]> git.saurik.com Git - apple/xnu.git/blob - osfmk/kern/task_policy.c
xnu-2782.20.48.tar.gz
[apple/xnu.git] / osfmk / kern / task_policy.c
1 /*
2 * Copyright (c) 2000-2004 Apple Computer, Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28
29 #include <mach/mach_types.h>
30 #include <mach/task_server.h>
31
32 #include <kern/sched.h>
33 #include <kern/task.h>
34 #include <mach/thread_policy.h>
35 #include <sys/errno.h>
36 #include <sys/resource.h>
37 #include <machine/limits.h>
38 #include <kern/ledger.h>
39 #include <kern/thread_call.h>
40 #include <kern/sfi.h>
41 #include <kern/coalition.h>
42 #if CONFIG_TELEMETRY
43 #include <kern/telemetry.h>
44 #endif
45
46 #if IMPORTANCE_INHERITANCE
47 #include <ipc/ipc_importance.h>
48 #if IMPORTANCE_DEBUG
49 #include <mach/machine/sdt.h>
50 #endif /* IMPORTANCE_DEBUG */
51 #endif /* IMPORTANCE_INHERITACE */
52
53 #include <sys/kdebug.h>
54
55 /*
56 * Task Policy
57 *
58 * This subsystem manages task and thread IO priority and backgrounding,
59 * as well as importance inheritance, process suppression, task QoS, and apptype.
60 * These properties have a suprising number of complex interactions, so they are
61 * centralized here in one state machine to simplify the implementation of those interactions.
62 *
63 * Architecture:
64 * Threads and tasks have three policy fields: requested, effective, and pending.
65 * Requested represents the wishes of each interface that influences task policy.
66 * Effective represents the distillation of that policy into a set of behaviors.
67 * Pending represents updates that haven't been applied yet.
68 *
69 * Each interface that has an input into the task policy state machine controls a field in requested.
70 * If the interface has a getter, it returns what is in the field in requested, but that is
71 * not necessarily what is actually in effect.
72 *
73 * All kernel subsystems that behave differently based on task policy call into
74 * the get_effective_policy function, which returns the decision of the task policy state machine
75 * for that subsystem by querying only the 'effective' field.
76 *
77 * Policy change operations:
78 * Here are the steps to change a policy on a task or thread:
79 * 1) Lock task
80 * 2) Change requested field for the relevant policy
81 * 3) Run a task policy update, which recalculates effective based on requested,
82 * then takes a diff between the old and new versions of requested and calls the relevant
83 * other subsystems to apply these changes, and updates the pending field.
84 * 4) Unlock task
85 * 5) Run task policy update complete, which looks at the pending field to update
86 * subsystems which cannot be touched while holding the task lock.
87 *
88 * To add a new requested policy, add the field in the requested struct, the flavor in task.h,
89 * the setter and getter in proc_(set|get)_task_policy*, and dump the state in task_requested_bitfield,
90 * then set up the effects of that behavior in task_policy_update*. If the policy manifests
91 * itself as a distinct effective policy, add it to the effective struct and add it to the
92 * proc_get_effective_policy accessor.
93 *
94 * Most policies are set via proc_set_task_policy, but policies that don't fit that interface
95 * roll their own lock/set/update/unlock/complete code inside this file.
96 *
97 *
98 * Suppression policy
99 *
100 * These are a set of behaviors that can be requested for a task. They currently have specific
101 * implied actions when they're enabled, but they may be made customizable in the future.
102 *
103 * When the affected task is boosted, we temporarily disable the suppression behaviors
104 * so that the affected process has a chance to run so it can call the API to permanently
105 * disable the suppression behaviors.
106 *
107 * Locking
108 *
109 * Changing task policy on a task or thread takes the task lock, and not the thread lock.
110 * TODO: Should changing policy on a thread take the thread lock instead?
111 *
112 * Querying the effective policy does not take the task lock, to prevent deadlocks or slowdown in sensitive code.
113 * This means that any notification of state change needs to be externally synchronized.
114 *
115 */
116
117 extern const qos_policy_params_t thread_qos_policy_params;
118
119 /* for task holds without dropping the lock */
120 extern void task_hold_locked(task_t task);
121 extern void task_release_locked(task_t task);
122 extern void task_wait_locked(task_t task, boolean_t until_not_runnable);
123
124 extern void thread_recompute_qos(thread_t thread);
125
126 /* Task policy related helper functions */
127 static void proc_set_task_policy_locked(task_t task, thread_t thread, int category, int flavor, int value);
128 static void proc_set_task_policy2_locked(task_t task, thread_t thread, int category, int flavor, int value1, int value2);
129
130 static void task_policy_update_locked(task_t task, thread_t thread, task_pend_token_t pend_token);
131 static void task_policy_update_internal_locked(task_t task, thread_t thread, boolean_t in_create, task_pend_token_t pend_token);
132 static void task_policy_update_task_locked(task_t task, boolean_t update_throttle, boolean_t update_bg_throttle, boolean_t update_sfi);
133 static void task_policy_update_thread_locked(thread_t thread, int update_cpu, boolean_t update_throttle, boolean_t update_sfi, boolean_t update_qos);
134 static boolean_t task_policy_update_coalition_focal_tasks(task_t task, int prev_role, int next_role);
135
136 static int proc_get_effective_policy(task_t task, thread_t thread, int policy);
137
138 static void proc_iopol_to_tier(int iopolicy, int *tier, int *passive);
139 static int proc_tier_to_iopol(int tier, int passive);
140
141 static uintptr_t trequested_0(task_t task, thread_t thread);
142 static uintptr_t trequested_1(task_t task, thread_t thread);
143 static uintptr_t teffective_0(task_t task, thread_t thread);
144 static uintptr_t teffective_1(task_t task, thread_t thread);
145 static uint32_t tpending(task_pend_token_t pend_token);
146 static uint64_t task_requested_bitfield(task_t task, thread_t thread);
147 static uint64_t task_effective_bitfield(task_t task, thread_t thread);
148
149 void proc_get_thread_policy(thread_t thread, thread_policy_state_t info);
150
151 /* CPU Limits related helper functions */
152 static int task_get_cpuusage(task_t task, uint8_t *percentagep, uint64_t *intervalp, uint64_t *deadlinep, int *scope);
153 int task_set_cpuusage(task_t task, uint8_t percentage, uint64_t interval, uint64_t deadline, int scope, int entitled);
154 static int task_clear_cpuusage_locked(task_t task, int cpumon_entitled);
155 int task_disable_cpumon(task_t task);
156 static int task_apply_resource_actions(task_t task, int type);
157 void task_action_cpuusage(thread_call_param_t param0, thread_call_param_t param1);
158 void proc_init_cpumon_params(void);
159
160 #ifdef MACH_BSD
161 int proc_pid(void *proc);
162 extern int proc_selfpid(void);
163 extern char * proc_name_address(void *p);
164 extern void rethrottle_thread(void * uthread);
165 extern void proc_apply_task_networkbg(void * bsd_info, thread_t thread);
166 #endif /* MACH_BSD */
167
168 extern zone_t thread_qos_override_zone;
169 static boolean_t _proc_thread_qos_remove_override_internal(task_t task, thread_t thread, uint64_t tid, user_addr_t resource, int resource_type, boolean_t reset);
170
171
172 /* Importance Inheritance related helper functions */
173
174 #if IMPORTANCE_INHERITANCE
175
176 static void task_add_importance_watchport(task_t task, mach_port_t port, int *boostp);
177 static void task_importance_update_live_donor(task_t target_task);
178
179 #endif /* IMPORTANCE_INHERITANCE */
180
181 #if IMPORTANCE_DEBUG
182 #define __impdebug_only
183 #else
184 #define __impdebug_only __unused
185 #endif
186
187 #if IMPORTANCE_INHERITANCE
188 #define __imp_only
189 #else
190 #define __imp_only __unused
191 #endif
192
193 #define TASK_LOCKED 1
194 #define TASK_UNLOCKED 0
195
196 #define DO_LOWPRI_CPU 1
197 #define UNDO_LOWPRI_CPU 2
198
199 /* Macros for making tracing simpler */
200
201 #define tpriority(task, thread) ((uintptr_t)(thread == THREAD_NULL ? (task->priority) : (thread->priority)))
202 #define tisthread(thread) (thread == THREAD_NULL ? TASK_POLICY_TASK : TASK_POLICY_THREAD)
203 #define targetid(task, thread) ((uintptr_t)(thread == THREAD_NULL ? (audit_token_pid_from_task(task)) : (thread->thread_id)))
204
205 /*
206 * Default parameters for certain policies
207 */
208
209 int proc_standard_daemon_tier = THROTTLE_LEVEL_TIER1;
210 int proc_suppressed_disk_tier = THROTTLE_LEVEL_TIER1;
211 int proc_tal_disk_tier = THROTTLE_LEVEL_TIER1;
212
213 int proc_graphics_timer_qos = (LATENCY_QOS_TIER_0 & 0xFF);
214
215 const int proc_default_bg_iotier = THROTTLE_LEVEL_TIER2;
216
217 /* Latency/throughput QoS fields remain zeroed, i.e. TIER_UNSPECIFIED at creation */
218 const struct task_requested_policy default_task_requested_policy = {
219 .bg_iotier = proc_default_bg_iotier
220 };
221 const struct task_effective_policy default_task_effective_policy = {};
222 const struct task_pended_policy default_task_pended_policy = {};
223
224 /*
225 * Default parameters for CPU usage monitor.
226 *
227 * Default setting is 50% over 3 minutes.
228 */
229 #define DEFAULT_CPUMON_PERCENTAGE 50
230 #define DEFAULT_CPUMON_INTERVAL (3 * 60)
231
232 uint8_t proc_max_cpumon_percentage;
233 uint64_t proc_max_cpumon_interval;
234
235 kern_return_t
236 qos_latency_policy_validate(task_latency_qos_t ltier) {
237 if ((ltier != LATENCY_QOS_TIER_UNSPECIFIED) &&
238 ((ltier > LATENCY_QOS_TIER_5) || (ltier < LATENCY_QOS_TIER_0)))
239 return KERN_INVALID_ARGUMENT;
240
241 return KERN_SUCCESS;
242 }
243
244 kern_return_t
245 qos_throughput_policy_validate(task_throughput_qos_t ttier) {
246 if ((ttier != THROUGHPUT_QOS_TIER_UNSPECIFIED) &&
247 ((ttier > THROUGHPUT_QOS_TIER_5) || (ttier < THROUGHPUT_QOS_TIER_0)))
248 return KERN_INVALID_ARGUMENT;
249
250 return KERN_SUCCESS;
251 }
252
253 static kern_return_t
254 task_qos_policy_validate(task_qos_policy_t qosinfo, mach_msg_type_number_t count) {
255 if (count < TASK_QOS_POLICY_COUNT)
256 return KERN_INVALID_ARGUMENT;
257
258 task_latency_qos_t ltier = qosinfo->task_latency_qos_tier;
259 task_throughput_qos_t ttier = qosinfo->task_throughput_qos_tier;
260
261 kern_return_t kr = qos_latency_policy_validate(ltier);
262
263 if (kr != KERN_SUCCESS)
264 return kr;
265
266 kr = qos_throughput_policy_validate(ttier);
267
268 return kr;
269 }
270
271 uint32_t
272 qos_extract(uint32_t qv) {
273 return (qv & 0xFF);
274 }
275
276 uint32_t
277 qos_latency_policy_package(uint32_t qv) {
278 return (qv == LATENCY_QOS_TIER_UNSPECIFIED) ? LATENCY_QOS_TIER_UNSPECIFIED : ((0xFF << 16) | qv);
279 }
280
281 uint32_t
282 qos_throughput_policy_package(uint32_t qv) {
283 return (qv == THROUGHPUT_QOS_TIER_UNSPECIFIED) ? THROUGHPUT_QOS_TIER_UNSPECIFIED : ((0xFE << 16) | qv);
284 }
285
286 /* TEMPORARY boot-arg controlling task_policy suppression (App Nap) */
287 static boolean_t task_policy_suppression_disable = FALSE;
288
289 kern_return_t
290 task_policy_set(
291 task_t task,
292 task_policy_flavor_t flavor,
293 task_policy_t policy_info,
294 mach_msg_type_number_t count)
295 {
296 kern_return_t result = KERN_SUCCESS;
297
298 if (task == TASK_NULL || task == kernel_task)
299 return (KERN_INVALID_ARGUMENT);
300
301 switch (flavor) {
302
303 case TASK_CATEGORY_POLICY: {
304 task_category_policy_t info = (task_category_policy_t)policy_info;
305
306 if (count < TASK_CATEGORY_POLICY_COUNT)
307 return (KERN_INVALID_ARGUMENT);
308
309
310 switch(info->role) {
311 case TASK_FOREGROUND_APPLICATION:
312 case TASK_BACKGROUND_APPLICATION:
313 case TASK_DEFAULT_APPLICATION:
314 proc_set_task_policy(task, THREAD_NULL,
315 TASK_POLICY_ATTRIBUTE, TASK_POLICY_ROLE,
316 info->role);
317 break;
318
319 case TASK_CONTROL_APPLICATION:
320 if (task != current_task() || task->sec_token.val[0] != 0)
321 result = KERN_INVALID_ARGUMENT;
322 else
323 proc_set_task_policy(task, THREAD_NULL,
324 TASK_POLICY_ATTRIBUTE, TASK_POLICY_ROLE,
325 info->role);
326 break;
327
328 case TASK_GRAPHICS_SERVER:
329 /* TODO: Restrict this role to FCFS <rdar://problem/12552788> */
330 if (task != current_task() || task->sec_token.val[0] != 0)
331 result = KERN_INVALID_ARGUMENT;
332 else
333 proc_set_task_policy(task, THREAD_NULL,
334 TASK_POLICY_ATTRIBUTE, TASK_POLICY_ROLE,
335 info->role);
336 break;
337 default:
338 result = KERN_INVALID_ARGUMENT;
339 break;
340 } /* switch (info->role) */
341
342 break;
343 }
344
345 /* Desired energy-efficiency/performance "quality-of-service" */
346 case TASK_BASE_QOS_POLICY:
347 case TASK_OVERRIDE_QOS_POLICY:
348 {
349 task_qos_policy_t qosinfo = (task_qos_policy_t)policy_info;
350 kern_return_t kr = task_qos_policy_validate(qosinfo, count);
351
352 if (kr != KERN_SUCCESS)
353 return kr;
354
355
356 uint32_t lqos = qos_extract(qosinfo->task_latency_qos_tier);
357 uint32_t tqos = qos_extract(qosinfo->task_throughput_qos_tier);
358
359 proc_set_task_policy2(task, THREAD_NULL, TASK_POLICY_ATTRIBUTE,
360 flavor == TASK_BASE_QOS_POLICY ? TASK_POLICY_BASE_LATENCY_AND_THROUGHPUT_QOS : TASK_POLICY_OVERRIDE_LATENCY_AND_THROUGHPUT_QOS,
361 lqos, tqos);
362 }
363 break;
364
365 case TASK_BASE_LATENCY_QOS_POLICY:
366 {
367 task_qos_policy_t qosinfo = (task_qos_policy_t)policy_info;
368 kern_return_t kr = task_qos_policy_validate(qosinfo, count);
369
370 if (kr != KERN_SUCCESS)
371 return kr;
372
373 uint32_t lqos = qos_extract(qosinfo->task_latency_qos_tier);
374
375 proc_set_task_policy(task, NULL, TASK_POLICY_ATTRIBUTE, TASK_BASE_LATENCY_QOS_POLICY, lqos);
376 }
377 break;
378
379 case TASK_BASE_THROUGHPUT_QOS_POLICY:
380 {
381 task_qos_policy_t qosinfo = (task_qos_policy_t)policy_info;
382 kern_return_t kr = task_qos_policy_validate(qosinfo, count);
383
384 if (kr != KERN_SUCCESS)
385 return kr;
386
387 uint32_t tqos = qos_extract(qosinfo->task_throughput_qos_tier);
388
389 proc_set_task_policy(task, NULL, TASK_POLICY_ATTRIBUTE, TASK_BASE_THROUGHPUT_QOS_POLICY, tqos);
390 }
391 break;
392
393 case TASK_SUPPRESSION_POLICY:
394 {
395
396 task_suppression_policy_t info = (task_suppression_policy_t)policy_info;
397
398 if (count < TASK_SUPPRESSION_POLICY_COUNT)
399 return (KERN_INVALID_ARGUMENT);
400
401 struct task_qos_policy qosinfo;
402
403 qosinfo.task_latency_qos_tier = info->timer_throttle;
404 qosinfo.task_throughput_qos_tier = info->throughput_qos;
405
406 kern_return_t kr = task_qos_policy_validate(&qosinfo, TASK_QOS_POLICY_COUNT);
407
408 if (kr != KERN_SUCCESS)
409 return kr;
410
411 /* TEMPORARY disablement of task suppression */
412 if (task_policy_suppression_disable && info->active)
413 return KERN_SUCCESS;
414
415 struct task_pend_token pend_token = {};
416
417 task_lock(task);
418
419 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
420 (IMPORTANCE_CODE(IMP_TASK_SUPPRESSION, info->active)) | DBG_FUNC_START,
421 proc_selfpid(), audit_token_pid_from_task(task), trequested_0(task, THREAD_NULL),
422 trequested_1(task, THREAD_NULL), 0);
423
424 task->requested_policy.t_sup_active = (info->active) ? 1 : 0;
425 task->requested_policy.t_sup_lowpri_cpu = (info->lowpri_cpu) ? 1 : 0;
426 task->requested_policy.t_sup_timer = qos_extract(info->timer_throttle);
427 task->requested_policy.t_sup_disk = (info->disk_throttle) ? 1 : 0;
428 task->requested_policy.t_sup_cpu_limit = (info->cpu_limit) ? 1 : 0;
429 task->requested_policy.t_sup_suspend = (info->suspend) ? 1 : 0;
430 task->requested_policy.t_sup_throughput = qos_extract(info->throughput_qos);
431 task->requested_policy.t_sup_cpu = (info->suppressed_cpu) ? 1 : 0;
432 task->requested_policy.t_sup_bg_sockets = (info->background_sockets) ? 1 : 0;
433
434 task_policy_update_locked(task, THREAD_NULL, &pend_token);
435
436 task_unlock(task);
437
438 task_policy_update_complete_unlocked(task, THREAD_NULL, &pend_token);
439
440 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
441 (IMPORTANCE_CODE(IMP_TASK_SUPPRESSION, info->active)) | DBG_FUNC_END,
442 proc_selfpid(), audit_token_pid_from_task(task), trequested_0(task, THREAD_NULL),
443 trequested_1(task, THREAD_NULL), 0);
444
445 break;
446
447 }
448
449 default:
450 result = KERN_INVALID_ARGUMENT;
451 break;
452 }
453
454 return (result);
455 }
456
457 /* Sets BSD 'nice' value on the task */
458 kern_return_t
459 task_importance(
460 task_t task,
461 integer_t importance)
462 {
463 if (task == TASK_NULL || task == kernel_task)
464 return (KERN_INVALID_ARGUMENT);
465
466 task_lock(task);
467
468 if (!task->active) {
469 task_unlock(task);
470
471 return (KERN_TERMINATED);
472 }
473
474 if (proc_get_effective_task_policy(task, TASK_POLICY_ROLE) >= TASK_CONTROL_APPLICATION) {
475 task_unlock(task);
476
477 return (KERN_INVALID_ARGUMENT);
478 }
479
480 task->importance = importance;
481
482 /* TODO: tracepoint? */
483
484 /* Redrive only the task priority calculation */
485 task_policy_update_task_locked(task, FALSE, FALSE, FALSE);
486
487 task_unlock(task);
488
489 return (KERN_SUCCESS);
490 }
491
492 kern_return_t
493 task_policy_get(
494 task_t task,
495 task_policy_flavor_t flavor,
496 task_policy_t policy_info,
497 mach_msg_type_number_t *count,
498 boolean_t *get_default)
499 {
500 if (task == TASK_NULL || task == kernel_task)
501 return (KERN_INVALID_ARGUMENT);
502
503 switch (flavor) {
504
505 case TASK_CATEGORY_POLICY:
506 {
507 task_category_policy_t info = (task_category_policy_t)policy_info;
508
509 if (*count < TASK_CATEGORY_POLICY_COUNT)
510 return (KERN_INVALID_ARGUMENT);
511
512 if (*get_default)
513 info->role = TASK_UNSPECIFIED;
514 else
515 info->role = proc_get_task_policy(task, THREAD_NULL, TASK_POLICY_ATTRIBUTE, TASK_POLICY_ROLE);
516 break;
517 }
518
519 case TASK_BASE_QOS_POLICY: /* FALLTHRU */
520 case TASK_OVERRIDE_QOS_POLICY:
521 {
522 task_qos_policy_t info = (task_qos_policy_t)policy_info;
523
524 if (*count < TASK_QOS_POLICY_COUNT)
525 return (KERN_INVALID_ARGUMENT);
526
527 if (*get_default) {
528 info->task_latency_qos_tier = LATENCY_QOS_TIER_UNSPECIFIED;
529 info->task_throughput_qos_tier = THROUGHPUT_QOS_TIER_UNSPECIFIED;
530 } else if (flavor == TASK_BASE_QOS_POLICY) {
531 int value1, value2;
532
533 proc_get_task_policy2(task, THREAD_NULL, TASK_POLICY_ATTRIBUTE, TASK_POLICY_BASE_LATENCY_AND_THROUGHPUT_QOS, &value1, &value2);
534
535 info->task_latency_qos_tier = qos_latency_policy_package(value1);
536 info->task_throughput_qos_tier = qos_throughput_policy_package(value2);
537
538 } else if (flavor == TASK_OVERRIDE_QOS_POLICY) {
539 int value1, value2;
540
541 proc_get_task_policy2(task, THREAD_NULL, TASK_POLICY_ATTRIBUTE, TASK_POLICY_OVERRIDE_LATENCY_AND_THROUGHPUT_QOS, &value1, &value2);
542
543 info->task_latency_qos_tier = qos_latency_policy_package(value1);
544 info->task_throughput_qos_tier = qos_throughput_policy_package(value2);
545 }
546
547 break;
548 }
549
550 case TASK_POLICY_STATE:
551 {
552 task_policy_state_t info = (task_policy_state_t)policy_info;
553
554 if (*count < TASK_POLICY_STATE_COUNT)
555 return (KERN_INVALID_ARGUMENT);
556
557 /* Only root can get this info */
558 if (current_task()->sec_token.val[0] != 0)
559 return KERN_PROTECTION_FAILURE;
560
561 if (*get_default) {
562 info->requested = 0;
563 info->effective = 0;
564 info->pending = 0;
565 info->imp_assertcnt = 0;
566 info->imp_externcnt = 0;
567 info->flags = 0;
568 info->imp_transitions = 0;
569 } else {
570 task_lock(task);
571
572 info->requested = task_requested_bitfield(task, THREAD_NULL);
573 info->effective = task_effective_bitfield(task, THREAD_NULL);
574 info->pending = 0;
575
576 info->flags = 0;
577 if (task->task_imp_base != NULL) {
578 info->imp_assertcnt = task->task_imp_base->iit_assertcnt;
579 info->imp_externcnt = IIT_EXTERN(task->task_imp_base);
580 info->flags |= (task_is_marked_importance_receiver(task) ? TASK_IMP_RECEIVER : 0);
581 info->flags |= (task_is_marked_importance_denap_receiver(task) ? TASK_DENAP_RECEIVER : 0);
582 info->flags |= (task_is_marked_importance_donor(task) ? TASK_IMP_DONOR : 0);
583 info->flags |= (task_is_marked_live_importance_donor(task) ? TASK_IMP_LIVE_DONOR : 0);
584 info->imp_transitions = task->task_imp_base->iit_transitions;
585 } else {
586 info->imp_assertcnt = 0;
587 info->imp_externcnt = 0;
588 info->imp_transitions = 0;
589 }
590 task_unlock(task);
591 }
592
593 info->reserved[0] = 0;
594 info->reserved[1] = 0;
595
596 break;
597 }
598
599 case TASK_SUPPRESSION_POLICY:
600 {
601 task_suppression_policy_t info = (task_suppression_policy_t)policy_info;
602
603 if (*count < TASK_SUPPRESSION_POLICY_COUNT)
604 return (KERN_INVALID_ARGUMENT);
605
606 task_lock(task);
607
608 if (*get_default) {
609 info->active = 0;
610 info->lowpri_cpu = 0;
611 info->timer_throttle = LATENCY_QOS_TIER_UNSPECIFIED;
612 info->disk_throttle = 0;
613 info->cpu_limit = 0;
614 info->suspend = 0;
615 info->throughput_qos = 0;
616 info->suppressed_cpu = 0;
617 } else {
618 info->active = task->requested_policy.t_sup_active;
619 info->lowpri_cpu = task->requested_policy.t_sup_lowpri_cpu;
620 info->timer_throttle = qos_latency_policy_package(task->requested_policy.t_sup_timer);
621 info->disk_throttle = task->requested_policy.t_sup_disk;
622 info->cpu_limit = task->requested_policy.t_sup_cpu_limit;
623 info->suspend = task->requested_policy.t_sup_suspend;
624 info->throughput_qos = qos_throughput_policy_package(task->requested_policy.t_sup_throughput);
625 info->suppressed_cpu = task->requested_policy.t_sup_cpu;
626 info->background_sockets = task->requested_policy.t_sup_bg_sockets;
627 }
628
629 task_unlock(task);
630 break;
631 }
632
633 default:
634 return (KERN_INVALID_ARGUMENT);
635 }
636
637 return (KERN_SUCCESS);
638 }
639
640 /*
641 * Called at task creation
642 * We calculate the correct effective but don't apply it to anything yet.
