]> git.saurik.com Git - apple/xnu.git/blob - osfmk/kern/telemetry.c
xnu-2782.20.48.tar.gz
[apple/xnu.git] / osfmk / kern / telemetry.c
1 /*
2 * Copyright (c) 2012-2013 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 #include <mach/host_priv.h>
29 #include <mach/host_special_ports.h>
30 #include <mach/mach_types.h>
31 #include <mach/telemetry_notification_server.h>
32
33 #include <kern/assert.h>
34 #include <kern/clock.h>
35 #include <kern/debug.h>
36 #include <kern/host.h>
37 #include <kern/kalloc.h>
38 #include <kern/kern_types.h>
39 #include <kern/locks.h>
40 #include <kern/misc_protos.h>
41 #include <kern/sched.h>
42 #include <kern/sched_prim.h>
43 #include <kern/telemetry.h>
44 #include <kern/timer_call.h>
45
46 #include <pexpert/pexpert.h>
47
48 #include <vm/vm_kern.h>
49 #include <vm/vm_shared_region.h>
50
51 #include <kperf/kperf.h>
52 #include <kperf/context.h>
53 #include <kperf/callstack.h>
54
55 #include <sys/kdebug.h>
56 #include <uuid/uuid.h>
57 #include <kdp/kdp_dyld.h>
58
59 #define TELEMETRY_DEBUG 0
60
61 extern int proc_pid(void *);
62 extern char *proc_name_address(void *p);
63 extern uint64_t proc_uniqueid(void *p);
64 extern uint64_t proc_was_throttled(void *p);
65 extern uint64_t proc_did_throttle(void *p);
66 extern uint64_t get_dispatchqueue_serialno_offset_from_proc(void *p);
67 extern int proc_selfpid(void);
68
69 struct micro_snapshot_buffer {
70 vm_offset_t buffer;
71 uint32_t size;
72 uint32_t current_position;
73 uint32_t end_point;
74 };
75
76 void telemetry_take_sample(thread_t thread, uint8_t microsnapshot_flags, struct micro_snapshot_buffer * current_buffer);
77 int telemetry_buffer_gather(user_addr_t buffer, uint32_t *length, boolean_t mark, struct micro_snapshot_buffer * current_buffer);
78
79 #define TELEMETRY_DEFAULT_SAMPLE_RATE (1) /* 1 sample every 1 second */
80 #define TELEMETRY_DEFAULT_WINDOW_BUFFER_SIZE (512*1024) /* Should hopefully provide 10 seconds worth of samples */
81 #define TELEMETRY_DEFAULT_BUFFER_SIZE (16*1024)
82 #define TELEMETRY_MAX_BUFFER_SIZE (64*1024)
83
84 #define TELEMETRY_DEFAULT_NOTIFY_LEEWAY (4*1024) // Userland gets 4k of leeway to collect data after notification
85 #define TELEMETRY_MAX_UUID_COUNT (128) // Max of 128 non-shared-cache UUIDs to log for symbolication
86
87 uint32_t telemetry_sample_rate = 0;
88 volatile boolean_t telemetry_needs_record = FALSE;
89 volatile boolean_t telemetry_windowed_record = FALSE;
90 volatile boolean_t telemetry_needs_timer_arming_record = FALSE;
91
92 /*
93 * Tells the scheduler that we want it to invoke
94 * compute_telemetry_windowed(); it is still our responsibility
95 * to ensure that we do not panic if someone disables the window
96 * buffer immediately after the scheduler does so.
97 */
98 volatile boolean_t telemetry_window_enabled = FALSE;
99
100 /*
101 * If TRUE, record micro-stackshot samples for all tasks.
102 * If FALSE, only sample tasks which are marked for telemetry.
103 */
104 boolean_t telemetry_sample_all_tasks = FALSE;
105 uint32_t telemetry_active_tasks = 0; // Number of tasks opted into telemetry
106
107 uint32_t telemetry_timestamp = 0;
108
109 /*
110 * We have two buffers. The telemetry_buffer is responsible
111 * for timer samples and interrupt samples that are driven by
112 * compute_averages(). It will notify its client (if one
113 * exists) when it has enough data to be worth flushing.
114 *
115 * The window_buffer contains only interrupt_samples that are
116 * driven by the scheduler. Its intent is to provide a
117 * window of recent activity on the cpu(s).
118 */
119 struct micro_snapshot_buffer telemetry_buffer = {0, 0, 0, 0};
120 struct micro_snapshot_buffer window_buffer = {0, 0, 0, 0};
121
122 int telemetry_bytes_since_last_mark = -1; // How much data since buf was last marked?
123 int telemetry_buffer_notify_at = 0;
124
125 lck_grp_t telemetry_lck_grp;
126 lck_mtx_t telemetry_mtx;
127
128 #define TELEMETRY_LOCK() do { lck_mtx_lock(&telemetry_mtx); } while(0)
129 #define TELEMETRY_TRY_SPIN_LOCK() lck_mtx_try_lock_spin(&telemetry_mtx)
130 #define TELEMETRY_UNLOCK() do { lck_mtx_unlock(&telemetry_mtx); } while(0)
131
132 void telemetry_init(void)
133 {
134 kern_return_t ret;
135 uint32_t telemetry_notification_leeway;
136
137 lck_grp_init(&telemetry_lck_grp, "telemetry group", LCK_GRP_ATTR_NULL);
138 lck_mtx_init(&telemetry_mtx, &telemetry_lck_grp, LCK_ATTR_NULL);
139
140 if (!PE_parse_boot_argn("telemetry_buffer_size", &telemetry_buffer.size, sizeof(telemetry_buffer.size))) {
141 telemetry_buffer.size = TELEMETRY_DEFAULT_BUFFER_SIZE;
142 }
143
144 if (telemetry_buffer.size > TELEMETRY_MAX_BUFFER_SIZE)
145 telemetry_buffer.size = TELEMETRY_MAX_BUFFER_SIZE;
146
147 ret = kmem_alloc(kernel_map, &telemetry_buffer.buffer, telemetry_buffer.size);
148 if (ret != KERN_SUCCESS) {
149 kprintf("Telemetry: Allocation failed: %d\n", ret);
150 return;
151 }
152 bzero((void *) telemetry_buffer.buffer, telemetry_buffer.size);
153
154 if (!PE_parse_boot_argn("telemetry_notification_leeway", &telemetry_notification_leeway, sizeof(telemetry_notification_leeway))) {
155 /*
156 * By default, notify the user to collect the buffer when there is this much space left in the buffer.
