to be referred to by another route.
2590 RT_REMREF_LOCKED(gwrt
);
2591 /* Release extra ref */
2592 RT_REMREF_LOCKED(rt
);
2593 return (EADDRINUSE
); /* failure */
2597 * If scoped, the gateway route must use the same interface;
2598 * we're holding rnh_lock now, so rt_gateway and rt_ifp of gwrt
2599 * should not change and are freely accessible.
2601 if (ifscope
!= IFSCOPE_NONE
&& (rt
->rt_flags
& RTF_IFSCOPE
) &&
2602 gwrt
!= NULL
&& gwrt
->rt_ifp
!= NULL
&&
2603 gwrt
->rt_ifp
->if_index
!= ifscope
) {
2604 rtfree_locked(gwrt
); /* rt != gwrt, no deadlock */
2605 /* Release extra ref */
2606 RT_REMREF_LOCKED(rt
);
2607 return ((rt
->rt_flags
& RTF_HOST
) ?
2608 EHOSTUNREACH
: ENETUNREACH
);
2611 /* Check again since we dropped the lock above */
2612 if (rt
->rt_flags
& RTF_CONDEMNED
) {
2614 rtfree_locked(gwrt
);
2615 /* Release extra ref */
2616 RT_REMREF_LOCKED(rt
);
2620 /* Set gateway route; callee adds ref to gwrt if non-NULL */
2621 rt_set_gwroute(rt
, dst
, gwrt
);
2624 * In case the (non-scoped) default route gets modified via
2625 * an ICMP redirect, record the interface index used for the
2626 * primary ifscope. Also done in rt_setif() to take care
2627 * of the non-redirect cases.
2629 if (rt_primary_default(rt
, dst
) && rt
->rt_ifp
!= NULL
) {
2630 set_primary_ifscope(dst
->sa_family
,
2631 rt
->rt_ifp
->if_index
);
2636 * If this is a change in a default route, update
2637 * necp client watchers to re-evaluate
2639 if (SA_DEFAULT(dst
)) {
2640 necp_update_all_clients();
2645 * Tell the kernel debugger about the new default gateway
2646 * if the gateway route uses the primary interface, or
2647 * if we are in a transient state before the non-scoped
2648 * default gateway is installed (similar to how the system
2649 * was behaving in the past). In future, it would be good
2650 * to do all this only when KDP is enabled.
2652 if ((dst
->sa_family
== AF_INET
) &&
2653 gwrt
!= NULL
&& gwrt
->rt_gateway
->sa_family
== AF_LINK
&&
2654 (gwrt
->rt_ifp
->if_index
== get_primary_ifscope(AF_INET
) ||
2655 get_primary_ifscope(AF_INET
) == IFSCOPE_NONE
)) {
2656 kdp_set_gateway_mac(SDL((void *)gwrt
->rt_gateway
)->
2660 /* Release extra ref from rtalloc1() */
2666 * Prepare to store the gateway in rt_gateway. Both dst and gateway
2667 * are stored one after the other in the same malloc'd chunk. If we
2668 * have room, reuse the old buffer since rt_gateway already points
2669 * to the right place. Otherwise, malloc a new block and update
2670 * the 'dst' address and point rt_gateway to the right place.
2672 if (rt
->rt_gateway
== NULL
|| glen
> SA_SIZE(rt
->rt_gateway
->sa_len
)) {
2675 /* The underlying allocation is done with M_WAITOK set */
2676 R_Malloc(new, caddr_t
, dlen
+ glen
);
2678 /* Clear gateway route */
2679 rt_set_gwroute(rt
, dst
, NULL
);
2680 /* Release extra ref */
2681 RT_REMREF_LOCKED(rt
);
2686 * Copy from 'dst' and not rt_key(rt) because we can get
2687 * here to initialize a newly allocated route entry, in
2688 * which case rt_key(rt) is NULL (and so does rt_gateway).
2690 bzero(new, dlen
+ glen
);
2691 Bcopy(dst
, new, dst
->sa_len
);
2692 R_Free(rt_key(rt
)); /* free old block; NULL is okay */
2693 rt
->rt_nodes
->rn_key
= new;
2694 rt
->rt_gateway
= (struct sockaddr
*)(new + dlen
);
2698 * Copy the new gateway value into the memory chunk.
2700 Bcopy(gate
, rt
->rt_gateway
, gate
->sa_len
);
2703 * For consistency between rt_gateway and rt_key(gwrt).
2705 if ((rt
->rt_flags
& RTF_GATEWAY
) && rt
->rt_gwroute
!= NULL
&&
2706 (rt
->rt_gwroute
->rt_flags
& RTF_IFSCOPE
)) {
2707 if (rt
->rt_gateway
->sa_family
== AF_INET
&&
2708 rt_key(rt
->rt_gwroute
)->sa_family
== AF_INET
) {
2709 sin_set_ifscope(rt
->rt_gateway
,
2710 sin_get_ifscope(rt_key(rt
->rt_gwroute
)));
2711 } else if (rt
->rt_gateway
->sa_family
== AF_INET6
&&
2712 rt_key(rt
->rt_gwroute
)->sa_family
== AF_INET6
) {
2713 sin6_set_ifscope(rt
->rt_gateway
,
2714 sin6_get_ifscope(rt_key(rt
->rt_gwroute
)));
2719 * This isn't going to do anything useful for host routes, so
2720 * don't bother. Also make sure we have a reasonable mask
2721 * (we don't yet have one during adds).
2723 if (!(rt
->rt_flags
& RTF_HOST
) && rt_mask(rt
) != 0) {
2724 struct rtfc_arg arg
;
2728 rnh
->rnh_walktree_from(rnh
, rt_key(rt
), rt_mask(rt
),
2729 rt_fixchange
, &arg
);
2733 /* Release extra ref */
2734 RT_REMREF_LOCKED(rt
);
2741 rt_set_gwroute(struct rtentry
*rt
, struct sockaddr
*dst
, struct rtentry
*gwrt
)
2743 boolean_t gwrt_isrouter
;
2745 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_OWNED
);
2746 RT_LOCK_ASSERT_HELD(rt
);
2749 RT_ADDREF(gwrt
); /* for this routine */
2752 * Get rid of existing gateway route; if rt_gwroute is already
2753 * set to gwrt, this is slightly redundant (though safe since
2754 * we held an extra ref above) but makes the code simpler.
2756 if (rt
->rt_gwroute
!= NULL
) {
2757 struct rtentry
*ogwrt
= rt
->rt_gwroute
;
2759 VERIFY(rt
!= ogwrt
); /* sanity check */
2760 rt
->rt_gwroute
= NULL
;
2762 rtfree_locked(ogwrt
);
2764 VERIFY(rt
->rt_gwroute
== NULL
);
2768 * And associate the new gateway route.
2770 if ((rt
->rt_gwroute
= gwrt
) != NULL
) {
2771 RT_ADDREF(gwrt
); /* for rt */
2773 if (rt
->rt_flags
& RTF_WASCLONED
) {
2774 /* rt_parent might be NULL if rt is embryonic */
2775 gwrt_isrouter
= (rt
->rt_parent
!= NULL
&&
2776 SA_DEFAULT(rt_key(rt
->rt_parent
)) &&
2777 !RT_HOST(rt
->rt_parent
));
2779 gwrt_isrouter
= (SA_DEFAULT(dst
) && !RT_HOST(rt
));
2782 /* If gwrt points to a default router, mark it accordingly */
2783 if (gwrt_isrouter
&& RT_HOST(gwrt
) &&
2784 !(gwrt
->rt_flags
& RTF_ROUTER
)) {
2786 gwrt
->rt_flags
|= RTF_ROUTER
;
2790 RT_REMREF(gwrt
); /* for this routine */
2795 rt_maskedcopy(const struct sockaddr
*src
, struct sockaddr
*dst
,
2796 const struct sockaddr
*netmask
)
2798 const char *netmaskp
= &netmask
->sa_data
[0];
2799 const char *srcp
= &src
->sa_data
[0];
2800 char *dstp
= &dst
->sa_data
[0];
2801 const char *maskend
= (char *)dst
2802 + MIN(netmask
->sa_len
, src
->sa_len
);
2803 const char *srcend
= (char *)dst
+ src
->sa_len
;
2805 dst
->sa_len
= src
->sa_len
;
2806 dst
->sa_family
= src
->sa_family
;
2808 while (dstp
< maskend
)
2809 *dstp
++ = *srcp
++ & *netmaskp
++;
2811 memset(dstp
, 0, (size_t)(srcend
- dstp
));
2815 * Lookup an AF_INET/AF_INET6 scoped or non-scoped route depending on the
2816 * ifscope value passed in by the caller (IFSCOPE_NONE implies non-scoped).
