]> git.saurik.com Git - apple/xnu.git/blob - bsd/vfs/vfs_fsevents.c
xnu-2782.20.48.tar.gz
[apple/xnu.git] / bsd / vfs / vfs_fsevents.c
1 /*
2 * Copyright (c) 2004-2014 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 #include <stdarg.h>
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/event.h> // for kqueue related stuff
32 #include <sys/fsevents.h>
33
34 #if CONFIG_FSE
35 #include <sys/namei.h>
36 #include <sys/filedesc.h>
37 #include <sys/kernel.h>
38 #include <sys/file_internal.h>
39 #include <sys/stat.h>
40 #include <sys/vnode_internal.h>
41 #include <sys/mount_internal.h>
42 #include <sys/proc_internal.h>
43 #include <sys/kauth.h>
44 #include <sys/uio.h>
45 #include <sys/malloc.h>
46 #include <sys/dirent.h>
47 #include <sys/attr.h>
48 #include <sys/sysctl.h>
49 #include <sys/ubc.h>
50 #include <machine/cons.h>
51 #include <miscfs/specfs/specdev.h>
52 #include <miscfs/devfs/devfs.h>
53 #include <sys/filio.h>
54 #include <kern/locks.h>
55 #include <libkern/OSAtomic.h>
56 #include <kern/zalloc.h>
57 #include <mach/mach_time.h>
58 #include <kern/thread_call.h>
59 #include <kern/clock.h>
60
61 #include <security/audit/audit.h>
62 #include <bsm/audit_kevents.h>
63
64 #include <pexpert/pexpert.h>
65
66 typedef struct kfs_event {
67 LIST_ENTRY(kfs_event) kevent_list;
68 int16_t type; // type code of this event
69 u_int16_t flags, // per-event flags
70 len; // the length of the path in "str"
71 int32_t refcount; // number of clients referencing this
72 pid_t pid; // pid of the process that did the op
73
74 uint64_t abstime; // when this event happened (mach_absolute_time())
75 ino64_t ino;
76 dev_t dev;
77 int32_t mode;
78 uid_t uid;
79 gid_t gid;
80
81 const char *str;
82
83 struct kfs_event *dest; // if this is a two-file op
84 } kfs_event;
85
86 // flags for the flags field
87 #define KFSE_COMBINED_EVENTS 0x0001
88 #define KFSE_CONTAINS_DROPPED_EVENTS 0x0002
89 #define KFSE_RECYCLED_EVENT 0x0004
90 #define KFSE_BEING_CREATED 0x0008
91
92 LIST_HEAD(kfse_list, kfs_event) kfse_list_head = LIST_HEAD_INITIALIZER(x);
93 int num_events_outstanding = 0;
94 int num_pending_rename = 0;
95
96
97 struct fsevent_handle;
98
99 typedef struct fs_event_watcher {
100 int8_t *event_list; // the events we're interested in
101 int32_t num_events;
102 dev_t *devices_not_to_watch; // report events from devices not in this list
103 uint32_t num_devices;
104 int32_t flags;
105 kfs_event **event_queue;
106 int32_t eventq_size; // number of event pointers in queue
107 int32_t num_readers;
108 int32_t rd; // read index into the event_queue
109 int32_t wr; // write index into the event_queue
110 int32_t blockers;
111 int32_t my_id;
112 uint32_t num_dropped;
113 uint64_t max_event_id;
114 struct fsevent_handle *fseh;
115 pid_t pid;
116 char proc_name[(2 * MAXCOMLEN) + 1];
117 } fs_event_watcher;
118
119 // fs_event_watcher flags
120 #define WATCHER_DROPPED_EVENTS 0x0001
121 #define WATCHER_CLOSING 0x0002
122 #define WATCHER_WANTS_COMPACT_EVENTS 0x0004
123 #define WATCHER_WANTS_EXTENDED_INFO 0x0008
124 #define WATCHER_APPLE_SYSTEM_SERVICE 0x0010 // fseventsd, coreservicesd, mds
125
126 #define MAX_WATCHERS 8
127 static fs_event_watcher *watcher_table[MAX_WATCHERS];
128
129 #define DEFAULT_MAX_KFS_EVENTS 4096
130 static int max_kfs_events = DEFAULT_MAX_KFS_EVENTS;
131
132 // we allocate kfs_event structures out of this zone
133 static zone_t event_zone;
134 static int fs_event_init = 0;
135
136 //
137 // this array records whether anyone is interested in a
138 // particular type of event. if no one is, we bail out
139 // early from the event delivery
140 //
141 static int16_t fs_event_type_watchers[FSE_MAX_EVENTS];
142
143 static int watcher_add_event(fs_event_watcher *watcher, kfs_event *kfse);
144 static void fsevents_wakeup(fs_event_watcher *watcher);
145
146 //
147 // Locks
148 //
149 static lck_grp_attr_t * fsevent_group_attr;
150 static lck_attr_t * fsevent_lock_attr;
151 static lck_grp_t * fsevent_mutex_group;
152
153 static lck_grp_t * fsevent_rw_group;
154
155 static lck_rw_t event_handling_lock; // handles locking for event manipulation and recycling
156 static lck_mtx_t watch_table_lock;
157 static lck_mtx_t event_buf_lock;
158 static lck_mtx_t event_writer_lock;
159
160
161 /* Explicitly declare qsort so compiler doesn't complain */
162 __private_extern__ void qsort(
163 void * array,
164 size_t nmembers,
165 size_t member_size,
166 int (*)(const void *, const void *));
167
168 static int
169 is_ignored_directory(const char *path) {
170
171 if (!path) {
172 return 0;
173 }
174
175 #define IS_TLD(x) strnstr((char *) path, x, MAXPATHLEN)
176 if (IS_TLD("/.Spotlight-V100/") ||
177 IS_TLD("/.MobileBackups/") ||
178 IS_TLD("/Backups.backupdb/")) {
179 return 1;
180 }
181 #undef IS_TLD
182
183 return 0;
184 }
185
186 static void
187 fsevents_internal_init(void)
188 {
189 int i;
190
191 if (fs_event_init++ != 0) {
192 return;
193 }
194
195 for(i=0; i < FSE_MAX_EVENTS; i++) {
196 fs_event_type_watchers[i] = 0;
197 }
198
199 memset(watcher_table, 0, sizeof(watcher_table));
200
201 fsevent_lock_attr = lck_attr_alloc_init();
202 fsevent_group_attr = lck_grp_attr_alloc_init();
203 fsevent_mutex_group = lck_grp_alloc_init("fsevent-mutex", fsevent_group_attr);
204 fsevent_rw_group = lck_grp_alloc_init("fsevent-rw", fsevent_group_attr);
205
206 lck_mtx_init(&watch_table_lock, fsevent_mutex_group, fsevent_lock_attr);
207 lck_mtx_init(&event_buf_lock, fsevent_mutex_group, fsevent_lock_attr);
208 lck_mtx_init(&event_writer_lock, fsevent_mutex_group, fsevent_lock_attr);
209
210 lck_rw_init(&event_handling_lock, fsevent_rw_group, fsevent_lock_attr);
211
212 PE_get_default("kern.maxkfsevents", &max_kfs_events, sizeof(max_kfs_events));
213
214 event_zone = zinit(sizeof(kfs_event),
215 max_kfs_events * sizeof(kfs_event),
216 max_kfs_events * sizeof(kfs_event),
217 "fs-event-buf");
218 if (event_zone == NULL) {
219 printf("fsevents: failed to initialize the event zone.\n");
220 }
221
222 // mark the zone as exhaustible so that it will not
223 // ever grow beyond what we initially filled it with
224 zone_change(event_zone, Z_EXHAUST, TRUE);
225 zone_change(event_zone, Z_COLLECT, FALSE);
226 zone_change(event_zone, Z_CALLERACCT, FALSE);
227
228 if (zfill(event_zone, max_kfs_events) < max_kfs_events) {
229 printf("fsevents: failed to pre-fill the event zone.\n");
230 }
231
232 }
233
234 static void
235 lock_watch_table(void)
236 {
237 lck_mtx_lock(&watch_table_lock);
238 }
239
240 static void
241 unlock_watch_table(void)
242 {
243 lck_mtx_unlock(&watch_table_lock);
244 }
245
246 static void
247 lock_fs_event_list(void)
248 {
249 lck_mtx_lock(&event_buf_lock);
250 }
251
252 static void
253 unlock_fs_event_list(void)
254 {
255 lck_mtx_unlock(&event_buf_lock);
256 }
257
258 // forward prototype
259 static void release_event_ref(kfs_event *kfse);
260
261 static int
262 watcher_cares_about_dev(fs_event_watcher *watcher, dev_t dev)
263 {
264 unsigned int i;
265
266 // if devices_not_to_watch is NULL then we care about all
267 // events from all devices
268 if (watcher->devices_not_to_watch == NULL) {
269 return 1;
270 }
271
272 for(i=0; i < watcher->num_devices; i++) {
273 if (dev == watcher->devices_not_to_watch[i]) {
274 // found a match! that means we do not
275 // want events from this device.