643 * The threads, etc will inherit from the task as they get created.
644 */
645 void
646 task_policy_create(task_t task, int parent_boosted)
647 {
648 if (task->requested_policy.t_apptype == TASK_APPTYPE_DAEMON_ADAPTIVE) {
649 if (parent_boosted) {
650 task->requested_policy.t_apptype = TASK_APPTYPE_DAEMON_INTERACTIVE;
651 task_importance_mark_donor(task, TRUE);
652 } else {
653 task->requested_policy.t_apptype = TASK_APPTYPE_DAEMON_BACKGROUND;
654 task_importance_mark_receiver(task, FALSE);
655 }
656 }
657
658 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
659 (IMPORTANCE_CODE(IMP_UPDATE, (IMP_UPDATE_TASK_CREATE | TASK_POLICY_TASK))) | DBG_FUNC_START,
660 audit_token_pid_from_task(task), teffective_0(task, THREAD_NULL),
661 teffective_1(task, THREAD_NULL), tpriority(task, THREAD_NULL), 0);
662
663 task_policy_update_internal_locked(task, THREAD_NULL, TRUE, NULL);
664
665 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
666 (IMPORTANCE_CODE(IMP_UPDATE, (IMP_UPDATE_TASK_CREATE | TASK_POLICY_TASK))) | DBG_FUNC_END,
667 audit_token_pid_from_task(task), teffective_0(task, THREAD_NULL),
668 teffective_1(task, THREAD_NULL), tpriority(task, THREAD_NULL), 0);
669
670 task_importance_update_live_donor(task);
671 task_policy_update_task_locked(task, FALSE, FALSE, FALSE);
672 }
673
674 void
675 thread_policy_create(thread_t thread)
676 {
677 task_t task = thread->task;
678
679 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
680 (IMPORTANCE_CODE(IMP_UPDATE, (IMP_UPDATE_TASK_CREATE | TASK_POLICY_THREAD))) | DBG_FUNC_START,
681 targetid(task, thread), teffective_0(task, thread),
682 teffective_1(task, thread), tpriority(task, thread), 0);
683
684 task_policy_update_internal_locked(task, thread, TRUE, NULL);
685
686 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
687 (IMPORTANCE_CODE(IMP_UPDATE, (IMP_UPDATE_TASK_CREATE | TASK_POLICY_THREAD))) | DBG_FUNC_END,
688 targetid(task, thread), teffective_0(task, thread),
689 teffective_1(task, thread), tpriority(task, thread), 0);
690 }
691
692 static void
693 task_policy_update_locked(task_t task, thread_t thread, task_pend_token_t pend_token)
694 {
695 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
696 (IMPORTANCE_CODE(IMP_UPDATE, tisthread(thread)) | DBG_FUNC_START),
697 targetid(task, thread), teffective_0(task, thread),
698 teffective_1(task, thread), tpriority(task, thread), 0);
699
700 task_policy_update_internal_locked(task, thread, FALSE, pend_token);
701
702 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
703 (IMPORTANCE_CODE(IMP_UPDATE, tisthread(thread))) | DBG_FUNC_END,
704 targetid(task, thread), teffective_0(task, thread),
705 teffective_1(task, thread), tpriority(task, thread), 0);
706 }
707
708 /*
709 * One state update function TO RULE THEM ALL
710 *
711 * This function updates the task or thread effective policy fields
712 * and pushes the results to the relevant subsystems.
713 *
714 * Must call update_complete after unlocking the task,
715 * as some subsystems cannot be updated while holding the task lock.
716 *
717 * Called with task locked, not thread
718 */
719
720 static void
721 task_policy_update_internal_locked(task_t task, thread_t thread, boolean_t in_create, task_pend_token_t pend_token)
722 {
723 boolean_t on_task = (thread == THREAD_NULL) ? TRUE : FALSE;
724
725 /*
726 * Step 1:
727 * Gather requested policy
728 */
729
730 struct task_requested_policy requested =
731 (on_task) ? task->requested_policy : thread->requested_policy;
732
733
734 /*
735 * Step 2:
736 * Calculate new effective policies from requested policy and task state
737 * Rules:
738 * If in an 'on_task' block, must only look at and set fields starting with t_
739 * If operating on a task, don't touch anything starting with th_
740 * If operating on a thread, don't touch anything starting with t_
741 * Don't change requested, it won't take effect
742 */
743
744 struct task_effective_policy next = {};
745 struct task_effective_policy task_effective;
746
747 /* Calculate QoS policies */
748
749 if (on_task) {
750 /* Update task role */
751 next.t_role = requested.t_role;
752
753 /* Set task qos clamp and ceiling */
754 next.t_qos_clamp = requested.t_qos_clamp;
755
756 if (requested.t_apptype == TASK_APPTYPE_APP_DEFAULT ||
757 requested.t_apptype == TASK_APPTYPE_APP_TAL) {
758
759 switch (next.t_role) {
760 case TASK_FOREGROUND_APPLICATION:
761 /* Foreground apps get urgent scheduler priority */
762 next.qos_ui_is_urgent = 1;
763 next.t_qos_ceiling = THREAD_QOS_UNSPECIFIED;
764 break;
765
766 case TASK_BACKGROUND_APPLICATION:
767 /* This is really 'non-focal but on-screen' */
768 next.t_qos_ceiling = THREAD_QOS_UNSPECIFIED;
769 break;
770
771 case TASK_DEFAULT_APPLICATION:
772 /* This is 'may render UI but we don't know if it's focal/nonfocal' */
773 next.t_qos_ceiling = THREAD_QOS_UNSPECIFIED;
774 break;
775
776 case TASK_NONUI_APPLICATION:
777 /* i.e. 'off-screen' */
778 next.t_qos_ceiling = THREAD_QOS_LEGACY;
779 break;
780
781 case TASK_CONTROL_APPLICATION:
782 case TASK_GRAPHICS_SERVER:
783 next.qos_ui_is_urgent = 1;
784 next.t_qos_ceiling = THREAD_QOS_UNSPECIFIED;
785 break;
786
787 case TASK_UNSPECIFIED:
788 default:
789 /* Apps that don't have an application role get
790 * USER_INTERACTIVE and USER_INITIATED squashed to LEGACY */
791 next.t_qos_ceiling = THREAD_QOS_LEGACY;
792 break;
793 }
794 } else {
795 /* Daemons get USER_INTERACTIVE squashed to USER_INITIATED */
796 next.t_qos_ceiling = THREAD_QOS_USER_INITIATED;
797 }
798 } else {
799 /*
800 * Set thread qos tier
801 * Note that an override only overrides the QoS field, not other policy settings.
802 * A thread must already be participating in QoS for override to take effect
803 */
804
805 /* Snapshot the task's effective policy */
806 task_effective = task->effective_policy;
807
808 next.qos_ui_is_urgent = task_effective.qos_ui_is_urgent;
809
810 if ((requested.thrp_qos_override != THREAD_QOS_UNSPECIFIED) && (requested.thrp_qos != THREAD_QOS_UNSPECIFIED))
811 next.thep_qos = MAX(requested.thrp_qos_override, requested.thrp_qos);
812 else
813 next.thep_qos = requested.thrp_qos;
814
815 /* A task clamp will result in an effective QoS even when requested is UNSPECIFIED */
816 if (task_effective.t_qos_clamp != THREAD_QOS_UNSPECIFIED) {
817 if (next.thep_qos != THREAD_QOS_UNSPECIFIED)
818 next.thep_qos = MIN(task_effective.t_qos_clamp, next.thep_qos);
819 else
820 next.thep_qos = task_effective.t_qos_clamp;
821 }
822
823 /* The ceiling only applies to threads that are in the QoS world */
824 if (task_effective.t_qos_ceiling != THREAD_QOS_UNSPECIFIED &&
825 next.thep_qos != THREAD_QOS_UNSPECIFIED) {
826 next.thep_qos = MIN(task_effective.t_qos_ceiling, next.thep_qos);
827 }
828
829 /*
830 * The QoS relative priority is only applicable when the original programmer's
831 * intended (requested) QoS is in effect. When the QoS is clamped (e.g.
832 * USER_INITIATED-13REL clamped to UTILITY), the relative priority is not honored,
833 * since otherwise it would be lower than unclamped threads. Similarly, in the
834 * presence of boosting, the programmer doesn't know what other actors
835 * are boosting the thread.
836 */
837 if ((requested.thrp_qos != THREAD_QOS_UNSPECIFIED) &&
838 (requested.thrp_qos == next.thep_qos) &&
839 (requested.thrp_qos_override == THREAD_QOS_UNSPECIFIED)) {
840 next.thep_qos_relprio = requested.thrp_qos_relprio;
841 } else {
842 next.thep_qos_relprio = 0;
843 }
844 }
845
846 /* Calculate DARWIN_BG */
847 boolean_t wants_darwinbg = FALSE;
848 boolean_t wants_all_sockets_bg = FALSE; /* Do I want my existing sockets to be bg */
849 boolean_t wants_watchersbg = FALSE; /* Do I want my pidbound threads to be bg */
850 boolean_t wants_tal = FALSE; /* Do I want the effects of TAL mode */
851
852 /*
853 * If DARWIN_BG has been requested at either level, it's engaged.
854 * Only true DARWIN_BG changes cause watchers to transition.
855 *
856 * Backgrounding due to apptype does.
857 */
858 if (requested.int_darwinbg || requested.ext_darwinbg)
859 wants_watchersbg = wants_all_sockets_bg = wants_darwinbg = TRUE;
860
861 if (on_task) {
862 /* Background TAL apps are throttled when TAL is enabled */
863 if (requested.t_apptype == TASK_APPTYPE_APP_TAL &&
864 requested.t_role == TASK_BACKGROUND_APPLICATION &&
865 requested.t_tal_enabled == 1) {
866 wants_tal = TRUE;
867 next.t_tal_engaged = 1;
868 }
869
870 /* Adaptive daemons are DARWIN_BG unless boosted, and don't get network throttled. */
871 if (requested.t_apptype == TASK_APPTYPE_DAEMON_ADAPTIVE &&
872 requested.t_boosted == 0)
873 wants_darwinbg = TRUE;
874
875 /* Background daemons are always DARWIN_BG, no exceptions, and don't get network throttled. */
876 if (requested.t_apptype == TASK_APPTYPE_DAEMON_BACKGROUND)
877 wants_darwinbg = TRUE;
878
879 if (next.t_qos_clamp == THREAD_QOS_BACKGROUND || next.t_qos_clamp == THREAD_QOS_MAINTENANCE)
880 wants_darwinbg = TRUE;
881 } else {
882 if (requested.th_pidbind_bg)
883 wants_all_sockets_bg = wants_darwinbg = TRUE;
884
885 if (requested.th_workq_bg)
886 wants_darwinbg = TRUE;
887
888 if (next.thep_qos == THREAD_QOS_BACKGROUND || next.thep_qos == THREAD_QOS_MAINTENANCE)
889 wants_darwinbg = TRUE;
890 }
891
892 /* Calculate side effects of DARWIN_BG */
893
894 if (wants_darwinbg) {
895 next.darwinbg = 1;
896 /* darwinbg threads/tasks always create bg sockets, but we don't always loop over all sockets */
897 next.new_sockets_bg = 1;
898 next.lowpri_cpu = 1;
899 }
900
901 if (wants_all_sockets_bg)
902 next.all_sockets_bg = 1;
903
904 if (on_task && wants_watchersbg)
905 next.t_watchers_bg = 1;
906
907 /* darwinbg on either task or thread implies background QOS (or lower) */
908 if (!on_task &&
909 (wants_darwinbg || task_effective.darwinbg) &&
910 (next.thep_qos > THREAD_QOS_BACKGROUND || next.thep_qos == THREAD_QOS_UNSPECIFIED)){
911 next.thep_qos = THREAD_QOS_BACKGROUND;
912 next.thep_qos_relprio = 0;
913 }
914
915 /* Calculate low CPU priority */
916
917 boolean_t wants_lowpri_cpu = FALSE;
918
919 if (wants_darwinbg || wants_tal)
920 wants_lowpri_cpu = TRUE;
921
922 if (on_task && requested.t_sup_lowpri_cpu && requested.t_boosted == 0)
923 wants_lowpri_cpu = TRUE;
924
925 if (wants_lowpri_cpu)
926 next.lowpri_cpu = 1;
927
928 /* Calculate IO policy */
929
930 /* Update BG IO policy (so we can see if it has changed) */
931 next.bg_iotier = requested.bg_iotier;
932
933 int iopol = THROTTLE_LEVEL_TIER0;
934
935 if (wants_darwinbg)
936 iopol = MAX(iopol, requested.bg_iotier);
937
938 if (on_task) {
939 if (requested.t_apptype == TASK_APPTYPE_DAEMON_STANDARD)
940 iopol = MAX(iopol, proc_standard_daemon_tier);
941
942 if (requested.t_sup_disk && requested.t_boosted == 0)
943 iopol = MAX(iopol, proc_suppressed_disk_tier);
944
945 if (wants_tal)
946 iopol = MAX(iopol, proc_tal_disk_tier);
947
948 if (next.t_qos_clamp != THREAD_QOS_UNSPECIFIED)
949 iopol = MAX(iopol, thread_qos_policy_params.qos_iotier[next.t_qos_clamp]);
950
951 } else {
952 /* Look up the associated IO tier value for the QoS class */
953 iopol = MAX(iopol, thread_qos_policy_params.qos_iotier[next.thep_qos]);
954 }
955
956 iopol = MAX(iopol, requested.int_iotier);
957 iopol = MAX(iopol, requested.ext_iotier);
958
959 next.io_tier = iopol;
960
961 /* Calculate Passive IO policy */
962
963 if (requested.ext_iopassive || requested.int_iopassive)
964 next.io_passive = 1;
965
966 /* Calculate miscellaneous policy */
967
968 if (on_task) {
969 /* Calculate suppression-active flag */
970 if (requested.t_sup_active && requested.t_boosted == 0)
971 next.t_sup_active = 1;
972
973 /* Calculate suspend policy */
974 if (requested.t_sup_suspend && requested.t_boosted == 0)
975 next.t_suspended = 1;
976
977 /* Calculate timer QOS */
978 int latency_qos = requested.t_base_latency_qos;
979
980 if (requested.t_sup_timer && requested.t_boosted == 0)
981 latency_qos = requested.t_sup_timer;
982
983 if (next.t_qos_clamp != THREAD_QOS_UNSPECIFIED)
984 latency_qos = MAX(latency_qos, (int)thread_qos_policy_params.qos_latency_qos[next.t_qos_clamp]);
985
986 if (requested.t_over_latency_qos != 0)
987 latency_qos = requested.t_over_latency_qos;
988
989 /* Treat the windowserver special */
990 if (requested.t_role == TASK_GRAPHICS_SERVER)
991 latency_qos = proc_graphics_timer_qos;
992
993 next.t_latency_qos = latency_qos;
994
995 /* Calculate throughput QOS */
996 int through_qos = requested.t_base_through_qos;
997
998 if (requested.t_sup_throughput && requested.t_boosted == 0)
999 through_qos = requested.t_sup_throughput;
1000
1001 if (next.t_qos_clamp != THREAD_QOS_UNSPECIFIED)
1002 through_qos = MAX(through_qos, (int)thread_qos_policy_params.qos_through_qos[next.t_qos_clamp]);
1003
1004 if (requested.t_over_through_qos != 0)
1005 through_qos = requested.t_over_through_qos;
1006
1007 next.t_through_qos = through_qos;
1008
1009 /* Calculate suppressed CPU priority */
1010 if (requested.t_sup_cpu && requested.t_boosted == 0)
1011 next.t_suppressed_cpu = 1;
1012
1013 /*
1014 * Calculate background sockets
1015 * Don't take into account boosting to limit transition frequency.