157 */
158 telemetry_notification_leeway = TELEMETRY_DEFAULT_NOTIFY_LEEWAY;
159 }
160 if (telemetry_notification_leeway >= telemetry_buffer.size) {
161 printf("telemetry: nonsensical telemetry_notification_leeway boot-arg %d changed to %d\n",
162 telemetry_notification_leeway, TELEMETRY_DEFAULT_NOTIFY_LEEWAY);
163 telemetry_notification_leeway = TELEMETRY_DEFAULT_NOTIFY_LEEWAY;
164 }
165 telemetry_buffer_notify_at = telemetry_buffer.size - telemetry_notification_leeway;
166
167 if (!PE_parse_boot_argn("telemetry_sample_rate", &telemetry_sample_rate, sizeof(telemetry_sample_rate))) {
168 telemetry_sample_rate = TELEMETRY_DEFAULT_SAMPLE_RATE;
169 }
170
171 /*
172 * To enable telemetry for all tasks, include "telemetry_sample_all_tasks=1" in boot-args.
173 */
174 if (!PE_parse_boot_argn("telemetry_sample_all_tasks", &telemetry_sample_all_tasks, sizeof(telemetry_sample_all_tasks))) {
175
176 telemetry_sample_all_tasks = TRUE;
177
178 }
179
180 kprintf("Telemetry: Sampling %stasks once per %u second%s\n",
181 (telemetry_sample_all_tasks) ? "all " : "",
182 telemetry_sample_rate, telemetry_sample_rate == 1 ? "" : "s");
183 }
184
185 /*
186 * Enable or disable global microstackshots (ie telemetry_sample_all_tasks).
187 *
188 * enable_disable == 1: turn it on
189 * enable_disable == 0: turn it off
190 */
191 void
192 telemetry_global_ctl(int enable_disable)
193 {
194 if (enable_disable == 1) {
195 telemetry_sample_all_tasks = TRUE;
196 } else {
197 telemetry_sample_all_tasks = FALSE;
198 }
199 }
200
201 /*
202 * Opt the given task into or out of the telemetry stream.
203 *
204 * Supported reasons (callers may use any or all of):
205 * TF_CPUMON_WARNING
206 * TF_WAKEMON_WARNING
207 *
208 * enable_disable == 1: turn it on
209 * enable_disable == 0: turn it off
210 */
211 void
212 telemetry_task_ctl(task_t task, uint32_t reasons, int enable_disable)
213 {
214 task_lock(task);
215 telemetry_task_ctl_locked(task, reasons, enable_disable);
216 task_unlock(task);
217 }
218
219 void
220 telemetry_task_ctl_locked(task_t task, uint32_t reasons, int enable_disable)
221 {
222 uint32_t origflags;
223
224 assert((reasons != 0) && ((reasons | TF_TELEMETRY) == TF_TELEMETRY));
225
226 task_lock_assert_owned(task);
227
228 origflags = task->t_flags;
229
230 if (enable_disable == 1) {
231 task->t_flags |= reasons;
232 if ((origflags & TF_TELEMETRY) == 0) {
233 OSIncrementAtomic(&telemetry_active_tasks);
234 #if TELEMETRY_DEBUG
235 printf("%s: telemetry OFF -> ON (%d active)\n", proc_name_address(task->bsd_info), telemetry_active_tasks);
236 #endif
237 }
238 } else {
239 task->t_flags &= ~reasons;
240 if (((origflags & TF_TELEMETRY) != 0) && ((task->t_flags & TF_TELEMETRY) == 0)) {
241 /*
242 * If this task went from having at least one telemetry bit to having none,
243 * the net change was to disable telemetry for the task.
244 */
245 OSDecrementAtomic(&telemetry_active_tasks);
246 #if TELEMETRY_DEBUG
247 printf("%s: telemetry ON -> OFF (%d active)\n", proc_name_address(task->bsd_info), telemetry_active_tasks);
248 #endif
249 }
250 }
251 }
252
253 /*
254 * Enable the window_buffer, and do any associated setup.
255 */
256 kern_return_t
257 telemetry_enable_window(void)
258 {
259 kern_return_t ret = KERN_SUCCESS;
260 vm_offset_t kern_buffer = 0;
261 vm_size_t kern_buffer_size = TELEMETRY_DEFAULT_WINDOW_BUFFER_SIZE;
262
263 /*
264 * We have no guarantee we won't allocate the buffer, take
265 * the lock, and then discover someone beat us to the punch,
266 * but we would prefer to avoid blocking while holding the
267 * lock.
268 */
269 ret = kmem_alloc(kernel_map, &kern_buffer, kern_buffer_size);
270
271 TELEMETRY_LOCK();
272
273 if (!window_buffer.buffer) {
274 if (ret == KERN_SUCCESS) {
275 /* No existing buffer was found, so... */
276 window_buffer.end_point = 0;
277 window_buffer.current_position = 0;
278
279 /* Hand off the buffer, and... */
280 window_buffer.size = (uint32_t) kern_buffer_size;
281 window_buffer.buffer = kern_buffer;
282 kern_buffer = 0;
283 kern_buffer_size = 0;
284 bzero((void *) window_buffer.buffer, window_buffer.size);
285
286 /* Let the scheduler know it should drive windowed samples */
287 telemetry_window_enabled = TRUE;
288 }
289 } else {
290 /* We already have a buffer, so we have "succeeded" */
291 ret = KERN_SUCCESS;
292 }
293
294 TELEMETRY_UNLOCK();
295
296 if (kern_buffer)
297 kmem_free(kernel_map, kern_buffer, kern_buffer_size);
298
299 return ret;
300 }
301
302 /*
303 * Disable the window_buffer, and do any associated teardown.
304 */
305 void
306 telemetry_disable_window(void)
307 {
308 vm_offset_t kern_buffer = 0;
309 vm_size_t kern_buffer_size = 0;
310
311 TELEMETRY_LOCK();
312
313 if (window_buffer.buffer) {
314 /* We have a window buffer, so tear it down */
315 telemetry_window_enabled = FALSE;
316 kern_buffer = window_buffer.buffer;
317 kern_buffer_size = window_buffer.size;
318 window_buffer.buffer = 0;
319 window_buffer.size = 0;
320 window_buffer.current_position = 0;
321 window_buffer.end_point = 0;
322 }
323
324 TELEMETRY_UNLOCK();
325
326 if (kern_buffer)
327 kmem_free(kernel_map, kern_buffer, kern_buffer_size);
328 }
329
330 /*
331 * Determine if the current thread is eligible for telemetry:
332 *
333 * telemetry_sample_all_tasks: All threads are eligible. This takes precedence.
