]> git.saurik.com Git - apple/xnu.git/blob - bsd/sys/queue.h
xnu-1504.15.3.tar.gz
[apple/xnu.git] / bsd / sys / queue.h
1 /*
2 * Copyright (c) 2000 Apple Computer, Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*-
29 * Copyright (c) 1991, 1993
30 * The Regents of the University of California. All rights reserved.
31 *
32 * Redistribution and use in source and binary forms, with or without
33 * modification, are permitted provided that the following conditions
34 * are met:
35 * 1. Redistributions of source code must retain the above copyright
36 * notice, this list of conditions and the following disclaimer.
37 * 2. Redistributions in binary form must reproduce the above copyright
38 * notice, this list of conditions and the following disclaimer in the
39 * documentation and/or other materials provided with the distribution.
40 * 4. Neither the name of the University nor the names of its contributors
41 * may be used to endorse or promote products derived from this software
42 * without specific prior written permission.
43 *
44 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
45 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
46 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
47 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
48 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
49 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
50 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
51 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
52 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
53 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
54 * SUCH DAMAGE.
55 *
56 * @(#)queue.h 8.5 (Berkeley) 8/20/94
57 */
58
59 #ifndef _SYS_QUEUE_H_
60 #define _SYS_QUEUE_H_
61
62 /*
63 * This file defines five types of data structures: singly-linked lists,
64 * singly-linked tail queues, lists, tail queues, and circular queues.
65 *
66 * A singly-linked list is headed by a single forward pointer. The elements
67 * are singly linked for minimum space and pointer manipulation overhead at
68 * the expense of O(n) removal for arbitrary elements. New elements can be
69 * added to the list after an existing element or at the head of the list.
70 * Elements being removed from the head of the list should use the explicit
71 * macro for this purpose for optimum efficiency. A singly-linked list may
72 * only be traversed in the forward direction. Singly-linked lists are ideal
73 * for applications with large datasets and few or no removals or for
74 * implementing a LIFO queue.
75 *
76 * A singly-linked tail queue is headed by a pair of pointers, one to the
77 * head of the list and the other to the tail of the list. The elements are
78 * singly linked for minimum space and pointer manipulation overhead at the
79 * expense of O(n) removal for arbitrary elements. New elements can be added
80 * to the list after an existing element, at the head of the list, or at the
81 * end of the list. Elements being removed from the head of the tail queue
82 * should use the explicit macro for this purpose for optimum efficiency.
83 * A singly-linked tail queue may only be traversed in the forward direction.
84 * Singly-linked tail queues are ideal for applications with large datasets
85 * and few or no removals or for implementing a FIFO queue.
86 *
87 * A list is headed by a single forward pointer (or an array of forward
88 * pointers for a hash table header). The elements are doubly linked
89 * so that an arbitrary element can be removed without a need to
90 * traverse the list. New elements can be added to the list before
91 * or after an existing element or at the head of the list. A list
92 * may only be traversed in the forward direction.
93 *
94 * A tail queue is headed by a pair of pointers, one to the head of the
95 * list and the other to the tail of the list. The elements are doubly
96 * linked so that an arbitrary element can be removed without a need to
97 * traverse the list. New elements can be added to the list before or
98 * after an existing element, at the head of the list, or at the end of
99 * the list. A tail queue may be traversed in either direction.
100 *
101 * A circle queue is headed by a pair of pointers, one to the head of the
102 * list and the other to the tail of the list. The elements are doubly
103 * linked so that an arbitrary element can be removed without a need to
104 * traverse the list. New elements can be added to the list before or after
105 * an existing element, at the head of the list, or at the end of the list.
106 * A circle queue may be traversed in either direction, but has a more
107 * complex end of list detection.
108 * Note that circle queues are deprecated, because, as the removal log
109 * in FreeBSD states, "CIRCLEQs are a disgrace to everything Knuth taught
110 * us in Volume 1 Chapter 2. [...] Use TAILQ instead, it provides the same
111 * functionality." Code using them will continue to compile, but they
112 * are no longer documented on the man page.
113 *
114 * For details on the use of these macros, see the queue(3) manual page.