1016 */
1017 if (requested.t_sup_bg_sockets){
1018 next.all_sockets_bg = 1;
1019 next.new_sockets_bg = 1;
1020 }
1021
1022 /* Apply SFI Managed class bit */
1023 next.t_sfi_managed = requested.t_sfi_managed;
1024
1025 /* Calculate 'live donor' status for live importance */
1026 switch (requested.t_apptype) {
1027 case TASK_APPTYPE_APP_TAL:
1028 case TASK_APPTYPE_APP_DEFAULT:
1029 if (requested.ext_darwinbg == 0)
1030 next.t_live_donor = 1;
1031 else
1032 next.t_live_donor = 0;
1033 break;
1034
1035 case TASK_APPTYPE_DAEMON_INTERACTIVE:
1036 case TASK_APPTYPE_DAEMON_STANDARD:
1037 case TASK_APPTYPE_DAEMON_ADAPTIVE:
1038 case TASK_APPTYPE_DAEMON_BACKGROUND:
1039 default:
1040 next.t_live_donor = 0;
1041 break;
1042 }
1043 }
1044
1045 if (requested.terminated) {
1046 /*
1047 * Shoot down the throttles that slow down exit or response to SIGTERM
1048 * We don't need to shoot down:
1049 * passive (don't want to cause others to throttle)
1050 * all_sockets_bg (don't need to iterate FDs on every exit)
1051 * new_sockets_bg (doesn't matter for exiting process)
1052 * pidsuspend (jetsam-ed BG process shouldn't run again)
1053 * watchers_bg (watcher threads don't need to be unthrottled)
1054 * t_latency_qos (affects userspace timers only)
1055 */
1056
1057 next.terminated = 1;
1058 next.darwinbg = 0;
1059 next.lowpri_cpu = 0;
1060 next.io_tier = THROTTLE_LEVEL_TIER0;
1061 if (on_task) {
1062 next.t_tal_engaged = 0;
1063 next.t_role = TASK_UNSPECIFIED;
1064 next.t_suppressed_cpu = 0;
1065
1066 /* TODO: This should only be shot down on SIGTERM, not exit */
1067 next.t_suspended = 0;
1068 } else {
1069 next.thep_qos = 0;
1070 }
1071 }
1072
1073 /*
1074 * Step 3:
1075 * Swap out old policy for new policy
1076 */
1077
1078 if (!on_task) {
1079 /* Acquire thread mutex to synchronize against
1080 * thread_policy_set(). Consider reworking to separate qos
1081 * fields, or locking the task in thread_policy_set.
1082 * A more efficient model would be to make the thread bits
1083 * authoritative.
1084 */
1085 thread_mtx_lock(thread);
1086 }
1087
1088 struct task_effective_policy prev =
1089 (on_task) ? task->effective_policy : thread->effective_policy;
1090
1091 /*
1092 * Check for invalid transitions here for easier debugging
1093 * TODO: dump the structs as hex in the panic string
1094 */
1095 if (task == kernel_task && prev.all_sockets_bg != next.all_sockets_bg)
1096 panic("unexpected network change for kernel task");
1097
1098 /* This is the point where the new values become visible to other threads */
1099 if (on_task)
1100 task->effective_policy = next;
1101 else {
1102 /* Preserve thread specific latency/throughput QoS modified via
1103 * thread_policy_set(). Inelegant in the extreme, to be reworked.
1104 *
1105 * If thread QoS class is set, we don't need to preserve the previously set values.
1106 * We should ensure to not accidentally preserve previous thread QoS values if you set a thread
1107 * back to default QoS.
1108 */
1109 uint32_t lqos = thread->effective_policy.t_latency_qos, tqos = thread->effective_policy.t_through_qos;
1110
1111 if (prev.thep_qos == THREAD_QOS_UNSPECIFIED && next.thep_qos == THREAD_QOS_UNSPECIFIED) {
1112 next.t_latency_qos = lqos;
1113 next.t_through_qos = tqos;
1114 } else if (prev.thep_qos != THREAD_QOS_UNSPECIFIED && next.thep_qos == THREAD_QOS_UNSPECIFIED) {
1115 next.t_latency_qos = 0;
1116 next.t_through_qos = 0;
1117 } else {
1118 next.t_latency_qos = thread_qos_policy_params.qos_latency_qos[next.thep_qos];
1119 next.t_through_qos = thread_qos_policy_params.qos_through_qos[next.thep_qos];
1120 }
1121
1122 thread_update_qos_cpu_time(thread, TRUE);
1123 thread->effective_policy = next;
1124 thread_mtx_unlock(thread);
1125 }
1126
1127 /* Don't do anything further to a half-formed task or thread */
1128 if (in_create)
1129 return;
1130
1131 /*
1132 * Step 4:
1133 * Pend updates that can't be done while holding the task lock
1134 */
1135
1136 if (prev.all_sockets_bg != next.all_sockets_bg)
1137 pend_token->tpt_update_sockets = 1;
1138
1139 if (on_task) {
1140 /* Only re-scan the timer list if the qos level is getting less strong */
1141 if (prev.t_latency_qos > next.t_latency_qos)
1142 pend_token->tpt_update_timers = 1;
1143
1144
1145 if (prev.t_live_donor != next.t_live_donor)
1146 pend_token->tpt_update_live_donor = 1;
1147 }
1148
1149 /*
1150 * Step 5:
1151 * Update other subsystems as necessary if something has changed
1152 */
1153
1154 boolean_t update_throttle = (prev.io_tier != next.io_tier) ? TRUE : FALSE;
1155
1156 if (on_task) {
1157 if (prev.t_suspended == 0 && next.t_suspended == 1 && task->active) {
1158 task_hold_locked(task);
1159 task_wait_locked(task, FALSE);
1160 }
1161 if (prev.t_suspended == 1 && next.t_suspended == 0 && task->active) {
1162 task_release_locked(task);
1163 }
1164
1165 boolean_t update_threads = FALSE;
1166 boolean_t update_sfi = FALSE;
1167
1168 if (prev.bg_iotier != next.bg_iotier ||
1169 prev.terminated != next.terminated ||
1170 prev.t_qos_clamp != next.t_qos_clamp ||
1171 prev.t_qos_ceiling != next.t_qos_ceiling ||
1172 prev.qos_ui_is_urgent != next.qos_ui_is_urgent ||
1173 prev.darwinbg != next.darwinbg)
1174 update_threads = TRUE;
1175
1176 /*
1177 * A bit of a layering violation. We know what task policy attributes
1178 * sfi_thread_classify() consults, so if they change, trigger SFI
1179 * re-evaluation.
1180 */
1181 if ((prev.t_latency_qos != next.t_latency_qos) ||
1182 (prev.t_role != next.t_role) ||
1183 (prev.darwinbg != next.darwinbg) ||
1184 (prev.t_sfi_managed != next.t_sfi_managed))
1185 update_sfi = TRUE;
1186
1187 /* TODO: if CONFIG_SFI */
1188 if (prev.t_role != next.t_role && task_policy_update_coalition_focal_tasks(task, prev.t_role, next.t_role)) {
1189 update_sfi = TRUE;
1190 pend_token->tpt_update_coal_sfi = 1;
1191 }
1192
1193 task_policy_update_task_locked(task, update_throttle, update_threads, update_sfi);
1194 } else {
1195 int update_cpu = 0;
1196 boolean_t update_sfi = FALSE;
1197 boolean_t update_qos = FALSE;
1198
1199 if (prev.lowpri_cpu != next.lowpri_cpu)
1200 update_cpu = (next.lowpri_cpu ? DO_LOWPRI_CPU : UNDO_LOWPRI_CPU);
1201
1202 if (prev.darwinbg != next.darwinbg ||
1203 prev.thep_qos != next.thep_qos)
1204 update_sfi = TRUE;
1205
1206 if (prev.thep_qos != next.thep_qos ||
1207 prev.thep_qos_relprio != next.thep_qos_relprio ||
1208 prev.qos_ui_is_urgent != next.qos_ui_is_urgent) {
1209 update_qos = TRUE;
1210 }
1211
1212 task_policy_update_thread_locked(thread, update_cpu, update_throttle, update_sfi, update_qos);
1213 }
1214 }
1215
1216 /*
1217 * Yet another layering violation. We reach out and bang on the coalition directly.
1218 */
1219 static boolean_t
1220 task_policy_update_coalition_focal_tasks(task_t task,
1221 int prev_role,
1222 int next_role)
1223 {
1224 boolean_t sfi_transition = FALSE;
1225
1226 if (prev_role != TASK_FOREGROUND_APPLICATION && next_role == TASK_FOREGROUND_APPLICATION) {
1227 if (coalition_adjust_focal_task_count(task->coalition, 1) == 1)
1228 sfi_transition = TRUE;
1229 } else if (prev_role == TASK_FOREGROUND_APPLICATION && next_role != TASK_FOREGROUND_APPLICATION) {
1230 if (coalition_adjust_focal_task_count(task->coalition, -1) == 0)
1231 sfi_transition = TRUE;
1232 }
1233
1234 if (prev_role != TASK_BACKGROUND_APPLICATION && next_role == TASK_BACKGROUND_APPLICATION) {
1235 if (coalition_adjust_non_focal_task_count(task->coalition, 1) == 1)
1236 sfi_transition = TRUE;
1237 } else if (prev_role == TASK_BACKGROUND_APPLICATION && next_role != TASK_BACKGROUND_APPLICATION) {
1238 if (coalition_adjust_non_focal_task_count(task->coalition, -1) == 0)
1239 sfi_transition = TRUE;
1240 }
1241
1242 return sfi_transition;
1243 }
1244
1245 /* Despite the name, the thread's task is locked, the thread is not */
1246 void
1247 task_policy_update_thread_locked(thread_t thread,
1248 int update_cpu,
1249 boolean_t update_throttle,
1250 boolean_t update_sfi,
1251 boolean_t update_qos)
1252 {
1253 thread_precedence_policy_data_t policy;
1254
1255 if (update_throttle) {
1256 rethrottle_thread(thread->uthread);
1257 }
1258
1259 if (update_sfi) {
1260 sfi_reevaluate(thread);
1261 }
1262
1263 /*
1264 * TODO: pidbind needs to stuff remembered importance into saved_importance
1265 * properly deal with bg'ed threads being pidbound and unbging while pidbound
1266 *
1267 * TODO: A BG thread's priority is 0 on desktop and 4 on embedded. Need to reconcile this.
1268 * */
1269 if (update_cpu == DO_LOWPRI_CPU) {
1270 thread->saved_importance = thread->importance;
1271 policy.importance = INT_MIN;
1272 } else if (update_cpu == UNDO_LOWPRI_CPU) {
1273 policy.importance = thread->saved_importance;
1274 thread->saved_importance = 0;
1275 }
1276
1277 /* Takes thread lock and thread mtx lock */
1278 if (update_cpu)
1279 thread_policy_set_internal(thread, THREAD_PRECEDENCE_POLICY,
1280 (thread_policy_t)&policy,
1281 THREAD_PRECEDENCE_POLICY_COUNT);
1282
1283 if (update_qos)
1284 thread_recompute_qos(thread);
1285 }
1286
1287 /*
1288 * Calculate priority on a task, loop through its threads, and tell them about
1289 * priority changes and throttle changes.
1290 */
1291 void
1292 task_policy_update_task_locked(task_t task,
1293 boolean_t update_throttle,
1294 boolean_t update_threads,
1295 boolean_t update_sfi)
1296 {
1297 boolean_t update_priority = FALSE;
1298
1299 if (task == kernel_task)
1300 panic("Attempting to set task policy on kernel_task");
1301
1302 int priority = BASEPRI_DEFAULT;
1303 int max_priority = MAXPRI_USER;
1304
1305 if (proc_get_effective_task_policy(task, TASK_POLICY_LOWPRI_CPU)) {
1306 priority = MAXPRI_THROTTLE;
1307 max_priority = MAXPRI_THROTTLE;
1308 } else if (proc_get_effective_task_policy(task, TASK_POLICY_SUPPRESSED_CPU)) {
1309 priority = MAXPRI_SUPPRESSED;
1310 max_priority = MAXPRI_SUPPRESSED;
1311 } else {
1312 switch (proc_get_effective_task_policy(task, TASK_POLICY_ROLE)) {
1313 case TASK_CONTROL_APPLICATION:
1314 priority = BASEPRI_CONTROL;
1315 break;
1316 case TASK_GRAPHICS_SERVER:
1317 priority = BASEPRI_GRAPHICS;
1318 max_priority = MAXPRI_RESERVED;
1319 break;
1320 default:
1321 break;
1322 }
1323
1324 /* factor in 'nice' value */
1325 priority += task->importance;
1326
1327 if (task->effective_policy.t_qos_clamp != THREAD_QOS_UNSPECIFIED) {
1328 int qos_clamp_priority = thread_qos_policy_params.qos_pri[task->effective_policy.t_qos_clamp];
1329
1330 priority = MIN(priority, qos_clamp_priority);
1331 max_priority = MIN(max_priority, qos_clamp_priority);
1332 }
1333 }
1334
1335 /* avoid extra work if priority isn't changing */
1336 if (task->priority != priority || task->max_priority != max_priority) {
1337 update_priority = TRUE;
1338
1339 /* update the scheduling priority for the task */
1340 task->max_priority = max_priority;
1341
1342 if (priority > task->max_priority)
1343 priority = task->max_priority;
1344 else if (priority < MINPRI)
1345 priority = MINPRI;
1346
1347 task->priority = priority;
1348 }
1349
1350 /* Loop over the threads in the task only once, and only if necessary */
1351 if (update_threads || update_throttle || update_priority || update_sfi ) {
1352 thread_t thread;
1353
1354 queue_iterate(&task->threads, thread, thread_t, task_threads) {
1355 if (update_priority) {
1356 thread_mtx_lock(thread);
1357
1358 thread_task_priority(thread, priority, max_priority);
1359
1360 thread_mtx_unlock(thread);
1361 }
1362
1363 if (update_throttle) {
1364 rethrottle_thread(thread->uthread);
1365 }
1366
1367 if (update_sfi) {
1368 sfi_reevaluate(thread);
1369 }
1370
1371 if (update_threads) {
1372 thread->requested_policy.bg_iotier = task->effective_policy.bg_iotier;
1373 thread->requested_policy.terminated = task->effective_policy.terminated;
1374
1375 task_policy_update_internal_locked(task, thread, FALSE, NULL);
1376 /* The thread policy must not emit any completion actions due to this change. */
1377 }
1378 }
1379 }
1380 }
1381
1382 /*
1383 * Called with task unlocked to do things that can't be done while holding the task lock
1384 */
1385 void
1386 task_policy_update_complete_unlocked(task_t task, thread_t thread, task_pend_token_t pend_token)
1387 {
1388 boolean_t on_task = (thread == THREAD_NULL) ? TRUE : FALSE;
1389
1390 #ifdef MACH_BSD
1391 if (pend_token->tpt_update_sockets)
1392 proc_apply_task_networkbg(task->bsd_info, thread);
1393 #endif /* MACH_BSD */
1394
1395 if (on_task) {
1396 /* The timer throttle has been removed or reduced, we need to look for expired timers and fire them */
1397 if (pend_token->tpt_update_timers)
1398 ml_timer_evaluate();
1399
1400
1401 if (pend_token->tpt_update_live_donor)
1402 task_importance_update_live_donor(task);
1403
1404 if (pend_token->tpt_update_coal_sfi)
1405 coalition_sfi_reevaluate(task->coalition, task);
1406 }
1407 }
1408
1409 /*
1410 * Initiate a task policy state transition
1411 *
1412 * Everything that modifies requested except functions that need to hold the task lock
1413 * should use this function
1414 *
1415 * Argument validation should be performed before reaching this point.
1416 *
1417 * TODO: Do we need to check task->active or thread->active?
1418 */
1419 void
1420 proc_set_task_policy(task_t task,
1421 thread_t thread,
1422 int category,
1423 int flavor,
1424 int value)
1425 {
1426 struct task_pend_token pend_token = {};
1427
1428 task_lock(task);
1429
1430 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
1431 (IMPORTANCE_CODE(flavor, (category | tisthread(thread)))) | DBG_FUNC_START,
1432 targetid(task, thread), trequested_0(task, thread), trequested_1(task, thread), value, 0);
1433
1434 proc_set_task_policy_locked(task, thread, category, flavor, value);
1435
1436 task_policy_update_locked(task, thread, &pend_token);
1437
1438 task_unlock(task);
1439
1440 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
1441 (IMPORTANCE_CODE(flavor, (category | tisthread(thread)))) | DBG_FUNC_END,
1442 targetid(task, thread), trequested_0(task, thread), trequested_1(task, thread), tpending(&pend_token), 0);
1443
1444 task_policy_update_complete_unlocked(task, thread, &pend_token);
1445 }
1446
1447 /*
1448 * Initiate a task policy state transition on a thread with its TID
1449 * Useful if you cannot guarantee the thread won't get terminated
1450 */
1451 void
1452 proc_set_task_policy_thread(task_t task,
1453 uint64_t tid,
1454 int category,
1455 int flavor,
1456 int value)
1457 {
1458 thread_t thread;
1459 thread_t self = current_thread();
1460 struct task_pend_token pend_token = {};
1461
1462 task_lock(task);
1463
1464 if (tid == TID_NULL || tid == self->thread_id)
1465 thread = self;
1466 else
1467 thread = task_findtid(task, tid);
1468
1469 if (thread == THREAD_NULL) {
1470 task_unlock(task);
1471 return;
1472 }
1473
1474 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
1475 (IMPORTANCE_CODE(flavor, (category | TASK_POLICY_THREAD))) | DBG_FUNC_START,
1476 targetid(task, thread), trequested_0(task, thread), trequested_1(task, thread), value, 0);
1477
1478 proc_set_task_policy_locked(task, thread, category, flavor, value);
1479
1480 task_policy_update_locked(task, thread, &pend_token);
1481
1482 task_unlock(task);
1483
1484 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
1485 (IMPORTANCE_CODE(flavor, (category | TASK_POLICY_THREAD))) | DBG_FUNC_END,
1486 targetid(task, thread), trequested_0(task, thread), trequested_1(task, thread), tpending(&pend_token), 0);
1487
1488 task_policy_update_complete_unlocked(task, thread, &pend_token);
1489 }
1490
1491 /*
1492 * Variant of proc_set_task_policy() that sets two scalars in the requested policy structure.
1493 * Same locking rules apply.