334 * telemetry_active_tasks: Count of tasks opted in.
335 * task->t_flags & TF_TELEMETRY: This task is opted in.
336 */
337 static boolean_t
338 telemetry_is_active(thread_t thread)
339 {
340 if (telemetry_sample_all_tasks == TRUE) {
341 return (TRUE);
342 }
343
344 if ((telemetry_active_tasks > 0) && ((thread->task->t_flags & TF_TELEMETRY) != 0)) {
345 return (TRUE);
346 }
347
348 return (FALSE);
349 }
350
351 /*
352 * Userland is arming a timer. If we are eligible for such a record,
353 * sample now. No need to do this one at the AST because we're already at
354 * a safe place in this system call.
355 */
356 int telemetry_timer_event(__unused uint64_t deadline, __unused uint64_t interval, __unused uint64_t leeway)
357 {
358 if (telemetry_needs_timer_arming_record == TRUE) {
359 telemetry_needs_timer_arming_record = FALSE;
360 telemetry_take_sample(current_thread(), kTimerArmingRecord | kUserMode, &telemetry_buffer);
361 }
362
363 return (0);
364 }
365
366 /*
367 * Mark the current thread for an interrupt-based
368 * telemetry record, to be sampled at the next AST boundary.
369 */
370 void telemetry_mark_curthread(boolean_t interrupted_userspace)
371 {
372 uint32_t ast_bits = 0;
373 thread_t thread = current_thread();
374
375 /*
376 * If telemetry isn't active for this thread, return and try
377 * again next time.
378 */
379 if (telemetry_is_active(thread) == FALSE) {
380 return;
381 }
382
383 ast_bits |= (interrupted_userspace ? AST_TELEMETRY_USER : AST_TELEMETRY_KERNEL);
384
385 if (telemetry_windowed_record) {
386 ast_bits |= AST_TELEMETRY_WINDOWED;
387 }
388
389 telemetry_windowed_record = FALSE;
390 telemetry_needs_record = FALSE;
391 thread_ast_set(thread, ast_bits);
392 ast_propagate(thread->ast);
393 }
394
395 void compute_telemetry(void *arg __unused)
396 {
397 if (telemetry_sample_all_tasks || (telemetry_active_tasks > 0)) {
398 if ((++telemetry_timestamp) % telemetry_sample_rate == 0) {
399 telemetry_needs_record = TRUE;
400 telemetry_needs_timer_arming_record = TRUE;
401 }
402 }
403 }
404
405 void compute_telemetry_windowed(void)
406 {
407 if (telemetry_sample_all_tasks || (telemetry_active_tasks > 0)) {
408 /*
409 * Due to the relationship between the two fields here,
410 * a request for a windowed record will "squash" a
411 * request for a regular interrupt record. We hedge
412 * against this by doing a quick check for an existing
413 * request. compute_telemetry doesn't hedge because
414 * a regular request cannot squash a windowed request
415 * (due to the implementation).
416 *
417 * If we really want to do this properly, we could make
418 * telemetry_needs_record a bitfield, and process one
419 * request per telemetry_mark_curthread... but that
420 * would be more expensive (atomics). This should be
421 * robust enough for now (although it biases in favor
422 * of the regular records).
423 */
424 if (!telemetry_needs_record) {
425 telemetry_needs_record = TRUE;
426 telemetry_windowed_record = TRUE;
427 }
428 }
429 }
430
431 /*
432 * If userland has registered a port for telemetry notifications, send one now.
433 */
434 static void
435 telemetry_notify_user(void)
436 {
437 mach_port_t user_port;
438 uint32_t flags = 0;
439 int error;
440
441 error = host_get_telemetry_port(host_priv_self(), &user_port);
442 if ((error != KERN_SUCCESS) || !IPC_PORT_VALID(user_port)) {
443 return;
444 }
445
446 telemetry_notification(user_port, flags);
447 }
448
449 void telemetry_ast(thread_t thread, boolean_t interrupted_userspace, boolean_t is_windowed)
450 {
451 uint8_t microsnapshot_flags = kInterruptRecord;
452
453 if (interrupted_userspace)
454 microsnapshot_flags |= kUserMode;
455
456 if (is_windowed) {
457 telemetry_take_sample(thread, microsnapshot_flags, &window_buffer);
458 } else {
459 telemetry_take_sample(thread, microsnapshot_flags, &telemetry_buffer);
460 }
461 }
462
463 void telemetry_take_sample(thread_t thread, uint8_t microsnapshot_flags, struct micro_snapshot_buffer * current_buffer)
464 {
465 task_t task;
466 void *p;
467 struct kperf_context ctx;
468 struct callstack cs;
469 uint32_t btcount, bti;
470 struct micro_snapshot *msnap;
471 struct task_snapshot *tsnap;
472 struct thread_snapshot *thsnap;
473 clock_sec_t secs;
474 clock_usec_t usecs;
475 vm_size_t framesize;
476 uint32_t current_record_start;
477 uint32_t tmp = 0;
478 boolean_t notify = FALSE;
479
480 if (thread == THREAD_NULL)
481 return;
482
483 task = thread->task;
484 if ((task == TASK_NULL) || (task == kernel_task))
485 return;
486
487 /*
488 * To avoid overloading the system with telemetry requests, make
489 * sure we don't add more requests while existing ones are
490 * in-flight. Attempt this by checking if we can grab the lock.
491 *
492 * This concerns me a little; this working as intended is
493 * contingent on the workload being done in the context of the
494 * telemetry lock being the expensive part of telemetry. This
495 * includes populating the buffer and the client gathering it,
496 * but excludes the copyin overhead.
497 */
498 if (!TELEMETRY_TRY_SPIN_LOCK())
499 return;
500
501 TELEMETRY_UNLOCK();
502
503 /* telemetry_XXX accessed outside of lock for instrumentation only */
504 /* TODO */
505 KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_STACKSHOT, MICROSTACKSHOT_RECORD) | DBG_FUNC_START, microsnapshot_flags, telemetry_bytes_since_last_mark, 0, 0, (&telemetry_buffer != current_buffer));
506
507 p = get_bsdtask_info(task);
508
509 ctx.cur_thread = thread;
510 ctx.cur_pid = proc_pid(p);
511
512 /*
513 * Gather up the data we'll need for this sample. The sample is written into the kernel
514 * buffer with the global telemetry lock held -- so we must do our (possibly faulting)
515 * copies from userland here, before taking the lock.