115 *
116 *
117 * SLIST LIST STAILQ TAILQ CIRCLEQ
118 * _HEAD + + + + +
119 * _HEAD_INITIALIZER + + + + -
120 * _ENTRY + + + + +
121 * _INIT + + + + +
122 * _EMPTY + + + + +
123 * _FIRST + + + + +
124 * _NEXT + + + + +
125 * _PREV - - - + +
126 * _LAST - - + + +
127 * _FOREACH + + + + +
128 * _FOREACH_SAFE + + + + -
129 * _FOREACH_REVERSE - - - + -
130 * _FOREACH_REVERSE_SAFE - - - + -
131 * _INSERT_HEAD + + + + +
132 * _INSERT_BEFORE - + - + +
133 * _INSERT_AFTER + + + + +
134 * _INSERT_TAIL - - + + +
135 * _CONCAT - - + + -
136 * _REMOVE_HEAD + - + - -
137 * _REMOVE + + + + +
138 *
139 */
140 #ifdef QUEUE_MACRO_DEBUG
141 /* Store the last 2 places the queue element or head was altered */
142 struct qm_trace {
143 char * lastfile;
144 int lastline;
145 char * prevfile;
146 int prevline;
147 };
148
149 #define TRACEBUF struct qm_trace trace;
150 #define TRASHIT(x) do {(x) = (void *)-1;} while (0)
151
152 #define QMD_TRACE_HEAD(head) do { \
153 (head)->trace.prevline = (head)->trace.lastline; \
154 (head)->trace.prevfile = (head)->trace.lastfile; \
155 (head)->trace.lastline = __LINE__; \
156 (head)->trace.lastfile = __FILE__; \
157 } while (0)
158
159 #define QMD_TRACE_ELEM(elem) do { \
160 (elem)->trace.prevline = (elem)->trace.lastline; \
161 (elem)->trace.prevfile = (elem)->trace.lastfile; \
162 (elem)->trace.lastline = __LINE__; \
163 (elem)->trace.lastfile = __FILE__; \
164 } while (0)
165
166 #else
167 #define QMD_TRACE_ELEM(elem)
168 #define QMD_TRACE_HEAD(head)
169 #define TRACEBUF
170 #define TRASHIT(x)
171 #endif /* QUEUE_MACRO_DEBUG */
172
173 /*
174 * Singly-linked List declarations.
175 */
176 #define SLIST_HEAD(name, type) \
177 struct name { \
178 struct type *slh_first; /* first element */ \
179 }
180
181 #define SLIST_HEAD_INITIALIZER(head) \
182 { NULL }
183
184 #define SLIST_ENTRY(type) \
185 struct { \
186 struct type *sle_next; /* next element */ \
187 }
188
189 /*
190 * Singly-linked List functions.
191 */
192 #define SLIST_EMPTY(head) ((head)->slh_first == NULL)
193
194 #define SLIST_FIRST(head) ((head)->slh_first)
195
196 #define SLIST_FOREACH(var, head, field) \
197 for ((var) = SLIST_FIRST((head)); \
198 (var); \
199 (var) = SLIST_NEXT((var), field))
200
201 #define SLIST_FOREACH_SAFE(var, head, field, tvar) \
202 for ((var) = SLIST_FIRST((head)); \
203 (var) && ((tvar) = SLIST_NEXT((var), field), 1); \
204 (var) = (tvar))
205
206 #define SLIST_FOREACH_PREVPTR(var, varp, head, field) \
207 for ((varp) = &SLIST_FIRST((head)); \
208 ((var) = *(varp)) != NULL; \
209 (varp) = &SLIST_NEXT((var), field))
210
211 #define SLIST_INIT(head) do { \
212 SLIST_FIRST((head)) = NULL; \
213 } while (0)
214
215 #define SLIST_INSERT_AFTER(slistelm, elm, field) do { \
216 SLIST_NEXT((elm), field) = SLIST_NEXT((slistelm), field); \
217 SLIST_NEXT((slistelm), field) = (elm); \
218 } while (0)
219
220 #define SLIST_INSERT_HEAD(head, elm, field) do { \
221 SLIST_NEXT((elm), field) = SLIST_FIRST((head)); \
222 SLIST_FIRST((head)) = (elm); \
223 } while (0)
224
225 #define SLIST_NEXT(elm, field) ((elm)->field.sle_next)
226
227 #define SLIST_REMOVE(head, elm, type, field) do { \
228 if (SLIST_FIRST((head)) == (elm)) { \
229 SLIST_REMOVE_HEAD((head), field); \
230 } \
231 else { \
232 struct type *curelm = SLIST_FIRST((head)); \
233 while (SLIST_NEXT(curelm, field) != (elm)) \
234 curelm = SLIST_NEXT(curelm, field); \
235 SLIST_NEXT(curelm, field) = \
236 SLIST_NEXT(SLIST_NEXT(curelm, field), field); \
237 } \
238 TRASHIT((elm)->field.sle_next); \
239 } while (0)
240
241 #define SLIST_REMOVE_HEAD(head, field) do { \
242 SLIST_FIRST((head)) = SLIST_NEXT(SLIST_FIRST((head)), field); \
243 } while (0)
244
245 /*
246 * Singly-linked Tail queue declarations.