2818 static struct radix_node
*
2819 node_lookup(struct sockaddr
*dst
, struct sockaddr
*netmask
,
2820 unsigned int ifscope
)
2822 struct radix_node_head
*rnh
;
2823 struct radix_node
*rn
;
2824 struct sockaddr_storage ss
, mask
;
2825 int af
= dst
->sa_family
;
2826 struct matchleaf_arg ma
= { ifscope
};
2827 rn_matchf_t
*f
= rn_match_ifscope
;
2830 if (af
!= AF_INET
&& af
!= AF_INET6
)
2833 rnh
= rt_tables
[af
];
2836 * Transform dst into the internal routing table form,
2837 * clearing out the scope ID field if ifscope isn't set.
2839 dst
= sa_copy(dst
, &ss
, (ifscope
== IFSCOPE_NONE
) ? NULL
: &ifscope
);
2841 /* Transform netmask into the internal routing table form */
2842 if (netmask
!= NULL
)
2843 netmask
= ma_copy(af
, netmask
, &mask
, ifscope
);
2845 if (ifscope
== IFSCOPE_NONE
)
2848 rn
= rnh
->rnh_lookup_args(dst
, netmask
, rnh
, f
, w
);
2849 if (rn
!= NULL
&& (rn
->rn_flags
& RNF_ROOT
))
2856 * Lookup the AF_INET/AF_INET6 non-scoped default route.
2858 static struct radix_node
*
2859 node_lookup_default(int af
)
2861 struct radix_node_head
*rnh
;
2863 VERIFY(af
== AF_INET
|| af
== AF_INET6
);
2864 rnh
= rt_tables
[af
];
2866 return (af
== AF_INET
? rnh
->rnh_lookup(&sin_def
, NULL
, rnh
) :
2867 rnh
->rnh_lookup(&sin6_def
, NULL
, rnh
));
2871 rt_ifa_is_dst(struct sockaddr
*dst
, struct ifaddr
*ifa
)
2873 boolean_t result
= FALSE
;
2875 if (ifa
== NULL
|| ifa
->ifa_addr
== NULL
)
2880 if (dst
->sa_family
== ifa
->ifa_addr
->sa_family
&&
2881 ((dst
->sa_family
== AF_INET
&&
2882 SIN(dst
)->sin_addr
.s_addr
==
2883 SIN(ifa
->ifa_addr
)->sin_addr
.s_addr
) ||
2884 (dst
->sa_family
== AF_INET6
&&
2885 SA6_ARE_ADDR_EQUAL(SIN6(dst
), SIN6(ifa
->ifa_addr
)))))
2894 * Common routine to lookup/match a route. It invokes the lookup/matchaddr
2895 * callback which could be address family-specific. The main difference
2896 * between the two (at least for AF_INET/AF_INET6) is that a lookup does
2897 * not alter the expiring state of a route, whereas a match would unexpire
2898 * or revalidate the route.
2900 * The optional scope or interface index property of a route allows for a
2901 * per-interface route instance. This permits multiple route entries having
2902 * the same destination (but not necessarily the same gateway) to exist in
2903 * the routing table; each of these entries is specific to the corresponding
2904 * interface. This is made possible by storing the scope ID value into the
2905 * radix key, thus making each route entry unique. These scoped entries
2906 * exist along with the regular, non-scoped entries in the same radix tree
2907 * for a given address family (AF_INET/AF_INET6); the scope logically
2908 * partitions it into multiple per-interface sub-trees.
2910 * When a scoped route lookup is performed, the routing table is searched for
2911 * the best match that would result in a route using the same interface as the
2912 * one associated with the scope (the exception to this are routes that point
2913 * to the loopback interface). The search rule follows the longest matching
2914 * prefix with the additional interface constraint.
2916 static struct rtentry
*
2917 rt_lookup_common(boolean_t lookup_only
, boolean_t coarse
, struct sockaddr
*dst
,
2918 struct sockaddr
*netmask
, struct radix_node_head
*rnh
, unsigned int ifscope
)
2920 struct radix_node
*rn0
, *rn
= NULL
;
2921 int af
= dst
->sa_family
;
2922 struct sockaddr_storage dst_ss
;
2923 struct sockaddr_storage mask_ss
;
2925 #if (DEVELOPMENT || DEBUG)
2926 char dbuf
[MAX_SCOPE_ADDR_STR_LEN
], gbuf
[MAX_IPv6_STR_LEN
];
2927 char s_dst
[MAX_IPv6_STR_LEN
], s_netmask
[MAX_IPv6_STR_LEN
];
2929 VERIFY(!coarse
|| ifscope
== IFSCOPE_NONE
);
2931 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_OWNED
);
2934 * While we have rnh_lock held, see if we need to schedule the timer.
2936 if (nd6_sched_timeout_want
)
2937 nd6_sched_timeout(NULL
, NULL
);
2944 * Non-scoped route lookup.
2947 if (af
!= AF_INET
&& af
!= AF_INET6
) {
2949 if (af
!= AF_INET
) {
2951 rn
= rnh
->rnh_matchaddr(dst
, rnh
);
2954 * Don't return a root node; also, rnh_matchaddr callback
2955 * would have done the necessary work to clear RTPRF_OURS
2956 * for certain protocol families.
2958 if (rn
!= NULL
&& (rn
->rn_flags
& RNF_ROOT
))
2961 RT_LOCK_SPIN(RT(rn
));
2962 if (!(RT(rn
)->rt_flags
& RTF_CONDEMNED
)) {
2963 RT_ADDREF_LOCKED(RT(rn
));
2973 /* Transform dst/netmask into the internal routing table form */
2974 dst
= sa_copy(dst
, &dst_ss
, &ifscope
);
2975 if (netmask
!= NULL
)
2976 netmask
= ma_copy(af
, netmask
, &mask_ss
, ifscope
);
2977 dontcare
= (ifscope
== IFSCOPE_NONE
);
2979 #if (DEVELOPMENT || DEBUG)
2982 (void) inet_ntop(af
, &SIN(dst
)->sin_addr
.s_addr
,
2983 s_dst
, sizeof (s_dst
));
2985 (void) inet_ntop(af
, &SIN6(dst
)->sin6_addr
,
2986 s_dst
, sizeof (s_dst
));
2988 if (netmask
!= NULL
&& af
== AF_INET
)
2989 (void) inet_ntop(af
, &SIN(netmask
)->sin_addr
.s_addr
,
2990 s_netmask
, sizeof (s_netmask
));
2991 if (netmask
!= NULL
&& af
== AF_INET6
)
2992 (void) inet_ntop(af
, &SIN6(netmask
)->sin6_addr
,
2993 s_netmask
, sizeof (s_netmask
));
2996 printf("%s (%d, %d, %s, %s, %u)\n",
2997 __func__
, lookup_only
, coarse
, s_dst
, s_netmask
, ifscope
);
3002 * Scoped route lookup:
3004 * We first perform a non-scoped lookup for the original result.
3005 * Afterwards, depending on whether or not the caller has specified
3006 * a scope, we perform a more specific scoped search and fallback
3007 * to this original result upon failure.
3009 rn0
= rn
= node_lookup(dst
, netmask
, IFSCOPE_NONE
);
3012 * If the caller did not specify a scope, use the primary scope
3013 * derived from the system's non-scoped default route. If, for
3014 * any reason, there is no primary interface, ifscope will be
3015 * set to IFSCOPE_NONE; if the above lookup resulted in a route,
3016 * we'll do a more-specific search below, scoped to the interface
3020 ifscope
= get_primary_ifscope(af
);
3023 * Keep the original result if either of the following is true:
3025 * 1) The interface portion of the route has the same interface
3026 * index as the scope value and it is marked with RTF_IFSCOPE.