516 */
517 kperf_ucallstack_sample(&cs, &ctx);
518 if (!(cs.flags & CALLSTACK_VALID))
519 return;
520
521 /*
522 * Find the actual [slid] address of the shared cache's UUID, and copy it in from userland.
523 */
524 int shared_cache_uuid_valid = 0;
525 uint64_t shared_cache_base_address;
526 struct _dyld_cache_header shared_cache_header;
527 uint64_t shared_cache_slide;
528
529 /*
530 * Don't copy in the entire shared cache header; we only need the UUID. Calculate the
531 * offset of that one field.
532 */
533 int sc_header_uuid_offset = (char *)&shared_cache_header.uuid - (char *)&shared_cache_header;
534 vm_shared_region_t sr = vm_shared_region_get(task);
535 if (sr != NULL) {
536 if ((vm_shared_region_start_address(sr, &shared_cache_base_address) == KERN_SUCCESS) &&
537 (copyin(shared_cache_base_address + sc_header_uuid_offset, (char *)&shared_cache_header.uuid,
538 sizeof (shared_cache_header.uuid)) == 0)) {
539 shared_cache_uuid_valid = 1;
540 shared_cache_slide = vm_shared_region_get_slide(sr);
541 }
542 // vm_shared_region_get() gave us a reference on the shared region.
543 vm_shared_region_deallocate(sr);
544 }
545
546 /*
547 * Retrieve the array of UUID's for binaries used by this task.
548 * We reach down into DYLD's data structures to find the array.
549 *
550 * XXX - make this common with kdp?
551 */
552 uint32_t uuid_info_count = 0;
553 mach_vm_address_t uuid_info_addr = 0;
554 if (task_has_64BitAddr(task)) {
555 struct user64_dyld_all_image_infos task_image_infos;
556 if (copyin(task->all_image_info_addr, (char *)&task_image_infos, sizeof(task_image_infos)) == 0) {
557 uuid_info_count = (uint32_t)task_image_infos.uuidArrayCount;
558 uuid_info_addr = task_image_infos.uuidArray;
559 }
560 } else {
561 struct user32_dyld_all_image_infos task_image_infos;
562 if (copyin(task->all_image_info_addr, (char *)&task_image_infos, sizeof(task_image_infos)) == 0) {
563 uuid_info_count = task_image_infos.uuidArrayCount;
564 uuid_info_addr = task_image_infos.uuidArray;
565 }
566 }
567
568 /*
569 * If we get a NULL uuid_info_addr (which can happen when we catch dyld in the middle of updating
570 * this data structure), we zero the uuid_info_count so that we won't even try to save load info
571 * for this task.
572 */
573 if (!uuid_info_addr) {
574 uuid_info_count = 0;
575 }
576
577 /*
578 * Don't copy in an unbounded amount of memory. The main binary and interesting
579 * non-shared-cache libraries should be in the first few images.
580 */
581 if (uuid_info_count > TELEMETRY_MAX_UUID_COUNT) {
582 uuid_info_count = TELEMETRY_MAX_UUID_COUNT;
583 }
584
585 uint32_t uuid_info_size = (uint32_t)(task_has_64BitAddr(thread->task) ? sizeof(struct user64_dyld_uuid_info) : sizeof(struct user32_dyld_uuid_info));
586 uint32_t uuid_info_array_size = uuid_info_count * uuid_info_size;
587 char *uuid_info_array = NULL;
588
589 if (uuid_info_count > 0) {
590 if ((uuid_info_array = (char *)kalloc(uuid_info_array_size)) == NULL) {
591 return;
592 }
593
594 /*
595 * Copy in the UUID info array.
596 * It may be nonresident, in which case just fix up nloadinfos to 0 in the task snapshot.
597 */
598 if (copyin(uuid_info_addr, uuid_info_array, uuid_info_array_size) != 0) {
599 kfree(uuid_info_array, uuid_info_array_size);
600 uuid_info_array = NULL;
601 uuid_info_array_size = 0;
602 }
603 }
604
605 /*
606 * Look for a dispatch queue serial number, and copy it in from userland if present.
607 */
608 uint64_t dqserialnum = 0;
609 int dqserialnum_valid = 0;
610
611 uint64_t dqkeyaddr = thread_dispatchqaddr(thread);
612 if (dqkeyaddr != 0) {
613 uint64_t dqaddr = 0;
614 uint64_t dq_serialno_offset = get_dispatchqueue_serialno_offset_from_proc(task->bsd_info);
615 if ((copyin(dqkeyaddr, (char *)&dqaddr, (task_has_64BitAddr(task) ? 8 : 4)) == 0) &&
616 (dqaddr != 0) && (dq_serialno_offset != 0)) {
617 uint64_t dqserialnumaddr = dqaddr + dq_serialno_offset;
618 if (copyin(dqserialnumaddr, (char *)&dqserialnum, (task_has_64BitAddr(task) ? 8 : 4)) == 0) {
619 dqserialnum_valid = 1;
620 }
621 }
622 }
623
624 clock_get_calendar_microtime(&secs, &usecs);
625
626 TELEMETRY_LOCK();
627
628 /*
629 * For the benefit of the window buffer; if our buffer is not backed by anything,
630 * then we cannot take the sample. Meant to allow us to deallocate the window
631 * buffer if it is disabled.
632 */
633 if (!current_buffer->buffer)
634 goto cancel_sample;
635
636 /*
637 * We do the bulk of the operation under the telemetry lock, on assumption that
638 * any page faults during execution will not cause another AST_TELEMETRY_ALL
639 * to deadlock; they will just block until we finish. This makes it easier
640 * to copy into the buffer directly. As soon as we unlock, userspace can copy
641 * out of our buffer.
642 */
643
644 copytobuffer:
645
646 current_record_start = current_buffer->current_position;
647
648 if ((current_buffer->size - current_buffer->current_position) < sizeof(struct micro_snapshot)) {
649 /*
650 * We can't fit a record in the space available, so wrap around to the beginning.
651 * Save the current position as the known end point of valid data.