247 */
248 #define STAILQ_HEAD(name, type) \
249 struct name { \
250 struct type *stqh_first;/* first element */ \
251 struct type **stqh_last;/* addr of last next element */ \
252 }
253
254 #define STAILQ_HEAD_INITIALIZER(head) \
255 { NULL, &(head).stqh_first }
256
257 #define STAILQ_ENTRY(type) \
258 struct { \
259 struct type *stqe_next; /* next element */ \
260 }
261
262 /*
263 * Singly-linked Tail queue functions.
264 */
265 #define STAILQ_CONCAT(head1, head2) do { \
266 if (!STAILQ_EMPTY((head2))) { \
267 *(head1)->stqh_last = (head2)->stqh_first; \
268 (head1)->stqh_last = (head2)->stqh_last; \
269 STAILQ_INIT((head2)); \
270 } \
271 } while (0)
272
273 #define STAILQ_EMPTY(head) ((head)->stqh_first == NULL)
274
275 #define STAILQ_FIRST(head) ((head)->stqh_first)
276
277 #define STAILQ_FOREACH(var, head, field) \
278 for((var) = STAILQ_FIRST((head)); \
279 (var); \
280 (var) = STAILQ_NEXT((var), field))
281
282
283 #define STAILQ_FOREACH_SAFE(var, head, field, tvar) \
284 for ((var) = STAILQ_FIRST((head)); \
285 (var) && ((tvar) = STAILQ_NEXT((var), field), 1); \
286 (var) = (tvar))
287
288 #define STAILQ_INIT(head) do { \
289 STAILQ_FIRST((head)) = NULL; \
290 (head)->stqh_last = &STAILQ_FIRST((head)); \
291 } while (0)
292
293 #define STAILQ_INSERT_AFTER(head, tqelm, elm, field) do { \
294 if ((STAILQ_NEXT((elm), field) = STAILQ_NEXT((tqelm), field)) == NULL)\
295 (head)->stqh_last = &STAILQ_NEXT((elm), field); \
296 STAILQ_NEXT((tqelm), field) = (elm); \
297 } while (0)
298
299 #define STAILQ_INSERT_HEAD(head, elm, field) do { \
300 if ((STAILQ_NEXT((elm), field) = STAILQ_FIRST((head))) == NULL) \
301 (head)->stqh_last = &STAILQ_NEXT((elm), field); \
302 STAILQ_FIRST((head)) = (elm); \
303 } while (0)
304
305 #define STAILQ_INSERT_TAIL(head, elm, field) do { \
306 STAILQ_NEXT((elm), field) = NULL; \
307 *(head)->stqh_last = (elm); \
308 (head)->stqh_last = &STAILQ_NEXT((elm), field); \
309 } while (0)
310
311 #define STAILQ_LAST(head, type, field) \
312 (STAILQ_EMPTY((head)) ? \
313 NULL : \
314 ((struct type *)(void *) \
315 ((char *)((head)->stqh_last) - __offsetof(struct type, field))))
316
317 #define STAILQ_NEXT(elm, field) ((elm)->field.stqe_next)
318
319 #define STAILQ_REMOVE(head, elm, type, field) do { \
320 if (STAILQ_FIRST((head)) == (elm)) { \
321 STAILQ_REMOVE_HEAD((head), field); \
322 } \
323 else { \
324 struct type *curelm = STAILQ_FIRST((head)); \
325 while (STAILQ_NEXT(curelm, field) != (elm)) \
326 curelm = STAILQ_NEXT(curelm, field); \
327 if ((STAILQ_NEXT(curelm, field) = \
328 STAILQ_NEXT(STAILQ_NEXT(curelm, field), field)) == NULL)\
329 (head)->stqh_last = &STAILQ_NEXT((curelm), field);\
330 } \
331 TRASHIT((elm)->field.stqe_next); \
332 } while (0)
333
334 #define STAILQ_REMOVE_HEAD(head, field) do { \
335 if ((STAILQ_FIRST((head)) = \
336 STAILQ_NEXT(STAILQ_FIRST((head)), field)) == NULL) \
337 (head)->stqh_last = &STAILQ_FIRST((head)); \
338 } while (0)
339
340 #define STAILQ_REMOVE_HEAD_UNTIL(head, elm, field) do { \
341 if ((STAILQ_FIRST((head)) = STAILQ_NEXT((elm), field)) == NULL) \
342 (head)->stqh_last = &STAILQ_FIRST((head)); \
343 } while (0)
344
345 /*
346 * List declarations.
