]>
git.saurik.com Git - apple/xnu.git/blob - bsd/crypto/aes/ppc/aestab.c
2 ---------------------------------------------------------------------------
3 Copyright (c) 2003, Dr Brian Gladman, Worcester, UK. All rights reserved.
7 The free distribution and use of this software in both source and binary
8 form is allowed (with or without changes) provided that:
10 1. distributions of this source code include the above copyright
11 notice, this list of conditions and the following disclaimer;
13 2. distributions in binary form include the above copyright
14 notice, this list of conditions and the following disclaimer
15 in the documentation and/or other associated materials;
17 3. the copyright holder's name is not used to endorse products
18 built using this software without specific written permission.
20 ALTERNATIVELY, provided that this notice is retained in full, this product
21 may be distributed under the terms of the GNU General Public License (GPL),
22 in which case the provisions of the GPL apply INSTEAD OF those given above.
26 This software is provided 'as is' with no explicit or implied warranties
27 in respect of its properties, including, but not limited to, correctness
28 and/or fitness for purpose.
29 ---------------------------------------------------------------------------
34 #if defined(__cplusplus)
43 #if defined(FIXED_TABLES)
46 w(0x63), w(0x7c), w(0x77), w(0x7b), w(0xf2), w(0x6b), w(0x6f), w(0xc5),\
47 w(0x30), w(0x01), w(0x67), w(0x2b), w(0xfe), w(0xd7), w(0xab), w(0x76),\
48 w(0xca), w(0x82), w(0xc9), w(0x7d), w(0xfa), w(0x59), w(0x47), w(0xf0),\
49 w(0xad), w(0xd4), w(0xa2), w(0xaf), w(0x9c), w(0xa4), w(0x72), w(0xc0),\
50 w(0xb7), w(0xfd), w(0x93), w(0x26), w(0x36), w(0x3f), w(0xf7), w(0xcc),\
51 w(0x34), w(0xa5), w(0xe5), w(0xf1), w(0x71), w(0xd8), w(0x31), w(0x15),\
52 w(0x04), w(0xc7), w(0x23), w(0xc3), w(0x18), w(0x96), w(0x05), w(0x9a),\
53 w(0x07), w(0x12), w(0x80), w(0xe2), w(0xeb), w(0x27), w(0xb2), w(0x75),\
54 w(0x09), w(0x83), w(0x2c), w(0x1a), w(0x1b), w(0x6e), w(0x5a), w(0xa0),\
55 w(0x52), w(0x3b), w(0xd6), w(0xb3), w(0x29), w(0xe3), w(0x2f), w(0x84),\
56 w(0x53), w(0xd1), w(0x00), w(0xed), w(0x20), w(0xfc), w(0xb1), w(0x5b),\
57 w(0x6a), w(0xcb), w(0xbe), w(0x39), w(0x4a), w(0x4c), w(0x58), w(0xcf),\
58 w(0xd0), w(0xef), w(0xaa), w(0xfb), w(0x43), w(0x4d), w(0x33), w(0x85),\
59 w(0x45), w(0xf9), w(0x02), w(0x7f), w(0x50), w(0x3c), w(0x9f), w(0xa8),\
60 w(0x51), w(0xa3), w(0x40), w(0x8f), w(0x92), w(0x9d), w(0x38), w(0xf5),\
61 w(0xbc), w(0xb6), w(0xda), w(0x21), w(0x10), w(0xff), w(0xf3), w(0xd2),\
62 w(0xcd), w(0x0c), w(0x13), w(0xec), w(0x5f), w(0x97), w(0x44), w(0x17),\