276 return 0;
277 }
278 }
279
280 // if we're here it's not in the devices_not_to_watch[]
281 // list so that means we do care about it
282 return 1;
283 }
284
285
286 int
287 need_fsevent(int type, vnode_t vp)
288 {
289 if (type >= 0 && type < FSE_MAX_EVENTS && fs_event_type_watchers[type] == 0)
290 return (0);
291
292 // events in /dev aren't really interesting...
293 if (vp->v_tag == VT_DEVFS) {
294 return (0);
295 }
296
297 return 1;
298 }
299
300
301 #define is_throw_away(x) ((x) == FSE_STAT_CHANGED || (x) == FSE_CONTENT_MODIFIED)
302
303
304 // Ways that an event can be reused:
305 //
306 // "combined" events mean that there were two events for
307 // the same vnode or path and we're combining both events
308 // into a single event. The primary event gets a bit that
309 // marks it as having been combined. The secondary event
310 // is essentially dropped and the kfse structure reused.
311 //
312 // "collapsed" means that multiple events below a given
313 // directory are collapsed into a single event. in this
314 // case, the directory that we collapse into and all of
315 // its children must be re-scanned.
316 //
317 // "recycled" means that we're completely blowing away
318 // the event since there are other events that have info
319 // about the same vnode or path (and one of those other
320 // events will be marked as combined or collapsed as
321 // appropriate).
322 //
323 #define KFSE_COMBINED 0x0001
324 #define KFSE_COLLAPSED 0x0002
325 #define KFSE_RECYCLED 0x0004
326
327 int num_dropped = 0;
328 int num_parent_switch = 0;
329 int num_recycled_rename = 0;
330
331 static struct timeval last_print;
332
333 //
334 // These variables are used to track coalescing multiple identical
335 // events for the same vnode/pathname. If we get the same event
336 // type and same vnode/pathname as the previous event, we just drop
337 // the event since it's superfluous. This improves some micro-
338 // benchmarks considerably and actually has a real-world impact on
339 // tests like a Finder copy where multiple stat-changed events can
340 // get coalesced.
341 //
342 static int last_event_type=-1;
343 static void *last_ptr=NULL;
344 static char last_str[MAXPATHLEN];
345 static int last_nlen=0;
346 static int last_vid=-1;
347 static uint64_t last_coalesced_time=0;
348 static void *last_event_ptr=NULL;
349 int last_coalesced = 0;
350 static mach_timebase_info_data_t sTimebaseInfo = { 0, 0 };
351
352
353 int
354 add_fsevent(int type, vfs_context_t ctx, ...)
355 {
356 struct proc *p = vfs_context_proc(ctx);
357 int i, arg_type, ret;
358 kfs_event *kfse, *kfse_dest=NULL, *cur;
359 fs_event_watcher *watcher;
360 va_list ap;
361 int error = 0, did_alloc=0;
362 dev_t dev = 0;
363 uint64_t now, elapsed;
364 char *pathbuff=NULL;
365 int pathbuff_len;
366
367
368
369 va_start(ap, ctx);
370
371 // ignore bogus event types..
372 if (type < 0 || type >= FSE_MAX_EVENTS) {
373 return EINVAL;
374 }
375
376 // if no one cares about this type of event, bail out
377 if (fs_event_type_watchers[type] == 0) {
378 va_end(ap);
379
380 return 0;
381 }
382
383 now = mach_absolute_time();
384
385 // find a free event and snag it for our use
386 // NOTE: do not do anything that would block until
387 // the lock is dropped.
388 lock_fs_event_list();
389
390 //
391 // check if this event is identical to the previous one...
392 // (as long as it's not an event type that can never be the
393 // same as a previous event)
394 //
395 if (type != FSE_CREATE_FILE && type != FSE_DELETE && type != FSE_RENAME && type != FSE_EXCHANGE && type != FSE_CHOWN && type != FSE_DOCID_CHANGED && type != FSE_DOCID_CREATED) {
396 void *ptr=NULL;
397 int vid=0, was_str=0, nlen=0;
398
399 for(arg_type=va_arg(ap, int32_t); arg_type != FSE_ARG_DONE; arg_type=va_arg(ap, int32_t)) {
400 switch(arg_type) {
401 case FSE_ARG_VNODE: {
402 ptr = va_arg(ap, void *);
403 vid = vnode_vid((struct vnode *)ptr);
404 last_str[0] = '\0';
405 break;
406 }
407 case FSE_ARG_STRING: {
408 nlen = va_arg(ap, int32_t);
409 ptr = va_arg(ap, void *);
410 was_str = 1;
411 break;
412 }
413 }
414 if (ptr != NULL) {
415 break;
416 }
417 }
418
419 if ( sTimebaseInfo.denom == 0 ) {
420 (void) clock_timebase_info(&sTimebaseInfo);
421 }
422
423 elapsed = (now - last_coalesced_time);
424 if (sTimebaseInfo.denom != sTimebaseInfo.numer) {
425 if (sTimebaseInfo.denom == 1) {
426 elapsed *= sTimebaseInfo.numer;
427 } else {
428 // this could overflow... the worst that will happen is that we'll
429 // send (or not send) an extra event so I'm not going to worry about
430 // doing the math right like dtrace_abs_to_nano() does.