347 */
348 #define LIST_HEAD(name, type) \
349 struct name { \
350 struct type *lh_first; /* first element */ \
351 }
352
353 #define LIST_HEAD_INITIALIZER(head) \
354 { NULL }
355
356 #define LIST_ENTRY(type) \
357 struct { \
358 struct type *le_next; /* next element */ \
359 struct type **le_prev; /* address of previous next element */ \
360 }
361
362 /*
363 * List functions.
364 */
365
366 #if (defined(_KERNEL) && defined(INVARIANTS)) || defined(QUEUE_MACRO_DEBUG)
367 #define QMD_LIST_CHECK_HEAD(head, field) do { \
368 if (LIST_FIRST((head)) != NULL && \
369 LIST_FIRST((head))->field.le_prev != \
370 &LIST_FIRST((head))) \
371 panic("Bad list head %p first->prev != head", (head)); \
372 } while (0)
373
374 #define QMD_LIST_CHECK_NEXT(elm, field) do { \
375 if (LIST_NEXT((elm), field) != NULL && \
376 LIST_NEXT((elm), field)->field.le_prev != \
377 &((elm)->field.le_next)) \
378 panic("Bad link elm %p next->prev != elm", (elm)); \
379 } while (0)
380
381 #define QMD_LIST_CHECK_PREV(elm, field) do { \
382 if (*(elm)->field.le_prev != (elm)) \
383 panic("Bad link elm %p prev->next != elm", (elm)); \
384 } while (0)
385 #else
386 #define QMD_LIST_CHECK_HEAD(head, field)
387 #define QMD_LIST_CHECK_NEXT(elm, field)
388 #define QMD_LIST_CHECK_PREV(elm, field)
389 #endif /* (_KERNEL && INVARIANTS) || QUEUE_MACRO_DEBUG */
390
391 #define LIST_EMPTY(head) ((head)->lh_first == NULL)
392
393 #define LIST_FIRST(head) ((head)->lh_first)
394
395 #define LIST_FOREACH(var, head, field) \
396 for ((var) = LIST_FIRST((head)); \
397 (var); \
398 (var) = LIST_NEXT((var), field))
399
400 #define LIST_FOREACH_SAFE(var, head, field, tvar) \
401 for ((var) = LIST_FIRST((head)); \
402 (var) && ((tvar) = LIST_NEXT((var), field), 1); \
403 (var) = (tvar))
404
405 #define LIST_INIT(head) do { \
406 LIST_FIRST((head)) = NULL; \
407 } while (0)
408
409 #define LIST_INSERT_AFTER(listelm, elm, field) do { \
410 QMD_LIST_CHECK_NEXT(listelm, field); \
411 if ((LIST_NEXT((elm), field) = LIST_NEXT((listelm), field)) != NULL)\
412 LIST_NEXT((listelm), field)->field.le_prev = \
413 &LIST_NEXT((elm), field); \
414 LIST_NEXT((listelm), field) = (elm); \
415 (elm)->field.le_prev = &LIST_NEXT((listelm), field); \
416 } while (0)
417
418 #define LIST_INSERT_BEFORE(listelm, elm, field) do { \
419 QMD_LIST_CHECK_PREV(listelm, field); \
420 (elm)->field.le_prev = (listelm)->field.le_prev; \
421 LIST_NEXT((elm), field) = (listelm); \
422 *(listelm)->field.le_prev = (elm); \
423 (listelm)->field.le_prev = &LIST_NEXT((elm), field); \
424 } while (0)
425
426 #define LIST_INSERT_HEAD(head, elm, field) do { \
427 QMD_LIST_CHECK_HEAD((head), field); \