652 */
653 current_buffer->end_point = current_record_start;
654 current_buffer->current_position = 0;
655 if (current_record_start == 0) {
656 /* This sample is too large to fit in the buffer even when we started at 0, so skip it */
657 goto cancel_sample;
658 }
659 goto copytobuffer;
660 }
661
662 msnap = (struct micro_snapshot *)(uintptr_t)(current_buffer->buffer + current_buffer->current_position);
663 msnap->snapshot_magic = STACKSHOT_MICRO_SNAPSHOT_MAGIC;
664 msnap->ms_flags = microsnapshot_flags;
665 msnap->ms_opaque_flags = 0; /* namespace managed by userspace */
666 msnap->ms_cpu = 0; /* XXX - does this field make sense for a micro-stackshot? */
667 msnap->ms_time = secs;
668 msnap->ms_time_microsecs = usecs;
669
670 current_buffer->current_position += sizeof(struct micro_snapshot);
671
672 if ((current_buffer->size - current_buffer->current_position) < sizeof(struct task_snapshot)) {
673 current_buffer->end_point = current_record_start;
674 current_buffer->current_position = 0;
675 if (current_record_start == 0) {
676 /* This sample is too large to fit in the buffer even when we started at 0, so skip it */
677 goto cancel_sample;
678 }
679 goto copytobuffer;
680 }
681
682 tsnap = (struct task_snapshot *)(uintptr_t)(current_buffer->buffer + current_buffer->current_position);
683 bzero(tsnap, sizeof(*tsnap));
684 tsnap->snapshot_magic = STACKSHOT_TASK_SNAPSHOT_MAGIC;
685 tsnap->pid = proc_pid(p);
686 tsnap->uniqueid = proc_uniqueid(p);
687 tsnap->user_time_in_terminated_threads = task->total_user_time;
688 tsnap->system_time_in_terminated_threads = task->total_system_time;
689 tsnap->suspend_count = task->suspend_count;
690 tsnap->task_size = pmap_resident_count(task->map->pmap);
691 tsnap->faults = task->faults;
692 tsnap->pageins = task->pageins;
693 tsnap->cow_faults = task->cow_faults;
694 /*
695 * The throttling counters are maintained as 64-bit counters in the proc
696 * structure. However, we reserve 32-bits (each) for them in the task_snapshot
697 * struct to save space and since we do not expect them to overflow 32-bits. If we
698 * find these values overflowing in the future, the fix would be to simply
699 * upgrade these counters to 64-bit in the task_snapshot struct
700 */
701 tsnap->was_throttled = (uint32_t) proc_was_throttled(p);
702 tsnap->did_throttle = (uint32_t) proc_did_throttle(p);
703
704 if (task->t_flags & TF_TELEMETRY) {
705 tsnap->ss_flags |= kTaskRsrcFlagged;
706 }
707
708 if (task->effective_policy.darwinbg == 1) {
709 tsnap->ss_flags |= kTaskDarwinBG;
710 }
711
712 proc_get_darwinbgstate(task, &tmp);
713
714 if (task->requested_policy.t_role == TASK_FOREGROUND_APPLICATION) {
715 tsnap->ss_flags |= kTaskIsForeground;
716 }
717
718 if (tmp & PROC_FLAG_ADAPTIVE_IMPORTANT) {
719 tsnap->ss_flags |= kTaskIsBoosted;
720 }
721
722 if (tmp & PROC_FLAG_SUPPRESSED) {
723 tsnap->ss_flags |= kTaskIsSuppressed;
724 }
725
726 tsnap->latency_qos = task_grab_latency_qos(task);
727
728 strlcpy(tsnap->p_comm, proc_name_address(p), sizeof(tsnap->p_comm));
729 if (task_has_64BitAddr(thread->task)) {
730 tsnap->ss_flags |= kUser64_p;
731 }
732
733 if (shared_cache_uuid_valid) {
734 tsnap->shared_cache_slide = shared_cache_slide;
735 bcopy(shared_cache_header.uuid, tsnap->shared_cache_identifier, sizeof (shared_cache_header.uuid));
736 }
737
738 current_buffer->current_position += sizeof(struct task_snapshot);
739
740 /*
741 * Directly after the task snapshot, place the array of UUID's corresponding to the binaries
742 * used by this task.
743 */
744 if ((current_buffer->size - current_buffer->current_position) < uuid_info_array_size) {
745 current_buffer->end_point = current_record_start;
746 current_buffer->current_position = 0;
747 if (current_record_start == 0) {
748 /* This sample is too large to fit in the buffer even when we started at 0, so skip it */
749 goto cancel_sample;
750 }
751 goto copytobuffer;
752 }
753
754 /*
755 * Copy the UUID info array into our sample.
756 */
757 if (uuid_info_array_size > 0) {
758 bcopy(uuid_info_array, (char *)(current_buffer->buffer + current_buffer->current_position), uuid_info_array_size);
759 tsnap->nloadinfos = uuid_info_count;
760 }
761
762 current_buffer->current_position += uuid_info_array_size;
763
764 /*
765 * After the task snapshot & list of binary UUIDs, we place a thread snapshot.
766 */
767
768 if ((current_buffer->size - current_buffer->current_position) < sizeof(struct thread_snapshot)) {
769 /* wrap and overwrite */
770 current_buffer->end_point = current_record_start;
771 current_buffer->current_position = 0;
772 if (current_record_start == 0) {
773 /* This sample is too large to fit in the buffer even when we started at 0, so skip it */
774 goto cancel_sample;
775 }
776 goto copytobuffer;
777 }
778
779 thsnap = (struct thread_snapshot *)(uintptr_t)(current_buffer->buffer + current_buffer->current_position);
780 bzero(thsnap, sizeof(*thsnap));
781
782 thsnap->snapshot_magic = STACKSHOT_THREAD_SNAPSHOT_MAGIC;
783 thsnap->thread_id = thread_tid(thread);
784 thsnap->state = thread->state;
785 thsnap->priority = thread->priority;
786 thsnap->sched_pri = thread->sched_pri;
787 thsnap->sched_flags = thread->sched_flags;
788 thsnap->ss_flags |= kStacksPCOnly;
789 thsnap->ts_qos = thread->effective_policy.thep_qos;
790
791 if (thread->effective_policy.darwinbg) {
792 thsnap->ss_flags |= kThreadDarwinBG;
793 }
794
795 thsnap->user_time = timer_grab(&thread->user_timer);
796
797 uint64_t tval = timer_grab(&thread->system_timer);
798
799 if (thread->precise_user_kernel_time) {
800 thsnap->system_time = tval;
801 } else {
802 thsnap->user_time += tval;
803 thsnap->system_time = 0;
804 }
805
806 current_buffer->current_position += sizeof(struct thread_snapshot);
807
808 /*
809 * If this thread has a dispatch queue serial number, include it here.