3027 * 2) The route uses the loopback interface, in which case the
3028 * destination (host/net) is local/loopback.
3030 * Otherwise, do a more specified search using the scope;
3031 * we're holding rnh_lock now, so rt_ifp should not change.
3034 struct rtentry
*rt
= RT(rn
);
3035 #if (DEVELOPMENT || DEBUG)
3037 rt_str(rt
, dbuf
, sizeof (dbuf
), gbuf
, sizeof (gbuf
));
3038 printf("%s unscoped search %p to %s->%s->%s ifa_ifp %s\n",
3041 (rt
->rt_ifp
!= NULL
) ? rt
->rt_ifp
->if_xname
: "",
3042 (rt
->rt_ifa
->ifa_ifp
!= NULL
) ?
3043 rt
->rt_ifa
->ifa_ifp
->if_xname
: "");
3046 if (!(rt
->rt_ifp
->if_flags
& IFF_LOOPBACK
) ||
3047 (rt
->rt_flags
& RTF_GATEWAY
)) {
3048 if (rt
->rt_ifp
->if_index
!= ifscope
) {
3050 * Wrong interface; keep the original result
3051 * only if the caller did not specify a scope,
3052 * and do a more specific scoped search using
3053 * the scope of the found route. Otherwise,
3054 * start again from scratch.
3056 * For loopback scope we keep the unscoped
3057 * route for local addresses
3061 ifscope
= rt
->rt_ifp
->if_index
;
3062 else if (ifscope
!= lo_ifp
->if_index
||
3063 rt_ifa_is_dst(dst
, rt
->rt_ifa
) == FALSE
)
3065 } else if (!(rt
->rt_flags
& RTF_IFSCOPE
)) {
3067 * Right interface, except that this route
3068 * isn't marked with RTF_IFSCOPE. Do a more
3069 * specific scoped search. Keep the original
3070 * result and return it it in case the scoped
3079 * Scoped search. Find the most specific entry having the same
3080 * interface scope as the one requested. The following will result
3081 * in searching for the longest prefix scoped match.
3084 rn
= node_lookup(dst
, netmask
, ifscope
);
3085 #if (DEVELOPMENT || DEBUG)
3086 if (rt_verbose
&& rn
!= NULL
) {
3087 struct rtentry
*rt
= RT(rn
);
3089 rt_str(rt
, dbuf
, sizeof (dbuf
), gbuf
, sizeof (gbuf
));
3090 printf("%s scoped search %p to %s->%s->%s ifa %s\n",
3093 (rt
->rt_ifp
!= NULL
) ? rt
->rt_ifp
->if_xname
: "",
3094 (rt
->rt_ifa
->ifa_ifp
!= NULL
) ?
3095 rt
->rt_ifa
->ifa_ifp
->if_xname
: "");
3100 * Use the original result if either of the following is true:
3102 * 1) The scoped search did not yield any result.
3103 * 2) The caller insists on performing a coarse-grained lookup.
3104 * 3) The result from the scoped search is a scoped default route,
3105 * and the original (non-scoped) result is not a default route,
3106 * i.e. the original result is a more specific host/net route.
3107 * 4) The scoped search yielded a net route but the original
3108 * result is a host route, i.e. the original result is treated
3109 * as a more specific route.
3111 if (rn
== NULL
|| coarse
|| (rn0
!= NULL
&&
3112 ((SA_DEFAULT(rt_key(RT(rn
))) && !SA_DEFAULT(rt_key(RT(rn0
)))) ||
3113 (!RT_HOST(rn
) && RT_HOST(rn0
)))))
3117 * If we still don't have a route, use the non-scoped default
3118 * route as long as the interface portion satistifes the scope.
3120 if (rn
== NULL
&& (rn
= node_lookup_default(af
)) != NULL
&&
3121 RT(rn
)->rt_ifp
->if_index
!= ifscope
) {
3127 * Manually clear RTPRF_OURS using rt_validate() and
3128 * bump up the reference count after, and not before;
3129 * we only get here for AF_INET/AF_INET6. node_lookup()
3130 * has done the check against RNF_ROOT, so we can be sure
3131 * that we're not returning a root node here.
3133 RT_LOCK_SPIN(RT(rn
));
3134 if (rt_validate(RT(rn
))) {
3135 RT_ADDREF_LOCKED(RT(rn
));
3142 #if (DEVELOPMENT || DEBUG)
3145 printf("%s %u return NULL\n", __func__
, ifscope
);
3147 struct rtentry
*rt
= RT(rn
);
3149 rt_str(rt
, dbuf
, sizeof (dbuf
), gbuf
, sizeof (gbuf
));
3151 printf("%s %u return %p to %s->%s->%s ifa_ifp %s\n",
3152 __func__
, ifscope
, rt
,
3154 (rt
->rt_ifp
!= NULL
) ? rt
->rt_ifp
->if_xname
: "",
3155 (rt
->rt_ifa
->ifa_ifp
!= NULL
) ?
3156 rt
->rt_ifa
->ifa_ifp
->if_xname
: "");
3164 rt_lookup(boolean_t lookup_only
, struct sockaddr
*dst
, struct sockaddr
*netmask
,
3165 struct radix_node_head
*rnh
, unsigned int ifscope
)
3167 return (rt_lookup_common(lookup_only
, FALSE
, dst
, netmask
,
3172 rt_lookup_coarse(boolean_t lookup_only
, struct sockaddr
*dst
,
3173 struct sockaddr
*netmask
, struct radix_node_head
*rnh
)
3175 return (rt_lookup_common(lookup_only
, TRUE
, dst
, netmask
,
3176 rnh
, IFSCOPE_NONE
));
3180 rt_validate(struct rtentry
*rt
)
3182 RT_LOCK_ASSERT_HELD(rt
);
3184 if ((rt
->rt_flags
& (RTF_UP
| RTF_CONDEMNED
)) == RTF_UP
) {
3185 int af
= rt_key(rt
)->sa_family
;
3188 (void) in_validate(RN(rt
));
3189 else if (af
== AF_INET6
)
3190 (void) in6_validate(RN(rt
));
3195 return (rt
!= NULL
);
3199 * Set up a routing table entry, normally
3203 rtinit(struct ifaddr
*ifa
, int cmd
, int flags
)
3207 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_NOTOWNED
);
3209 lck_mtx_lock(rnh_lock
);
3210 error
= rtinit_locked(ifa
, cmd
, flags
);
3211 lck_mtx_unlock(rnh_lock
);
3217 rtinit_locked(struct ifaddr
*ifa
, int cmd
, int flags
)
3219 struct radix_node_head
*rnh
;
3220 uint8_t nbuf
[128]; /* long enough for IPv6 */
3221 #if (DEVELOPMENT || DEBUG)
3222 char dbuf
[MAX_IPv6_STR_LEN
], gbuf
[MAX_IPv6_STR_LEN
];
3223 char abuf
[MAX_IPv6_STR_LEN
];
3225 struct rtentry
*rt
= NULL
;
3226 struct sockaddr
*dst
;
3227 struct sockaddr
*netmask
;
3231 * Holding rnh_lock here prevents the possibility of ifa from
3232 * changing (e.g. in_ifinit), so it is safe to access its
3233 * ifa_{dst}addr (here and down below) without locking.
3235 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_OWNED
);
3237 if (flags
& RTF_HOST
) {
3238 dst
= ifa
->ifa_dstaddr
;
3241 dst
= ifa
->ifa_addr
;
3242 netmask
= ifa
->ifa_netmask
;
3245 if (dst
->sa_len
== 0) {
3246 log(LOG_ERR
, "%s: %s failed, invalid dst sa_len %d\n",
3247 __func__
, rtm2str(cmd
), dst
->sa_len
);
3251 if (netmask
!= NULL
&& netmask
->sa_len
> sizeof (nbuf
)) {
3252 log(LOG_ERR
, "%s: %s failed, mask sa_len %d too large\n",
3253 __func__
, rtm2str(cmd
), dst
->sa_len
);
3258 #if (DEVELOPMENT || DEBUG)
3259 if (dst
->sa_family
== AF_INET
) {
3260 (void) inet_ntop(AF_INET
, &SIN(dst
)->sin_addr
.s_addr
,
3261 abuf
, sizeof (abuf
));
3264 else if (dst
->sa_family
== AF_INET6
) {
3265 (void) inet_ntop(AF_INET6
, &SIN6(dst
)->sin6_addr
,
3266 abuf
, sizeof (abuf
));
3269 #endif /* (DEVELOPMENT || DEBUG) */
3271 if ((rnh
= rt_tables
[dst
->sa_family
]) == NULL
) {
3277 * If it's a delete, check that if it exists, it's on the correct
3278 * interface or we might scrub a route to another ifa which would
3279 * be confusing at best and possibly worse.