431 elapsed = (elapsed * sTimebaseInfo.numer) / (uint64_t)sTimebaseInfo.denom;
432 }
433 }
434
435 if (type == last_event_type
436 && (elapsed < 1000000000)
437 &&
438 ((vid && vid == last_vid && last_ptr == ptr)
439 ||
440 (last_str[0] && last_nlen == nlen && ptr && strcmp(last_str, ptr) == 0))
441 ) {
442
443 last_coalesced++;
444 unlock_fs_event_list();
445 va_end(ap);
446
447 return 0;
448 } else {
449 last_ptr = ptr;
450 if (was_str) {
451 strlcpy(last_str, ptr, sizeof(last_str));
452 }
453 last_nlen = nlen;
454 last_vid = vid;
455 last_event_type = type;
456 last_coalesced_time = now;
457 }
458 }
459 va_start(ap, ctx);
460
461
462 kfse = zalloc_noblock(event_zone);
463 if (kfse && (type == FSE_RENAME || type == FSE_EXCHANGE)) {
464 kfse_dest = zalloc_noblock(event_zone);
465 if (kfse_dest == NULL) {
466 did_alloc = 1;
467 zfree(event_zone, kfse);
468 kfse = NULL;
469 }
470 }
471
472
473 if (kfse == NULL) { // yikes! no free events
474 unlock_fs_event_list();
475 lock_watch_table();
476
477 for(i=0; i < MAX_WATCHERS; i++) {
478 watcher = watcher_table[i];
479 if (watcher == NULL) {
480 continue;
481 }
482
483 watcher->flags |= WATCHER_DROPPED_EVENTS;
484 fsevents_wakeup(watcher);
485 }
486 unlock_watch_table();
487
488 {
489 struct timeval current_tv;
490
491 num_dropped++;
492
493 // only print a message at most once every 5 seconds
494 microuptime(&current_tv);
495 if ((current_tv.tv_sec - last_print.tv_sec) > 10) {
496 int ii;
497 void *junkptr=zalloc_noblock(event_zone), *listhead=kfse_list_head.lh_first;
498
499 printf("add_fsevent: event queue is full! dropping events (num dropped events: %d; num events outstanding: %d).\n", num_dropped, num_events_outstanding);
500 printf("add_fsevent: kfse_list head %p ; num_pending_rename %d\n", listhead, num_pending_rename);
501 printf("add_fsevent: zalloc sez: %p\n", junkptr);
502 printf("add_fsevent: event_zone info: %d 0x%x\n", ((int *)event_zone)[0], ((int *)event_zone)[1]);
503 lock_watch_table();
504 for(ii=0; ii < MAX_WATCHERS; ii++) {
505 if (watcher_table[ii] == NULL) {
506 continue;
507 }
508
509 printf("add_fsevent: watcher %s %p: rd %4d wr %4d q_size %4d flags 0x%x\n",
510 watcher_table[ii]->proc_name,
511 watcher_table[ii],
512 watcher_table[ii]->rd, watcher_table[ii]->wr,
513 watcher_table[ii]->eventq_size, watcher_table[ii]->flags);
514 }
515 unlock_watch_table();
516
517 last_print = current_tv;
518 if (junkptr) {
519 zfree(event_zone, junkptr);
520 }
521 }
522 }
523
524 if (pathbuff) {
525 release_pathbuff(pathbuff);
526 pathbuff = NULL;
527 }
528 return ENOSPC;
529 }
530
531 memset(kfse, 0, sizeof(kfs_event));
532 kfse->refcount = 1;
533 OSBitOrAtomic16(KFSE_BEING_CREATED, &kfse->flags);
534
535 last_event_ptr = kfse;
536 kfse->type = type;
537 kfse->abstime = now;
538 kfse->pid = p->p_pid;
539 if (type == FSE_RENAME || type == FSE_EXCHANGE) {
540 memset(kfse_dest, 0, sizeof(kfs_event));
541 kfse_dest->refcount = 1;
542 OSBitOrAtomic16(KFSE_BEING_CREATED, &kfse_dest->flags);
543 kfse_dest->type = type;
544 kfse_dest->pid = p->p_pid;
545 kfse_dest->abstime = now;
546
547 kfse->dest = kfse_dest;
548 }
549
550 num_events_outstanding++;
551 if (kfse->type == FSE_RENAME) {
552 num_pending_rename++;
553 }
554 LIST_INSERT_HEAD(&kfse_list_head, kfse, kevent_list);
555
556 if (kfse->refcount < 1) {
557 panic("add_fsevent: line %d: kfse recount %d but should be at least 1\n", __LINE__, kfse->refcount);
558 }
559
560 unlock_fs_event_list(); // at this point it's safe to unlock
561
562 //
563 // now process the arguments passed in and copy them into
564 // the kfse
565 //
566
567 cur = kfse;
568
569 if (type == FSE_DOCID_CREATED || type == FSE_DOCID_CHANGED) {
570 uint64_t val;
571
572 //
573 // These events are special and not like the other events. They only
574 // have a dev_t, src inode #, dest inode #, and a doc-id. We use the
575 // fields that we can in the kfse but have to overlay the dest inode
576 // number and the doc-id on the other fields.
577 //
578
579 // First the dev_t
580 arg_type = va_arg(ap, int32_t);
581 if (arg_type == FSE_ARG_DEV) {
582 cur->dev = (dev_t)(va_arg(ap, dev_t));
583 } else {
584 cur->dev = (dev_t)0xbadc0de1;
585 }
586
587 // next the source inode #
588 arg_type = va_arg(ap, int32_t);
589 if (arg_type == FSE_ARG_INO) {
590 cur->ino = (ino64_t)(va_arg(ap, ino64_t));
591 } else {
592 cur->ino = 0xbadc0de2;
593 }
594
595 // now the dest inode #
596 arg_type = va_arg(ap, int32_t);
597 if (arg_type == FSE_ARG_INO) {
598 val = (ino64_t)(va_arg(ap, ino64_t));
599 } else {
600 val = 0xbadc0de2;
601 }
602 // overlay the dest inode number on the str/dest pointer fields
603 memcpy(&cur->str, &val, sizeof(ino64_t));
604
605
606 // and last the document-id
607 arg_type = va_arg(ap, int32_t);
608 if (arg_type == FSE_ARG_INT32) {
609 val = (uint64_t)va_arg(ap, uint32_t);
610 } else if (arg_type == FSE_ARG_INT64) {
611 val = (uint64_t)va_arg(ap, uint64_t);
612 } else {
613 val = 0xbadc0de3;
614 }
615
616 // the docid is 64-bit and overlays the uid/gid fields
617 memcpy(&cur->uid, &val, sizeof(uint64_t));
618
619 goto done_with_args;
620 }
621
622 for(arg_type=va_arg(ap, int32_t); arg_type != FSE_ARG_DONE; arg_type=va_arg(ap, int32_t))
623
624 switch(arg_type) {
625 case FSE_ARG_VNODE: {
626 // this expands out into multiple arguments to the client
627 struct vnode *vp;
628 struct vnode_attr va;
629
630 if (kfse->str != NULL) {
631 cur = kfse_dest;
632 }
633
634 vp = va_arg(ap, struct vnode *);
635 if (vp == NULL) {
636 panic("add_fsevent: you can't pass me a NULL vnode ptr (type %d)!\n",
637 cur->type);
638 }
639
640 VATTR_INIT(&va);
641 VATTR_WANTED(&va, va_fsid);
642 VATTR_WANTED(&va, va_fileid);
643 VATTR_WANTED(&va, va_mode);
644 VATTR_WANTED(&va, va_uid);
645 VATTR_WANTED(&va, va_gid);
646 VATTR_WANTED(&va, va_nlink);
647 if ((ret = vnode_getattr(vp, &va, vfs_context_kernel())) != 0) {
648 // printf("add_fsevent: failed to getattr on vp %p (%d)\n", cur->fref.vp, ret);
649 cur->str = NULL;
650 error = EINVAL;
651 goto clean_up;
652 }
653
654 cur->dev = dev = (dev_t)va.va_fsid;
655 cur->ino = (ino64_t)va.va_fileid;
656 cur->mode = (int32_t)vnode_vttoif(vnode_vtype(vp)) | va.va_mode;
657 cur->uid = va.va_uid;
658 cur->gid = va.va_gid;
659 if (vp->v_flag & VISHARDLINK) {
660 cur->mode |= FSE_MODE_HLINK;
661 if ((vp->v_type == VDIR && va.va_dirlinkcount == 0) || (vp->v_type == VREG && va.va_nlink == 0)) {
662 cur->mode |= FSE_MODE_LAST_HLINK;
663 }
664 }
665
666 // if we haven't gotten the path yet, get it.