63 w(0xc4), w(0xa7), w(0x7e), w(0x3d), w(0x64), w(0x5d), w(0x19), w(0x73),\
64 w(0x60), w(0x81), w(0x4f), w(0xdc), w(0x22), w(0x2a), w(0x90), w(0x88),\
65 w(0x46), w(0xee), w(0xb8), w(0x14), w(0xde), w(0x5e), w(0x0b), w(0xdb),\
66 w(0xe0), w(0x32), w(0x3a), w(0x0a), w(0x49), w(0x06), w(0x24), w(0x5c),\
67 w(0xc2), w(0xd3), w(0xac), w(0x62), w(0x91), w(0x95), w(0xe4), w(0x79),\
68 w(0xe7), w(0xc8), w(0x37), w(0x6d), w(0x8d), w(0xd5), w(0x4e), w(0xa9),\
69 w(0x6c), w(0x56), w(0xf4), w(0xea), w(0x65), w(0x7a), w(0xae), w(0x08),\
70 w(0xba), w(0x78), w(0x25), w(0x2e), w(0x1c), w(0xa6), w(0xb4), w(0xc6),\
71 w(0xe8), w(0xdd), w(0x74), w(0x1f), w(0x4b), w(0xbd), w(0x8b), w(0x8a),\
72 w(0x70), w(0x3e), w(0xb5), w(0x66), w(0x48), w(0x03), w(0xf6), w(0x0e),\
73 w(0x61), w(0x35), w(0x57), w(0xb9), w(0x86), w(0xc1), w(0x1d), w(0x9e),\
74 w(0xe1), w(0xf8), w(0x98), w(0x11), w(0x69), w(0xd9), w(0x8e), w(0x94),\
75 w(0x9b), w(0x1e), w(0x87), w(0xe9), w(0xce), w(0x55), w(0x28), w(0xdf),\
76 w(0x8c), w(0xa1), w(0x89), w(0x0d), w(0xbf), w(0xe6), w(0x42), w(0x68),\
77 w(0x41), w(0x99), w(0x2d), w(0x0f), w(0xb0), w(0x54), w(0xbb), w(0x16) }
79 #define isb_data(w) {\
80 w(0x52), w(0x09), w(0x6a), w(0xd5), w(0x30), w(0x36), w(0xa5), w(0x38),\
81 w(0xbf), w(0x40), w(0xa3), w(0x9e), w(0x81), w(0xf3), w(0xd7), w(0xfb),\
82 w(0x7c), w(0xe3), w(0x39), w(0x82), w(0x9b), w(0x2f), w(0xff), w(0x87),\
83 w(0x34), w(0x8e), w(0x43), w(0x44), w(0xc4), w(0xde), w(0xe9), w(0xcb),\
84 w(0x54), w(0x7b), w(0x94), w(0x32), w(0xa6), w(0xc2), w(0x23), w(0x3d),\
85 w(0xee), w(0x4c), w(0x95), w(0x0b), w(0x42), w(0xfa), w(0xc3), w(0x4e),\
86 w(0x08), w(0x2e), w(0xa1), w(0x66), w(0x28), w(0xd9), w(0x24), w(0xb2),\
87 w(0x76), w(0x5b), w(0xa2), w(0x49), w(0x6d), w(0x8b), w(0xd1), w(0x25),\
88 w(0x72), w(0xf8), w(0xf6), w(0x64), w(0x86), w(0x68), w(0x98), w(0x16),\
89 w(0xd4), w(0xa4), w(0x5c), w(0xcc), w(0x5d), w(0x65), w(0xb6), w(0x92),\
90 w(0x6c), w(0x70), w(0x48), w(0x50), w(0xfd), w(0xed), w(0xb9), w(0xda),\
91 w(0x5e), w(0x15), w(0x46), w(0x57), w(0xa7), w(0x8d), w(0x9d), w(0x84),\
92 w(0x90), w(0xd8), w(0xab), w(0x00), w(0x8c), w(0xbc), w(0xd3), w(0x0a),\
93 w(0xf7), w(0xe4), w(0x58), w(0x05), w(0xb8), w(0xb3), w(0x45), w(0x06),\
94 w(0xd0), w(0x2c), w(0x1e), w(0x8f), w(0xca), w(0x3f), w(0x0f), w(0x02),\
95 w(0xc1), w(0xaf), w(0xbd), w(0x03), w(0x01), w(0x13), w(0x8a), w(0x6b),\
96 w(0x3a), w(0x91), w(0x11), w(0x41), w(0x4f), w(0x67), w(0xdc), w(0xea),\
97 w(0x97), w(0xf2), w(0xcf), w(0xce), w(0xf0), w(0xb4), w(0xe6), w(0x73),\
98 w(0x96), w(0xac), w(0x74), w(0x22), w(0xe7), w(0xad), w(0x35), w(0x85),\
99 w(0xe2), w(0xf9), w(0x37), w(0xe8), w(0x1c), w(0x75), w(0xdf), w(0x6e),\