1494 */
1495 void
1496 proc_set_task_policy2(task_t task, thread_t thread, int category, int flavor, int value1, int value2)
1497 {
1498 struct task_pend_token pend_token = {};
1499
1500 task_lock(task);
1501
1502 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
1503 (IMPORTANCE_CODE(flavor, (category | tisthread(thread)))) | DBG_FUNC_START,
1504 targetid(task, thread), trequested_0(task, thread), trequested_1(task, thread), value1, 0);
1505
1506 proc_set_task_policy2_locked(task, thread, category, flavor, value1, value2);
1507
1508 task_policy_update_locked(task, thread, &pend_token);
1509
1510 task_unlock(task);
1511
1512 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
1513 (IMPORTANCE_CODE(flavor, (category | tisthread(thread)))) | DBG_FUNC_END,
1514 targetid(task, thread), trequested_0(task, thread), trequested_0(task, thread), tpending(&pend_token), 0);
1515
1516 task_policy_update_complete_unlocked(task, thread, &pend_token);
1517 }
1518
1519 /*
1520 * Set the requested state for a specific flavor to a specific value.
1521 *
1522 * TODO:
1523 * Verify that arguments to non iopol things are 1 or 0
1524 */
1525 static void
1526 proc_set_task_policy_locked(task_t task,
1527 thread_t thread,
1528 int category,
1529 int flavor,
1530 int value)
1531 {
1532 boolean_t on_task = (thread == THREAD_NULL) ? TRUE : FALSE;
1533
1534 int tier, passive;
1535
1536 struct task_requested_policy requested =
1537 (on_task) ? task->requested_policy : thread->requested_policy;
1538
1539 switch (flavor) {
1540
1541 /* Category: EXTERNAL and INTERNAL, thread and task */
1542
1543 case TASK_POLICY_DARWIN_BG:
1544 if (category == TASK_POLICY_EXTERNAL)
1545 requested.ext_darwinbg = value;
1546 else
1547 requested.int_darwinbg = value;
1548 break;
1549
1550 case TASK_POLICY_IOPOL:
1551 proc_iopol_to_tier(value, &tier, &passive);
1552 if (category == TASK_POLICY_EXTERNAL) {
1553 requested.ext_iotier = tier;
1554 requested.ext_iopassive = passive;
1555 } else {
1556 requested.int_iotier = tier;
1557 requested.int_iopassive = passive;
1558 }
1559 break;
1560
1561 case TASK_POLICY_IO:
1562 if (category == TASK_POLICY_EXTERNAL)
1563 requested.ext_iotier = value;
1564 else
1565 requested.int_iotier = value;
1566 break;
1567
1568 case TASK_POLICY_PASSIVE_IO:
1569 if (category == TASK_POLICY_EXTERNAL)
1570 requested.ext_iopassive = value;
1571 else
1572 requested.int_iopassive = value;
1573 break;
1574
1575 /* Category: INTERNAL, task only */
1576
1577 case TASK_POLICY_DARWIN_BG_IOPOL:
1578 assert(on_task && category == TASK_POLICY_INTERNAL);
1579 proc_iopol_to_tier(value, &tier, &passive);
1580 requested.bg_iotier = tier;
1581 break;
1582
1583 /* Category: ATTRIBUTE, task only */
1584
1585 case TASK_POLICY_TAL:
1586 assert(on_task && category == TASK_POLICY_ATTRIBUTE);
1587 requested.t_tal_enabled = value;
1588 break;
1589
1590 case TASK_POLICY_BOOST:
1591 assert(on_task && category == TASK_POLICY_ATTRIBUTE);
1592 requested.t_boosted = value;
1593 break;
1594
1595 case TASK_POLICY_ROLE:
1596 assert(on_task && category == TASK_POLICY_ATTRIBUTE);
1597 requested.t_role = value;
1598 break;
1599
1600 case TASK_POLICY_TERMINATED:
1601 assert(on_task && category == TASK_POLICY_ATTRIBUTE);
1602 requested.terminated = value;
1603 break;
1604 case TASK_BASE_LATENCY_QOS_POLICY:
1605 assert(on_task && category == TASK_POLICY_ATTRIBUTE);
1606 requested.t_base_latency_qos = value;
1607 break;
1608 case TASK_BASE_THROUGHPUT_QOS_POLICY:
1609 assert(on_task && category == TASK_POLICY_ATTRIBUTE);
1610 requested.t_base_through_qos = value;
1611 break;
1612 case TASK_POLICY_SFI_MANAGED:
1613 assert(on_task && category == TASK_POLICY_ATTRIBUTE);
1614 requested.t_sfi_managed = value;
1615 break;
1616
1617 /* Category: ATTRIBUTE, thread only */
1618
1619 case TASK_POLICY_PIDBIND_BG:
1620 assert(!on_task && category == TASK_POLICY_ATTRIBUTE);
1621 requested.th_pidbind_bg = value;
1622 break;
1623
1624 case TASK_POLICY_WORKQ_BG:
1625 assert(!on_task && category == TASK_POLICY_ATTRIBUTE);
1626 requested.th_workq_bg = value;
1627 break;
1628
1629 case TASK_POLICY_QOS:
1630 assert(!on_task && category == TASK_POLICY_ATTRIBUTE);
1631 requested.thrp_qos = value;
1632 break;
1633
1634 case TASK_POLICY_QOS_OVERRIDE:
1635 assert(!on_task && category == TASK_POLICY_ATTRIBUTE);
1636 requested.thrp_qos_override = value;
1637 break;
1638
1639 default:
1640 panic("unknown task policy: %d %d %d", category, flavor, value);
1641 break;
1642 }
1643
1644 if (on_task)
1645 task->requested_policy = requested;
1646 else
1647 thread->requested_policy = requested;
1648 }
1649
1650 /*
1651 * Variant of proc_set_task_policy_locked() that sets two scalars in the requested policy structure.
1652 */
1653 static void
1654 proc_set_task_policy2_locked(task_t task,
1655 thread_t thread,
1656 int category,
1657 int flavor,
1658 int value1,
1659 int value2)
1660 {
1661 boolean_t on_task = (thread == THREAD_NULL) ? TRUE : FALSE;
1662
1663 struct task_requested_policy requested =
1664 (on_task) ? task->requested_policy : thread->requested_policy;
1665
1666 switch (flavor) {
1667
1668 /* Category: ATTRIBUTE, task only */
1669
1670 case TASK_POLICY_BASE_LATENCY_AND_THROUGHPUT_QOS:
1671 assert(on_task && category == TASK_POLICY_ATTRIBUTE);
1672 requested.t_base_latency_qos = value1;
1673 requested.t_base_through_qos = value2;
1674 break;
1675
1676 case TASK_POLICY_OVERRIDE_LATENCY_AND_THROUGHPUT_QOS:
1677 assert(on_task && category == TASK_POLICY_ATTRIBUTE);
1678 requested.t_over_latency_qos = value1;
1679 requested.t_over_through_qos = value2;
1680 break;
1681
1682 /* Category: ATTRIBUTE, thread only */
1683
1684 case TASK_POLICY_QOS_AND_RELPRIO:
1685
1686 assert(!on_task && category == TASK_POLICY_ATTRIBUTE);
1687 requested.thrp_qos = value1;
1688 requested.thrp_qos_relprio = value2;
1689 DTRACE_BOOST3(qos_set, uint64_t, thread->thread_id, int, requested.thrp_qos, int, requested.thrp_qos_relprio);
1690 break;
1691
1692 default:
1693 panic("unknown task policy: %d %d %d %d", category, flavor, value1, value2);
1694 break;
1695 }
1696
1697 if (on_task)
1698 task->requested_policy = requested;
1699 else
1700 thread->requested_policy = requested;
1701 }
1702
1703
1704 /*
1705 * Gets what you set. Effective values may be different.
1706 */
1707 int
1708 proc_get_task_policy(task_t task,
1709 thread_t thread,
1710 int category,
1711 int flavor)
1712 {
1713 boolean_t on_task = (thread == THREAD_NULL) ? TRUE : FALSE;
1714
1715 int value = 0;
1716
1717 task_lock(task);
1718
1719 struct task_requested_policy requested =
1720 (on_task) ? task->requested_policy : thread->requested_policy;
1721
1722 switch (flavor) {
1723 case TASK_POLICY_DARWIN_BG:
1724 if (category == TASK_POLICY_EXTERNAL)
1725 value = requested.ext_darwinbg;
1726 else
1727 value = requested.int_darwinbg;
1728 break;
1729 case TASK_POLICY_IOPOL:
1730 if (category == TASK_POLICY_EXTERNAL)
1731 value = proc_tier_to_iopol(requested.ext_iotier,
1732 requested.ext_iopassive);
1733 else
1734 value = proc_tier_to_iopol(requested.int_iotier,
1735 requested.int_iopassive);
1736 break;
1737 case TASK_POLICY_IO:
1738 if (category == TASK_POLICY_EXTERNAL)
1739 value = requested.ext_iotier;
1740 else
1741 value = requested.int_iotier;
1742 break;
1743 case TASK_POLICY_PASSIVE_IO:
1744 if (category == TASK_POLICY_EXTERNAL)
1745 value = requested.ext_iopassive;
1746 else
1747 value = requested.int_iopassive;
1748 break;
1749 case TASK_POLICY_DARWIN_BG_IOPOL:
1750 assert(on_task && category == TASK_POLICY_ATTRIBUTE);
1751 value = proc_tier_to_iopol(requested.bg_iotier, 0);
1752 break;
1753 case TASK_POLICY_ROLE:
1754 assert(on_task && category == TASK_POLICY_ATTRIBUTE);
1755 value = requested.t_role;
1756 break;
1757 case TASK_POLICY_SFI_MANAGED:
1758 assert(on_task && category == TASK_POLICY_ATTRIBUTE);
1759 value = requested.t_sfi_managed;
1760 break;
1761 case TASK_POLICY_QOS:
1762 assert(!on_task && category == TASK_POLICY_ATTRIBUTE);
1763 value = requested.thrp_qos;
1764 break;
1765 case TASK_POLICY_QOS_OVERRIDE:
1766 assert(!on_task && category == TASK_POLICY_ATTRIBUTE);
1767 value = requested.thrp_qos_override;
1768 break;
1769 default:
1770 panic("unknown policy_flavor %d", flavor);
1771 break;
1772 }
1773
1774 task_unlock(task);
1775
1776 return value;
1777 }
1778
1779 /*
1780 * Variant of proc_get_task_policy() that returns two scalar outputs.
1781 */
1782 void
1783 proc_get_task_policy2(task_t task, thread_t thread, int category __unused, int flavor, int *value1, int *value2)
1784 {
1785 boolean_t on_task = (thread == THREAD_NULL) ? TRUE : FALSE;
1786
1787 task_lock(task);
1788
1789 struct task_requested_policy requested =
1790 (on_task) ? task->requested_policy : thread->requested_policy;
1791
1792 switch (flavor) {
1793 /* TASK attributes */
1794 case TASK_POLICY_BASE_LATENCY_AND_THROUGHPUT_QOS:
1795 assert(on_task && category == TASK_POLICY_ATTRIBUTE);
1796 *value1 = requested.t_base_latency_qos;
1797 *value2 = requested.t_base_through_qos;
1798 break;
1799
1800 case TASK_POLICY_OVERRIDE_LATENCY_AND_THROUGHPUT_QOS:
1801 assert(on_task && category == TASK_POLICY_ATTRIBUTE);
1802 *value1 = requested.t_over_latency_qos;
1803 *value2 = requested.t_over_through_qos;
1804 break;
1805
1806 /* THREAD attributes */
1807 case TASK_POLICY_QOS_AND_RELPRIO:
1808 assert(!on_task && category == TASK_POLICY_ATTRIBUTE);
1809 *value1 = requested.thrp_qos;
1810 *value2 = requested.thrp_qos_relprio;
1811 break;
1812
1813 default:
1814 panic("unknown policy_flavor %d", flavor);
1815 break;
1816 }
1817
1818 task_unlock(task);
1819 }
1820
1821
1822 /*
1823 * Functions for querying effective state for relevant subsystems
1824 * ONLY the relevant subsystem should query these.
1825 * NEVER take a value from one of the 'effective' functions and stuff it into a setter.
1826 */
1827
1828 int
1829 proc_get_effective_task_policy(task_t task, int flavor)
1830 {
1831 return proc_get_effective_policy(task, THREAD_NULL, flavor);
1832 }
1833
1834 int
1835 proc_get_effective_thread_policy(thread_t thread, int flavor)
1836 {
1837 return proc_get_effective_policy(thread->task, thread, flavor);
1838 }
1839
1840 /*
1841 * Gets what is actually in effect, for subsystems which pull policy instead of receive updates.
1842 *
1843 * NOTE: This accessor does not take the task lock.
1844 * Notifications of state updates need to be externally synchronized with state queries.
1845 * This routine *MUST* remain interrupt safe, as it is potentially invoked
1846 * within the context of a timer interrupt. It is also called in KDP context for stackshot.
1847 */
1848 static int
1849 proc_get_effective_policy(task_t task,
1850 thread_t thread,
1851 int flavor)
1852 {
1853 boolean_t on_task = (thread == THREAD_NULL) ? TRUE : FALSE;
1854 int value = 0;
1855
1856 switch (flavor) {
1857 case TASK_POLICY_DARWIN_BG:
1858 /*
1859 * This backs the KPI call proc_pidbackgrounded to find
1860 * out if a pid is backgrounded,
1861 * as well as proc_get_effective_thread_policy.
1862 * Its main use is within the timer layer, as well as
1863 * prioritizing requests to the graphics system.
1864 * Returns 1 for background mode, 0 for normal mode
1865 */
1866 if (on_task)
1867 value = task->effective_policy.darwinbg;
1868 else
1869 value = (task->effective_policy.darwinbg ||
1870 thread->effective_policy.darwinbg) ? 1 : 0;
1871 break;
1872 case TASK_POLICY_IO:
1873 /*
1874 * The I/O system calls here to find out what throttling tier to apply to an operation.
1875 * Returns THROTTLE_LEVEL_* values. Some userspace spinlock operations can apply
1876 * a temporary iotier override to make the I/O more aggressive to get the lock
1877 * owner to release the spinlock.
1878 */
1879 if (on_task)
1880 value = task->effective_policy.io_tier;
1881 else {
1882 value = MAX(task->effective_policy.io_tier,
1883 thread->effective_policy.io_tier);
1884 if (thread->iotier_override != THROTTLE_LEVEL_NONE)
1885 value = MIN(value, thread->iotier_override);
1886 }
1887 break;
1888 case TASK_POLICY_PASSIVE_IO:
1889 /*
1890 * The I/O system calls here to find out whether an operation should be passive.
1891 * (i.e. not cause operations with lower throttle tiers to be throttled)
1892 * Returns 1 for passive mode, 0 for normal mode.
1893 * If a userspace spinlock has applied an override, that I/O should always
1894 * be passive to avoid self-throttling when the override is removed and lower
1895 * iotier I/Os are issued.
1896 */
1897 if (on_task)
1898 value = task->effective_policy.io_passive;
1899 else {
1900 int io_tier = MAX(task->effective_policy.io_tier, thread->effective_policy.io_tier);
1901 boolean_t override_in_effect = (thread->iotier_override != THROTTLE_LEVEL_NONE) && (thread->iotier_override < io_tier);
1902
1903 value = (task->effective_policy.io_passive ||
1904 thread->effective_policy.io_passive || override_in_effect) ? 1 : 0;
1905 }
1906 break;
1907 case TASK_POLICY_ALL_SOCKETS_BG:
1908 /*
1909 * do_background_socket() calls this to determine what it should do to the proc's sockets
1910 * Returns 1 for background mode, 0 for normal mode
1911 *
1912 * This consults both thread and task so un-DBGing a thread while the task is BG
1913 * doesn't get you out of the network throttle.
1914 */
1915 if (on_task)
1916 value = task->effective_policy.all_sockets_bg;
1917 else
1918 value = (task->effective_policy.all_sockets_bg ||
1919 thread->effective_policy.all_sockets_bg) ? 1 : 0;
1920 break;
1921 case TASK_POLICY_NEW_SOCKETS_BG:
1922 /*
1923 * socreate() calls this to determine if it should mark a new socket as background
1924 * Returns 1 for background mode, 0 for normal mode
1925 */
1926 if (on_task)
1927 value = task->effective_policy.new_sockets_bg;
1928 else
1929 value = (task->effective_policy.new_sockets_bg ||
1930 thread->effective_policy.new_sockets_bg) ? 1 : 0;
1931 break;
1932 case TASK_POLICY_LOWPRI_CPU:
1933 /*
1934 * Returns 1 for low priority cpu mode, 0 for normal mode
1935 */
1936 if (on_task)
1937 value = task->effective_policy.lowpri_cpu;
1938 else
1939 value = (task->effective_policy.lowpri_cpu ||
1940 thread->effective_policy.lowpri_cpu) ? 1 : 0;
1941 break;
1942 case TASK_POLICY_SUPPRESSED_CPU:
1943 /*
1944 * Returns 1 for suppressed cpu mode, 0 for normal mode
1945 */
1946 assert(on_task);
1947 value = task->effective_policy.t_suppressed_cpu;
1948 break;
1949 case TASK_POLICY_LATENCY_QOS:
1950 /*
1951 * timer arming calls into here to find out the timer coalescing level
1952 * Returns a QoS tier (0-6)
1953 */
1954 if (on_task) {
1955 value = task->effective_policy.t_latency_qos;
1956 } else {
1957 value = MAX(task->effective_policy.t_latency_qos, thread->effective_policy.t_latency_qos);
1958 }
1959 break;
1960 case TASK_POLICY_THROUGH_QOS:
1961 /*
1962 * Returns a QoS tier (0-6)
1963 */
1964 assert(on_task);
1965 value = task->effective_policy.t_through_qos;
1966 break;
1967 case TASK_POLICY_ROLE:
1968 assert(on_task);
1969 value = task->effective_policy.t_role;
1970 break;
1971 case TASK_POLICY_WATCHERS_BG:
1972 assert(on_task);
1973 value = task->effective_policy.t_watchers_bg;
1974 break;
1975 case TASK_POLICY_SFI_MANAGED:
1976 assert(on_task);
1977 value = task->effective_policy.t_sfi_managed;
1978 break;
1979 case TASK_POLICY_QOS:
1980 assert(!on_task);
1981 value = thread->effective_policy.thep_qos;
1982 break;
1983 default:
1984 panic("unknown policy_flavor %d", flavor);
1985 break;
1986 }
1987
1988 return value;
1989 }
1990
1991 /*
1992 * Convert from IOPOL_* values to throttle tiers.