667 if (pathbuff == NULL) {
668 pathbuff = get_pathbuff();
669 pathbuff_len = MAXPATHLEN;
670
671 pathbuff[0] = '\0';
672 if ((ret = vn_getpath(vp, pathbuff, &pathbuff_len)) != 0 || pathbuff[0] == '\0') {
673
674 cur->flags |= KFSE_CONTAINS_DROPPED_EVENTS;
675
676 do {
677 if (vp->v_parent != NULL) {
678 vp = vp->v_parent;
679 } else if (vp->v_mount) {
680 strlcpy(pathbuff, vp->v_mount->mnt_vfsstat.f_mntonname, MAXPATHLEN);
681 break;
682 } else {
683 vp = NULL;
684 }
685
686 if (vp == NULL) {
687 break;
688 }
689
690 pathbuff_len = MAXPATHLEN;
691 ret = vn_getpath(vp, pathbuff, &pathbuff_len);
692 } while (ret == ENOSPC);
693
694 if (ret != 0 || vp == NULL) {
695 error = ENOENT;
696 goto clean_up;
697 }
698 }
699 }
700
701 // store the path by adding it to the global string table
702 cur->len = pathbuff_len;
703 cur->str = vfs_addname(pathbuff, pathbuff_len, 0, 0);
704 if (cur->str == NULL || cur->str[0] == '\0') {
705 panic("add_fsevent: was not able to add path %s to event %p.\n", pathbuff, cur);
706 }
707
708 release_pathbuff(pathbuff);
709 pathbuff = NULL;
710
711 break;
712 }
713
714 case FSE_ARG_FINFO: {
715 fse_info *fse;
716
717 fse = va_arg(ap, fse_info *);
718
719 cur->dev = dev = (dev_t)fse->dev;
720 cur->ino = (ino64_t)fse->ino;
721 cur->mode = (int32_t)fse->mode;
722 cur->uid = (uid_t)fse->uid;
723 cur->gid = (uid_t)fse->gid;
724 // if it's a hard-link and this is the last link, flag it
725 if ((fse->mode & FSE_MODE_HLINK) && fse->nlink == 0) {
726 cur->mode |= FSE_MODE_LAST_HLINK;
727 }
728 if (cur->mode & FSE_TRUNCATED_PATH) {
729 cur->flags |= KFSE_CONTAINS_DROPPED_EVENTS;
730 cur->mode &= ~FSE_TRUNCATED_PATH;
731 }
732 break;
733 }
734
735 case FSE_ARG_STRING:
736 if (kfse->str != NULL) {
737 cur = kfse_dest;
738 }
739
740 cur->len = (int16_t)(va_arg(ap, int32_t) & 0x7fff);
741 if (cur->len >= 1) {
742 cur->str = vfs_addname(va_arg(ap, char *), cur->len, 0, 0);
743 } else {
744 printf("add_fsevent: funny looking string length: %d\n", (int)cur->len);
745 cur->len = 2;
746 cur->str = vfs_addname("/", cur->len, 0, 0);
747 }
748 if (cur->str[0] == 0) {
749 printf("add_fsevent: bogus looking string (len %d)\n", cur->len);
750 }
751 break;
752
753 case FSE_ARG_INT32: {
754 uint32_t ival = (uint32_t)va_arg(ap, int32_t);
755 kfse->uid = (ino64_t)ival;
756 break;
757 }
758
759 default:
760 printf("add_fsevent: unknown type %d\n", arg_type);
761 // just skip one 32-bit word and hope we sync up...
762 (void)va_arg(ap, int32_t);
763 }
764
765 done_with_args:
766 va_end(ap);
767
768 OSBitAndAtomic16(~KFSE_BEING_CREATED, &kfse->flags);
769 if (kfse_dest) {
770 OSBitAndAtomic16(~KFSE_BEING_CREATED, &kfse_dest->flags);
771 }
772
773 //
774 // now we have to go and let everyone know that
775 // is interested in this type of event
776 //
777 lock_watch_table();
778
779 for(i=0; i < MAX_WATCHERS; i++) {
780 watcher = watcher_table[i];
781 if (watcher == NULL) {
782 continue;
783 }
784
785 if ( watcher->event_list[type] == FSE_REPORT
786 && watcher_cares_about_dev(watcher, dev)) {
787
788 if (watcher_add_event(watcher, kfse) != 0) {
789 watcher->num_dropped++;
790 continue;
791 }
792 }
793
794 // if (kfse->refcount < 1) {
795 // panic("add_fsevent: line %d: kfse recount %d but should be at least 1\n", __LINE__, kfse->refcount);
796 // }
797 }
798
799 unlock_watch_table();
800
801 clean_up:
802
803 if (pathbuff) {
804 release_pathbuff(pathbuff);
805 pathbuff = NULL;
806 }
807
808 release_event_ref(kfse);
809
810 return error;
811 }
812
813
814 static void
815 release_event_ref(kfs_event *kfse)
816 {
817 int old_refcount;
818 kfs_event copy, dest_copy;
819
820
821 old_refcount = OSAddAtomic(-1, &kfse->refcount);
822 if (old_refcount > 1) {
823 return;
824 }
825
826 lock_fs_event_list();
827 if (last_event_ptr == kfse) {
828 last_event_ptr = NULL;
829 last_event_type = -1;
830 last_coalesced_time = 0;
831 }
832
833 if (kfse->refcount < 0) {
834 panic("release_event_ref: bogus kfse refcount %d\n", kfse->refcount);
835 }
836
837 if (kfse->refcount > 0 || kfse->type == FSE_INVALID) {
838 // This is very subtle. Either of these conditions can
839 // be true if an event got recycled while we were waiting
840 // on the fs_event_list lock or the event got recycled,
841 // delivered, _and_ free'd by someone else while we were
842 // waiting on the fs event list lock. In either case
843 // we need to just unlock the list and return without
844 // doing anything because if the refcount is > 0 then
845 // someone else will take care of free'ing it and when
846 // the kfse->type is invalid then someone else already
847 // has handled free'ing the event (while we were blocked
848 // on the event list lock).
849 //
850 unlock_fs_event_list();
851 return;
852 }
853
854 //
855 // make a copy of this so we can free things without
856 // holding the fs_event_buf lock
857 //
858 copy = *kfse;
859 if (kfse->dest && OSAddAtomic(-1, &kfse->dest->refcount) == 1) {
860 dest_copy = *kfse->dest;
861 } else {
862 dest_copy.str = NULL;
863 dest_copy.len = 0;
864 dest_copy.type = FSE_INVALID;
865 }
866
867 kfse->pid = kfse->type; // save this off for debugging...
868 kfse->uid = (uid_t)(long)kfse->str; // save this off for debugging...
869 kfse->gid = (gid_t)(long)current_thread();
870
871 kfse->str = (char *)0xdeadbeef; // XXXdbg - catch any cheaters...
872
873 if (dest_copy.type != FSE_INVALID) {
874 kfse->dest->str = (char *)0xbadc0de; // XXXdbg - catch any cheaters...