100 w(0x47), w(0xf1), w(0x1a), w(0x71), w(0x1d), w(0x29), w(0xc5), w(0x89),\
101 w(0x6f), w(0xb7), w(0x62), w(0x0e), w(0xaa), w(0x18), w(0xbe), w(0x1b),\
102 w(0xfc), w(0x56), w(0x3e), w(0x4b), w(0xc6), w(0xd2), w(0x79), w(0x20),\
103 w(0x9a), w(0xdb), w(0xc0), w(0xfe), w(0x78), w(0xcd), w(0x5a), w(0xf4),\
104 w(0x1f), w(0xdd), w(0xa8), w(0x33), w(0x88), w(0x07), w(0xc7), w(0x31),\
105 w(0xb1), w(0x12), w(0x10), w(0x59), w(0x27), w(0x80), w(0xec), w(0x5f),\
106 w(0x60), w(0x51), w(0x7f), w(0xa9), w(0x19), w(0xb5), w(0x4a), w(0x0d),\
107 w(0x2d), w(0xe5), w(0x7a), w(0x9f), w(0x93), w(0xc9), w(0x9c), w(0xef),\
108 w(0xa0), w(0xe0), w(0x3b), w(0x4d), w(0xae), w(0x2a), w(0xf5), w(0xb0),\
109 w(0xc8), w(0xeb), w(0xbb), w(0x3c), w(0x83), w(0x53), w(0x99), w(0x61),\
110 w(0x17), w(0x2b), w(0x04), w(0x7e), w(0xba), w(0x77), w(0xd6), w(0x26),\
111 w(0xe1), w(0x69), w(0x14), w(0x63), w(0x55), w(0x21), w(0x0c), w(0x7d) }
113 #define mm_data(w) {\
114 w(0x00), w(0x01), w(0x02), w(0x03), w(0x04), w(0x05), w(0x06), w(0x07),\
115 w(0x08), w(0x09), w(0x0a), w(0x0b), w(0x0c), w(0x0d), w(0x0e), w(0x0f),\
116 w(0x10), w(0x11), w(0x12), w(0x13), w(0x14), w(0x15), w(0x16), w(0x17),\
117 w(0x18), w(0x19), w(0x1a), w(0x1b), w(0x1c), w(0x1d), w(0x1e), w(0x1f),\
118 w(0x20), w(0x21), w(0x22), w(0x23), w(0x24), w(0x25), w(0x26), w(0x27),\
119 w(0x28), w(0x29), w(0x2a), w(0x2b), w(0x2c), w(0x2d), w(0x2e), w(0x2f),\
120 w(0x30), w(0x31), w(0x32), w(0x33), w(0x34), w(0x35), w(0x36), w(0x37),\
121 w(0x38), w(0x39), w(0x3a), w(0x3b), w(0x3c), w(0x3d), w(0x3e), w(0x3f),\
122 w(0x40), w(0x41), w(0x42), w(0x43), w(0x44), w(0x45), w(0x46), w(0x47),\
123 w(0x48), w(0x49), w(0x4a), w(0x4b), w(0x4c), w(0x4d), w(0x4e), w(0x4f),\
124 w(0x50), w(0x51), w(0x52), w(0x53), w(0x54), w(0x55), w(0x56), w(0x57),\
125 w(0x58), w(0x59), w(0x5a), w(0x5b), w(0x5c), w(0x5d), w(0x5e), w(0x5f),\
126 w(0x60), w(0x61), w(0x62), w(0x63), w(0x64), w(0x65), w(0x66), w(0x67),\
127 w(0x68), w(0x69), w(0x6a), w(0x6b), w(0x6c), w(0x6d), w(0x6e), w(0x6f),\
128 w(0x70), w(0x71), w(0x72), w(0x73), w(0x74), w(0x75), w(0x76), w(0x77),\
129 w(0x78), w(0x79), w(0x7a), w(0x7b), w(0x7c), w(0x7d), w(0x7e), w(0x7f),\
130 w(0x80), w(0x81), w(0x82), w(0x83), w(0x84), w(0x85), w(0x86), w(0x87),\
131 w(0x88), w(0x89), w(0x8a), w(0x8b), w(0x8c), w(0x8d), w(0x8e), w(0x8f),\
132 w(0x90), w(0x91), w(0x92), w(0x93), w(0x94), w(0x95), w(0x96), w(0x97),\
133 w(0x98), w(0x99), w(0x9a), w(0x9b), w(0x9c), w(0x9d), w(0x9e), w(0x9f),\
134 w(0xa0), w(0xa1), w(0xa2), w(0xa3), w(0xa4), w(0xa5), w(0xa6), w(0xa7),\
135 w(0xa8), w(0xa9), w(0xaa), w(0xab), w(0xac), w(0xad), w(0xae), w(0xaf),\
136 w(0xb0), w(0xb1), w(0xb2), w(0xb3), w(0xb4), w(0xb5), w(0xb6), w(0xb7),\