3281 if (cmd
== RTM_DELETE
) {
3283 * It's a delete, so it should already exist..
3284 * If it's a net, mask off the host bits
3285 * (Assuming we have a mask)
3287 if (netmask
!= NULL
) {
3288 rt_maskedcopy(dst
, SA(nbuf
), netmask
);
3292 * Get an rtentry that is in the routing tree and contains
3293 * the correct info. Note that we perform a coarse-grained
3294 * lookup here, in case there is a scoped variant of the
3295 * subnet/prefix route which we should ignore, as we never
3296 * add a scoped subnet/prefix route as part of adding an
3297 * interface address.
3299 rt
= rt_lookup_coarse(TRUE
, dst
, NULL
, rnh
);
3301 #if (DEVELOPMENT || DEBUG)
3302 rt_str(rt
, dbuf
, sizeof (dbuf
), gbuf
, sizeof (gbuf
));
3305 * Ok so we found the rtentry. it has an extra reference
3306 * for us at this stage. we won't need that so
3310 if (rt
->rt_ifa
!= ifa
) {
3312 * If the interface address in the rtentry
3313 * doesn't match the interface we are using,
3314 * then we don't want to delete it, so return
3315 * an error. This seems to be the only point
3316 * of this whole RTM_DELETE clause.
3318 #if (DEVELOPMENT || DEBUG)
3320 log(LOG_DEBUG
, "%s: not removing "
3321 "route to %s->%s->%s, flags %b, "
3322 "ifaddr %s, rt_ifa 0x%llx != "
3323 "ifa 0x%llx\n", __func__
, dbuf
,
3324 gbuf
, ((rt
->rt_ifp
!= NULL
) ?
3325 rt
->rt_ifp
->if_xname
: ""),
3326 rt
->rt_flags
, RTF_BITS
, abuf
,
3327 (uint64_t)VM_KERNEL_ADDRPERM(
3329 (uint64_t)VM_KERNEL_ADDRPERM(ifa
));
3331 #endif /* (DEVELOPMENT || DEBUG) */
3332 RT_REMREF_LOCKED(rt
);
3335 error
= ((flags
& RTF_HOST
) ?
3336 EHOSTUNREACH
: ENETUNREACH
);
3338 } else if (rt
->rt_flags
& RTF_STATIC
) {
3340 * Don't remove the subnet/prefix route if
3341 * this was manually added from above.
3343 #if (DEVELOPMENT || DEBUG)
3345 log(LOG_DEBUG
, "%s: not removing "
3346 "static route to %s->%s->%s, "
3347 "flags %b, ifaddr %s\n", __func__
,
3348 dbuf
, gbuf
, ((rt
->rt_ifp
!= NULL
) ?
3349 rt
->rt_ifp
->if_xname
: ""),
3350 rt
->rt_flags
, RTF_BITS
, abuf
);
3352 #endif /* (DEVELOPMENT || DEBUG) */
3353 RT_REMREF_LOCKED(rt
);
3359 #if (DEVELOPMENT || DEBUG)
3361 log(LOG_DEBUG
, "%s: removing route to "
3362 "%s->%s->%s, flags %b, ifaddr %s\n",
3363 __func__
, dbuf
, gbuf
,
3364 ((rt
->rt_ifp
!= NULL
) ?
3365 rt
->rt_ifp
->if_xname
: ""),
3366 rt
->rt_flags
, RTF_BITS
, abuf
);
3368 #endif /* (DEVELOPMENT || DEBUG) */
3369 RT_REMREF_LOCKED(rt
);
3375 * Do the actual request
3377 if ((error
= rtrequest_locked(cmd
, dst
, ifa
->ifa_addr
, netmask
,
3378 flags
| ifa
->ifa_flags
, &rt
)) != 0)
3382 #if (DEVELOPMENT || DEBUG)
3383 rt_str(rt
, dbuf
, sizeof (dbuf
), gbuf
, sizeof (gbuf
));
3384 #endif /* (DEVELOPMENT || DEBUG) */
3388 * If we are deleting, and we found an entry, then it's
3389 * been removed from the tree. Notify any listening
3390 * routing agents of the change and throw it away.
3393 rt_newaddrmsg(cmd
, ifa
, error
, rt
);
3395 #if (DEVELOPMENT || DEBUG)
3397 log(LOG_DEBUG
, "%s: removed route to %s->%s->%s, "
3398 "flags %b, ifaddr %s\n", __func__
, dbuf
, gbuf
,
3399 ((rt
->rt_ifp
!= NULL
) ? rt
->rt_ifp
->if_xname
: ""),
3400 rt
->rt_flags
, RTF_BITS
, abuf
);
3402 #endif /* (DEVELOPMENT || DEBUG) */
3408 * We are adding, and we have a returned routing entry.
3409 * We need to sanity check the result. If it came back
3410 * with an unexpected interface, then it must have already
3411 * existed or something.
3414 if (rt
->rt_ifa
!= ifa
) {
3415 void (*ifa_rtrequest
)
3416 (int, struct rtentry
*, struct sockaddr
*);
3417 #if (DEVELOPMENT || DEBUG)
3419 if (!(rt
->rt_ifa
->ifa_ifp
->if_flags
&
3420 (IFF_POINTOPOINT
|IFF_LOOPBACK
))) {
3421 log(LOG_ERR
, "%s: %s route to %s->%s->%s, "
3422 "flags %b, ifaddr %s, rt_ifa 0x%llx != "
3423 "ifa 0x%llx\n", __func__
, rtm2str(cmd
),
3424 dbuf
, gbuf
, ((rt
->rt_ifp
!= NULL
) ?
3425 rt
->rt_ifp
->if_xname
: ""), rt
->rt_flags
,
3427 (uint64_t)VM_KERNEL_ADDRPERM(rt
->rt_ifa
),
3428 (uint64_t)VM_KERNEL_ADDRPERM(ifa
));
3431 log(LOG_DEBUG
, "%s: %s route to %s->%s->%s, "
3432 "flags %b, ifaddr %s, rt_ifa was 0x%llx "
3433 "now 0x%llx\n", __func__
, rtm2str(cmd
),
3434 dbuf
, gbuf
, ((rt
->rt_ifp
!= NULL
) ?
3435 rt
->rt_ifp
->if_xname
: ""), rt
->rt_flags
,
3437 (uint64_t)VM_KERNEL_ADDRPERM(rt
->rt_ifa
),
3438 (uint64_t)VM_KERNEL_ADDRPERM(ifa
));
3440 #endif /* (DEVELOPMENT || DEBUG) */
3443 * Ask that the protocol in question
3444 * remove anything it has associated with
3445 * this route and ifaddr.
3447 ifa_rtrequest
= rt
->rt_ifa
->ifa_rtrequest
;
3448 if (ifa_rtrequest
!= NULL
)
3449 ifa_rtrequest(RTM_DELETE
, rt
, NULL
);
3451 * Set the route's ifa.
3455 if (rt
->rt_ifp
!= ifa
->ifa_ifp
) {
3457 * Purge any link-layer info caching.
3459 if (rt
->rt_llinfo_purge
!= NULL
)
3460 rt
->rt_llinfo_purge(rt
);
3462 * Adjust route ref count for the interfaces.
3464 if (rt
->rt_if_ref_fn
!= NULL
) {
3465 rt
->rt_if_ref_fn(ifa
->ifa_ifp
, 1);
3466 rt
->rt_if_ref_fn(rt
->rt_ifp
, -1);
3471 * And substitute in references to the ifaddr
3474 rt
->rt_ifp
= ifa
->ifa_ifp
;
3476 * If rmx_mtu is not locked, update it
3477 * to the MTU used by the new interface.