875 kfse->dest->type = FSE_INVALID;
876
877 if (kfse->dest->kevent_list.le_prev != NULL) {
878 num_events_outstanding--;
879 LIST_REMOVE(kfse->dest, kevent_list);
880 memset(&kfse->dest->kevent_list, 0xa5, sizeof(kfse->dest->kevent_list));
881 }
882
883 zfree(event_zone, kfse->dest);
884 }
885
886 // mark this fsevent as invalid
887 {
888 int otype;
889
890 otype = kfse->type;
891 kfse->type = FSE_INVALID;
892
893 if (kfse->kevent_list.le_prev != NULL) {
894 num_events_outstanding--;
895 if (otype == FSE_RENAME) {
896 num_pending_rename--;
897 }
898 LIST_REMOVE(kfse, kevent_list);
899 memset(&kfse->kevent_list, 0, sizeof(kfse->kevent_list));
900 }
901 }
902
903 zfree(event_zone, kfse);
904
905 unlock_fs_event_list();
906
907 // if we have a pointer in the union
908 if (copy.str && copy.type != FSE_DOCID_CHANGED) {
909 if (copy.len == 0) { // and it's not a string
910 panic("%s:%d: no more fref.vp!\n", __FILE__, __LINE__);
911 // vnode_rele_ext(copy.fref.vp, O_EVTONLY, 0);
912 } else { // else it's a string
913 vfs_removename(copy.str);
914 }
915 }
916
917 if (dest_copy.type != FSE_INVALID && dest_copy.str) {
918 if (dest_copy.len == 0) {
919 panic("%s:%d: no more fref.vp!\n", __FILE__, __LINE__);
920 // vnode_rele_ext(dest_copy.fref.vp, O_EVTONLY, 0);
921 } else {
922 vfs_removename(dest_copy.str);
923 }
924 }
925 }
926
927 static int
928 add_watcher(int8_t *event_list, int32_t num_events, int32_t eventq_size, fs_event_watcher **watcher_out, void *fseh)
929 {
930 int i;
931 fs_event_watcher *watcher;
932
933 if (eventq_size <= 0 || eventq_size > 100*max_kfs_events) {
934 eventq_size = max_kfs_events;
935 }
936
937 // Note: the event_queue follows the fs_event_watcher struct
938 // in memory so we only have to do one allocation
939 MALLOC(watcher,
940 fs_event_watcher *,
941 sizeof(fs_event_watcher) + eventq_size * sizeof(kfs_event *),
942 M_TEMP, M_WAITOK);
943 if (watcher == NULL) {
944 return ENOMEM;
945 }
946
947 watcher->event_list = event_list;
948 watcher->num_events = num_events;
949 watcher->devices_not_to_watch = NULL;
950 watcher->num_devices = 0;
951 watcher->flags = 0;
952 watcher->event_queue = (kfs_event **)&watcher[1];
953 watcher->eventq_size = eventq_size;
954 watcher->rd = 0;
955 watcher->wr = 0;
956 watcher->blockers = 0;
957 watcher->num_readers = 0;
958 watcher->max_event_id = 0;
959 watcher->fseh = fseh;
960 watcher->pid = proc_selfpid();
961 proc_selfname(watcher->proc_name, sizeof(watcher->proc_name));
962
963 watcher->num_dropped = 0; // XXXdbg - debugging
964
965 if (!strncmp(watcher->proc_name, "fseventsd", sizeof(watcher->proc_name)) ||
966 !strncmp(watcher->proc_name, "coreservicesd", sizeof(watcher->proc_name)) ||
967 !strncmp(watcher->proc_name, "mds", sizeof(watcher->proc_name))) {
968 watcher->flags |= WATCHER_APPLE_SYSTEM_SERVICE;
969 } else {
970 printf("fsevents: watcher %s (pid: %d) - Using /dev/fsevents directly is unsupported. Migrate to FSEventsFramework\n",
971 watcher->proc_name, watcher->pid);
972 }
973
974 lock_watch_table();
975
976 // find a slot for the new watcher
977 for(i=0; i < MAX_WATCHERS; i++) {
978 if (watcher_table[i] == NULL) {
979 watcher->my_id = i;
980 watcher_table[i] = watcher;
981 break;
982 }
983 }
984
985 if (i >= MAX_WATCHERS) {
986 printf("fsevents: too many watchers!\n");
987 unlock_watch_table();
988 FREE(watcher, M_TEMP);
989 return ENOSPC;
990 }
991
992 // now update the global list of who's interested in
993 // events of a particular type...
994 for(i=0; i < num_events; i++) {
995 if (event_list[i] != FSE_IGNORE && i < FSE_MAX_EVENTS) {
996 fs_event_type_watchers[i]++;
997 }
998 }
999
1000 unlock_watch_table();
1001
1002 *watcher_out = watcher;
1003
1004 return 0;
1005 }
1006
1007
1008
1009 static void
1010 remove_watcher(fs_event_watcher *target)
1011 {
1012 int i, j, counter=0;
1013 fs_event_watcher *watcher;
1014 kfs_event *kfse;
1015
1016 lock_watch_table();
1017
1018 for(j=0; j < MAX_WATCHERS; j++) {
1019 watcher = watcher_table[j];
1020 if (watcher != target) {
1021 continue;
1022 }
1023
1024 watcher_table[j] = NULL;
1025
1026 for(i=0; i < watcher->num_events; i++) {
1027 if (watcher->event_list[i] != FSE_IGNORE && i < FSE_MAX_EVENTS) {
1028 fs_event_type_watchers[i]--;
1029 }
1030 }
1031
1032 if (watcher->flags & WATCHER_CLOSING) {
1033 unlock_watch_table();
1034 return;
1035 }
1036
1037 // printf("fsevents: removing watcher %p (rd %d wr %d num_readers %d flags 0x%x)\n", watcher, watcher->rd, watcher->wr, watcher->num_readers, watcher->flags);
1038 watcher->flags |= WATCHER_CLOSING;
1039 OSAddAtomic(1, &watcher->num_readers);
1040
1041 unlock_watch_table();
1042
1043 while (watcher->num_readers > 1 && counter++ < 5000) {
1044 lock_watch_table();
1045 fsevents_wakeup(watcher); // in case they're asleep
1046 unlock_watch_table();
1047
1048 tsleep(watcher, PRIBIO, "fsevents-close", 1);
1049 }
1050 if (counter++ >= 5000) {
1051 // printf("fsevents: close: still have readers! (%d)\n", watcher->num_readers);
1052 panic("fsevents: close: still have readers! (%d)\n", watcher->num_readers);
1053 }
1054
1055 // drain the event_queue
1056
1057 lck_rw_lock_exclusive(&event_handling_lock);
1058 while(watcher->rd != watcher->wr) {
1059 kfse = watcher->event_queue[watcher->rd];
1060 watcher->event_queue[watcher->rd] = NULL;
1061 watcher->rd = (watcher->rd+1) % watcher->eventq_size;
1062 OSSynchronizeIO();
1063 if (kfse != NULL && kfse->type != FSE_INVALID && kfse->refcount >= 1) {
1064 release_event_ref(kfse);
1065 }
1066 }
1067 lck_rw_unlock_exclusive(&event_handling_lock);
1068
1069 if (watcher->event_list) {
1070 FREE(watcher->event_list, M_TEMP);
1071 watcher->event_list = NULL;
1072 }
1073 if (watcher->devices_not_to_watch) {
1074 FREE(watcher->devices_not_to_watch, M_TEMP);
1075 watcher->devices_not_to_watch = NULL;
1076 }
1077 FREE(watcher, M_TEMP);
1078
1079 return;
1080 }
1081
1082 unlock_watch_table();
1083 }
1084
1085
1086 #define EVENT_DELAY_IN_MS 10
1087 static thread_call_t event_delivery_timer = NULL;
1088 static int timer_set = 0;
1089
1090
1091 static void
1092 delayed_event_delivery(__unused void *param0, __unused void *param1)
1093 {
1094 int i;
1095
1096 lock_watch_table();
1097
1098 for(i=0; i < MAX_WATCHERS; i++) {
1099 if (watcher_table[i] != NULL && watcher_table[i]->rd != watcher_table[i]->wr) {
1100 fsevents_wakeup(watcher_table[i]);
1101 }
1102 }
1103
1104 timer_set = 0;
1105
1106 unlock_watch_table();
1107 }
1108
1109
1110 //
1111 // The watch table must be locked before calling this function.