137 w(0xb8), w(0xb9), w(0xba), w(0xbb), w(0xbc), w(0xbd), w(0xbe), w(0xbf),\
138 w(0xc0), w(0xc1), w(0xc2), w(0xc3), w(0xc4), w(0xc5), w(0xc6), w(0xc7),\
139 w(0xc8), w(0xc9), w(0xca), w(0xcb), w(0xcc), w(0xcd), w(0xce), w(0xcf),\
140 w(0xd0), w(0xd1), w(0xd2), w(0xd3), w(0xd4), w(0xd5), w(0xd6), w(0xd7),\
141 w(0xd8), w(0xd9), w(0xda), w(0xdb), w(0xdc), w(0xdd), w(0xde), w(0xdf),\
142 w(0xe0), w(0xe1), w(0xe2), w(0xe3), w(0xe4), w(0xe5), w(0xe6), w(0xe7),\
143 w(0xe8), w(0xe9), w(0xea), w(0xeb), w(0xec), w(0xed), w(0xee), w(0xef),\
144 w(0xf0), w(0xf1), w(0xf2), w(0xf3), w(0xf4), w(0xf5), w(0xf6), w(0xf7),\
145 w(0xf8), w(0xf9), w(0xfa), w(0xfb), w(0xfc), w(0xfd), w(0xfe), w(0xff) }
147 #define rc_data(w) {\
148 w(0x01), w(0x02), w(0x04), w(0x08), w(0x10),w(0x20), w(0x40), w(0x80),\
153 #define w0(p) bytes2word(p, 0, 0, 0)
154 #define w1(p) bytes2word(0, p, 0, 0)
155 #define w2(p) bytes2word(0, 0, p, 0)
156 #define w3(p) bytes2word(0, 0, 0, p)
158 #define u0(p) bytes2word(f2(p), p, p, f3(p))
159 #define u1(p) bytes2word(f3(p), f2(p), p, p)
160 #define u2(p) bytes2word(p, f3(p), f2(p), p)
161 #define u3(p) bytes2word(p, p, f3(p), f2(p))
163 #define v0(p) bytes2word(fe(p), f9(p), fd(p), fb(p))
164 #define v1(p) bytes2word(fb(p), fe(p), f9(p), fd(p))
165 #define v2(p) bytes2word(fd(p), fb(p), fe(p), f9(p))
166 #define v3(p) bytes2word(f9(p), fd(p), fb(p), fe(p))
170 #if defined(FIXED_TABLES) || !defined(FF_TABLES)
172 #define f2(x) ((x<<1) ^ (((x>>7) & 1) * WPOLY))
173 #define f4(x) ((x<<2) ^ (((x>>6) & 1) * WPOLY) ^ (((x>>6) & 2) * WPOLY))
174 #define f8(x) ((x<<3) ^ (((x>>5) & 1) * WPOLY) ^ (((x>>5) & 2) * WPOLY) \
175 ^ (((x>>5) & 4) * WPOLY))
176 #define f3(x) (f2(x) ^ x)
177 #define f9(x) (f8(x) ^ x)
178 #define fb(x) (f8(x) ^ f2(x) ^ x)
179 #define fd(x) (f8(x) ^ f4(x) ^ x)
180 #define fe(x) (f8(x) ^ f4(x) ^ f2(x))
184 #define f2(x) ((x) ? pow[log[x] + 0x19] : 0)
185 #define f3(x) ((x) ? pow[log[x] + 0x01] : 0)
186 #define f9(x) ((x) ? pow[log[x] + 0xc7] : 0)
187 #define fb(x) ((x) ? pow[log[x] + 0x68] : 0)
188 #define fd(x) ((x) ? pow[log[x] + 0xee] : 0)
189 #define fe(x) ((x) ? pow[log[x] + 0xdf] : 0)
190 #define fi(x) ((x) ? pow[ 255 - log[x]] : 0)
196 #if defined(FIXED_TABLES)
198 /* implemented in case of wrong call for fixed tables */
204 #else /* dynamic table generation */
206 #if !defined(FF_TABLES)
208 /* Generate the tables for the dynamic table option
210 It will generally be sensible to use tables to compute finite
211 field multiplies and inverses but where memory is scarse this
212 code might sometimes be better. But it only has effect during
213 initialisation so its pretty unimportant in overall terms.