428 if ((LIST_NEXT((elm), field) = LIST_FIRST((head))) != NULL) \
429 LIST_FIRST((head))->field.le_prev = &LIST_NEXT((elm), field);\
430 LIST_FIRST((head)) = (elm); \
431 (elm)->field.le_prev = &LIST_FIRST((head)); \
432 } while (0)
433
434 #define LIST_NEXT(elm, field) ((elm)->field.le_next)
435
436 #define LIST_REMOVE(elm, field) do { \
437 QMD_LIST_CHECK_NEXT(elm, field); \
438 QMD_LIST_CHECK_PREV(elm, field); \
439 if (LIST_NEXT((elm), field) != NULL) \
440 LIST_NEXT((elm), field)->field.le_prev = \
441 (elm)->field.le_prev; \
442 *(elm)->field.le_prev = LIST_NEXT((elm), field); \
443 TRASHIT((elm)->field.le_next); \
444 TRASHIT((elm)->field.le_prev); \
445 } while (0)
446
447 /*
448 * Tail queue declarations.
449 */
450 #define TAILQ_HEAD(name, type) \
451 struct name { \
452 struct type *tqh_first; /* first element */ \
453 struct type **tqh_last; /* addr of last next element */ \
454 TRACEBUF \
455 }
456
457 #define TAILQ_HEAD_INITIALIZER(head) \
458 { NULL, &(head).tqh_first }
459
460 #define TAILQ_ENTRY(type) \
461 struct { \
462 struct type *tqe_next; /* next element */ \
463 struct type **tqe_prev; /* address of previous next element */ \
464 TRACEBUF \
465 }
466
467 /*
468 * Tail queue functions.
469 */
470 #define TAILQ_CONCAT(head1, head2, field) do { \
471 if (!TAILQ_EMPTY(head2)) { \
472 *(head1)->tqh_last = (head2)->tqh_first; \
473 (head2)->tqh_first->field.tqe_prev = (head1)->tqh_last; \
474 (head1)->tqh_last = (head2)->tqh_last; \
475 TAILQ_INIT((head2)); \
476 QMD_TRACE_HEAD(head1); \
477 QMD_TRACE_HEAD(head2); \
478 } \
479 } while (0)
480
481 #define TAILQ_EMPTY(head) ((head)->tqh_first == NULL)
482
483 #define TAILQ_FIRST(head) ((head)->tqh_first)
484
485 #define TAILQ_FOREACH(var, head, field) \
486 for ((var) = TAILQ_FIRST((head)); \
487 (var); \
488 (var) = TAILQ_NEXT((var), field))
489
490 #define TAILQ_FOREACH_SAFE(var, head, field, tvar) \
491 for ((var) = TAILQ_FIRST((head)); \
492 (var) && ((tvar) = TAILQ_NEXT((var), field), 1); \
493 (var) = (tvar))
494
495 #define TAILQ_FOREACH_REVERSE(var, head, headname, field) \
496 for ((var) = TAILQ_LAST((head), headname); \
497 (var); \
498 (var) = TAILQ_PREV((var), headname, field))
499
500 #define TAILQ_FOREACH_REVERSE_SAFE(var, head, headname, field, tvar) \
501 for ((var) = TAILQ_LAST((head), headname); \
502 (var) && ((tvar) = TAILQ_PREV((var), headname, field), 1); \
503 (var) = (tvar))
504
505 #define TAILQ_INIT(head) do { \
506 TAILQ_FIRST((head)) = NULL; \
507 (head)->tqh_last = &TAILQ_FIRST((head)); \
508 QMD_TRACE_HEAD(head); \
509 } while (0)
510
511 #define TAILQ_INSERT_AFTER(head, listelm, elm, field) do { \
512 if ((TAILQ_NEXT((elm), field) = TAILQ_NEXT((listelm), field)) != NULL)\