3479 if (!(rt
->rt_rmx
.rmx_locks
& RTV_MTU
)) {
3480 rt
->rt_rmx
.rmx_mtu
= rt
->rt_ifp
->if_mtu
;
3481 if (dst
->sa_family
== AF_INET
&&
3482 INTF_ADJUST_MTU_FOR_CLAT46(rt
->rt_ifp
)) {
3483 rt
->rt_rmx
.rmx_mtu
= IN6_LINKMTU(rt
->rt_ifp
);
3484 /* Further adjust the size for CLAT46 expansion */
3485 rt
->rt_rmx
.rmx_mtu
-= CLAT46_HDR_EXPANSION_OVERHD
;
3490 * Now ask the protocol to check if it needs
3491 * any special processing in its new form.
3493 ifa_rtrequest
= ifa
->ifa_rtrequest
;
3494 if (ifa_rtrequest
!= NULL
)
3495 ifa_rtrequest(RTM_ADD
, rt
, NULL
);
3497 #if (DEVELOPMENT || DEBUG)
3499 log(LOG_DEBUG
, "%s: added route to %s->%s->%s, "
3500 "flags %b, ifaddr %s\n", __func__
, dbuf
,
3501 gbuf
, ((rt
->rt_ifp
!= NULL
) ?
3502 rt
->rt_ifp
->if_xname
: ""), rt
->rt_flags
,
3505 #endif /* (DEVELOPMENT || DEBUG) */
3508 * notify any listenning routing agents of the change
3510 rt_newaddrmsg(cmd
, ifa
, error
, rt
);
3512 * We just wanted to add it; we don't actually need a
3513 * reference. This will result in a route that's added
3514 * to the routing table without a reference count. The
3515 * RTM_DELETE code will do the necessary step to adjust
3516 * the reference count at deletion time.
3518 RT_REMREF_LOCKED(rt
);
3531 rt_set_idleref(struct rtentry
*rt
)
3533 RT_LOCK_ASSERT_HELD(rt
);
3536 * We currently keep idle refcnt only on unicast cloned routes
3537 * that aren't marked with RTF_NOIFREF.
3539 if (rt
->rt_parent
!= NULL
&& !(rt
->rt_flags
&
3540 (RTF_NOIFREF
|RTF_BROADCAST
| RTF_MULTICAST
)) &&
3541 (rt
->rt_flags
& (RTF_UP
|RTF_WASCLONED
|RTF_IFREF
)) ==
3542 (RTF_UP
|RTF_WASCLONED
)) {
3543 rt_clear_idleref(rt
); /* drop existing refcnt if any */
3544 rt
->rt_if_ref_fn
= rte_if_ref
;
3545 /* Become a regular mutex, just in case */
3546 RT_CONVERT_LOCK(rt
);
3547 rt
->rt_if_ref_fn(rt
->rt_ifp
, 1);
3548 rt
->rt_flags
|= RTF_IFREF
;
3553 rt_clear_idleref(struct rtentry
*rt
)
3555 RT_LOCK_ASSERT_HELD(rt
);
3557 if (rt
->rt_if_ref_fn
!= NULL
) {
3558 VERIFY((rt
->rt_flags
& (RTF_NOIFREF
| RTF_IFREF
)) == RTF_IFREF
);
3559 /* Become a regular mutex, just in case */
3560 RT_CONVERT_LOCK(rt
);
3561 rt
->rt_if_ref_fn(rt
->rt_ifp
, -1);
3562 rt
->rt_flags
&= ~RTF_IFREF
;
3563 rt
->rt_if_ref_fn
= NULL
;
3568 rt_set_proxy(struct rtentry
*rt
, boolean_t set
)
3570 lck_mtx_lock(rnh_lock
);
3573 * Search for any cloned routes which might have
3574 * been formed from this node, and delete them.
3576 if (rt
->rt_flags
& (RTF_CLONING
| RTF_PRCLONING
)) {
3577 struct radix_node_head
*rnh
= rt_tables
[rt_key(rt
)->sa_family
];
3580 rt
->rt_flags
|= RTF_PROXY
;
3582 rt
->rt_flags
&= ~RTF_PROXY
;
3585 if (rnh
!= NULL
&& rt_mask(rt
)) {
3586 rnh
->rnh_walktree_from(rnh
, rt_key(rt
), rt_mask(rt
),
3592 lck_mtx_unlock(rnh_lock
);
3596 rte_lock_init(struct rtentry
*rt
)
3598 lck_mtx_init(&rt
->rt_lock
, rte_mtx_grp
, rte_mtx_attr
);
3602 rte_lock_destroy(struct rtentry
*rt
)
3604 RT_LOCK_ASSERT_NOTHELD(rt
);
3605 lck_mtx_destroy(&rt
->rt_lock
, rte_mtx_grp
);
3609 rt_lock(struct rtentry
*rt
, boolean_t spin
)
3611 RT_LOCK_ASSERT_NOTHELD(rt
);
3613 lck_mtx_lock_spin(&rt
->rt_lock
);
3615 lck_mtx_lock(&rt
->rt_lock
);
3616 if (rte_debug
& RTD_DEBUG
)
3617 rte_lock_debug((struct rtentry_dbg
*)rt
);
3621 rt_unlock(struct rtentry
*rt
)
3623 if (rte_debug
& RTD_DEBUG
)
3624 rte_unlock_debug((struct rtentry_dbg
*)rt
);
3625 lck_mtx_unlock(&rt
->rt_lock
);
3630 rte_lock_debug(struct rtentry_dbg
*rte
)
3634 RT_LOCK_ASSERT_HELD((struct rtentry
*)rte
);
3635 idx
= atomic_add_32_ov(&rte
->rtd_lock_cnt
, 1) % CTRACE_HIST_SIZE
;
3636 if (rte_debug
& RTD_TRACE
)
3637 ctrace_record(&rte
->rtd_lock
[idx
]);
3641 rte_unlock_debug(struct rtentry_dbg
*rte
)
3645 RT_LOCK_ASSERT_HELD((struct rtentry
*)rte
);
3646 idx
= atomic_add_32_ov(&rte
->rtd_unlock_cnt
, 1) % CTRACE_HIST_SIZE
;
3647 if (rte_debug
& RTD_TRACE
)
3648 ctrace_record(&rte
->rtd_unlock
[idx
]);
3651 static struct rtentry
*
3654 if (rte_debug
& RTD_DEBUG
)
3655 return (rte_alloc_debug());
3657 return ((struct rtentry
*)zalloc(rte_zone
));
3661 rte_free(struct rtentry
*p
)
3663 if (rte_debug
& RTD_DEBUG
) {
3668 if (p
->rt_refcnt
!= 0) {
3669 panic("rte_free: rte=%p refcnt=%d non-zero\n", p
, p
->rt_refcnt
);
3677 rte_if_ref(struct ifnet
*ifp
, int cnt
)
3679 struct kev_msg ev_msg
;
3680 struct net_event_data ev_data
;
3683 /* Force cnt to 1 increment/decrement */
3684 if (cnt
< -1 || cnt
> 1) {
3685 panic("%s: invalid count argument (%d)", __func__
, cnt
);
3688 old
= atomic_add_32_ov(&ifp
->if_route_refcnt
, cnt
);
3689 if (cnt
< 0 && old
== 0) {
3690 panic("%s: ifp=%p negative route refcnt!", __func__
, ifp
);
3694 * The following is done without first holding the ifnet lock,
3695 * for performance reasons. The relevant ifnet fields, with
3696 * the exception of the if_idle_flags, are never changed
3697 * during the lifetime of the ifnet. The if_idle_flags
3698 * may possibly be modified, so in the event that the value
3699 * is stale because IFRF_IDLE_NOTIFY was cleared, we'd end up
3700 * sending the event anyway. This is harmless as it is just
3701 * a notification to the monitoring agent in user space, and
3702 * it is expected to check via SIOCGIFGETRTREFCNT again anyway.