216 /* return 2 ^ (n - 1) where n is the bit number of the highest bit
217 set in x with x in the range 1 < x < 0x00000200. This form is
218 used so that locals within fi can be bytes rather than words
221 static aes_08t
hibit(const aes_32t x
)
222 { aes_08t r
= (aes_08t
)((x
>> 1) | (x
>> 2));
229 /* return the inverse of the finite field element x */
231 static aes_08t
fi(const aes_08t x
)
232 { aes_08t p1
= x
, p2
= BPOLY
, n1
= hibit(x
), n2
= 0x80, v1
= 1, v2
= 0;
242 n2
/= n1
; p2
^= p1
* n2
; v2
^= v1
* n2
; n2
= hibit(p2
);
249 n1
/= n2
; p1
^= p2
* n1
; v1
^= v2
* n1
; n1
= hibit(p1
);
256 /* The forward and inverse affine transformations used in the S-box */
258 #define fwd_affine(x) \
259 (w = (aes_32t)x, w ^= (w<<1)^(w<<2)^(w<<3)^(w<<4), 0x63^(aes_08t)(w^(w>>8)))
261 #define inv_affine(x) \
262 (w = (aes_32t)x, w = (w<<1)^(w<<3)^(w<<6), 0x05^(aes_08t)(w^(w>>8)))
269 #if defined(FF_TABLES)
271 aes_08t pow
[512], log
[256];
274 /* log and power tables for GF(2^8) finite field with
275 WPOLY as modular polynomial - the simplest primitive
276 root is 0x03, used here to generate the tables
283 pow
[i
+ 255] = (aes_08t
)w
;
284 log
[w
] = (aes_08t
)i
++;
285 w
^= (w
<< 1) ^ (w
& 0x80 ? WPOLY
: 0);
293 for(i
= 0, w
= 1; i
< RC_LENGTH
; ++i
)
295 t_set(r
,c
)[i
] = bytes2word(w
, 0, 0, 0);
299 for(i
= 0; i
< 256; ++i
)
302 b
= fwd_affine(fi((aes_08t
)i
));
303 w
= bytes2word(f2(b
), b
, b
, f3(b
));
305 #if defined( SBX_SET )
309 #if defined( FT1_SET ) /* tables for a normal encryption round */
312 #if defined( FT4_SET )
313 t_set(f
,n
)[0][i
] = w
;
314 t_set(f
,n
)[1][i
] = upr(w
,1);
315 t_set(f
,n
)[2][i
] = upr(w
,2);
316 t_set(f
,n
)[3][i
] = upr(w
,3);
318 w
= bytes2word(b
, 0, 0, 0);
320 #if defined( FL1_SET ) /* tables for last encryption round (may also */
321 t_set(f
,l
)[i
] = w
; /* be used in the key schedule) */
323 #if defined( FL4_SET )
324 t_set(f
,l
)[0][i
] = w
;
325 t_set(f
,l
)[1][i
] = upr(w
,1);
326 t_set(f
,l
)[2][i
] = upr(w
,2);
327 t_set(f
,l
)[3][i
] = upr(w
,3);
330 #if defined( LS1_SET ) /* table for key schedule if t_set(f,l) above is */
331 t_set(l
,s
)[i
] = w
; /* not of the required form */
333 #if defined( LS4_SET )
334 t_set(l
,s
)[0][i
] = w
;
335 t_set(l
,s
)[1][i
] = upr(w
,1);
336 t_set(l
,s
)[2][i
] = upr(w
,2);
337 t_set(l
,s
)[3][i
] = upr(w
,3);
340 b
= fi(inv_affine((aes_08t
)i
));
341 w
= bytes2word(fe(b
), f9(b
), fd(b
), fb(b
));
343 #if defined( IM1_SET ) /* tables for the inverse mix column operation */
346 #if defined( IM4_SET )
347 t_set(i
,m
)[0][b
] = w
;
348 t_set(i
,m
)[1][b
] = upr(w
,1);
349 t_set(i
,m
)[2][b
] = upr(w
,2);
350 t_set(i
,m
)[3][b
] = upr(w
,3);
353 #if defined( ISB_SET )
356 #if defined( IT1_SET ) /* tables for a normal decryption round */
359 #if defined( IT4_SET )
360 t_set(i
,n
)[0][i
] = w
;
361 t_set(i
,n
)[1][i
] = upr(w
,1);
362 t_set(i
,n
)[2][i
] = upr(w
,2);
363 t_set(i
,n
)[3][i
] = upr(w
,3);
365 w
= bytes2word(b
, 0, 0, 0);
366 #if defined( IL1_SET ) /* tables for last decryption round */
369 #if defined( IL4_SET )
370 t_set(i
,l
)[0][i
] = w
;
371 t_set(i
,l
)[1][i
] = upr(w
,1);
372 t_set(i
,l
)[2][i
] = upr(w
,2);
373 t_set(i
,l
)[3][i
] = upr(w
,3);
381 #if defined(__cplusplus)