513 TAILQ_NEXT((elm), field)->field.tqe_prev = \
514 &TAILQ_NEXT((elm), field); \
515 else { \
516 (head)->tqh_last = &TAILQ_NEXT((elm), field); \
517 QMD_TRACE_HEAD(head); \
518 } \
519 TAILQ_NEXT((listelm), field) = (elm); \
520 (elm)->field.tqe_prev = &TAILQ_NEXT((listelm), field); \
521 QMD_TRACE_ELEM(&(elm)->field); \
522 QMD_TRACE_ELEM(&listelm->field); \
523 } while (0)
524
525 #define TAILQ_INSERT_BEFORE(listelm, elm, field) do { \
526 (elm)->field.tqe_prev = (listelm)->field.tqe_prev; \
527 TAILQ_NEXT((elm), field) = (listelm); \
528 *(listelm)->field.tqe_prev = (elm); \
529 (listelm)->field.tqe_prev = &TAILQ_NEXT((elm), field); \
530 QMD_TRACE_ELEM(&(elm)->field); \
531 QMD_TRACE_ELEM(&listelm->field); \
532 } while (0)
533
534 #define TAILQ_INSERT_HEAD(head, elm, field) do { \
535 if ((TAILQ_NEXT((elm), field) = TAILQ_FIRST((head))) != NULL) \
536 TAILQ_FIRST((head))->field.tqe_prev = \
537 &TAILQ_NEXT((elm), field); \
538 else \
539 (head)->tqh_last = &TAILQ_NEXT((elm), field); \
540 TAILQ_FIRST((head)) = (elm); \
541 (elm)->field.tqe_prev = &TAILQ_FIRST((head)); \
542 QMD_TRACE_HEAD(head); \
543 QMD_TRACE_ELEM(&(elm)->field); \
544 } while (0)
545
546 #define TAILQ_INSERT_TAIL(head, elm, field) do { \
547 TAILQ_NEXT((elm), field) = NULL; \
548 (elm)->field.tqe_prev = (head)->tqh_last; \
549 *(head)->tqh_last = (elm); \
550 (head)->tqh_last = &TAILQ_NEXT((elm), field); \
551 QMD_TRACE_HEAD(head); \
552 QMD_TRACE_ELEM(&(elm)->field); \
553 } while (0)
554
555 #define TAILQ_LAST(head, headname) \
556 (*(((struct headname *)((head)->tqh_last))->tqh_last))
557
558 #define TAILQ_NEXT(elm, field) ((elm)->field.tqe_next)
559
560 #define TAILQ_PREV(elm, headname, field) \
561 (*(((struct headname *)((elm)->field.tqe_prev))->tqh_last))
562
563 #define TAILQ_REMOVE(head, elm, field) do { \
564 if ((TAILQ_NEXT((elm), field)) != NULL) \
565 TAILQ_NEXT((elm), field)->field.tqe_prev = \
566 (elm)->field.tqe_prev; \
567 else { \
568 (head)->tqh_last = (elm)->field.tqe_prev; \
569 QMD_TRACE_HEAD(head); \
570 } \
571 *(elm)->field.tqe_prev = TAILQ_NEXT((elm), field); \
572 TRASHIT((elm)->field.tqe_next); \
573 TRASHIT((elm)->field.tqe_prev); \
574 QMD_TRACE_ELEM(&(elm)->field); \
575 } while (0)
576
577 /*
578 * Circular queue definitions.
579 */
580 #define CIRCLEQ_HEAD(name, type) \
581 struct name { \
582 struct type *cqh_first; /* first element */ \
583 struct type *cqh_last; /* last element */ \
584 }
585
586 #define CIRCLEQ_ENTRY(type) \
587 struct { \
588 struct type *cqe_next; /* next element */ \
589 struct type *cqe_prev; /* previous element */ \
590 }
591
592 /*
593 * Circular queue functions.