3704 if ((ifp
->if_idle_flags
& IFRF_IDLE_NOTIFY
) && cnt
< 0 && old
== 1) {
3705 bzero(&ev_msg
, sizeof (ev_msg
));
3706 bzero(&ev_data
, sizeof (ev_data
));
3708 ev_msg
.vendor_code
= KEV_VENDOR_APPLE
;
3709 ev_msg
.kev_class
= KEV_NETWORK_CLASS
;
3710 ev_msg
.kev_subclass
= KEV_DL_SUBCLASS
;
3711 ev_msg
.event_code
= KEV_DL_IF_IDLE_ROUTE_REFCNT
;
3713 strlcpy(&ev_data
.if_name
[0], ifp
->if_name
, IFNAMSIZ
);
3715 ev_data
.if_family
= ifp
->if_family
;
3716 ev_data
.if_unit
= ifp
->if_unit
;
3717 ev_msg
.dv
[0].data_length
= sizeof (struct net_event_data
);
3718 ev_msg
.dv
[0].data_ptr
= &ev_data
;
3720 dlil_post_complete_msg(NULL
, &ev_msg
);
3724 static inline struct rtentry
*
3725 rte_alloc_debug(void)
3727 struct rtentry_dbg
*rte
;
3729 rte
= ((struct rtentry_dbg
*)zalloc(rte_zone
));
3731 bzero(rte
, sizeof (*rte
));
3732 if (rte_debug
& RTD_TRACE
)
3733 ctrace_record(&rte
->rtd_alloc
);
3734 rte
->rtd_inuse
= RTD_INUSE
;
3736 return ((struct rtentry
*)rte
);
3740 rte_free_debug(struct rtentry
*p
)
3742 struct rtentry_dbg
*rte
= (struct rtentry_dbg
*)p
;
3744 if (p
->rt_refcnt
!= 0) {
3745 panic("rte_free: rte=%p refcnt=%d\n", p
, p
->rt_refcnt
);
3748 if (rte
->rtd_inuse
== RTD_FREED
) {
3749 panic("rte_free: double free rte=%p\n", rte
);
3751 } else if (rte
->rtd_inuse
!= RTD_INUSE
) {
3752 panic("rte_free: corrupted rte=%p\n", rte
);
3755 bcopy((caddr_t
)p
, (caddr_t
)&rte
->rtd_entry_saved
, sizeof (*p
));
3756 /* Preserve rt_lock to help catch use-after-free cases */
3757 bzero((caddr_t
)p
, offsetof(struct rtentry
, rt_lock
));
3759 rte
->rtd_inuse
= RTD_FREED
;
3761 if (rte_debug
& RTD_TRACE
)
3762 ctrace_record(&rte
->rtd_free
);
3764 if (!(rte_debug
& RTD_NO_FREE
))
3769 ctrace_record(ctrace_t
*tr
)
3771 tr
->th
= current_thread();
3772 bzero(tr
->pc
, sizeof (tr
->pc
));
3773 (void) OSBacktrace(tr
->pc
, CTRACE_STACK_SIZE
);
3777 route_copyout(struct route
*dst
, const struct route
*src
, size_t length
)
3779 /* Copy everything (rt, srcif, flags, dst) from src */
3780 bcopy(src
, dst
, length
);
3782 /* Hold one reference for the local copy of struct route */
3783 if (dst
->ro_rt
!= NULL
)
3784 RT_ADDREF(dst
->ro_rt
);
3786 /* Hold one reference for the local copy of struct lle */
3787 if (dst
->ro_lle
!= NULL
)
3788 LLE_ADDREF(dst
->ro_lle
);
3790 /* Hold one reference for the local copy of struct ifaddr */
3791 if (dst
->ro_srcia
!= NULL
)
3792 IFA_ADDREF(dst
->ro_srcia
);
3796 route_copyin(struct route
*src
, struct route
*dst
, size_t length
)
3799 * No cached route at the destination?
3800 * If none, then remove old references if present
3801 * and copy entire src route.
3803 if (dst
->ro_rt
== NULL
) {
3805 * Ditch the cached link layer reference (dst)
3806 * since we're about to take everything there is in src
3808 if (dst
->ro_lle
!= NULL
)
3809 LLE_REMREF(dst
->ro_lle
);
3811 * Ditch the address in the cached copy (dst) since
3812 * we're about to take everything there is in src.
3814 if (dst
->ro_srcia
!= NULL
)
3815 IFA_REMREF(dst
->ro_srcia
);
3817 * Copy everything (rt, ro_lle, srcia, flags, dst) from src; the
3818 * references to rt and/or srcia were held at the time
3819 * of storage and are kept intact.
3821 bcopy(src
, dst
, length
);
3826 * We know dst->ro_rt is not NULL here.
3827 * If the src->ro_rt is the same, update ro_lle, srcia and flags
3828 * and ditch the route in the local copy.
3830 if (dst
->ro_rt
== src
->ro_rt
) {
3831 dst
->ro_flags
= src
->ro_flags
;
3833 if (dst
->ro_lle
!= src
->ro_lle
) {
3834 if (dst
->ro_lle
!= NULL
)
3835 LLE_REMREF(dst
->ro_lle
);
3836 dst
->ro_lle
= src
->ro_lle
;
3837 } else if (src
->ro_lle
!= NULL
) {
3838 LLE_REMREF(src
->ro_lle
);
3841 if (dst
->ro_srcia
!= src
->ro_srcia
) {
3842 if (dst
->ro_srcia
!= NULL
)
3843 IFA_REMREF(dst
->ro_srcia
);
3844 dst
->ro_srcia
= src
->ro_srcia
;
3845 } else if (src
->ro_srcia
!= NULL
) {
3846 IFA_REMREF(src
->ro_srcia
);
3853 * If they are dst's ro_rt is not equal to src's,
3854 * and src'd rt is not NULL, then remove old references
3855 * if present and copy entire src route.
3857 if (src
->ro_rt
!= NULL
) {
3860 if (dst
->ro_lle
!= NULL
)
3861 LLE_REMREF(dst
->ro_lle
);
3862 if (dst
->ro_srcia
!= NULL
)
3863 IFA_REMREF(dst
->ro_srcia
);
3864 bcopy(src
, dst
, length
);
3869 * Here, dst's cached route is not NULL but source's is.
3870 * Just get rid of all the other cached reference in src.
3872 if (src
->ro_srcia
!= NULL
) {
3874 * Ditch src address in the local copy (src) since we're
3875 * not caching the route entry anyway (ro_rt is NULL).
3877 IFA_REMREF(src
->ro_srcia
);
3879 if (src
->ro_lle
!= NULL
) {
3881 * Ditch cache lle in the local copy (src) since we're
3882 * not caching the route anyway (ro_rt is NULL).
3884 LLE_REMREF(src
->ro_lle
);
3887 /* This function consumes the references on src */
3890 src
->ro_srcia
= NULL
;
3894 * route_to_gwroute will find the gateway route for a given route.
3896 * If the route is down, look the route up again.
3897 * If the route goes through a gateway, get the route to the gateway.
3898 * If the gateway route is down, look it up again.
3899 * If the route is set to reject, verify it hasn't expired.
3901 * If the returned route is non-NULL, the caller is responsible for
3902 * releasing the reference and unlocking the route.
3904 #define senderr(e) { error = (e); goto bad; }
3906 route_to_gwroute(const struct sockaddr
*net_dest
, struct rtentry
*hint0
,
3907 struct rtentry
**out_route
)
3910 struct rtentry
*rt
= hint0
, *hint
= hint0
;
3912 unsigned int ifindex
;
3921 * Next hop determination. Because we may involve the gateway route
3922 * in addition to the original route, locking is rather complicated.
3923 * The general concept is that regardless of whether the route points
3924 * to the original route or to the gateway route, this routine takes
3925 * an extra reference on such a route. This extra reference will be
3926 * released at the end.
3928 * Care must be taken to ensure that the "hint0" route never gets freed
3929 * via rtfree(), since the caller may have stored it inside a struct
3930 * route with a reference held for that placeholder.
