]> git.saurik.com Git - apple/xnu.git/blob - libkern/zlib/adler32.c
xnu-1504.15.3.tar.gz
[apple/xnu.git] / libkern / zlib / adler32.c
1 /*
2 * Copyright (c) 2008 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /* adler32.c -- compute the Adler-32 checksum of a data stream
29 * Copyright (C) 1995-2004 Mark Adler
30 * For conditions of distribution and use, see copyright notice in zlib.h
31 */
32
33 /* @(#) $Id$ */
34
35 #include <stdint.h> // For uintptr_t.
36
37
38 #define ZLIB_INTERNAL
39 #if KERNEL
40 #include <libkern/zlib.h>
41 #else
42 #include "zlib.h"
43 #endif /* KERNEL */
44
45 #if defined _ARM_ARCH_6
46 extern uLong adler32_vec(uLong adler, uLong sum2, const Bytef *buf, uInt len);
47 #endif
48
49 #define BASE 65521UL /* largest prime smaller than 65536 */
50 #define NMAX 5552
51 /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
52
53 #define DO1(buf,i) {adler += (buf)[i]; sum2 += adler;}
54 #define DO2(buf,i) DO1(buf,i); DO1(buf,i+1);
55 #define DO4(buf,i) DO2(buf,i); DO2(buf,i+2);
56 #define DO8(buf,i) DO4(buf,i); DO4(buf,i+4);
57 #define DO16(buf) DO8(buf,0); DO8(buf,8);
58
59 /* use NO_DIVIDE if your processor does not do division in hardware */
60 #ifdef NO_DIVIDE
61 # define MOD(a) \
62 do { \
63 if (a >= (BASE << 16)) a -= (BASE << 16); \
64 if (a >= (BASE << 15)) a -= (BASE << 15); \
65 if (a >= (BASE << 14)) a -= (BASE << 14); \
66 if (a >= (BASE << 13)) a -= (BASE << 13); \
67 if (a >= (BASE << 12)) a -= (BASE << 12); \
68 if (a >= (BASE << 11)) a -= (BASE << 11); \
69 if (a >= (BASE << 10)) a -= (BASE << 10); \
70 if (a >= (BASE << 9)) a -= (BASE << 9); \
71 if (a >= (BASE << 8)) a -= (BASE << 8); \
72 if (a >= (BASE << 7)) a -= (BASE << 7); \
73 if (a >= (BASE << 6)) a -= (BASE << 6); \
74 if (a >= (BASE << 5)) a -= (BASE << 5); \
75 if (a >= (BASE << 4)) a -= (BASE << 4); \
76 if (a >= (BASE << 3)) a -= (BASE << 3); \
77 if (a >= (BASE << 2)) a -= (BASE << 2); \
78 if (a >= (BASE << 1)) a -= (BASE << 1); \
79 if (a >= BASE) a -= BASE; \
80 } while (0)
81 # define MOD4(a) \
82 do { \
83 if (a >= (BASE << 4)) a -= (BASE << 4); \
84 if (a >= (BASE << 3)) a -= (BASE << 3); \
85 if (a >= (BASE << 2)) a -= (BASE << 2); \
86 if (a >= (BASE << 1)) a -= (BASE << 1); \
87 if (a >= BASE) a -= BASE; \
88 } while (0)
89 #else
90 # define MOD(a) a %= BASE
91 # define MOD4(a) a %= BASE
92 #endif
93
94 /* ========================================================================= */
95 uLong ZEXPORT adler32(adler, buf, len)
96 uLong adler;
97 const Bytef *buf;
98 uInt len;
99 {
100 unsigned long sum2;
101 #if !defined _ARM_ARCH_6
102 unsigned n;
103 #endif
104
105 /* split Adler-32 into component sums */
106 sum2 = (adler >> 16) & 0xffff;
107 adler &= 0xffff;
108
109 /* in case user likes doing a byte at a time, keep it fast */
110 if (len == 1) {
111 adler += buf[0];
112 if (adler >= BASE)
113 adler -= BASE;
114 sum2 += adler;
115 if (sum2 >= BASE)
116 sum2 -= BASE;
117 return adler | (sum2 << 16);
118 }
119
120 /* initial Adler-32 value (deferred check for len == 1 speed) */
121 if (buf == Z_NULL)
122 return 1L;
123
124 /* in case short lengths are provided, keep it somewhat fast */
125 if (len < 16) {
126 while (len--) {
127 adler += *buf++;
128 sum2 += adler;
129 }
130 if (adler >= BASE)
131 adler -= BASE;
132 MOD4(sum2); /* only added so many BASE's */
133 return adler | (sum2 << 16);
134 }
135
136 #if defined _ARM_ARCH_6
137 /* align buf to 16-byte boundary */
138 while (((uintptr_t)buf)&15) { /* not on a 16-byte boundary */
139 len--;
140 adler += *buf++;
141 sum2 += adler;
142 if (adler >= BASE) adler -= BASE;
143 MOD4(sum2); /* only added so many BASE's */
144 }
145
146 return adler32_vec(adler, sum2, buf, len); // armv7 neon vectorized implementation
147
148 #else // _ARM_ARCH_6
149
150 /* do length NMAX blocks -- requires just one modulo operation */
151 while (len >= NMAX) {
152 len -= NMAX;
153 n = NMAX / 16; /* NMAX is divisible by 16 */
154 do {
155 DO16(buf); /* 16 sums unrolled */
156 buf += 16;
157 } while (--n);
158 MOD(adler);
159 MOD(sum2);
160 }
161
162 /* do remaining bytes (less than NMAX, still just one modulo) */
163 if (len) { /* avoid modulos if none remaining */
164 while (len >= 16) {
165 len -= 16;
166 DO16(buf);
167 buf += 16;
168 }
169 while (len--) {
170 adler += *buf++;
171 sum2 += adler;
172 }
173 MOD(adler);
174 MOD(sum2);
175 }
176
177 /* return recombined sums */
178 return adler | (sum2 << 16);
179
180 #endif // _ARM_ARCH_6
181 }
182
183 /* ========================================================================= */
184 uLong ZEXPORT adler32_combine(adler1, adler2, len2)
185 uLong adler1;
186 uLong adler2;
187 z_off_t len2;
188 {
189 unsigned long sum1;
190 unsigned long sum2;
191 unsigned rem;
192
193 /* the derivation of this formula is left as an exercise for the reader */
194 rem = (unsigned)(len2 % BASE);
195 sum1 = adler1 & 0xffff;
196 sum2 = rem * sum1;
197 MOD(sum2);
198 sum1 += (adler2 & 0xffff) + BASE - 1;
199 sum2 += ((adler1 >> 16) & 0xffff) + ((adler2 >> 16) & 0xffff) + BASE - rem;
200 if (sum1 > BASE) sum1 -= BASE;
201 if (sum1 > BASE) sum1 -= BASE;
202 if (sum2 > (BASE << 1)) sum2 -= (BASE << 1);
203 if (sum2 > BASE) sum2 -= BASE;
204 return sum1 | (sum2 << 16);
205 }