594 */
595 #define CIRCLEQ_EMPTY(head) ((head)->cqh_first == (void *)(head))
596
597 #define CIRCLEQ_FIRST(head) ((head)->cqh_first)
598
599 #define CIRCLEQ_FOREACH(var, head, field) \
600 for((var) = (head)->cqh_first; \
601 (var) != (void *)(head); \
602 (var) = (var)->field.cqe_next)
603
604 #define CIRCLEQ_INIT(head) do { \
605 (head)->cqh_first = (void *)(head); \
606 (head)->cqh_last = (void *)(head); \
607 } while (0)
608
609 #define CIRCLEQ_INSERT_AFTER(head, listelm, elm, field) do { \
610 (elm)->field.cqe_next = (listelm)->field.cqe_next; \
611 (elm)->field.cqe_prev = (listelm); \
612 if ((listelm)->field.cqe_next == (void *)(head)) \
613 (head)->cqh_last = (elm); \
614 else \
615 (listelm)->field.cqe_next->field.cqe_prev = (elm); \
616 (listelm)->field.cqe_next = (elm); \
617 } while (0)
618
619 #define CIRCLEQ_INSERT_BEFORE(head, listelm, elm, field) do { \
620 (elm)->field.cqe_next = (listelm); \
621 (elm)->field.cqe_prev = (listelm)->field.cqe_prev; \
622 if ((listelm)->field.cqe_prev == (void *)(head)) \
623 (head)->cqh_first = (elm); \
624 else \
625 (listelm)->field.cqe_prev->field.cqe_next = (elm); \
626 (listelm)->field.cqe_prev = (elm); \
627 } while (0)
628
629 #define CIRCLEQ_INSERT_HEAD(head, elm, field) do { \
630 (elm)->field.cqe_next = (head)->cqh_first; \
631 (elm)->field.cqe_prev = (void *)(head); \
632 if ((head)->cqh_last == (void *)(head)) \
633 (head)->cqh_last = (elm); \
634 else \
635 (head)->cqh_first->field.cqe_prev = (elm); \
636 (head)->cqh_first = (elm); \
637 } while (0)
638
639 #define CIRCLEQ_INSERT_TAIL(head, elm, field) do { \
640 (elm)->field.cqe_next = (void *)(head); \
641 (elm)->field.cqe_prev = (head)->cqh_last; \
642 if ((head)->cqh_first == (void *)(head)) \
643 (head)->cqh_first = (elm); \
644 else \
645 (head)->cqh_last->field.cqe_next = (elm); \
646 (head)->cqh_last = (elm); \
647 } while (0)
648
649 #define CIRCLEQ_LAST(head) ((head)->cqh_last)
650
651 #define CIRCLEQ_NEXT(elm,field) ((elm)->field.cqe_next)
652
653 #define CIRCLEQ_PREV(elm,field) ((elm)->field.cqe_prev)
654
655 #define CIRCLEQ_REMOVE(head, elm, field) do { \
656 if ((elm)->field.cqe_next == (void *)(head)) \
657 (head)->cqh_last = (elm)->field.cqe_prev; \
658 else \
659 (elm)->field.cqe_next->field.cqe_prev = \
660 (elm)->field.cqe_prev; \
661 if ((elm)->field.cqe_prev == (void *)(head)) \
662 (head)->cqh_first = (elm)->field.cqe_next; \
663 else \
664 (elm)->field.cqe_prev->field.cqe_next = \
665 (elm)->field.cqe_next; \
666 } while (0)
667
668 #ifdef _KERNEL
669
670 #if NOTFB31
671
672 /*
673 * XXX insque() and remque() are an old way of handling certain queues.
674 * They bogusly assumes that all queue heads look alike.
675 */
676
677 struct quehead {
678 struct quehead *qh_link;
679 struct quehead *qh_rlink;
680 };
681
682 #ifdef __GNUC__
683
684 static __inline void
685 insque(void *a, void *b)
686 {
687 struct quehead *element = (struct quehead *)a,
688 *head = (struct quehead *)b;
689
690 element->qh_link = head->qh_link;
691 element->qh_rlink = head;
692 head->qh_link = element;
693 element->qh_link->qh_rlink = element;
694 }
695
696 static __inline void
697 remque(void *a)
698 {
699 struct quehead *element = (struct quehead *)a;
700
701 element->qh_link->qh_rlink = element->qh_rlink;
702 element->qh_rlink->qh_link = element->qh_link;
703 element->qh_rlink = 0;
704 }
705
706 #else /* !__GNUC__ */
707
708 void insque(void *a, void *b);
709 void remque(void *a);
710
711 #endif /* __GNUC__ */
712
713 #endif
714 #endif /* _KERNEL */
715
716 #endif /* !_SYS_QUEUE_H_ */