1993 *
1994 * TODO: Can this be made more compact, like an array lookup
1995 * Note that it is possible to support e.g. IOPOL_PASSIVE_STANDARD in the future
1996 */
1997
1998 static void
1999 proc_iopol_to_tier(int iopolicy, int *tier, int *passive)
2000 {
2001 *passive = 0;
2002 *tier = 0;
2003 switch (iopolicy) {
2004 case IOPOL_IMPORTANT:
2005 *tier = THROTTLE_LEVEL_TIER0;
2006 break;
2007 case IOPOL_PASSIVE:
2008 *tier = THROTTLE_LEVEL_TIER0;
2009 *passive = 1;
2010 break;
2011 case IOPOL_STANDARD:
2012 *tier = THROTTLE_LEVEL_TIER1;
2013 break;
2014 case IOPOL_UTILITY:
2015 *tier = THROTTLE_LEVEL_TIER2;
2016 break;
2017 case IOPOL_THROTTLE:
2018 *tier = THROTTLE_LEVEL_TIER3;
2019 break;
2020 default:
2021 panic("unknown I/O policy %d", iopolicy);
2022 break;
2023 }
2024 }
2025
2026 static int
2027 proc_tier_to_iopol(int tier, int passive)
2028 {
2029 if (passive == 1) {
2030 switch (tier) {
2031 case THROTTLE_LEVEL_TIER0:
2032 return IOPOL_PASSIVE;
2033 break;
2034 default:
2035 panic("unknown passive tier %d", tier);
2036 return IOPOL_DEFAULT;
2037 break;
2038 }
2039 } else {
2040 switch (tier) {
2041 case THROTTLE_LEVEL_NONE:
2042 case THROTTLE_LEVEL_TIER0:
2043 return IOPOL_DEFAULT;
2044 break;
2045 case THROTTLE_LEVEL_TIER1:
2046 return IOPOL_STANDARD;
2047 break;
2048 case THROTTLE_LEVEL_TIER2:
2049 return IOPOL_UTILITY;
2050 break;
2051 case THROTTLE_LEVEL_TIER3:
2052 return IOPOL_THROTTLE;
2053 break;
2054 default:
2055 panic("unknown tier %d", tier);
2056 return IOPOL_DEFAULT;
2057 break;
2058 }
2059 }
2060 }
2061
2062 /* apply internal backgrounding for workqueue threads */
2063 int
2064 proc_apply_workq_bgthreadpolicy(thread_t thread)
2065 {
2066 if (thread == THREAD_NULL)
2067 return ESRCH;
2068
2069 proc_set_task_policy(thread->task, thread, TASK_POLICY_ATTRIBUTE,
2070 TASK_POLICY_WORKQ_BG, TASK_POLICY_ENABLE);
2071
2072 return(0);
2073 }
2074
2075 /*
2076 * remove internal backgrounding for workqueue threads
2077 * does NOT go find sockets created while BG and unbackground them
2078 */
2079 int
2080 proc_restore_workq_bgthreadpolicy(thread_t thread)
2081 {
2082 if (thread == THREAD_NULL)
2083 return ESRCH;
2084
2085 proc_set_task_policy(thread->task, thread, TASK_POLICY_ATTRIBUTE,
2086 TASK_POLICY_WORKQ_BG, TASK_POLICY_DISABLE);
2087
2088 return(0);
2089 }
2090
2091 /* here for temporary compatibility */
2092 int
2093 proc_setthread_saved_importance(__unused thread_t thread, __unused int importance)
2094 {
2095 return(0);
2096 }
2097
2098 /*
2099 * Set an override on the thread which is consulted with a
2100 * higher priority than the task/thread policy. This should
2101 * only be set for temporary grants until the thread
2102 * returns to the userspace boundary
2103 *
2104 * We use atomic operations to swap in the override, with
2105 * the assumption that the thread itself can
2106 * read the override and clear it on return to userspace.
2107 *
2108 * No locking is performed, since it is acceptable to see
2109 * a stale override for one loop through throttle_lowpri_io().
2110 * However a thread reference must be held on the thread.
2111 */
2112
2113 void set_thread_iotier_override(thread_t thread, int policy)
2114 {
2115 int current_override;
2116
2117 /* Let most aggressive I/O policy win until user boundary */
2118 do {
2119 current_override = thread->iotier_override;
2120
2121 if (current_override != THROTTLE_LEVEL_NONE)
2122 policy = MIN(current_override, policy);
2123
2124 if (current_override == policy) {
2125 /* no effective change */
2126 return;
2127 }
2128 } while (!OSCompareAndSwap(current_override, policy, &thread->iotier_override));
2129
2130 /*
2131 * Since the thread may be currently throttled,
2132 * re-evaluate tiers and potentially break out
2133 * of an msleep
2134 */
2135 rethrottle_thread(thread->uthread);
2136 }
2137
2138 /*
2139 * Userspace synchronization routines (like pthread mutexes, pthread reader-writer locks,
2140 * semaphores, dispatch_sync) may result in priority inversions where a higher priority
2141 * (i.e. scheduler priority, I/O tier, QoS tier) is waiting on a resource owned by a lower
2142 * priority thread. In these cases, we attempt to propagate the priority token, as long
2143 * as the subsystem informs us of the relationships between the threads. The userspace
2144 * synchronization subsystem should maintain the information of owner->resource and
2145 * resource->waiters itself.
2146 */
2147
2148 /*
2149 * This helper canonicalizes the resource/resource_type given the current qos_override_mode
2150 * in effect. Note that wildcards (THREAD_QOS_OVERRIDE_RESOURCE_WILDCARD) may need
2151 * to be handled specially in the future, but for now it's fine to slam
2152 * *resource to USER_ADDR_NULL even if it was previously a wildcard.
2153 */
2154 static void _canonicalize_resource_and_type(user_addr_t *resource, int *resource_type) {
2155 if (qos_override_mode == QOS_OVERRIDE_MODE_OVERHANG_PEAK || qos_override_mode == QOS_OVERRIDE_MODE_IGNORE_OVERRIDE) {
2156 /* Map all input resource/type to a single one */
2157 *resource = USER_ADDR_NULL;
2158 *resource_type = THREAD_QOS_OVERRIDE_TYPE_UNKNOWN;
2159 } else if (qos_override_mode == QOS_OVERRIDE_MODE_FINE_GRAINED_OVERRIDE) {
2160 /* no transform */
2161 } else if (qos_override_mode == QOS_OVERRIDE_MODE_FINE_GRAINED_OVERRIDE_BUT_IGNORE_DISPATCH) {
2162 /* Map all dispatch overrides to a single one, to avoid memory overhead */
2163 if (*resource_type == THREAD_QOS_OVERRIDE_TYPE_DISPATCH_ASYNCHRONOUS_OVERRIDE) {
2164 *resource = USER_ADDR_NULL;
2165 }
2166 } else if (qos_override_mode == QOS_OVERRIDE_MODE_FINE_GRAINED_OVERRIDE_BUT_SINGLE_MUTEX_OVERRIDE) {
2167 /* Map all mutex overrides to a single one, to avoid memory overhead */
2168 if (*resource_type == THREAD_QOS_OVERRIDE_TYPE_PTHREAD_MUTEX) {
2169 *resource = USER_ADDR_NULL;
2170 }
2171 }
2172 }
2173
2174 /* This helper routine finds an existing override if known. Locking should be done by caller */
2175 static struct thread_qos_override *_find_qos_override(thread_t thread, user_addr_t resource, int resource_type) {
2176 struct thread_qos_override *override;
2177
2178 override = thread->overrides;
2179 while (override) {
2180 if (override->override_resource == resource &&
2181 override->override_resource_type == resource_type) {
2182 return override;
2183 }
2184
2185 override = override->override_next;
2186 }
2187
2188 return NULL;
2189 }
2190
2191 static void _find_and_decrement_qos_override(thread_t thread, user_addr_t resource, int resource_type, boolean_t reset, struct thread_qos_override **free_override_list) {
2192 struct thread_qos_override *override, *override_prev;
2193
2194 override_prev = NULL;
2195 override = thread->overrides;
2196 while (override) {
2197 struct thread_qos_override *override_next = override->override_next;
2198
2199 if ((THREAD_QOS_OVERRIDE_RESOURCE_WILDCARD == resource || override->override_resource == resource) &&
2200 override->override_resource_type == resource_type) {
2201 if (reset) {
2202 override->override_contended_resource_count = 0;
2203 } else {
2204 override->override_contended_resource_count--;
2205 }
2206
2207 if (override->override_contended_resource_count == 0) {
2208 if (override_prev == NULL) {
2209 thread->overrides = override_next;
2210 } else {
2211 override_prev->override_next = override_next;
2212 }
2213
2214 /* Add to out-param for later zfree */
2215 override->override_next = *free_override_list;
2216 *free_override_list = override;
2217 } else {
2218 override_prev = override;
2219 }
2220
2221 if (THREAD_QOS_OVERRIDE_RESOURCE_WILDCARD != resource) {
2222 return;
2223 }
2224 } else {
2225 override_prev = override;
2226 }
2227
2228 override = override_next;
2229 }
2230 }
2231
2232 /* This helper recalculates the current requested override using the policy selected at boot */
2233 static int _calculate_requested_qos_override(thread_t thread)
2234 {
2235 if (qos_override_mode == QOS_OVERRIDE_MODE_IGNORE_OVERRIDE) {
2236 return THREAD_QOS_UNSPECIFIED;
2237 }
2238
2239 /* iterate over all overrides and calculate MAX */
2240 struct thread_qos_override *override;
2241 int qos_override = THREAD_QOS_UNSPECIFIED;
2242
2243 override = thread->overrides;
2244 while (override) {
2245 if (qos_override_mode != QOS_OVERRIDE_MODE_FINE_GRAINED_OVERRIDE_BUT_IGNORE_DISPATCH ||
2246 override->override_resource_type != THREAD_QOS_OVERRIDE_TYPE_DISPATCH_ASYNCHRONOUS_OVERRIDE) {
2247 qos_override = MAX(qos_override, override->override_qos);
2248 }
2249
2250 override = override->override_next;
2251 }
2252
2253 return qos_override;
2254 }
2255
2256 boolean_t proc_thread_qos_add_override(task_t task, thread_t thread, uint64_t tid, int override_qos, boolean_t first_override_for_resource, user_addr_t resource, int resource_type)
2257 {
2258 thread_t self = current_thread();
2259 struct task_pend_token pend_token = {};
2260
2261 /* XXX move to thread mutex when thread policy does */
2262 task_lock(task);
2263
2264 /*
2265 * If thread is passed, it is assumed to be most accurate, since the caller must have an explicit (or implicit) reference
2266 * to the thread
2267 */
2268
2269 if (thread != THREAD_NULL) {
2270 assert(task == thread->task);
2271 } else {
2272 if (tid == self->thread_id) {
2273 thread = self;
2274 } else {
2275 thread = task_findtid(task, tid);
2276
2277 if (thread == THREAD_NULL) {
2278 KERNEL_DEBUG_CONSTANT((IMPORTANCE_CODE(IMP_USYNCH_QOS_OVERRIDE, IMP_USYNCH_ADD_OVERRIDE)) | DBG_FUNC_NONE,
2279 tid, 0, 0xdead, 0, 0);
2280 task_unlock(task);
2281 return FALSE;
2282 }
2283 }
2284 }
2285
2286 KERNEL_DEBUG_CONSTANT((IMPORTANCE_CODE(IMP_USYNCH_QOS_OVERRIDE, IMP_USYNCH_ADD_OVERRIDE)) | DBG_FUNC_START,
2287 thread_tid(thread), override_qos, first_override_for_resource ? 1 : 0, 0, 0);
2288
2289 DTRACE_BOOST5(qos_add_override_pre, uint64_t, tid, uint64_t, thread->requested_policy.thrp_qos,
2290 uint64_t, thread->effective_policy.thep_qos, int, override_qos, boolean_t, first_override_for_resource);
2291
2292 struct task_requested_policy requested = thread->requested_policy;
2293 struct thread_qos_override *override;
2294 struct thread_qos_override *deferred_free_override = NULL;
2295 int new_qos_override, prev_qos_override;
2296 int new_effective_qos;
2297 boolean_t has_thread_reference = FALSE;
2298
2299 _canonicalize_resource_and_type(&resource, &resource_type);
2300
2301 if (first_override_for_resource) {
2302 override = _find_qos_override(thread, resource, resource_type);
2303 if (override) {
2304 override->override_contended_resource_count++;
2305 } else {
2306 struct thread_qos_override *override_new;
2307
2308 /* We need to allocate a new object. Drop the task lock and recheck afterwards in case someone else added the override */
2309 thread_reference(thread);
2310 has_thread_reference = TRUE;
2311 task_unlock(task);
2312 override_new = zalloc(thread_qos_override_zone);
2313 task_lock(task);
2314
2315 override = _find_qos_override(thread, resource, resource_type);
2316 if (override) {
2317 /* Someone else already allocated while the task lock was dropped */
2318 deferred_free_override = override_new;
2319 override->override_contended_resource_count++;
2320 } else {
2321 override = override_new;
2322 override->override_next = thread->overrides;
2323 override->override_contended_resource_count = 1 /* since first_override_for_resource was TRUE */;
2324 override->override_resource = resource;
2325 override->override_resource_type = resource_type;
2326 override->override_qos = THREAD_QOS_UNSPECIFIED;
2327 thread->overrides = override;
2328 }
2329 }
2330 } else {
2331 override = _find_qos_override(thread, resource, resource_type);
2332 }
2333
2334 if (override) {
2335 if (override->override_qos == THREAD_QOS_UNSPECIFIED)
2336 override->override_qos = override_qos;
2337 else
2338 override->override_qos = MAX(override->override_qos, override_qos);
2339 }
2340
2341 /* Determine how to combine the various overrides into a single current requested override */
2342 prev_qos_override = requested.thrp_qos_override;
2343 new_qos_override = _calculate_requested_qos_override(thread);
2344
2345 if (new_qos_override != prev_qos_override) {
2346 requested.thrp_qos_override = new_qos_override;
2347
2348 thread->requested_policy = requested;
2349
2350 task_policy_update_locked(task, thread, &pend_token);
2351
2352 if (!has_thread_reference) {
2353 thread_reference(thread);
2354 }
2355
2356 task_unlock(task);
2357
2358 task_policy_update_complete_unlocked(task, thread, &pend_token);
2359
2360 new_effective_qos = thread->effective_policy.thep_qos;
2361
2362 thread_deallocate(thread);
2363 } else {
2364 new_effective_qos = thread->effective_policy.thep_qos;
2365
2366 task_unlock(task);
2367
2368 if (has_thread_reference) {
2369 thread_deallocate(thread);
2370 }
2371 }
2372
2373 if (deferred_free_override) {
2374 zfree(thread_qos_override_zone, deferred_free_override);
2375 }
2376
2377 DTRACE_BOOST3(qos_add_override_post, int, prev_qos_override, int, new_qos_override,
2378 int, new_effective_qos);
2379
2380 KERNEL_DEBUG_CONSTANT((IMPORTANCE_CODE(IMP_USYNCH_QOS_OVERRIDE, IMP_USYNCH_ADD_OVERRIDE)) | DBG_FUNC_END,
2381 new_qos_override, resource, resource_type, 0, 0);
2382
2383 return TRUE;
2384 }
2385
2386
2387 static boolean_t _proc_thread_qos_remove_override_internal(task_t task, thread_t thread, uint64_t tid, user_addr_t resource, int resource_type, boolean_t reset)
2388 {
2389 thread_t self = current_thread();
2390 struct task_pend_token pend_token = {};
2391
2392 /* XXX move to thread mutex when thread policy does */
2393 task_lock(task);
2394
2395 /*
2396 * If thread is passed, it is assumed to be most accurate, since the caller must have an explicit (or implicit) reference
2397 * to the thread
2398 */
2399 if (thread != THREAD_NULL) {
2400 assert(task == thread->task);
2401 } else {
2402 if (tid == self->thread_id) {
2403 thread = self;
2404 } else {
2405 thread = task_findtid(task, tid);
2406
2407 if (thread == THREAD_NULL) {
2408 KERNEL_DEBUG_CONSTANT((IMPORTANCE_CODE(IMP_USYNCH_QOS_OVERRIDE, IMP_USYNCH_REMOVE_OVERRIDE)) | DBG_FUNC_NONE,
2409 tid, 0, 0xdead, 0, 0);
2410 task_unlock(task);
2411 return FALSE;
2412 }
2413 }
2414 }
2415
2416 struct task_requested_policy requested = thread->requested_policy;
2417 struct thread_qos_override *deferred_free_override_list = NULL;
2418 int new_qos_override, prev_qos_override;
2419
2420 _canonicalize_resource_and_type(&resource, &resource_type);
2421
2422 _find_and_decrement_qos_override(thread, resource, resource_type, reset, &deferred_free_override_list);
2423
2424 KERNEL_DEBUG_CONSTANT((IMPORTANCE_CODE(IMP_USYNCH_QOS_OVERRIDE, IMP_USYNCH_REMOVE_OVERRIDE)) | DBG_FUNC_START,
2425 thread_tid(thread), resource, reset, 0, 0);
2426
2427 /* Determine how to combine the various overrides into a single current requested override */
2428 prev_qos_override = requested.thrp_qos_override;
2429 new_qos_override = _calculate_requested_qos_override(thread);
2430
2431 if (new_qos_override != prev_qos_override) {
2432 requested.thrp_qos_override = new_qos_override;
2433
2434 thread->requested_policy = requested;
2435
2436 task_policy_update_locked(task, thread, &pend_token);
2437
2438 thread_reference(thread);
2439
2440 task_unlock(task);
2441
2442 task_policy_update_complete_unlocked(task, thread, &pend_token);
2443
2444 thread_deallocate(thread);
2445 } else {
2446 task_unlock(task);
2447 }
2448
2449 while (deferred_free_override_list) {
2450 struct thread_qos_override *override_next = deferred_free_override_list->override_next;
2451
2452 zfree(thread_qos_override_zone, deferred_free_override_list);
2453 deferred_free_override_list = override_next;
2454 }
2455
2456 KERNEL_DEBUG_CONSTANT((IMPORTANCE_CODE(IMP_USYNCH_QOS_OVERRIDE, IMP_USYNCH_REMOVE_OVERRIDE)) | DBG_FUNC_END,
2457 0, 0, 0, 0, 0);
2458
2459 return TRUE;
2460 }
2461
2462 boolean_t proc_thread_qos_remove_override(task_t task, thread_t thread, uint64_t tid, user_addr_t resource, int resource_type)
2463 {
2464 return _proc_thread_qos_remove_override_internal(task, thread, tid, resource, resource_type, FALSE);
2465
2466 }
2467
2468 boolean_t proc_thread_qos_reset_override(task_t task, thread_t thread, uint64_t tid, user_addr_t resource, int resource_type)
2469 {
2470 return _proc_thread_qos_remove_override_internal(task, thread, tid, resource, resource_type, TRUE);
2471 }
2472
2473 /* Deallocate before thread termination */
2474 void proc_thread_qos_deallocate(thread_t thread)
2475 {
2476 task_t task = thread->task;
2477 struct thread_qos_override *override;
2478
2479 /* XXX move to thread mutex when thread policy does */
2480 task_lock(task);
2481 override = thread->overrides;
2482 thread->overrides = NULL; /* task policy re-evaluation needed? */
2483 thread->requested_policy.thrp_qos_override = THREAD_QOS_UNSPECIFIED;
2484 task_unlock(task);
2485
2486 while (override) {
2487 struct thread_qos_override *override_next = override->override_next;
2488
2489 zfree(thread_qos_override_zone, override);
2490 override = override_next;
2491 }
2492 }
2493
2494 /* TODO: remove this variable when interactive daemon audit period is over */
2495 extern boolean_t ipc_importance_interactive_receiver;
2496
2497 /*
2498 * Called at process exec to initialize the apptype, qos clamp, and qos seed of a process
2499 *
2500 * TODO: Make this function more table-driven instead of ad-hoc
2501 */
2502 void
2503 proc_set_task_spawnpolicy(task_t task, int apptype, int qos_clamp,
2504 ipc_port_t * portwatch_ports, int portwatch_count)
2505 {
2506 struct task_pend_token pend_token = {};
2507
2508 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
2509 (IMPORTANCE_CODE(IMP_TASK_APPTYPE, apptype)) | DBG_FUNC_START,
2510 audit_token_pid_from_task(task), trequested_0(task, THREAD_NULL), trequested_1(task, THREAD_NULL),
2511 apptype, 0);
2512
2513 switch (apptype) {
2514 case TASK_APPTYPE_APP_TAL:
2515 case TASK_APPTYPE_APP_DEFAULT:
2516 /* Apps become donors via the 'live-donor' flag instead of the static donor flag */
2517 task_importance_mark_donor(task, FALSE);
2518 task_importance_mark_live_donor(task, TRUE);
2519 task_importance_mark_receiver(task, FALSE);
2520 /* Apps are de-nap recievers on desktop for suppression behaviors */
2521 task_importance_mark_denap_receiver(task, TRUE);
2522 break;
2523
2524 case TASK_APPTYPE_DAEMON_INTERACTIVE:
2525 task_importance_mark_donor(task, TRUE);
2526 task_importance_mark_live_donor(task, FALSE);
2527
2528 /*
2529 * A boot arg controls whether interactive daemons are importance receivers.
2530 * Normally, they are not. But for testing their behavior as an adaptive
2531 * daemon, the boot-arg can be set.
2532 *
2533 * TODO: remove this when the interactive daemon audit period is over.