810 */
811 if (dqserialnum_valid) {
812 if ((current_buffer->size - current_buffer->current_position) < sizeof(dqserialnum)) {
813 /* wrap and overwrite */
814 current_buffer->end_point = current_record_start;
815 current_buffer->current_position = 0;
816 if (current_record_start == 0) {
817 /* This sample is too large to fit in the buffer even when we started at 0, so skip it */
818 goto cancel_sample;
819 }
820 goto copytobuffer;
821 }
822
823 thsnap->ss_flags |= kHasDispatchSerial;
824 bcopy(&dqserialnum, (char *)current_buffer->buffer + current_buffer->current_position, sizeof (dqserialnum));
825 current_buffer->current_position += sizeof (dqserialnum);
826 }
827
828 if (task_has_64BitAddr(task)) {
829 framesize = 8;
830 thsnap->ss_flags |= kUser64_p;
831 } else {
832 framesize = 4;
833 }
834
835 btcount = cs.nframes;
836
837 /*
838 * If we can't fit this entire stacktrace then cancel this record, wrap to the beginning,
839 * and start again there so that we always store a full record.
840 */
841 if ((current_buffer->size - current_buffer->current_position)/framesize < btcount) {
842 current_buffer->end_point = current_record_start;
843 current_buffer->current_position = 0;
844 if (current_record_start == 0) {
845 /* This sample is too large to fit in the buffer even when we started at 0, so skip it */
846 goto cancel_sample;
847 }
848 goto copytobuffer;
849 }
850
851 for (bti=0; bti < btcount; bti++, current_buffer->current_position += framesize) {
852 if (framesize == 8) {
853 *(uint64_t *)(uintptr_t)(current_buffer->buffer + current_buffer->current_position) = cs.frames[bti];
854 } else {
855 *(uint32_t *)(uintptr_t)(current_buffer->buffer + current_buffer->current_position) = (uint32_t)cs.frames[bti];
856 }
857 }
858
859 if (current_buffer->end_point < current_buffer->current_position) {
860 /*
861 * Each time the cursor wraps around to the beginning, we leave a
862 * differing amount of unused space at the end of the buffer. Make
863 * sure the cursor pushes the end point in case we're making use of
864 * more of the buffer than we did the last time we wrapped.
865 */
866 current_buffer->end_point = current_buffer->current_position;
867 }
868
869 thsnap->nuser_frames = btcount;
870
871 /*
872 * Now THIS is a hack.
873 */
874 if (current_buffer == &telemetry_buffer) {
875 telemetry_bytes_since_last_mark += (current_buffer->current_position - current_record_start);
876 if (telemetry_bytes_since_last_mark > telemetry_buffer_notify_at) {
877 notify = TRUE;
878 }
879 }
880
881 cancel_sample:
882
883 TELEMETRY_UNLOCK();
884
885 /* TODO */
886 KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_STACKSHOT, MICROSTACKSHOT_RECORD) | DBG_FUNC_END, notify, telemetry_bytes_since_last_mark, current_buffer->current_position, current_buffer->end_point, (&telemetry_buffer != current_buffer));
887
888 if (notify) {
889 telemetry_notify_user();
890 }
891
892 if (uuid_info_array != NULL) {
893 kfree(uuid_info_array, uuid_info_array_size);
894 }
895 }
896
897 #if TELEMETRY_DEBUG
898 static void
899 log_telemetry_output(vm_offset_t buf, uint32_t pos, uint32_t sz)
900 {
901 struct micro_snapshot *p;
902 uint32_t offset;
903
904 printf("Copying out %d bytes of telemetry at offset %d\n", sz, pos);
905
906 buf += pos;
907
908 /*
909 * Find and log each timestamp in this chunk of buffer.
910 */
911 for (offset = 0; offset < sz; offset++) {
912 p = (struct micro_snapshot *)(buf + offset);
913 if (p->snapshot_magic == STACKSHOT_MICRO_SNAPSHOT_MAGIC) {
914 printf("telemetry timestamp: %lld\n", p->ms_time);
915 }
916 }
917 }
918 #endif
919
920 int telemetry_gather(user_addr_t buffer, uint32_t *length, boolean_t mark)
921 {
922 return telemetry_buffer_gather(buffer, length, mark, &telemetry_buffer);
923 }
924
925 int telemetry_gather_windowed(user_addr_t buffer, uint32_t *length)
926 {
927 return telemetry_buffer_gather(buffer, length, 0, &window_buffer);
928 }
929
930 int telemetry_buffer_gather(user_addr_t buffer, uint32_t *length, boolean_t mark, struct micro_snapshot_buffer * current_buffer)
931 {
932 int result = 0;
933 uint32_t oldest_record_offset;
934
935 /* TODO */
936 KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_STACKSHOT, MICROSTACKSHOT_GATHER) | DBG_FUNC_START, mark, telemetry_bytes_since_last_mark, 0, 0, (&telemetry_buffer != current_buffer));
937
938 TELEMETRY_LOCK();
939
940 if (current_buffer->buffer == 0) {
941 *length = 0;
942 goto out;
943 }
944
945 if (*length < current_buffer->size) {
946 result = KERN_NO_SPACE;
947 goto out;
948 }
949
950 /*
951 * Copy the ring buffer out to userland in order sorted by time: least recent to most recent.
952 * First, we need to search forward from the cursor to find the oldest record in our buffer.
953 */
954 oldest_record_offset = current_buffer->current_position;
955 do {
956 if (((oldest_record_offset + sizeof(uint32_t)) > current_buffer->size) ||
957 ((oldest_record_offset + sizeof(uint32_t)) > current_buffer->end_point)) {
958
959 if (*(uint32_t *)(uintptr_t)(current_buffer->buffer) == 0) {
960 /*
961 * There is no magic number at the start of the buffer, which means
962 * it's empty; nothing to see here yet.
963 */
964 *length = 0;
965 goto out;
966 }
967 /*
968 * We've looked through the end of the active buffer without finding a valid
969 * record; that means all valid records are in a single chunk, beginning at
970 * the very start of the buffer.