1112 //
1113 static void
1114 schedule_event_wakeup(void)
1115 {
1116 uint64_t deadline;
1117
1118 if (event_delivery_timer == NULL) {
1119 event_delivery_timer = thread_call_allocate((thread_call_func_t)delayed_event_delivery, NULL);
1120 }
1121
1122 clock_interval_to_deadline(EVENT_DELAY_IN_MS, 1000 * 1000, &deadline);
1123
1124 thread_call_enter_delayed(event_delivery_timer, deadline);
1125 timer_set = 1;
1126 }
1127
1128
1129
1130 #define MAX_NUM_PENDING 16
1131
1132 //
1133 // NOTE: the watch table must be locked before calling
1134 // this routine.
1135 //
1136 static int
1137 watcher_add_event(fs_event_watcher *watcher, kfs_event *kfse)
1138 {
1139 if (kfse->abstime > watcher->max_event_id) {
1140 watcher->max_event_id = kfse->abstime;
1141 }
1142
1143 if (((watcher->wr + 1) % watcher->eventq_size) == watcher->rd) {
1144 watcher->flags |= WATCHER_DROPPED_EVENTS;
1145 fsevents_wakeup(watcher);
1146 return ENOSPC;
1147 }
1148
1149 OSAddAtomic(1, &kfse->refcount);
1150 watcher->event_queue[watcher->wr] = kfse;
1151 OSSynchronizeIO();
1152 watcher->wr = (watcher->wr + 1) % watcher->eventq_size;
1153
1154 //
1155 // wake up the watcher if there are more than MAX_NUM_PENDING events.
1156 // otherwise schedule a timer (if one isn't already set) which will
1157 // send any pending events if no more are received in the next
1158 // EVENT_DELAY_IN_MS milli-seconds.
1159 //
1160 int32_t num_pending = 0;
1161 if (watcher->rd < watcher->wr) {
1162 num_pending = watcher->wr - watcher->rd;
1163 }
1164
1165 if (watcher->rd > watcher->wr) {
1166 num_pending = watcher->wr + watcher->eventq_size - watcher->rd;
1167 }
1168
1169 if (num_pending > (watcher->eventq_size*3/4) && !(watcher->flags & WATCHER_APPLE_SYSTEM_SERVICE)) {
1170 /* Non-Apple Service is falling behind, start dropping events for this process */
1171 lck_rw_lock_exclusive(&event_handling_lock);
1172 while (watcher->rd != watcher->wr) {
1173 kfse = watcher->event_queue[watcher->rd];
1174 watcher->event_queue[watcher->rd] = NULL;
1175 watcher->rd = (watcher->rd+1) % watcher->eventq_size;
1176 OSSynchronizeIO();
1177 if (kfse != NULL && kfse->type != FSE_INVALID && kfse->refcount >= 1) {
1178 release_event_ref(kfse);
1179 }
1180 }
1181 watcher->flags |= WATCHER_DROPPED_EVENTS;
1182 lck_rw_unlock_exclusive(&event_handling_lock);
1183
1184 printf("fsevents: watcher falling behind: %s (pid: %d) rd: %4d wr: %4d q_size: %4d flags: 0x%x\n",
1185 watcher->proc_name, watcher->pid, watcher->rd, watcher->wr,
1186 watcher->eventq_size, watcher->flags);
1187
1188 fsevents_wakeup(watcher);
1189 } else if (num_pending > MAX_NUM_PENDING) {
1190 fsevents_wakeup(watcher);
1191 } else if (timer_set == 0) {
1192 schedule_event_wakeup();
1193 }
1194
1195 return 0;
1196 }
1197
1198 static int
1199 fill_buff(uint16_t type, int32_t size, const void *data,
1200 char *buff, int32_t *_buff_idx, int32_t buff_sz,
1201 struct uio *uio)
1202 {
1203 int32_t amt, error = 0, buff_idx = *_buff_idx;
1204 uint16_t tmp;
1205
1206 //
1207 // the +1 on the size is to guarantee that the main data
1208 // copy loop will always copy at least 1 byte
1209 //
1210 if ((buff_sz - buff_idx) <= (int)(2*sizeof(uint16_t) + 1)) {
1211 if (buff_idx > uio_resid(uio)) {
1212 error = ENOSPC;
1213 goto get_out;
1214 }
1215
1216 error = uiomove(buff, buff_idx, uio);
1217 if (error) {
1218 goto get_out;
1219 }
1220 buff_idx = 0;
1221 }
1222
1223 // copy out the header (type & size)
1224 memcpy(&buff[buff_idx], &type, sizeof(uint16_t));
1225 buff_idx += sizeof(uint16_t);
1226
1227 tmp = size & 0xffff;
1228 memcpy(&buff[buff_idx], &tmp, sizeof(uint16_t));
1229 buff_idx += sizeof(uint16_t);
1230
1231 // now copy the body of the data, flushing along the way
1232 // if the buffer fills up.
1233 //
1234 while(size > 0) {
1235 amt = (size < (buff_sz - buff_idx)) ? size : (buff_sz - buff_idx);
1236 memcpy(&buff[buff_idx], data, amt);
1237
1238 size -= amt;
1239 buff_idx += amt;
1240 data = (const char *)data + amt;
1241 if (size > (buff_sz - buff_idx)) {
1242 if (buff_idx > uio_resid(uio)) {
1243 error = ENOSPC;
1244 goto get_out;
1245 }
1246 error = uiomove(buff, buff_idx, uio);
1247 if (error) {
1248 goto get_out;
1249 }
1250 buff_idx = 0;
1251 }
1252
1253 if (amt == 0) { // just in case...
1254 break;
1255 }
1256 }
1257
1258 get_out:
1259 *_buff_idx = buff_idx;
1260
1261 return error;
1262 }
1263
1264
1265 static int copy_out_kfse(fs_event_watcher *watcher, kfs_event *kfse, struct uio *uio) __attribute__((noinline));
1266
1267 static int
1268 copy_out_kfse(fs_event_watcher *watcher, kfs_event *kfse, struct uio *uio)
1269 {
1270 int error;
1271 uint16_t tmp16;
1272 int32_t type;
1273 kfs_event *cur;
1274 char evbuff[512];
1275 int evbuff_idx = 0;
1276
1277 if (kfse->type == FSE_INVALID) {
1278 panic("fsevents: copy_out_kfse: asked to copy out an invalid event (kfse %p, refcount %d fref ptr %p)\n", kfse, kfse->refcount, kfse->str);
1279 }
1280
1281 if (kfse->flags & KFSE_BEING_CREATED) {
1282 return 0;
1283 }
1284
1285 if (kfse->type == FSE_RENAME && kfse->dest == NULL) {
1286 //
1287 // This can happen if an event gets recycled but we had a
1288 // pointer to it in our event queue. The event is the
1289 // destination of a rename which we'll process separately
1290 // (that is, another kfse points to this one so it's ok
1291 // to skip this guy because we'll process it when we process
1292 // the other one)
1293 error = 0;
1294 goto get_out;
1295 }
1296
1297 if (watcher->flags & WATCHER_WANTS_EXTENDED_INFO) {
1298
1299 type = (kfse->type & 0xfff);
1300
1301 if (kfse->flags & KFSE_CONTAINS_DROPPED_EVENTS) {
1302 type |= (FSE_CONTAINS_DROPPED_EVENTS << FSE_FLAG_SHIFT);
1303 } else if (kfse->flags & KFSE_COMBINED_EVENTS) {
1304 type |= (FSE_COMBINED_EVENTS << FSE_FLAG_SHIFT);
1305 }
1306
1307 } else {
1308 type = (int32_t)kfse->type;
1309 }
1310
1311 // copy out the type of the event
1312 memcpy(evbuff, &type, sizeof(int32_t));
1313 evbuff_idx += sizeof(int32_t);
1314
1315 // copy out the pid of the person that generated the event
1316 memcpy(&evbuff[evbuff_idx], &kfse->pid, sizeof(pid_t));
1317 evbuff_idx += sizeof(pid_t);
1318
1319 cur = kfse;
1320
1321 copy_again:
1322
1323 if (kfse->type == FSE_DOCID_CHANGED || kfse->type == FSE_DOCID_CREATED) {
1324 dev_t dev = cur->dev;
1325 ino_t ino = cur->ino;
1326 uint64_t ival;
1327
1328 error = fill_buff(FSE_ARG_DEV, sizeof(dev_t), &dev, evbuff, &evbuff_idx, sizeof(evbuff), uio);
1329 if (error != 0) {
1330 goto get_out;
1331 }
1332
1333 error = fill_buff(FSE_ARG_INO, sizeof(ino_t), &ino, evbuff, &evbuff_idx, sizeof(evbuff), uio);
1334 if (error != 0) {
1335 goto get_out;
1336 }
1337
1338 memcpy(&ino, &cur->str, sizeof(ino_t));
1339 error = fill_buff(FSE_ARG_INO, sizeof(ino_t), &ino, evbuff, &evbuff_idx, sizeof(evbuff), uio);
1340 if (error != 0) {
1341 goto get_out;
1342 }
1343
1344 memcpy(&ival, &cur->uid, sizeof(uint64_t)); // the docid gets stuffed into the ino field
1345 error = fill_buff(FSE_ARG_INT64, sizeof(uint64_t), &ival, evbuff, &evbuff_idx, sizeof(evbuff), uio);
1346 if (error != 0) {
1347 goto get_out;
1348 }
1349
1350 goto done;
1351 }
1352
1353 if (cur->str == NULL || cur->str[0] == '\0') {
1354 printf("copy_out_kfse:2: empty/short path (%s)\n", cur->str);
1355 error = fill_buff(FSE_ARG_STRING, 2, "/", evbuff, &evbuff_idx, sizeof(evbuff), uio);
1356 } else {
1357 error = fill_buff(FSE_ARG_STRING, cur->len, cur->str, evbuff, &evbuff_idx, sizeof(evbuff), uio);
1358 }
1359 if (error != 0) {
1360 goto get_out;
1361 }
1362
1363 if (cur->dev == 0 && cur->ino == 0) {
1364 // this happens when a rename event happens and the
1365 // destination of the rename did not previously exist.