2534 */
2535 task_importance_mark_receiver(task, /* FALSE */ ipc_importance_interactive_receiver);
2536 task_importance_mark_denap_receiver(task, FALSE);
2537 break;
2538
2539 case TASK_APPTYPE_DAEMON_STANDARD:
2540 task_importance_mark_donor(task, TRUE);
2541 task_importance_mark_live_donor(task, FALSE);
2542 task_importance_mark_receiver(task, FALSE);
2543 task_importance_mark_denap_receiver(task, FALSE);
2544 break;
2545
2546 case TASK_APPTYPE_DAEMON_ADAPTIVE:
2547 task_importance_mark_donor(task, FALSE);
2548 task_importance_mark_live_donor(task, FALSE);
2549 task_importance_mark_receiver(task, TRUE);
2550 task_importance_mark_denap_receiver(task, FALSE);
2551 break;
2552
2553 case TASK_APPTYPE_DAEMON_BACKGROUND:
2554 task_importance_mark_donor(task, FALSE);
2555 task_importance_mark_live_donor(task, FALSE);
2556 task_importance_mark_receiver(task, FALSE);
2557 task_importance_mark_denap_receiver(task, FALSE);
2558 break;
2559
2560 case TASK_APPTYPE_NONE:
2561 break;
2562 }
2563
2564 if (portwatch_ports != NULL && apptype == TASK_APPTYPE_DAEMON_ADAPTIVE) {
2565 int portwatch_boosts = 0;
2566
2567 for (int i = 0; i < portwatch_count; i++) {
2568 ipc_port_t port = NULL;
2569
2570 if ((port = portwatch_ports[i]) != NULL) {
2571 int boost = 0;
2572 task_add_importance_watchport(task, port, &boost);
2573 portwatch_boosts += boost;
2574 }
2575 }
2576
2577 if (portwatch_boosts > 0) {
2578 task_importance_hold_internal_assertion(task, portwatch_boosts);
2579 }
2580 }
2581
2582 task_lock(task);
2583
2584 if (apptype == TASK_APPTYPE_APP_TAL) {
2585 /* TAL starts off enabled by default */
2586 task->requested_policy.t_tal_enabled = 1;
2587 }
2588
2589 if (apptype != TASK_APPTYPE_NONE) {
2590 task->requested_policy.t_apptype = apptype;
2591
2592 }
2593
2594 if (qos_clamp != THREAD_QOS_UNSPECIFIED) {
2595 task->requested_policy.t_qos_clamp = qos_clamp;
2596 }
2597
2598 task_policy_update_locked(task, THREAD_NULL, &pend_token);
2599
2600 task_unlock(task);
2601
2602 /* Ensure the donor bit is updated to be in sync with the new live donor status */
2603 pend_token.tpt_update_live_donor = 1;
2604
2605 task_policy_update_complete_unlocked(task, THREAD_NULL, &pend_token);
2606
2607 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
2608 (IMPORTANCE_CODE(IMP_TASK_APPTYPE, apptype)) | DBG_FUNC_END,
2609 audit_token_pid_from_task(task), trequested_0(task, THREAD_NULL), trequested_1(task, THREAD_NULL),
2610 task_is_importance_receiver(task), 0);
2611 }
2612
2613 /* Set up the primordial thread's QoS */
2614 void
2615 task_set_main_thread_qos(task_t task, thread_t main_thread) {
2616 struct task_pend_token pend_token = {};
2617
2618 assert(main_thread->task == task);
2619
2620 task_lock(task);
2621
2622 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
2623 (IMPORTANCE_CODE(IMP_MAIN_THREAD_QOS, 0)) | DBG_FUNC_START,
2624 audit_token_pid_from_task(task), trequested_0(task, THREAD_NULL), trequested_1(task, THREAD_NULL),
2625 main_thread->requested_policy.thrp_qos, 0);
2626
2627 int primordial_qos = THREAD_QOS_UNSPECIFIED;
2628
2629 int qos_clamp = task->requested_policy.t_qos_clamp;
2630
2631 switch (task->requested_policy.t_apptype) {
2632 case TASK_APPTYPE_APP_TAL:
2633 case TASK_APPTYPE_APP_DEFAULT:
2634 primordial_qos = THREAD_QOS_USER_INTERACTIVE;
2635 break;
2636
2637 case TASK_APPTYPE_DAEMON_INTERACTIVE:
2638 case TASK_APPTYPE_DAEMON_STANDARD:
2639 case TASK_APPTYPE_DAEMON_ADAPTIVE:
2640 primordial_qos = THREAD_QOS_LEGACY;
2641 break;
2642
2643 case TASK_APPTYPE_DAEMON_BACKGROUND:
2644 primordial_qos = THREAD_QOS_BACKGROUND;
2645 break;
2646 }
2647
2648 if (qos_clamp != THREAD_QOS_UNSPECIFIED) {
2649 if (primordial_qos != THREAD_QOS_UNSPECIFIED) {
2650 primordial_qos = MIN(qos_clamp, primordial_qos);
2651 } else {
2652 primordial_qos = qos_clamp;
2653 }
2654 }
2655
2656 main_thread->requested_policy.thrp_qos = primordial_qos;
2657
2658 task_policy_update_locked(task, main_thread, &pend_token);
2659
2660 task_unlock(task);
2661
2662 task_policy_update_complete_unlocked(task, main_thread, &pend_token);
2663
2664 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
2665 (IMPORTANCE_CODE(IMP_MAIN_THREAD_QOS, 0)) | DBG_FUNC_END,
2666 audit_token_pid_from_task(task), trequested_0(task, THREAD_NULL), trequested_1(task, THREAD_NULL),
2667 primordial_qos, 0);
2668 }
2669
2670 /* for process_policy to check before attempting to set */
2671 boolean_t
2672 proc_task_is_tal(task_t task)
2673 {
2674 return (task->requested_policy.t_apptype == TASK_APPTYPE_APP_TAL) ? TRUE : FALSE;
2675 }
2676
2677 /* for telemetry */
2678 integer_t
2679 task_grab_latency_qos(task_t task)
2680 {
2681 return qos_latency_policy_package(proc_get_effective_task_policy(task, TASK_POLICY_LATENCY_QOS));
2682 }
2683
2684 /* update the darwin background action state in the flags field for libproc */
2685 int
2686 proc_get_darwinbgstate(task_t task, uint32_t * flagsp)
2687 {
2688 if (task->requested_policy.ext_darwinbg)
2689 *flagsp |= PROC_FLAG_EXT_DARWINBG;
2690
2691 if (task->requested_policy.int_darwinbg)
2692 *flagsp |= PROC_FLAG_DARWINBG;
2693
2694
2695 if (task->requested_policy.t_apptype == TASK_APPTYPE_APP_DEFAULT ||
2696 task->requested_policy.t_apptype == TASK_APPTYPE_APP_TAL)
2697 *flagsp |= PROC_FLAG_APPLICATION;
2698
2699 if (task->requested_policy.t_apptype == TASK_APPTYPE_DAEMON_ADAPTIVE)
2700 *flagsp |= PROC_FLAG_ADAPTIVE;
2701
2702 if (task->requested_policy.t_apptype == TASK_APPTYPE_DAEMON_ADAPTIVE && task->requested_policy.t_boosted == 1)
2703 *flagsp |= PROC_FLAG_ADAPTIVE_IMPORTANT;
2704
2705 if (task_is_importance_donor(task))
2706 *flagsp |= PROC_FLAG_IMPORTANCE_DONOR;
2707
2708 if (task->effective_policy.t_sup_active)
2709 *flagsp |= PROC_FLAG_SUPPRESSED;
2710
2711 return(0);
2712 }
2713
2714 /* All per-thread state is in the first 32-bits of the bitfield */
2715 void
2716 proc_get_thread_policy(thread_t thread, thread_policy_state_t info)
2717 {
2718 task_t task = thread->task;
2719 task_lock(task);
2720 info->requested = (integer_t)task_requested_bitfield(task, thread);
2721 info->effective = (integer_t)task_effective_bitfield(task, thread);
2722 info->pending = 0;
2723 task_unlock(task);
2724 }
2725
2726 /*
2727 * Tracepoint data... Reading the tracepoint data can be somewhat complicated.
2728 * The current scheme packs as much data into a single tracepoint as it can.
2729 *
2730 * Each task/thread requested/effective structure is 64 bits in size. Any
2731 * given tracepoint will emit either requested or effective data, but not both.
2732 *
2733 * A tracepoint may emit any of task, thread, or task & thread data.
2734 *
2735 * The type of data emitted varies with pointer size. Where possible, both
2736 * task and thread data are emitted. In LP32 systems, the first and second
2737 * halves of either the task or thread data is emitted.
2738 *
2739 * The code uses uintptr_t array indexes instead of high/low to avoid
2740 * confusion WRT big vs little endian.
2741 *
2742 * The truth table for the tracepoint data functions is below, and has the
2743 * following invariants:
2744 *
2745 * 1) task and thread are uintptr_t*
2746 * 2) task may never be NULL
2747 *
2748 *
2749 * LP32 LP64
2750 * trequested_0(task, NULL) task[0] task[0]
2751 * trequested_1(task, NULL) task[1] NULL
2752 * trequested_0(task, thread) thread[0] task[0]
2753 * trequested_1(task, thread) thread[1] thread[0]
2754 *
2755 * Basically, you get a full task or thread on LP32, and both on LP64.
2756 *
2757 * The uintptr_t munging here is squicky enough to deserve a comment.
2758 *
2759 * The variables we are accessing are laid out in memory like this:
2760 *
2761 * [ LP64 uintptr_t 0 ]
2762 * [ LP32 uintptr_t 0 ] [ LP32 uintptr_t 1 ]
2763 *
2764 * 1 2 3 4 5 6 7 8
2765 *
2766 */
2767
2768 static uintptr_t
2769 trequested_0(task_t task, thread_t thread)
2770 {
2771 assert(task);
2772 _Static_assert(sizeof(struct task_requested_policy) == sizeof(uint64_t), "size invariant violated");
2773 _Static_assert(sizeof(task->requested_policy) == sizeof(thread->requested_policy), "size invariant violated");
2774
2775 uintptr_t* raw = (uintptr_t*)((thread == THREAD_NULL) ? &task->requested_policy : &thread->requested_policy);
2776 return raw[0];
2777 }
2778
2779 static uintptr_t
2780 trequested_1(task_t task, thread_t thread)
2781 {
2782 assert(task);
2783 _Static_assert(sizeof(struct task_requested_policy) == sizeof(uint64_t), "size invariant violated");
2784 _Static_assert(sizeof(task->requested_policy) == sizeof(thread->requested_policy), "size invariant violated");
2785
2786 #if defined __LP64__
2787 return (thread == NULL) ? 0 : *(uintptr_t*)&thread->requested_policy;
2788 #else
2789 uintptr_t* raw = (uintptr_t*)((thread == THREAD_NULL) ? &task->requested_policy : &thread->requested_policy);
2790 return raw[1];
2791 #endif
2792 }
2793
2794 static uintptr_t
2795 teffective_0(task_t task, thread_t thread)
2796 {
2797 assert(task);
2798 _Static_assert(sizeof(struct task_effective_policy) == sizeof(uint64_t), "size invariant violated");
2799 _Static_assert(sizeof(task->effective_policy) == sizeof(thread->effective_policy), "size invariant violated");
2800
2801 uintptr_t* raw = (uintptr_t*)((thread == THREAD_NULL) ? &task->effective_policy : &thread->effective_policy);
2802 return raw[0];
2803 }
2804
2805 static uintptr_t
2806 teffective_1(task_t task, thread_t thread)
2807 {
2808 assert(task);
2809 _Static_assert(sizeof(struct task_effective_policy) == sizeof(uint64_t), "size invariant violated");
2810 _Static_assert(sizeof(task->effective_policy) == sizeof(thread->effective_policy), "size invariant violated");
2811
2812 #if defined __LP64__
2813 return (thread == NULL) ? 0 : *(uintptr_t*)&thread->effective_policy;
2814 #else
2815 uintptr_t* raw = (uintptr_t*)((thread == THREAD_NULL) ? &task->effective_policy : &thread->effective_policy);
2816 return raw[1];
2817 #endif
2818 }
2819
2820 /* dump pending for tracepoint */
2821 static uint32_t tpending(task_pend_token_t pend_token) { return *(uint32_t*)(void*)(pend_token); }
2822
2823 uint64_t
2824 task_requested_bitfield(task_t task, thread_t thread)
2825 {
2826 uint64_t bits = 0;
2827 struct task_requested_policy requested =
2828 (thread == THREAD_NULL) ? task->requested_policy : thread->requested_policy;
2829
2830 bits |= (requested.int_darwinbg ? POLICY_REQ_INT_DARWIN_BG : 0);
2831 bits |= (requested.ext_darwinbg ? POLICY_REQ_EXT_DARWIN_BG : 0);
2832 bits |= (requested.int_iotier ? (((uint64_t)requested.int_iotier) << POLICY_REQ_INT_IO_TIER_SHIFT) : 0);
2833 bits |= (requested.ext_iotier ? (((uint64_t)requested.ext_iotier) << POLICY_REQ_EXT_IO_TIER_SHIFT) : 0);
2834 bits |= (requested.int_iopassive ? POLICY_REQ_INT_PASSIVE_IO : 0);
2835 bits |= (requested.ext_iopassive ? POLICY_REQ_EXT_PASSIVE_IO : 0);
2836 bits |= (requested.bg_iotier ? (((uint64_t)requested.bg_iotier) << POLICY_REQ_BG_IOTIER_SHIFT) : 0);
2837 bits |= (requested.terminated ? POLICY_REQ_TERMINATED : 0);
2838
2839 bits |= (requested.th_pidbind_bg ? POLICY_REQ_PIDBIND_BG : 0);
2840 bits |= (requested.th_workq_bg ? POLICY_REQ_WORKQ_BG : 0);
2841
2842 if (thread != THREAD_NULL) {
2843 bits |= (requested.thrp_qos ? (((uint64_t)requested.thrp_qos) << POLICY_REQ_TH_QOS_SHIFT) : 0);
2844 bits |= (requested.thrp_qos_override ? (((uint64_t)requested.thrp_qos_override) << POLICY_REQ_TH_QOS_OVER_SHIFT) : 0);
2845 }
2846
2847 bits |= (requested.t_boosted ? POLICY_REQ_BOOSTED : 0);
2848 bits |= (requested.t_tal_enabled ? POLICY_REQ_TAL_ENABLED : 0);
2849 bits |= (requested.t_apptype ? (((uint64_t)requested.t_apptype) << POLICY_REQ_APPTYPE_SHIFT) : 0);
2850 bits |= (requested.t_role ? (((uint64_t)requested.t_role) << POLICY_REQ_ROLE_SHIFT) : 0);
2851
2852 bits |= (requested.t_sup_active ? POLICY_REQ_SUP_ACTIVE : 0);
2853 bits |= (requested.t_sup_lowpri_cpu ? POLICY_REQ_SUP_LOWPRI_CPU : 0);
2854 bits |= (requested.t_sup_cpu ? POLICY_REQ_SUP_CPU : 0);
2855 bits |= (requested.t_sup_timer ? (((uint64_t)requested.t_sup_timer) << POLICY_REQ_SUP_TIMER_THROTTLE_SHIFT) : 0);
2856 bits |= (requested.t_sup_throughput ? (((uint64_t)requested.t_sup_throughput) << POLICY_REQ_SUP_THROUGHPUT_SHIFT) : 0);
2857 bits |= (requested.t_sup_disk ? POLICY_REQ_SUP_DISK_THROTTLE : 0);
2858 bits |= (requested.t_sup_cpu_limit ? POLICY_REQ_SUP_CPU_LIMIT : 0);
2859 bits |= (requested.t_sup_suspend ? POLICY_REQ_SUP_SUSPEND : 0);
2860 bits |= (requested.t_sup_bg_sockets ? POLICY_REQ_SUP_BG_SOCKETS : 0);
2861 bits |= (requested.t_base_latency_qos ? (((uint64_t)requested.t_base_latency_qos) << POLICY_REQ_BASE_LATENCY_QOS_SHIFT) : 0);
2862 bits |= (requested.t_over_latency_qos ? (((uint64_t)requested.t_over_latency_qos) << POLICY_REQ_OVER_LATENCY_QOS_SHIFT) : 0);
2863 bits |= (requested.t_base_through_qos ? (((uint64_t)requested.t_base_through_qos) << POLICY_REQ_BASE_THROUGH_QOS_SHIFT) : 0);
2864 bits |= (requested.t_over_through_qos ? (((uint64_t)requested.t_over_through_qos) << POLICY_REQ_OVER_THROUGH_QOS_SHIFT) : 0);
2865 bits |= (requested.t_sfi_managed ? POLICY_REQ_SFI_MANAGED : 0);
2866 bits |= (requested.t_qos_clamp ? (((uint64_t)requested.t_qos_clamp) << POLICY_REQ_QOS_CLAMP_SHIFT) : 0);
2867
2868 return bits;
2869 }
2870
2871 uint64_t
2872 task_effective_bitfield(task_t task, thread_t thread)
2873 {
2874 uint64_t bits = 0;
2875 struct task_effective_policy effective =
2876 (thread == THREAD_NULL) ? task->effective_policy : thread->effective_policy;
2877
2878 bits |= (effective.io_tier ? (((uint64_t)effective.io_tier) << POLICY_EFF_IO_TIER_SHIFT) : 0);
2879 bits |= (effective.io_passive ? POLICY_EFF_IO_PASSIVE : 0);
2880 bits |= (effective.darwinbg ? POLICY_EFF_DARWIN_BG : 0);
2881 bits |= (effective.lowpri_cpu ? POLICY_EFF_LOWPRI_CPU : 0);
2882 bits |= (effective.terminated ? POLICY_EFF_TERMINATED : 0);
2883 bits |= (effective.all_sockets_bg ? POLICY_EFF_ALL_SOCKETS_BG : 0);
2884 bits |= (effective.new_sockets_bg ? POLICY_EFF_NEW_SOCKETS_BG : 0);
2885 bits |= (effective.bg_iotier ? (((uint64_t)effective.bg_iotier) << POLICY_EFF_BG_IOTIER_SHIFT) : 0);
2886 bits |= (effective.qos_ui_is_urgent ? POLICY_EFF_QOS_UI_IS_URGENT : 0);
2887
2888 if (thread != THREAD_NULL)
2889 bits |= (effective.thep_qos ? (((uint64_t)effective.thep_qos) << POLICY_EFF_TH_QOS_SHIFT) : 0);
2890
2891 bits |= (effective.t_tal_engaged ? POLICY_EFF_TAL_ENGAGED : 0);
2892 bits |= (effective.t_suspended ? POLICY_EFF_SUSPENDED : 0);
2893 bits |= (effective.t_watchers_bg ? POLICY_EFF_WATCHERS_BG : 0);
2894 bits |= (effective.t_sup_active ? POLICY_EFF_SUP_ACTIVE : 0);
2895 bits |= (effective.t_suppressed_cpu ? POLICY_EFF_SUP_CPU : 0);
2896 bits |= (effective.t_role ? (((uint64_t)effective.t_role) << POLICY_EFF_ROLE_SHIFT) : 0);
2897 bits |= (effective.t_latency_qos ? (((uint64_t)effective.t_latency_qos) << POLICY_EFF_LATENCY_QOS_SHIFT) : 0);
2898 bits |= (effective.t_through_qos ? (((uint64_t)effective.t_through_qos) << POLICY_EFF_THROUGH_QOS_SHIFT) : 0);
2899 bits |= (effective.t_sfi_managed ? POLICY_EFF_SFI_MANAGED : 0);
2900 bits |= (effective.t_qos_ceiling ? (((uint64_t)effective.t_qos_ceiling) << POLICY_EFF_QOS_CEILING_SHIFT) : 0);
2901
2902 return bits;
2903 }
2904
2905
2906 /*
2907 * Resource usage and CPU related routines
2908 */
2909
2910 int
2911 proc_get_task_ruse_cpu(task_t task, uint32_t *policyp, uint8_t *percentagep, uint64_t *intervalp, uint64_t *deadlinep)
2912 {
2913
2914 int error = 0;
2915 int scope;
2916
2917 task_lock(task);
2918
2919
2920 error = task_get_cpuusage(task, percentagep, intervalp, deadlinep, &scope);
2921 task_unlock(task);
2922
2923 /*
2924 * Reverse-map from CPU resource limit scopes back to policies (see comment below).