3933 ifindex
= rt
->rt_ifp
->if_index
;
3934 RT_ADDREF_LOCKED(rt
);
3935 if (!(rt
->rt_flags
& RTF_UP
)) {
3936 RT_REMREF_LOCKED(rt
);
3938 /* route is down, find a new one */
3939 hint
= rt
= rtalloc1_scoped((struct sockaddr
*)
3940 (size_t)net_dest
, 1, 0, ifindex
);
3943 ifindex
= rt
->rt_ifp
->if_index
;
3945 senderr(EHOSTUNREACH
);
3950 * We have a reference to "rt" by now; it will either
3951 * be released or freed at the end of this routine.
3953 RT_LOCK_ASSERT_HELD(rt
);
3954 if ((gwroute
= (rt
->rt_flags
& RTF_GATEWAY
))) {
3955 struct rtentry
*gwrt
= rt
->rt_gwroute
;
3956 struct sockaddr_storage ss
;
3957 struct sockaddr
*gw
= (struct sockaddr
*)&ss
;
3960 RT_ADDREF_LOCKED(hint
);
3962 /* If there's no gateway rt, look it up */
3964 bcopy(rt
->rt_gateway
, gw
, MIN(sizeof (ss
),
3965 rt
->rt_gateway
->sa_len
));
3969 /* Become a regular mutex */
3970 RT_CONVERT_LOCK(rt
);
3973 * Take gwrt's lock while holding route's lock;
3974 * this is okay since gwrt never points back
3975 * to "rt", so no lock ordering issues.
3978 if (!(gwrt
->rt_flags
& RTF_UP
)) {
3979 rt
->rt_gwroute
= NULL
;
3981 bcopy(rt
->rt_gateway
, gw
, MIN(sizeof (ss
),
3982 rt
->rt_gateway
->sa_len
));
3986 lck_mtx_lock(rnh_lock
);
3987 gwrt
= rtalloc1_scoped_locked(gw
, 1, 0, ifindex
);
3991 * Bail out if the route is down, no route
3992 * to gateway, circular route, or if the
3993 * gateway portion of "rt" has changed.
3995 if (!(rt
->rt_flags
& RTF_UP
) || gwrt
== NULL
||
3996 gwrt
== rt
|| !equal(gw
, rt
->rt_gateway
)) {
3998 RT_REMREF_LOCKED(gwrt
);
4002 RT_REMREF_LOCKED(hint
);
4006 rtfree_locked(gwrt
);
4007 lck_mtx_unlock(rnh_lock
);
4008 senderr(EHOSTUNREACH
);
4010 VERIFY(gwrt
!= NULL
);
4012 * Set gateway route; callee adds ref to gwrt;
4013 * gwrt has an extra ref from rtalloc1() for
4016 rt_set_gwroute(rt
, rt_key(rt
), gwrt
);
4018 RT_REMREF_LOCKED(rt
); /* hint still holds a refcnt */
4020 lck_mtx_unlock(rnh_lock
);
4023 RT_ADDREF_LOCKED(gwrt
);
4026 RT_REMREF_LOCKED(rt
); /* hint still holds a refcnt */
4030 VERIFY(rt
== gwrt
&& rt
!= hint
);
4033 * This is an opportunity to revalidate the parent route's
4034 * rt_gwroute, in case it now points to a dead route entry.
4035 * Parent route won't go away since the clone (hint) holds
4036 * a reference to it. rt == gwrt.
4039 if ((hint
->rt_flags
& (RTF_WASCLONED
| RTF_UP
)) ==
4040 (RTF_WASCLONED
| RTF_UP
)) {
4041 struct rtentry
*prt
= hint
->rt_parent
;
4042 VERIFY(prt
!= NULL
);
4044 RT_CONVERT_LOCK(hint
);
4047 rt_revalidate_gwroute(prt
, rt
);
4053 /* Clean up "hint" now; see notes above regarding hint0 */
4060 /* rt == gwrt; if it is now down, give up */
4062 if (!(rt
->rt_flags
& RTF_UP
)) {
4064 senderr(EHOSTUNREACH
);
4068 if (rt
->rt_flags
& RTF_REJECT
) {
4069 VERIFY(rt
->rt_expire
== 0 || rt
->rt_rmx
.rmx_expire
!= 0);
4070 VERIFY(rt
->rt_expire
!= 0 || rt
->rt_rmx
.rmx_expire
== 0);
4071 timenow
= net_uptime();
4072 if (rt
->rt_expire
== 0 || timenow
< rt
->rt_expire
) {
4074 senderr(!gwroute
? EHOSTDOWN
: EHOSTUNREACH
);
4078 /* Become a regular mutex */
4079 RT_CONVERT_LOCK(rt
);
4081 /* Caller is responsible for cleaning up "rt" */
4086 /* Clean up route (either it is "rt" or "gwrt") */
4090 RT_REMREF_LOCKED(rt
);
4102 rt_revalidate_gwroute(struct rtentry
*rt
, struct rtentry
*gwrt
)
4104 VERIFY(gwrt
!= NULL
);
4107 if ((rt
->rt_flags
& (RTF_GATEWAY
| RTF_UP
)) == (RTF_GATEWAY
| RTF_UP
) &&
4108 rt
->rt_ifp
== gwrt
->rt_ifp
&& rt
->rt_gateway
->sa_family
==
4109 rt_key(gwrt
)->sa_family
&& (rt
->rt_gwroute
== NULL
||
4110 !(rt
->rt_gwroute
->rt_flags
& RTF_UP
))) {
4112 VERIFY(rt
->rt_flags
& (RTF_CLONING
| RTF_PRCLONING
));
4114 if (rt
->rt_gateway
->sa_family
== AF_INET
||
4115 rt
->rt_gateway
->sa_family
== AF_INET6
) {
4116 struct sockaddr_storage key_ss
, gw_ss
;
4118 * We need to compare rt_key and rt_gateway; create
4119 * local copies to get rid of any ifscope association.