971 */
972
973 oldest_record_offset = 0;
974 assert(*(uint32_t *)(uintptr_t)(current_buffer->buffer) == STACKSHOT_MICRO_SNAPSHOT_MAGIC);
975 break;
976 }
977
978 if (*(uint32_t *)(uintptr_t)(current_buffer->buffer + oldest_record_offset) == STACKSHOT_MICRO_SNAPSHOT_MAGIC)
979 break;
980
981 /*
982 * There are no alignment guarantees for micro-stackshot records, so we must search at each
983 * byte offset.
984 */
985 oldest_record_offset++;
986 } while (oldest_record_offset != current_buffer->current_position);
987
988 /*
989 * If needed, copyout in two chunks: from the oldest record to the end of the buffer, and then
990 * from the beginning of the buffer up to the current position.
991 */
992 if (oldest_record_offset != 0) {
993 #if TELEMETRY_DEBUG
994 log_telemetry_output(current_buffer->buffer, oldest_record_offset,
995 current_buffer->end_point - oldest_record_offset);
996 #endif
997 if ((result = copyout((void *)(current_buffer->buffer + oldest_record_offset), buffer,
998 current_buffer->end_point - oldest_record_offset)) != 0) {
999 *length = 0;
1000 goto out;
1001 }
1002 *length = current_buffer->end_point - oldest_record_offset;
1003 } else {
1004 *length = 0;
1005 }
1006
1007 #if TELEMETRY_DEBUG
1008 log_telemetry_output(current_buffer->buffer, 0, current_buffer->current_position);
1009 #endif
1010 if ((result = copyout((void *)current_buffer->buffer, buffer + *length,
1011 current_buffer->current_position)) != 0) {
1012 *length = 0;
1013 goto out;
1014 }
1015 *length += (uint32_t)current_buffer->current_position;
1016
1017 out:
1018
1019 if (mark && (*length > 0)) {
1020 telemetry_bytes_since_last_mark = 0;
1021 }
1022
1023 TELEMETRY_UNLOCK();
1024
1025 KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_STACKSHOT, MICROSTACKSHOT_GATHER) | DBG_FUNC_END, current_buffer->current_position, *length, current_buffer->end_point, 0, (&telemetry_buffer != current_buffer));
1026
1027 return (result);
1028 }
1029
1030 /************************/
1031 /* BOOT PROFILE SUPPORT */
1032 /************************/
1033 /*
1034 * Boot Profiling
1035 *
1036 * The boot-profiling support is a mechanism to sample activity happening on the
1037 * system during boot. This mechanism sets up a periodic timer and on every timer fire,
1038 * captures a full backtrace into the boot profiling buffer. This buffer can be pulled
1039 * out and analyzed from user-space. It is turned on using the following boot-args:
1040 * "bootprofile_buffer_size" specifies the size of the boot profile buffer
1041 * "bootprofile_interval_ms" specifies the interval for the profiling timer
1042 *
1043 * Process Specific Boot Profiling
1044 *
1045 * The boot-arg "bootprofile_proc_name" can be used to specify a certain
1046 * process that needs to profiled during boot. Setting this boot-arg changes
1047 * the way stackshots are captured. At every timer fire, the code looks at the
1048 * currently running process and takes a stackshot only if the requested process
1049 * is on-core (which makes it unsuitable for MP systems).
1050 *
1051 * Trigger Events
1052 *
1053 * The boot-arg "bootprofile_type=boot" starts the timer during early boot. Using
1054 * "wake" starts the timer at AP wake from suspend-to-RAM.
1055 */
1056
1057 #define BOOTPROFILE_MAX_BUFFER_SIZE (64*1024*1024) /* see also COPYSIZELIMIT_PANIC */
1058
1059 vm_offset_t bootprofile_buffer = 0;
1060 uint32_t bootprofile_buffer_size = 0;
1061 uint32_t bootprofile_buffer_current_position = 0;
1062 uint32_t bootprofile_interval_ms = 0;
1063 uint64_t bootprofile_interval_abs = 0;
1064 uint64_t bootprofile_next_deadline = 0;
1065 uint32_t bootprofile_all_procs = 0;
1066 char bootprofile_proc_name[17];
1067
1068 lck_grp_t bootprofile_lck_grp;
1069 lck_mtx_t bootprofile_mtx;
1070
1071 enum {
1072 kBootProfileDisabled = 0,
1073 kBootProfileStartTimerAtBoot,
1074 kBootProfileStartTimerAtWake
1075 } bootprofile_type = kBootProfileDisabled;
1076
1077
1078 static timer_call_data_t bootprofile_timer_call_entry;
1079
1080 #define BOOTPROFILE_LOCK() do { lck_mtx_lock(&bootprofile_mtx); } while(0)
1081 #define BOOTPROFILE_TRY_SPIN_LOCK() lck_mtx_try_lock_spin(&bootprofile_mtx)
1082 #define BOOTPROFILE_UNLOCK() do { lck_mtx_unlock(&bootprofile_mtx); } while(0)
1083
1084 static void bootprofile_timer_call(
1085 timer_call_param_t param0,
1086 timer_call_param_t param1);
1087
1088 extern int
1089 stack_snapshot_from_kernel(int pid, void *buf, uint32_t size, uint32_t flags, unsigned *retbytes);
1090
1091 void bootprofile_init(void)
1092 {
1093 kern_return_t ret;
1094 char type[32];
1095
1096 lck_grp_init(&bootprofile_lck_grp, "bootprofile group", LCK_GRP_ATTR_NULL);
1097 lck_mtx_init(&bootprofile_mtx, &bootprofile_lck_grp, LCK_ATTR_NULL);
1098
1099 if (!PE_parse_boot_argn("bootprofile_buffer_size", &bootprofile_buffer_size, sizeof(bootprofile_buffer_size))) {
1100 bootprofile_buffer_size = 0;
1101 }
1102
1103 if (bootprofile_buffer_size > BOOTPROFILE_MAX_BUFFER_SIZE)
1104 bootprofile_buffer_size = BOOTPROFILE_MAX_BUFFER_SIZE;
1105
1106 if (!PE_parse_boot_argn("bootprofile_interval_ms", &bootprofile_interval_ms, sizeof(bootprofile_interval_ms))) {
1107 bootprofile_interval_ms = 0;