2925 */
2926 if (scope == TASK_RUSECPU_FLAGS_PERTHR_LIMIT) {
2927 *policyp = TASK_POLICY_RESOURCE_ATTRIBUTE_NOTIFY_EXC;
2928 } else if (scope == TASK_RUSECPU_FLAGS_PROC_LIMIT) {
2929 *policyp = TASK_POLICY_RESOURCE_ATTRIBUTE_THROTTLE;
2930 } else if (scope == TASK_RUSECPU_FLAGS_DEADLINE) {
2931 *policyp = TASK_POLICY_RESOURCE_ATTRIBUTE_NONE;
2932 }
2933
2934 return(error);
2935 }
2936
2937 /*
2938 * Configure the default CPU usage monitor parameters.
2939 *
2940 * For tasks which have this mechanism activated: if any thread in the
2941 * process consumes more CPU than this, an EXC_RESOURCE exception will be generated.
2942 */
2943 void
2944 proc_init_cpumon_params(void)
2945 {
2946 if (!PE_parse_boot_argn("max_cpumon_percentage", &proc_max_cpumon_percentage,
2947 sizeof (proc_max_cpumon_percentage))) {
2948 proc_max_cpumon_percentage = DEFAULT_CPUMON_PERCENTAGE;
2949 }
2950
2951 if (proc_max_cpumon_percentage > 100) {
2952 proc_max_cpumon_percentage = 100;
2953 }
2954
2955 /* The interval should be specified in seconds. */
2956 if (!PE_parse_boot_argn("max_cpumon_interval", &proc_max_cpumon_interval,
2957 sizeof (proc_max_cpumon_interval))) {
2958 proc_max_cpumon_interval = DEFAULT_CPUMON_INTERVAL;
2959 }
2960
2961 proc_max_cpumon_interval *= NSEC_PER_SEC;
2962
2963 /* TEMPORARY boot arg to control App suppression */
2964 PE_parse_boot_argn("task_policy_suppression_disable",
2965 &task_policy_suppression_disable,
2966 sizeof(task_policy_suppression_disable));
2967 }
2968
2969 /*
2970 * Currently supported configurations for CPU limits.
2971 *
2972 * Policy | Deadline-based CPU limit | Percentage-based CPU limit
2973 * -------------------------------------+--------------------------+------------------------------
2974 * PROC_POLICY_RSRCACT_THROTTLE | ENOTSUP | Task-wide scope only
2975 * PROC_POLICY_RSRCACT_SUSPEND | Task-wide scope only | ENOTSUP
2976 * PROC_POLICY_RSRCACT_TERMINATE | Task-wide scope only | ENOTSUP
2977 * PROC_POLICY_RSRCACT_NOTIFY_KQ | Task-wide scope only | ENOTSUP
2978 * PROC_POLICY_RSRCACT_NOTIFY_EXC | ENOTSUP | Per-thread scope only
2979 *
2980 * A deadline-based CPU limit is actually a simple wallclock timer - the requested action is performed
2981 * after the specified amount of wallclock time has elapsed.
2982 *
2983 * A percentage-based CPU limit performs the requested action after the specified amount of actual CPU time
2984 * has been consumed -- regardless of how much wallclock time has elapsed -- by either the task as an
2985 * aggregate entity (so-called "Task-wide" or "Proc-wide" scope, whereby the CPU time consumed by all threads
2986 * in the task are added together), or by any one thread in the task (so-called "per-thread" scope).
2987 *
2988 * We support either deadline != 0 OR percentage != 0, but not both. The original intention in having them
2989 * share an API was to use actual CPU time as the basis of the deadline-based limit (as in: perform an action
2990 * after I have used some amount of CPU time; this is different than the recurring percentage/interval model)
2991 * but the potential consumer of the API at the time was insisting on wallclock time instead.
2992 *
2993 * Currently, requesting notification via an exception is the only way to get per-thread scope for a
2994 * CPU limit. All other types of notifications force task-wide scope for the limit.
2995 */
2996 int
2997 proc_set_task_ruse_cpu(task_t task, uint32_t policy, uint8_t percentage, uint64_t interval, uint64_t deadline,
2998 int cpumon_entitled)
2999 {
3000 int error = 0;
3001 int scope;
3002
3003 /*
3004 * Enforce the matrix of supported configurations for policy, percentage, and deadline.
3005 */
3006 switch (policy) {
3007 // If no policy is explicitly given, the default is to throttle.
3008 case TASK_POLICY_RESOURCE_ATTRIBUTE_NONE:
3009 case TASK_POLICY_RESOURCE_ATTRIBUTE_THROTTLE:
3010 if (deadline != 0)
3011 return (ENOTSUP);
3012 scope = TASK_RUSECPU_FLAGS_PROC_LIMIT;
3013 break;
3014 case TASK_POLICY_RESOURCE_ATTRIBUTE_SUSPEND:
3015 case TASK_POLICY_RESOURCE_ATTRIBUTE_TERMINATE:
3016 case TASK_POLICY_RESOURCE_ATTRIBUTE_NOTIFY_KQ:
3017 if (percentage != 0)
3018 return (ENOTSUP);
3019 scope = TASK_RUSECPU_FLAGS_DEADLINE;
3020 break;
3021 case TASK_POLICY_RESOURCE_ATTRIBUTE_NOTIFY_EXC:
3022 if (deadline != 0)
3023 return (ENOTSUP);
3024 scope = TASK_RUSECPU_FLAGS_PERTHR_LIMIT;
3025 #ifdef CONFIG_NOMONITORS
3026 return (error);
3027 #endif /* CONFIG_NOMONITORS */
3028 break;
3029 default:
3030 return (EINVAL);
3031 }
3032
3033 task_lock(task);
3034 if (task != current_task()) {
3035 task->policy_ru_cpu_ext = policy;
3036 } else {
3037 task->policy_ru_cpu = policy;
3038 }
3039 error = task_set_cpuusage(task, percentage, interval, deadline, scope, cpumon_entitled);
3040 task_unlock(task);
3041 return(error);
3042 }
3043
3044 int
3045 proc_clear_task_ruse_cpu(task_t task, int cpumon_entitled)
3046 {
3047 int error = 0;
3048 int action;
3049 void * bsdinfo = NULL;
3050
3051 task_lock(task);
3052 if (task != current_task()) {
3053 task->policy_ru_cpu_ext = TASK_POLICY_RESOURCE_ATTRIBUTE_DEFAULT;
3054 } else {
3055 task->policy_ru_cpu = TASK_POLICY_RESOURCE_ATTRIBUTE_DEFAULT;
3056 }
3057
3058 error = task_clear_cpuusage_locked(task, cpumon_entitled);
3059 if (error != 0)
3060 goto out;
3061
3062 action = task->applied_ru_cpu;
3063 if (task->applied_ru_cpu_ext != TASK_POLICY_RESOURCE_ATTRIBUTE_NONE) {
3064 /* reset action */
3065 task->applied_ru_cpu_ext = TASK_POLICY_RESOURCE_ATTRIBUTE_NONE;
3066 }
3067 if (action != TASK_POLICY_RESOURCE_ATTRIBUTE_NONE) {
3068 bsdinfo = task->bsd_info;
3069 task_unlock(task);
3070 proc_restore_resource_actions(bsdinfo, TASK_POLICY_CPU_RESOURCE_USAGE, action);
3071 goto out1;
3072 }
3073
3074 out:
3075 task_unlock(task);
3076 out1:
3077 return(error);
3078
3079 }
3080
3081 /* used to apply resource limit related actions */
3082 static int
3083 task_apply_resource_actions(task_t task, int type)
3084 {
3085 int action = TASK_POLICY_RESOURCE_ATTRIBUTE_NONE;
3086 void * bsdinfo = NULL;
3087
3088 switch (type) {
3089 case TASK_POLICY_CPU_RESOURCE_USAGE:
3090 break;
3091 case TASK_POLICY_WIREDMEM_RESOURCE_USAGE:
3092 case TASK_POLICY_VIRTUALMEM_RESOURCE_USAGE:
3093 case TASK_POLICY_DISK_RESOURCE_USAGE:
3094 case TASK_POLICY_NETWORK_RESOURCE_USAGE:
3095 case TASK_POLICY_POWER_RESOURCE_USAGE:
3096 return(0);
3097
3098 default:
3099 return(1);
3100 };
3101
3102 /* only cpu actions for now */
3103 task_lock(task);
3104
3105 if (task->applied_ru_cpu_ext == TASK_POLICY_RESOURCE_ATTRIBUTE_NONE) {
3106 /* apply action */
3107 task->applied_ru_cpu_ext = task->policy_ru_cpu_ext;
3108 action = task->applied_ru_cpu_ext;
3109 } else {
3110 action = task->applied_ru_cpu_ext;
3111 }
3112
3113 if (action != TASK_POLICY_RESOURCE_ATTRIBUTE_NONE) {
3114 bsdinfo = task->bsd_info;
3115 task_unlock(task);
3116 proc_apply_resource_actions(bsdinfo, TASK_POLICY_CPU_RESOURCE_USAGE, action);
3117 } else
3118 task_unlock(task);
3119
3120 return(0);
3121 }
3122
3123 /*
3124 * XXX This API is somewhat broken; we support multiple simultaneous CPU limits, but the get/set API
3125 * only allows for one at a time. This means that if there is a per-thread limit active, the other
3126 * "scopes" will not be accessible via this API. We could change it to pass in the scope of interest
3127 * to the caller, and prefer that, but there's no need for that at the moment.
3128 */
3129 int
3130 task_get_cpuusage(task_t task, uint8_t *percentagep, uint64_t *intervalp, uint64_t *deadlinep, int *scope)
3131 {
3132 *percentagep = 0;
3133 *intervalp = 0;
3134 *deadlinep = 0;
3135
3136 if ((task->rusage_cpu_flags & TASK_RUSECPU_FLAGS_PERTHR_LIMIT) != 0) {
3137 *scope = TASK_RUSECPU_FLAGS_PERTHR_LIMIT;
3138 *percentagep = task->rusage_cpu_perthr_percentage;
3139 *intervalp = task->rusage_cpu_perthr_interval;
3140 } else if ((task->rusage_cpu_flags & TASK_RUSECPU_FLAGS_PROC_LIMIT) != 0) {
3141 *scope = TASK_RUSECPU_FLAGS_PROC_LIMIT;
3142 *percentagep = task->rusage_cpu_percentage;
3143 *intervalp = task->rusage_cpu_interval;
3144 } else if ((task->rusage_cpu_flags & TASK_RUSECPU_FLAGS_DEADLINE) != 0) {
3145 *scope = TASK_RUSECPU_FLAGS_DEADLINE;
3146 *deadlinep = task->rusage_cpu_deadline;
3147 } else {
3148 *scope = 0;
3149 }
3150
3151 return(0);
3152 }
3153
3154 /*
3155 * Disable the CPU usage monitor for the task. Return value indicates
3156 * if the mechanism was actually enabled.
3157 */
3158 int
3159 task_disable_cpumon(task_t task) {
3160 thread_t thread;
3161
3162 task_lock_assert_owned(task);
3163
3164 if ((task->rusage_cpu_flags & TASK_RUSECPU_FLAGS_PERTHR_LIMIT) == 0) {
3165 return (KERN_INVALID_ARGUMENT);
3166 }
3167
3168 #if CONFIG_TELEMETRY
3169 /*
3170 * Disable task-wide telemetry if it was ever enabled by the CPU usage
3171 * monitor's warning zone.
3172 */
3173 telemetry_task_ctl_locked(task, TF_CPUMON_WARNING, 0);
3174 #endif
3175
3176 /*
3177 * Disable the monitor for the task, and propagate that change to each thread.
3178 */
3179 task->rusage_cpu_flags &= ~(TASK_RUSECPU_FLAGS_PERTHR_LIMIT | TASK_RUSECPU_FLAGS_FATAL_CPUMON);
3180 queue_iterate(&task->threads, thread, thread_t, task_threads) {
3181 set_astledger(thread);
3182 }
3183 task->rusage_cpu_perthr_percentage = 0;
3184 task->rusage_cpu_perthr_interval = 0;
3185
3186 return (KERN_SUCCESS);
3187 }
3188
3189 int
3190 task_set_cpuusage(task_t task, uint8_t percentage, uint64_t interval, uint64_t deadline, int scope, int cpumon_entitled)
3191 {
3192 thread_t thread;
3193 uint64_t abstime = 0;
3194 uint64_t limittime = 0;
3195
3196 lck_mtx_assert(&task->lock, LCK_MTX_ASSERT_OWNED);
3197
3198 /* By default, refill once per second */
3199 if (interval == 0)
3200 interval = NSEC_PER_SEC;
3201
3202 if (percentage != 0) {
3203 if (scope == TASK_RUSECPU_FLAGS_PERTHR_LIMIT) {
3204 boolean_t warn = FALSE;
3205
3206 /*
3207 * A per-thread CPU limit on a task generates an exception
3208 * (LEDGER_ACTION_EXCEPTION) if any one thread in the task
3209 * exceeds the limit.
3210 */
3211
3212 if (percentage == TASK_POLICY_CPUMON_DISABLE) {
3213 if (cpumon_entitled) {
3214 task_disable_cpumon(task);
3215 return (0);
3216 }
3217
3218 /*
3219 * This task wishes to disable the CPU usage monitor, but it's
3220 * missing the required entitlement:
3221 * com.apple.private.kernel.override-cpumon
3222 *
3223 * Instead, treat this as a request to reset its params
3224 * back to the defaults.
3225 */
3226 warn = TRUE;
3227 percentage = TASK_POLICY_CPUMON_DEFAULTS;
3228 }
3229
3230 if (percentage == TASK_POLICY_CPUMON_DEFAULTS) {
3231 percentage = proc_max_cpumon_percentage;
3232 interval = proc_max_cpumon_interval;
3233 }
3234
3235 if (percentage > 100) {
3236 percentage = 100;
3237 }
3238
3239 /*
3240 * Passing in an interval of -1 means either:
3241 * - Leave the interval as-is, if there's already a per-thread
3242 * limit configured
3243 * - Use the system default.
3244 */
3245 if (interval == -1ULL) {
3246 if (task->rusage_cpu_flags & TASK_RUSECPU_FLAGS_PERTHR_LIMIT) {
3247 interval = task->rusage_cpu_perthr_interval;
3248 } else {
3249 interval = proc_max_cpumon_interval;
3250 }
3251 }
3252
3253 /*
3254 * Enforce global caps on CPU usage monitor here if the process is not
3255 * entitled to escape the global caps.
3256 */
3257 if ((percentage > proc_max_cpumon_percentage) && (cpumon_entitled == 0)) {
3258 warn = TRUE;
3259 percentage = proc_max_cpumon_percentage;
3260 }
3261
3262 if ((interval > proc_max_cpumon_interval) && (cpumon_entitled == 0)) {
3263 warn = TRUE;
3264 interval = proc_max_cpumon_interval;
3265 }
3266
3267 if (warn) {
3268 int pid = 0;
3269 char *procname = (char *)"unknown";
3270
3271 #ifdef MACH_BSD
3272 pid = proc_selfpid();
3273 if (current_task()->bsd_info != NULL) {
3274 procname = proc_name_address(current_task()->bsd_info);
3275 }
3276 #endif
3277
3278 printf("process %s[%d] denied attempt to escape CPU monitor"
3279 " (missing required entitlement).\n", procname, pid);
3280 }
3281
3282 task->rusage_cpu_flags |= TASK_RUSECPU_FLAGS_PERTHR_LIMIT;
3283 task->rusage_cpu_perthr_percentage = percentage;
3284 task->rusage_cpu_perthr_interval = interval;
3285 queue_iterate(&task->threads, thread, thread_t, task_threads) {
3286 set_astledger(thread);
3287 }
3288 } else if (scope == TASK_RUSECPU_FLAGS_PROC_LIMIT) {
3289 /*
3290 * Currently, a proc-wide CPU limit always blocks if the limit is
3291 * exceeded (LEDGER_ACTION_BLOCK).
3292 */
3293 task->rusage_cpu_flags |= TASK_RUSECPU_FLAGS_PROC_LIMIT;
3294 task->rusage_cpu_percentage = percentage;
3295 task->rusage_cpu_interval = interval;
3296
3297 limittime = (interval * percentage) / 100;
3298 nanoseconds_to_absolutetime(limittime, &abstime);
3299
3300 ledger_set_limit(task->ledger, task_ledgers.cpu_time, abstime, 0);
3301 ledger_set_period(task->ledger, task_ledgers.cpu_time, interval);
3302 ledger_set_action(task->ledger, task_ledgers.cpu_time, LEDGER_ACTION_BLOCK);
3303 }
3304 }
3305
3306 if (deadline != 0) {
3307 assert(scope == TASK_RUSECPU_FLAGS_DEADLINE);
3308
3309 /* if already in use, cancel and wait for it to cleanout */
3310 if (task->rusage_cpu_callt != NULL) {
3311 task_unlock(task);
3312 thread_call_cancel_wait(task->rusage_cpu_callt);
3313 task_lock(task);
3314 }
3315 if (task->rusage_cpu_callt == NULL) {
3316 task->rusage_cpu_callt = thread_call_allocate_with_priority(task_action_cpuusage, (thread_call_param_t)task, THREAD_CALL_PRIORITY_KERNEL);
3317 }
3318 /* setup callout */
3319 if (task->rusage_cpu_callt != 0) {
3320 uint64_t save_abstime = 0;
3321
3322 task->rusage_cpu_flags |= TASK_RUSECPU_FLAGS_DEADLINE;
3323 task->rusage_cpu_deadline = deadline;
3324
3325 nanoseconds_to_absolutetime(deadline, &abstime);
3326 save_abstime = abstime;
3327 clock_absolutetime_interval_to_deadline(save_abstime, &abstime);
3328 thread_call_enter_delayed(task->rusage_cpu_callt, abstime);
3329 }
3330 }
3331
3332 return(0);
3333 }
3334
3335 int
3336 task_clear_cpuusage(task_t task, int cpumon_entitled)
3337 {
3338 int retval = 0;
3339
3340 task_lock(task);
3341 retval = task_clear_cpuusage_locked(task, cpumon_entitled);
3342 task_unlock(task);
3343
3344 return(retval);
3345 }
3346
3347 int
3348 task_clear_cpuusage_locked(task_t task, int cpumon_entitled)
3349 {
3350 thread_call_t savecallt;
3351
3352 /* cancel percentage handling if set */
3353 if (task->rusage_cpu_flags & TASK_RUSECPU_FLAGS_PROC_LIMIT) {
3354 task->rusage_cpu_flags &= ~TASK_RUSECPU_FLAGS_PROC_LIMIT;
3355 ledger_set_limit(task->ledger, task_ledgers.cpu_time, LEDGER_LIMIT_INFINITY, 0);
3356 task->rusage_cpu_percentage = 0;
3357 task->rusage_cpu_interval = 0;
3358 }
3359
3360 /*
3361 * Disable the CPU usage monitor.