1366 // it thus has no other file info so skip copying out
1367 // the stuff below since it isn't initialized
1368 goto done;
1369 }
1370
1371
1372 if (watcher->flags & WATCHER_WANTS_COMPACT_EVENTS) {
1373 int32_t finfo_size;
1374
1375 finfo_size = sizeof(dev_t) + sizeof(ino64_t) + sizeof(int32_t) + sizeof(uid_t) + sizeof(gid_t);
1376 error = fill_buff(FSE_ARG_FINFO, finfo_size, &cur->ino, evbuff, &evbuff_idx, sizeof(evbuff), uio);
1377 if (error != 0) {
1378 goto get_out;
1379 }
1380 } else {
1381 ino_t ino;
1382
1383 error = fill_buff(FSE_ARG_DEV, sizeof(dev_t), &cur->dev, evbuff, &evbuff_idx, sizeof(evbuff), uio);
1384 if (error != 0) {
1385 goto get_out;
1386 }
1387
1388 ino = (ino_t)cur->ino;
1389 error = fill_buff(FSE_ARG_INO, sizeof(ino_t), &ino, evbuff, &evbuff_idx, sizeof(evbuff), uio);
1390 if (error != 0) {
1391 goto get_out;
1392 }
1393
1394 error = fill_buff(FSE_ARG_MODE, sizeof(int32_t), &cur->mode, evbuff, &evbuff_idx, sizeof(evbuff), uio);
1395 if (error != 0) {
1396 goto get_out;
1397 }
1398
1399 error = fill_buff(FSE_ARG_UID, sizeof(uid_t), &cur->uid, evbuff, &evbuff_idx, sizeof(evbuff), uio);
1400 if (error != 0) {
1401 goto get_out;
1402 }
1403
1404 error = fill_buff(FSE_ARG_GID, sizeof(gid_t), &cur->gid, evbuff, &evbuff_idx, sizeof(evbuff), uio);
1405 if (error != 0) {
1406 goto get_out;
1407 }
1408 }
1409
1410
1411 if (cur->dest) {
1412 cur = cur->dest;
1413 goto copy_again;
1414 }
1415
1416 done:
1417 // very last thing: the time stamp
1418 error = fill_buff(FSE_ARG_INT64, sizeof(uint64_t), &cur->abstime, evbuff, &evbuff_idx, sizeof(evbuff), uio);
1419 if (error != 0) {
1420 goto get_out;
1421 }
1422
1423 // check if the FSE_ARG_DONE will fit
1424 if (sizeof(uint16_t) > sizeof(evbuff) - evbuff_idx) {
1425 if (evbuff_idx > uio_resid(uio)) {
1426 error = ENOSPC;
1427 goto get_out;
1428 }
1429 error = uiomove(evbuff, evbuff_idx, uio);
1430 if (error) {
1431 goto get_out;
1432 }
1433 evbuff_idx = 0;
1434 }
1435
1436 tmp16 = FSE_ARG_DONE;
1437 memcpy(&evbuff[evbuff_idx], &tmp16, sizeof(uint16_t));
1438 evbuff_idx += sizeof(uint16_t);
1439
1440 // flush any remaining data in the buffer (and hopefully
1441 // in most cases this is the only uiomove we'll do)
1442 if (evbuff_idx > uio_resid(uio)) {
1443 error = ENOSPC;
1444 } else {
1445 error = uiomove(evbuff, evbuff_idx, uio);
1446 }
1447
1448 get_out:
1449
1450 return error;
1451 }
1452
1453
1454
1455 static int
1456 fmod_watch(fs_event_watcher *watcher, struct uio *uio)
1457 {
1458 int error=0;
1459 user_ssize_t last_full_event_resid;
1460 kfs_event *kfse;
1461 uint16_t tmp16;
1462 int skipped;
1463
1464 last_full_event_resid = uio_resid(uio);
1465
1466 // need at least 2048 bytes of space (maxpathlen + 1 event buf)
1467 if (uio_resid(uio) < 2048 || watcher == NULL) {
1468 return EINVAL;
1469 }
1470
1471 if (watcher->flags & WATCHER_CLOSING) {
1472 return 0;
1473 }
1474
1475 if (OSAddAtomic(1, &watcher->num_readers) != 0) {
1476 // don't allow multiple threads to read from the fd at the same time
1477 OSAddAtomic(-1, &watcher->num_readers);
1478 return EAGAIN;
1479 }
1480
1481 restart_watch:
1482 if (watcher->rd == watcher->wr) {
1483 if (watcher->flags & WATCHER_CLOSING) {
1484 OSAddAtomic(-1, &watcher->num_readers);
1485 return 0;
1486 }
1487 OSAddAtomic(1, &watcher->blockers);
1488
1489 // there's nothing to do, go to sleep
1490 error = tsleep((caddr_t)watcher, PUSER|PCATCH, "fsevents_empty", 0);
1491
1492 OSAddAtomic(-1, &watcher->blockers);
1493
1494 if (error != 0 || (watcher->flags & WATCHER_CLOSING)) {
1495 OSAddAtomic(-1, &watcher->num_readers);
1496 return error;
1497 }
1498 }
1499
1500 // if we dropped events, return that as an event first
1501 if (watcher->flags & WATCHER_DROPPED_EVENTS) {
1502 int32_t val = FSE_EVENTS_DROPPED;
1503
1504 error = uiomove((caddr_t)&val, sizeof(int32_t), uio);
1505 if (error == 0) {
1506 val = 0; // a fake pid
1507 error = uiomove((caddr_t)&val, sizeof(int32_t), uio);
1508
1509 tmp16 = FSE_ARG_DONE; // makes it a consistent msg
1510 error = uiomove((caddr_t)&tmp16, sizeof(int16_t), uio);
1511
1512 last_full_event_resid = uio_resid(uio);
1513 }
1514
1515 if (error) {
1516 OSAddAtomic(-1, &watcher->num_readers);
1517 return error;
1518 }
1519
1520 watcher->flags &= ~WATCHER_DROPPED_EVENTS;
1521 }
1522
1523 skipped = 0;
1524
1525 lck_rw_lock_shared(&event_handling_lock);
1526 while (uio_resid(uio) > 0 && watcher->rd != watcher->wr) {
1527 if (watcher->flags & WATCHER_CLOSING) {
1528 break;
1529 }
1530
1531 //
1532 // check if the event is something of interest to us
1533 // (since it may have been recycled/reused and changed
1534 // its type or which device it is for)
1535 //
1536 kfse = watcher->event_queue[watcher->rd];
1537 if (!kfse || kfse->type == FSE_INVALID || kfse->refcount < 1) {
1538 break;
1539 }
1540
1541 if (watcher->event_list[kfse->type] == FSE_REPORT && watcher_cares_about_dev(watcher, kfse->dev)) {
1542
1543 if (!(watcher->flags & WATCHER_APPLE_SYSTEM_SERVICE) && kfse->type != FSE_DOCID_CHANGED && is_ignored_directory(kfse->str)) {
1544 // If this is not an Apple System Service, skip specified directories
1545 // radar://12034844
1546 error = 0;
1547 skipped = 1;
1548 } else {
1549
1550 skipped = 0;
1551 if (last_event_ptr == kfse) {
1552 last_event_ptr = NULL;
1553 last_event_type = -1;
1554 last_coalesced_time = 0;
1555 }
1556 error = copy_out_kfse(watcher, kfse, uio);
1557 if (error != 0) {
1558 // if an event won't fit or encountered an error while
1559 // we were copying it out, then backup to the last full
1560 // event and just bail out. if the error was ENOENT
1561 // then we can continue regular processing, otherwise
1562 // we should unlock things and return.