4121 (void) sa_copy(rt_key(gwrt
), &key_ss
, NULL
);
4122 (void) sa_copy(rt
->rt_gateway
, &gw_ss
, NULL
);
4124 isequal
= equal(SA(&key_ss
), SA(&gw_ss
));
4126 isequal
= equal(rt_key(gwrt
), rt
->rt_gateway
);
4129 /* If they are the same, update gwrt */
4132 lck_mtx_lock(rnh_lock
);
4134 rt_set_gwroute(rt
, rt_key(rt
), gwrt
);
4136 lck_mtx_unlock(rnh_lock
);
4146 rt_str4(struct rtentry
*rt
, char *ds
, uint32_t dslen
, char *gs
, uint32_t gslen
)
4148 VERIFY(rt_key(rt
)->sa_family
== AF_INET
);
4151 (void) inet_ntop(AF_INET
,
4152 &SIN(rt_key(rt
))->sin_addr
.s_addr
, ds
, dslen
);
4153 if (dslen
>= MAX_SCOPE_ADDR_STR_LEN
&&
4154 SINIFSCOPE(rt_key(rt
))->sin_scope_id
!= IFSCOPE_NONE
) {
4157 snprintf(scpstr
, sizeof(scpstr
), "@%u",
4158 SINIFSCOPE(rt_key(rt
))->sin_scope_id
);
4160 strlcat(ds
, scpstr
, dslen
);
4165 if (rt
->rt_flags
& RTF_GATEWAY
) {
4166 (void) inet_ntop(AF_INET
,
4167 &SIN(rt
->rt_gateway
)->sin_addr
.s_addr
, gs
, gslen
);
4168 } else if (rt
->rt_ifp
!= NULL
) {
4169 snprintf(gs
, gslen
, "link#%u", rt
->rt_ifp
->if_unit
);
4171 snprintf(gs
, gslen
, "%s", "link");
4178 rt_str6(struct rtentry
*rt
, char *ds
, uint32_t dslen
, char *gs
, uint32_t gslen
)
4180 VERIFY(rt_key(rt
)->sa_family
== AF_INET6
);
4183 (void) inet_ntop(AF_INET6
,
4184 &SIN6(rt_key(rt
))->sin6_addr
, ds
, dslen
);
4185 if (dslen
>= MAX_SCOPE_ADDR_STR_LEN
&&
4186 SIN6IFSCOPE(rt_key(rt
))->sin6_scope_id
!= IFSCOPE_NONE
) {
4189 snprintf(scpstr
, sizeof(scpstr
), "@%u",
4190 SIN6IFSCOPE(rt_key(rt
))->sin6_scope_id
);
4192 strlcat(ds
, scpstr
, dslen
);
4197 if (rt
->rt_flags
& RTF_GATEWAY
) {
4198 (void) inet_ntop(AF_INET6
,
4199 &SIN6(rt
->rt_gateway
)->sin6_addr
, gs
, gslen
);
4200 } else if (rt
->rt_ifp
!= NULL
) {
4201 snprintf(gs
, gslen
, "link#%u", rt
->rt_ifp
->if_unit
);
4203 snprintf(gs
, gslen
, "%s", "link");
4211 rt_str(struct rtentry
*rt
, char *ds
, uint32_t dslen
, char *gs
, uint32_t gslen
)
4213 switch (rt_key(rt
)->sa_family
) {
4215 rt_str4(rt
, ds
, dslen
, gs
, gslen
);
4219 rt_str6(rt
, ds
, dslen
, gs
, gslen
);
4231 void route_event_init(struct route_event
*p_route_ev
, struct rtentry
*rt
,
4232 struct rtentry
*gwrt
, int route_ev_code
)
4234 VERIFY(p_route_ev
!= NULL
);
4235 bzero(p_route_ev
, sizeof(*p_route_ev
));
4237 p_route_ev
->rt
= rt
;
4238 p_route_ev
->gwrt
= gwrt
;
4239 p_route_ev
->route_event_code
= route_ev_code
;
4243 route_event_callback(void *arg
)
4245 struct route_event
*p_rt_ev
= (struct route_event
*)arg
;
4246 struct rtentry
*rt
= p_rt_ev
->rt
;
4247 eventhandler_tag evtag
= p_rt_ev
->evtag
;
4248 int route_ev_code
= p_rt_ev
->route_event_code
;
4250 if (route_ev_code
== ROUTE_EVHDLR_DEREGISTER
) {
4251 VERIFY(evtag
!= NULL
);
4252 EVENTHANDLER_DEREGISTER(&rt
->rt_evhdlr_ctxt
, route_event
,
4258 EVENTHANDLER_INVOKE(&rt
->rt_evhdlr_ctxt
, route_event
, rt_key(rt
),
4259 route_ev_code
, (struct sockaddr
*)&p_rt_ev
->rt_addr
,
4262 /* The code enqueuing the route event held a reference */
4264 /* XXX No reference is taken on gwrt */
4268 route_event_walktree(struct radix_node
*rn
, void *arg
)
4270 struct route_event
*p_route_ev
= (struct route_event
*)arg
;
4271 struct rtentry
*rt
= (struct rtentry
*)rn
;
4272 struct rtentry
*gwrt
= p_route_ev
->rt
;
4274 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_OWNED
);
4278 /* Return if the entry is pending cleanup */
4279 if (rt
->rt_flags
& RTPRF_OURS
) {
4284 /* Return if it is not an indirect route */
4285 if (!(rt
->rt_flags
& RTF_GATEWAY
)) {
4290 if (rt
->rt_gwroute
!= gwrt
) {
4295 route_event_enqueue_nwk_wq_entry(rt
, gwrt
, p_route_ev
->route_event_code
,
4302 struct route_event_nwk_wq_entry
4304 struct nwk_wq_entry nwk_wqe
;
4305 struct route_event rt_ev_arg
;
4309 route_event_enqueue_nwk_wq_entry(struct rtentry
*rt
, struct rtentry
*gwrt
,
4310 uint32_t route_event_code
, eventhandler_tag evtag
, boolean_t rt_locked
)
4312 struct route_event_nwk_wq_entry
*p_rt_ev
= NULL
;
4313 struct sockaddr
*p_gw_saddr
= NULL
;
4315 MALLOC(p_rt_ev
, struct route_event_nwk_wq_entry
*,
4316 sizeof(struct route_event_nwk_wq_entry
),
4317 M_NWKWQ
, M_WAITOK
| M_ZERO
);
4320 * If the intent is to de-register, don't take
4321 * reference, route event registration already takes
4322 * a reference on route.
4324 if (route_event_code
!= ROUTE_EVHDLR_DEREGISTER
) {
4325 /* The reference is released by route_event_callback */
4327 RT_ADDREF_LOCKED(rt
);
4332 p_rt_ev
->rt_ev_arg
.rt
= rt
;
4333 p_rt_ev
->rt_ev_arg
.gwrt
= gwrt
;
4334 p_rt_ev
->rt_ev_arg
.evtag
= evtag
;
4337 p_gw_saddr
= gwrt
->rt_gateway
;
4339 p_gw_saddr
= rt
->rt_gateway
;
4341 VERIFY(p_gw_saddr
->sa_len
<= sizeof(p_rt_ev
->rt_ev_arg
.rt_addr
));
4342 bcopy(p_gw_saddr
, &(p_rt_ev
->rt_ev_arg
.rt_addr
), p_gw_saddr
->sa_len
);
4344 p_rt_ev
->rt_ev_arg
.route_event_code
= route_event_code
;
4345 p_rt_ev
->nwk_wqe
.func
= route_event_callback
;
4346 p_rt_ev
->nwk_wqe
.is_arg_managed
= TRUE
;
4347 p_rt_ev
->nwk_wqe
.arg
= &p_rt_ev
->rt_ev_arg
;
4348 nwk_wq_enqueue((struct nwk_wq_entry
*)p_rt_ev
);
4352 route_event2str(int route_event
)
4354 const char *route_event_str
= "ROUTE_EVENT_UNKNOWN";
4355 switch (route_event
) {
4356 case ROUTE_STATUS_UPDATE
:
4357 route_event_str
= "ROUTE_STATUS_UPDATE";
4359 case ROUTE_ENTRY_REFRESH
:
4360 route_event_str
= "ROUTE_ENTRY_REFRESH";
4362 case ROUTE_ENTRY_DELETED
:
4363 route_event_str
= "ROUTE_ENTRY_DELETED";
4365 case ROUTE_LLENTRY_RESOLVED
:
4366 route_event_str
= "ROUTE_LLENTRY_RESOLVED";
4368 case ROUTE_LLENTRY_UNREACH
:
4369 route_event_str
= "ROUTE_LLENTRY_UNREACH";
4371 case ROUTE_LLENTRY_CHANGED
:
4372 route_event_str
= "ROUTE_LLENTRY_CHANGED";
4374 case ROUTE_LLENTRY_STALE
:
4375 route_event_str
= "ROUTE_LLENTRY_STALE";
4377 case ROUTE_LLENTRY_TIMEDOUT
:
4378 route_event_str
= "ROUTE_LLENTRY_TIMEDOUT";
4380 case ROUTE_LLENTRY_DELETED
:
4381 route_event_str
= "ROUTE_LLENTRY_DELETED";
4383 case ROUTE_LLENTRY_EXPIRED
:
4384 route_event_str
= "ROUTE_LLENTRY_EXPIRED";
4386 case ROUTE_LLENTRY_PROBED
:
4387 route_event_str
= "ROUTE_LLENTRY_PROBED";
4389 case ROUTE_EVHDLR_DEREGISTER
:
4390 route_event_str
= "ROUTE_EVHDLR_DEREGISTER";
4393 /* Init'd to ROUTE_EVENT_UNKNOWN */
4396 return route_event_str
;
4400 route_op_entitlement_check(struct socket
*so
,
4403 boolean_t allow_root
)
4406 if (route_op_type
== ROUTE_OP_READ
) {
4408 * If needed we can later extend this for more
4409 * granular entitlements and return a bit set of
4412 if (soopt_cred_check(so
, PRIV_NET_RESTRICTED_ROUTE_NC_READ
,
4418 } else if (cred
!= NULL
) {
4419 uid_t uid
= kauth_cred_getuid(cred
);
4421 /* uid is 0 for root */
4422 if (uid
!= 0 || !allow_root
) {
4423 if (route_op_type
== ROUTE_OP_READ
) {
4424 if (priv_check_cred(cred
,
4425 PRIV_NET_RESTRICTED_ROUTE_NC_READ
, 0) == 0)