3362 */
3363 if (cpumon_entitled) {
3364 task_disable_cpumon(task);
3365 }
3366
3367 /* cancel deadline handling if set */
3368 if (task->rusage_cpu_flags & TASK_RUSECPU_FLAGS_DEADLINE) {
3369 task->rusage_cpu_flags &= ~TASK_RUSECPU_FLAGS_DEADLINE;
3370 if (task->rusage_cpu_callt != 0) {
3371 savecallt = task->rusage_cpu_callt;
3372 task->rusage_cpu_callt = NULL;
3373 task->rusage_cpu_deadline = 0;
3374 task_unlock(task);
3375 thread_call_cancel_wait(savecallt);
3376 thread_call_free(savecallt);
3377 task_lock(task);
3378 }
3379 }
3380 return(0);
3381 }
3382
3383 /* called by ledger unit to enforce action due to resource usage criteria being met */
3384 void
3385 task_action_cpuusage(thread_call_param_t param0, __unused thread_call_param_t param1)
3386 {
3387 task_t task = (task_t)param0;
3388 (void)task_apply_resource_actions(task, TASK_POLICY_CPU_RESOURCE_USAGE);
3389 return;
3390 }
3391
3392
3393 /*
3394 * Routines for taskwatch and pidbind
3395 */
3396
3397
3398 /*
3399 * Routines for importance donation/inheritance/boosting
3400 */
3401
3402 static void
3403 task_importance_update_live_donor(task_t target_task)
3404 {
3405 #if IMPORTANCE_INHERITANCE
3406
3407 ipc_importance_task_t task_imp;
3408
3409 task_imp = ipc_importance_for_task(target_task, FALSE);
3410 if (IIT_NULL != task_imp) {
3411 ipc_importance_task_update_live_donor(task_imp);
3412 ipc_importance_task_release(task_imp);
3413 }
3414 #endif /* IMPORTANCE_INHERITANCE */
3415 }
3416
3417 void
3418 task_importance_mark_donor(task_t task, boolean_t donating)
3419 {
3420 #if IMPORTANCE_INHERITANCE
3421 ipc_importance_task_t task_imp;
3422
3423 task_imp = ipc_importance_for_task(task, FALSE);
3424 if (IIT_NULL != task_imp) {
3425 ipc_importance_task_mark_donor(task_imp, donating);
3426 ipc_importance_task_release(task_imp);
3427 }
3428 #endif /* IMPORTANCE_INHERITANCE */
3429 }
3430
3431 void
3432 task_importance_mark_live_donor(task_t task, boolean_t live_donating)
3433 {
3434 #if IMPORTANCE_INHERITANCE
3435 ipc_importance_task_t task_imp;
3436
3437 task_imp = ipc_importance_for_task(task, FALSE);
3438 if (IIT_NULL != task_imp) {
3439 ipc_importance_task_mark_live_donor(task_imp, live_donating);
3440 ipc_importance_task_release(task_imp);
3441 }
3442 #endif /* IMPORTANCE_INHERITANCE */
3443 }
3444
3445 void
3446 task_importance_mark_receiver(task_t task, boolean_t receiving)
3447 {
3448 #if IMPORTANCE_INHERITANCE
3449 ipc_importance_task_t task_imp;
3450
3451 task_imp = ipc_importance_for_task(task, FALSE);
3452 if (IIT_NULL != task_imp) {
3453 ipc_importance_task_mark_receiver(task_imp, receiving);
3454 ipc_importance_task_release(task_imp);
3455 }
3456 #endif /* IMPORTANCE_INHERITANCE */
3457 }
3458
3459 void
3460 task_importance_mark_denap_receiver(task_t task, boolean_t denap)
3461 {
3462 #if IMPORTANCE_INHERITANCE
3463 ipc_importance_task_t task_imp;
3464
3465 task_imp = ipc_importance_for_task(task, FALSE);
3466 if (IIT_NULL != task_imp) {
3467 ipc_importance_task_mark_denap_receiver(task_imp, denap);
3468 ipc_importance_task_release(task_imp);
3469 }
3470 #endif /* IMPORTANCE_INHERITANCE */
3471 }
3472
3473 void
3474 task_importance_reset(__imp_only task_t task)
3475 {
3476 #if IMPORTANCE_INHERITANCE
3477 ipc_importance_task_t task_imp;
3478
3479 /* TODO: Lower importance downstream before disconnect */
3480 task_imp = task->task_imp_base;
3481 ipc_importance_reset(task_imp, FALSE);
3482 task_importance_update_live_donor(task);
3483 #endif /* IMPORTANCE_INHERITANCE */
3484 }
3485
3486 #if IMPORTANCE_INHERITANCE
3487
3488 /*
3489 * Sets the task boost bit to the provided value. Does NOT run the update function.
3490 *
3491 * Task lock must be held.
3492 */
3493 void
3494 task_set_boost_locked(task_t task, boolean_t boost_active)
3495 {
3496 #if IMPORTANCE_DEBUG
3497 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, (IMPORTANCE_CODE(IMP_BOOST, (boost_active ? IMP_BOOSTED : IMP_UNBOOSTED)) | DBG_FUNC_START),
3498 proc_selfpid(), audit_token_pid_from_task(task), trequested_0(task, THREAD_NULL), trequested_1(task, THREAD_NULL), 0);
3499 #endif
3500
3501 task->requested_policy.t_boosted = boost_active;
3502
3503 #if IMPORTANCE_DEBUG
3504 if (boost_active == TRUE){
3505 DTRACE_BOOST2(boost, task_t, task, int, audit_token_pid_from_task(task));
3506 } else {
3507 DTRACE_BOOST2(unboost, task_t, task, int, audit_token_pid_from_task(task));
3508 }
3509 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, (IMPORTANCE_CODE(IMP_BOOST, (boost_active ? IMP_BOOSTED : IMP_UNBOOSTED)) | DBG_FUNC_END),
3510 proc_selfpid(), audit_token_pid_from_task(task),
3511 trequested_0(task, THREAD_NULL), trequested_1(task, THREAD_NULL), 0);
3512 #endif
3513 }
3514
3515 /*
3516 * Sets the task boost bit to the provided value and applies the update.
3517 *
3518 * Task lock must be held. Must call update complete after unlocking the task.
3519 */
3520 void
3521 task_update_boost_locked(task_t task, boolean_t boost_active, task_pend_token_t pend_token)
3522 {
3523 task_set_boost_locked(task, boost_active);
3524
3525 task_policy_update_locked(task, THREAD_NULL, pend_token);
3526 }
3527
3528 /*
3529 * Check if this task should donate importance.
3530 *
3531 * May be called without taking the task lock. In that case, donor status can change
3532 * so you must check only once for each donation event.
3533 */
3534 boolean_t
3535 task_is_importance_donor(task_t task)
3536 {
3537 if (task->task_imp_base == IIT_NULL)
3538 return FALSE;
3539 return ipc_importance_task_is_donor(task->task_imp_base);
3540 }
3541
3542 /*
3543 * Query the status of the task's donor mark.
3544 */
3545 boolean_t
3546 task_is_marked_importance_donor(task_t task)
3547 {
3548 if (task->task_imp_base == IIT_NULL)
3549 return FALSE;
3550 return ipc_importance_task_is_marked_donor(task->task_imp_base);
3551 }
3552
3553 /*
3554 * Query the status of the task's live donor and donor mark.
3555 */
3556 boolean_t
3557 task_is_marked_live_importance_donor(task_t task)
3558 {
3559 if (task->task_imp_base == IIT_NULL)
3560 return FALSE;
3561 return ipc_importance_task_is_marked_live_donor(task->task_imp_base);
3562 }
3563
3564
3565 /*
3566 * This routine may be called without holding task lock
3567 * since the value of imp_receiver can never be unset.
3568 */
3569 boolean_t
3570 task_is_importance_receiver(task_t task)
3571 {
3572 if (task->task_imp_base == IIT_NULL)
3573 return FALSE;
3574 return ipc_importance_task_is_marked_receiver(task->task_imp_base);
3575 }
3576
3577 /*
3578 * Query the task's receiver mark.
3579 */
3580 boolean_t
3581 task_is_marked_importance_receiver(task_t task)
3582 {
3583 if (task->task_imp_base == IIT_NULL)
3584 return FALSE;
3585 return ipc_importance_task_is_marked_receiver(task->task_imp_base);
3586 }
3587
3588 /*
3589 * This routine may be called without holding task lock
3590 * since the value of de-nap receiver can never be unset.
3591 */
3592 boolean_t
3593 task_is_importance_denap_receiver(task_t task)
3594 {
3595 if (task->task_imp_base == IIT_NULL)
3596 return FALSE;
3597 return ipc_importance_task_is_denap_receiver(task->task_imp_base);
3598 }
3599
3600 /*
3601 * Query the task's de-nap receiver mark.
3602 */
3603 boolean_t
3604 task_is_marked_importance_denap_receiver(task_t task)
3605 {
3606 if (task->task_imp_base == IIT_NULL)
3607 return FALSE;
3608 return ipc_importance_task_is_marked_denap_receiver(task->task_imp_base);
3609 }
3610
3611 /*
3612 * This routine may be called without holding task lock
3613 * since the value of imp_receiver can never be unset.
3614 */
3615 boolean_t
3616 task_is_importance_receiver_type(task_t task)
3617 {
3618 if (task->task_imp_base == IIT_NULL)
3619 return FALSE;
3620 return (task_is_importance_receiver(task) ||
3621 task_is_importance_denap_receiver(task));
3622 }
3623
3624 /*
3625 * External importance assertions are managed by the process in userspace
3626 * Internal importance assertions are the responsibility of the kernel
3627 * Assertions are changed from internal to external via task_importance_externalize_assertion
3628 */
3629
3630 int
3631 task_importance_hold_watchport_assertion(task_t target_task, uint32_t count)
3632 {
3633 ipc_importance_task_t task_imp;
3634 kern_return_t ret;
3635
3636 /* must already have set up an importance */
3637 task_imp = target_task->task_imp_base;
3638 assert(IIT_NULL != task_imp);
3639
3640 ret = ipc_importance_task_hold_internal_assertion(task_imp, count);
3641 return (KERN_SUCCESS != ret) ? ENOTSUP : 0;
3642 }
3643
3644 int
3645 task_importance_hold_internal_assertion(task_t target_task, uint32_t count)
3646 {
3647 ipc_importance_task_t task_imp;
3648 kern_return_t ret;
3649
3650 /* may be first time, so allow for possible importance setup */
3651 task_imp = ipc_importance_for_task(target_task, FALSE);
3652 if (IIT_NULL == task_imp) {
3653 return EOVERFLOW;
3654 }
3655 ret = ipc_importance_task_hold_internal_assertion(task_imp, count);
3656 ipc_importance_task_release(task_imp);
3657
3658 return (KERN_SUCCESS != ret) ? ENOTSUP : 0;
3659 }
3660
3661 int
3662 task_importance_hold_file_lock_assertion(task_t target_task, uint32_t count)
3663 {
3664 ipc_importance_task_t task_imp;
3665 kern_return_t ret;
3666
3667 /* may be first time, so allow for possible importance setup */
3668 task_imp = ipc_importance_for_task(target_task, FALSE);
3669 if (IIT_NULL == task_imp) {
3670 return EOVERFLOW;
3671 }
3672 ret = ipc_importance_task_hold_file_lock_assertion(task_imp, count);
3673 ipc_importance_task_release(task_imp);
3674
3675 return (KERN_SUCCESS != ret) ? ENOTSUP : 0;
3676 }
3677
3678 int
3679 task_importance_hold_legacy_external_assertion(task_t target_task, uint32_t count)
3680 {
3681 ipc_importance_task_t task_imp;
3682 kern_return_t ret;
3683
3684 /* must already have set up an importance */
3685 task_imp = target_task->task_imp_base;
3686 if (IIT_NULL == task_imp) {
3687 return EOVERFLOW;
3688 }
3689 ret = ipc_importance_task_hold_legacy_external_assertion(task_imp, count);
3690 return (KERN_SUCCESS != ret) ? ENOTSUP : 0;
3691 }
3692
3693 int
3694 task_importance_drop_internal_assertion(task_t target_task, uint32_t count)
3695 {
3696 ipc_importance_task_t task_imp;
3697 kern_return_t ret;
3698
3699 /* must already have set up an importance */
3700 task_imp = target_task->task_imp_base;
3701 if (IIT_NULL == task_imp) {
3702 return EOVERFLOW;
3703 }
3704 ret = ipc_importance_task_drop_internal_assertion(target_task->task_imp_base, count);
3705 return (KERN_SUCCESS != ret) ? ENOTSUP : 0;
3706 }
3707
3708 int
3709 task_importance_drop_file_lock_assertion(task_t target_task, uint32_t count)
3710 {
3711 ipc_importance_task_t task_imp;
3712 kern_return_t ret;
3713
3714 /* must already have set up an importance */
3715 task_imp = target_task->task_imp_base;
3716 if (IIT_NULL == task_imp) {
3717 return EOVERFLOW;
3718 }
3719 ret = ipc_importance_task_drop_file_lock_assertion(target_task->task_imp_base, count);
3720 return (KERN_SUCCESS != ret) ? EOVERFLOW : 0;
3721 }
3722
3723 int
3724 task_importance_drop_legacy_external_assertion(task_t target_task, uint32_t count)
3725 {
3726 ipc_importance_task_t task_imp;
3727 kern_return_t ret;
3728
3729 /* must already have set up an importance */
3730 task_imp = target_task->task_imp_base;
3731 if (IIT_NULL == task_imp) {
3732 return EOVERFLOW;
3733 }
3734 ret = ipc_importance_task_drop_legacy_external_assertion(task_imp, count);
3735 return (KERN_SUCCESS != ret) ? EOVERFLOW : 0;
3736 }
3737
3738 static void
3739 task_add_importance_watchport(task_t task, mach_port_t port, int *boostp)
3740 {
3741 int boost = 0;
3742
3743 __impdebug_only int released_pid = 0;
3744 __impdebug_only int pid = audit_token_pid_from_task(task);
3745
3746 ipc_importance_task_t release_imp_task = IIT_NULL;
3747
3748 if (IP_VALID(port) != 0) {
3749 ipc_importance_task_t new_imp_task = ipc_importance_for_task(task, FALSE);
3750
3751 ip_lock(port);
3752
3753 /*
3754 * The port must have been marked tempowner already.
3755 * This also filters out ports whose receive rights
3756 * are already enqueued in a message, as you can't
3757 * change the right's destination once it's already
3758 * on its way.
3759 */
3760 if (port->ip_tempowner != 0) {
3761 assert(port->ip_impdonation != 0);
3762
3763 boost = port->ip_impcount;
3764 if (IIT_NULL != port->ip_imp_task) {
3765 /*
3766 * if this port is already bound to a task,
3767 * release the task reference and drop any
3768 * watchport-forwarded boosts
3769 */
3770 release_imp_task = port->ip_imp_task;
3771 port->ip_imp_task = IIT_NULL;
3772 }
3773
3774 /* mark the port is watching another task (reference held in port->ip_imp_task) */
3775 if (ipc_importance_task_is_marked_receiver(new_imp_task)) {
3776 port->ip_imp_task = new_imp_task;
3777 new_imp_task = IIT_NULL;
3778 }
3779 }
3780 ip_unlock(port);
3781
3782 if (IIT_NULL != new_imp_task) {
3783 ipc_importance_task_release(new_imp_task);
3784 }
3785
3786 if (IIT_NULL != release_imp_task) {
3787 if (boost > 0)
3788 ipc_importance_task_drop_internal_assertion(release_imp_task, boost);
3789
3790 // released_pid = audit_token_pid_from_task(release_imp_task); /* TODO: Need ref-safe way to get pid */
3791 ipc_importance_task_release(release_imp_task);
3792 }
3793 #if IMPORTANCE_DEBUG
3794 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, (IMPORTANCE_CODE(IMP_WATCHPORT, 0)) | DBG_FUNC_NONE,
3795 proc_selfpid(), pid, boost, released_pid, 0);
3796 #endif /* IMPORTANCE_DEBUG */
3797 }
3798
3799 *boostp = boost;
3800 return;
3801 }
3802
3803 #endif /* IMPORTANCE_INHERITANCE */
3804
3805 /*
3806 * Routines for VM to query task importance
3807 */
3808
3809
3810 /*
3811 * Order to be considered while estimating importance
3812 * for low memory notification and purging purgeable memory.
3813 */
3814 #define TASK_IMPORTANCE_FOREGROUND 4
3815 #define TASK_IMPORTANCE_NOTDARWINBG 1
3816
3817
3818 /*
3819 * Checks if the task is already notified.
3820 *
3821 * Condition: task lock should be held while calling this function.
3822 */
3823 boolean_t
3824 task_has_been_notified(task_t task, int pressurelevel)
3825 {
3826 if (task == NULL) {
3827 return FALSE;
3828 }
3829
3830 if (pressurelevel == kVMPressureWarning)
3831 return (task->low_mem_notified_warn ? TRUE : FALSE);
3832 else if (pressurelevel == kVMPressureCritical)
3833 return (task->low_mem_notified_critical ? TRUE : FALSE);
3834 else
3835 return TRUE;
3836 }
3837
3838
3839 /*
3840 * Checks if the task is used for purging.
3841 *
3842 * Condition: task lock should be held while calling this function.
3843 */
3844 boolean_t
3845 task_used_for_purging(task_t task, int pressurelevel)
3846 {
3847 if (task == NULL) {
3848 return FALSE;
3849 }
3850
3851 if (pressurelevel == kVMPressureWarning)
3852 return (task->purged_memory_warn ? TRUE : FALSE);
3853 else if (pressurelevel == kVMPressureCritical)
3854 return (task->purged_memory_critical ? TRUE : FALSE);
3855 else
3856 return TRUE;
3857 }
3858
3859
3860 /*
3861 * Mark the task as notified with memory notification.
3862 *
3863 * Condition: task lock should be held while calling this function.
3864 */
3865 void
3866 task_mark_has_been_notified(task_t task, int pressurelevel)
3867 {
3868 if (task == NULL) {
3869 return;
3870 }
3871
3872 if (pressurelevel == kVMPressureWarning)
3873 task->low_mem_notified_warn = 1;
3874 else if (pressurelevel == kVMPressureCritical)
3875 task->low_mem_notified_critical = 1;
3876 }
3877
3878
3879 /*
3880 * Mark the task as purged.
3881 *
3882 * Condition: task lock should be held while calling this function.
3883 */
3884 void
3885 task_mark_used_for_purging(task_t task, int pressurelevel)
3886 {
3887 if (task == NULL) {
3888 return;
3889 }
3890
3891 if (pressurelevel == kVMPressureWarning)
3892 task->purged_memory_warn = 1;
3893 else if (pressurelevel == kVMPressureCritical)
3894 task->purged_memory_critical = 1;
3895 }
3896
3897
3898 /*
3899 * Mark the task eligible for low memory notification.
3900 *
3901 * Condition: task lock should be held while calling this function.
3902 */
3903 void
3904 task_clear_has_been_notified(task_t task, int pressurelevel)
3905 {
3906 if (task == NULL) {
3907 return;
3908 }
3909
3910 if (pressurelevel == kVMPressureWarning)
3911 task->low_mem_notified_warn = 0;
3912 else if (pressurelevel == kVMPressureCritical)
3913 task->low_mem_notified_critical = 0;
3914 }
3915
3916
3917 /*
3918 * Mark the task eligible for purging its purgeable memory.
3919 *
3920 * Condition: task lock should be held while calling this function.
3921 */
3922 void
3923 task_clear_used_for_purging(task_t task)
3924 {
3925 if (task == NULL) {
3926 return;
3927 }
3928
3929 task->purged_memory_warn = 0;
3930 task->purged_memory_critical = 0;
3931 }
3932
3933
3934 /*
3935 * Estimate task importance for purging its purgeable memory
3936 * and low memory notification.
3937 *
3938 * Importance is calculated in the following order of criteria:
3939 * -Task role : Background vs Foreground
3940 * -Boost status: Not boosted vs Boosted
3941 * -Darwin BG status.
3942 *
3943 * Returns: Estimated task importance. Less important task will have lower
3944 * estimated importance.
3945 */
3946 int
3947 task_importance_estimate(task_t task)
3948 {
3949 int task_importance = 0;
3950
3951 if (task == NULL) {
3952 return 0;
3953 }
3954
3955 if (proc_get_effective_task_policy(task, TASK_POLICY_ROLE) == TASK_FOREGROUND_APPLICATION)
3956 task_importance += TASK_IMPORTANCE_FOREGROUND;
3957
3958 if (proc_get_effective_task_policy(task, TASK_POLICY_DARWIN_BG) == 0)
3959 task_importance += TASK_IMPORTANCE_NOTDARWINBG;
3960
3961 return task_importance;
3962 }
3963