1108 }
1109
1110 if (!PE_parse_boot_argn("bootprofile_proc_name", &bootprofile_proc_name, sizeof(bootprofile_proc_name))) {
1111 bootprofile_all_procs = 1;
1112 bootprofile_proc_name[0] = '\0';
1113 }
1114
1115 if (PE_parse_boot_argn("bootprofile_type", type, sizeof(type))) {
1116 if (0 == strcmp(type, "boot")) {
1117 bootprofile_type = kBootProfileStartTimerAtBoot;
1118 } else if (0 == strcmp(type, "wake")) {
1119 bootprofile_type = kBootProfileStartTimerAtWake;
1120 } else {
1121 bootprofile_type = kBootProfileDisabled;
1122 }
1123 } else {
1124 bootprofile_type = kBootProfileDisabled;
1125 }
1126
1127 clock_interval_to_absolutetime_interval(bootprofile_interval_ms, NSEC_PER_MSEC, &bootprofile_interval_abs);
1128
1129 /* Both boot args must be set to enable */
1130 if ((bootprofile_type == kBootProfileDisabled) || (bootprofile_buffer_size == 0) || (bootprofile_interval_abs == 0)) {
1131 return;
1132 }
1133
1134 ret = kmem_alloc(kernel_map, &bootprofile_buffer, bootprofile_buffer_size);
1135 if (ret != KERN_SUCCESS) {
1136 kprintf("Boot profile: Allocation failed: %d\n", ret);
1137 return;
1138 }
1139 bzero((void *) bootprofile_buffer, bootprofile_buffer_size);
1140
1141 kprintf("Boot profile: Sampling %s once per %u ms at %s\n", bootprofile_all_procs ? "all procs" : bootprofile_proc_name, bootprofile_interval_ms,
1142 bootprofile_type == kBootProfileStartTimerAtBoot ? "boot" : (bootprofile_type == kBootProfileStartTimerAtWake ? "wake" : "unknown"));
1143
1144 timer_call_setup(&bootprofile_timer_call_entry,
1145 bootprofile_timer_call,
1146 NULL);
1147
1148 if (bootprofile_type == kBootProfileStartTimerAtBoot) {
1149 bootprofile_next_deadline = mach_absolute_time() + bootprofile_interval_abs;
1150 timer_call_enter_with_leeway(&bootprofile_timer_call_entry,
1151 NULL,
1152 bootprofile_next_deadline,
1153 0,
1154 TIMER_CALL_SYS_NORMAL,
1155 FALSE);
1156 }
1157 }
1158
1159 void
1160 bootprofile_wake_from_sleep(void)
1161 {
1162 if (bootprofile_type == kBootProfileStartTimerAtWake) {
1163 bootprofile_next_deadline = mach_absolute_time() + bootprofile_interval_abs;
1164 timer_call_enter_with_leeway(&bootprofile_timer_call_entry,
1165 NULL,
1166 bootprofile_next_deadline,
1167 0,
1168 TIMER_CALL_SYS_NORMAL,
1169 FALSE);
1170 }
1171 }
1172
1173
1174 static void bootprofile_timer_call(
1175 timer_call_param_t param0 __unused,
1176 timer_call_param_t param1 __unused)
1177 {
1178 unsigned retbytes = 0;
1179 int pid_to_profile = -1;
1180
1181 if (!BOOTPROFILE_TRY_SPIN_LOCK()) {
1182 goto reprogram;
1183 }
1184
1185 /* Check if process-specific boot profiling is turned on */
1186 if (!bootprofile_all_procs) {
1187 /*
1188 * Since boot profiling initializes really early in boot, it is
1189 * possible that at this point, the task/proc is not initialized.
1190 * Nothing to do in that case.
1191 */
1192
1193 if ((current_task() != NULL) && (current_task()->bsd_info != NULL) &&
1194 (0 == strncmp(bootprofile_proc_name, proc_name_address(current_task()->bsd_info), 17))) {
1195 pid_to_profile = proc_selfpid();
1196 }
1197 else {
1198 /*
1199 * Process-specific boot profiling requested but the on-core process is
1200 * something else. Nothing to do here.
1201 */
1202 BOOTPROFILE_UNLOCK();
1203 goto reprogram;
1204 }
1205 }
1206
1207 /* initiate a stackshot with whatever portion of the buffer is left */
1208 if (bootprofile_buffer_current_position < bootprofile_buffer_size) {
1209 stack_snapshot_from_kernel(
1210 pid_to_profile,
1211 (void *)(bootprofile_buffer + bootprofile_buffer_current_position),
1212 bootprofile_buffer_size - bootprofile_buffer_current_position,
1213 STACKSHOT_SAVE_LOADINFO | STACKSHOT_SAVE_KEXT_LOADINFO | STACKSHOT_GET_GLOBAL_MEM_STATS,
1214 &retbytes
1215 );
1216
1217 bootprofile_buffer_current_position += retbytes;
1218 }
1219
1220 BOOTPROFILE_UNLOCK();
1221
1222 /* If we didn't get any data or have run out of buffer space, stop profiling */
1223 if ((retbytes == 0) || (bootprofile_buffer_current_position == bootprofile_buffer_size)) {
1224 return;
1225 }
1226
1227
1228 reprogram:
1229 /* If the user gathered the buffer, no need to keep profiling */
1230 if (bootprofile_interval_abs == 0) {
1231 return;
1232 }
1233
1234 clock_deadline_for_periodic_event(bootprofile_interval_abs,
1235 mach_absolute_time(),
1236 &bootprofile_next_deadline);
1237 timer_call_enter_with_leeway(&bootprofile_timer_call_entry,
1238 NULL,
1239 bootprofile_next_deadline,
1240 0,
1241 TIMER_CALL_SYS_NORMAL,
1242 FALSE);
1243 }
1244
1245 int bootprofile_gather(user_addr_t buffer, uint32_t *length)
1246 {
1247 int result = 0;
1248
1249 BOOTPROFILE_LOCK();
1250
1251 if (bootprofile_buffer == 0) {
1252 *length = 0;
1253 goto out;
1254 }
1255
1256 if (*length < bootprofile_buffer_current_position) {
1257 result = KERN_NO_SPACE;
1258 goto out;
1259 }
1260
1261 if ((result = copyout((void *)bootprofile_buffer, buffer,
1262 bootprofile_buffer_current_position)) != 0) {
1263 *length = 0;
1264 goto out;
1265 }
1266 *length = bootprofile_buffer_current_position;
1267
1268 /* cancel future timers */
1269 bootprofile_interval_abs = 0;
1270
1271 out:
1272
1273 BOOTPROFILE_UNLOCK();
1274
1275 return (result);
1276 }