1563 uio_setresid(uio, last_full_event_resid);
1564 if (error != ENOENT) {
1565 lck_rw_unlock_shared(&event_handling_lock);
1566 error = 0;
1567 goto get_out;
1568 }
1569 }
1570
1571 last_full_event_resid = uio_resid(uio);
1572 }
1573 }
1574
1575 watcher->event_queue[watcher->rd] = NULL;
1576 watcher->rd = (watcher->rd + 1) % watcher->eventq_size;
1577 OSSynchronizeIO();
1578 release_event_ref(kfse);
1579 }
1580 lck_rw_unlock_shared(&event_handling_lock);
1581
1582 if (skipped && error == 0) {
1583 goto restart_watch;
1584 }
1585
1586 get_out:
1587 OSAddAtomic(-1, &watcher->num_readers);
1588
1589 return error;
1590 }
1591
1592
1593 // release any references we might have on vnodes which are
1594 // the mount point passed to us (so that it can be cleanly
1595 // unmounted).
1596 //
1597 // since we don't want to lose the events we'll convert the
1598 // vnode refs to full paths.
1599 //
1600 void
1601 fsevent_unmount(__unused struct mount *mp)
1602 {
1603 // we no longer maintain pointers to vnodes so
1604 // there is nothing to do...
1605 }
1606
1607
1608 //
1609 // /dev/fsevents device code
1610 //
1611 static int fsevents_installed = 0;
1612
1613 typedef struct fsevent_handle {
1614 UInt32 flags;
1615 SInt32 active;
1616 fs_event_watcher *watcher;
1617 struct klist knotes;
1618 struct selinfo si;
1619 } fsevent_handle;
1620
1621 #define FSEH_CLOSING 0x0001
1622
1623 static int
1624 fseventsf_read(struct fileproc *fp, struct uio *uio,
1625 __unused int flags, __unused vfs_context_t ctx)
1626 {
1627 fsevent_handle *fseh = (struct fsevent_handle *)fp->f_fglob->fg_data;
1628 int error;
1629
1630 error = fmod_watch(fseh->watcher, uio);
1631
1632 return error;
1633 }
1634
1635
1636 static int
1637 fseventsf_write(__unused struct fileproc *fp, __unused struct uio *uio,
1638 __unused int flags, __unused vfs_context_t ctx)
1639 {
1640 return EIO;
1641 }
1642
1643 #pragma pack(push, 4)
1644 typedef struct ext_fsevent_dev_filter_args {
1645 uint32_t num_devices;
1646 user_addr_t devices;
1647 } ext_fsevent_dev_filter_args;
1648 #pragma pack(pop)
1649
1650 #define NEW_FSEVENTS_DEVICE_FILTER _IOW('s', 100, ext_fsevent_dev_filter_args)
1651
1652 typedef struct old_fsevent_dev_filter_args {
1653 uint32_t num_devices;
1654 int32_t devices;
1655 } old_fsevent_dev_filter_args;
1656
1657 #define OLD_FSEVENTS_DEVICE_FILTER _IOW('s', 100, old_fsevent_dev_filter_args)
1658
1659 #if __LP64__
1660 /* need this in spite of the padding due to alignment of devices */
1661 typedef struct fsevent_dev_filter_args32 {
1662 uint32_t num_devices;
1663 uint32_t devices;
1664 int32_t pad1;
1665 } fsevent_dev_filter_args32;
1666 #endif
1667
1668 static int
1669 fseventsf_ioctl(struct fileproc *fp, u_long cmd, caddr_t data, vfs_context_t ctx)
1670 {
1671 fsevent_handle *fseh = (struct fsevent_handle *)fp->f_fglob->fg_data;
1672 int ret = 0;
1673 ext_fsevent_dev_filter_args *devfilt_args, _devfilt_args;
1674
1675 if (proc_is64bit(vfs_context_proc(ctx))) {
1676 devfilt_args = (ext_fsevent_dev_filter_args *)data;
1677 }
1678 else if (cmd == OLD_FSEVENTS_DEVICE_FILTER) {
1679 old_fsevent_dev_filter_args *udev_filt_args = (old_fsevent_dev_filter_args *)data;
1680
1681 devfilt_args = &_devfilt_args;
1682 memset(devfilt_args, 0, sizeof(ext_fsevent_dev_filter_args));
1683
1684 devfilt_args->num_devices = udev_filt_args->num_devices;
1685 devfilt_args->devices = CAST_USER_ADDR_T(udev_filt_args->devices);
1686 }
1687 else {
1688 #if __LP64__
1689 fsevent_dev_filter_args32 *udev_filt_args = (fsevent_dev_filter_args32 *)data;
1690 #else
1691 fsevent_dev_filter_args *udev_filt_args = (fsevent_dev_filter_args *)data;
1692 #endif
1693
1694 devfilt_args = &_devfilt_args;
1695 memset(devfilt_args, 0, sizeof(ext_fsevent_dev_filter_args));
1696
1697 devfilt_args->num_devices = udev_filt_args->num_devices;
1698 devfilt_args->devices = CAST_USER_ADDR_T(udev_filt_args->devices);
1699 }
1700
1701 OSAddAtomic(1, &fseh->active);
1702 if (fseh->flags & FSEH_CLOSING) {
1703 OSAddAtomic(-1, &fseh->active);
1704 return 0;
1705 }
1706
1707 switch (cmd) {
1708 case FIONBIO:
1709 case FIOASYNC:
1710 break;
1711
1712 case FSEVENTS_WANT_COMPACT_EVENTS: {
1713 fseh->watcher->flags |= WATCHER_WANTS_COMPACT_EVENTS;
1714 break;
1715 }
1716
1717 case FSEVENTS_WANT_EXTENDED_INFO: {
1718 fseh->watcher->flags |= WATCHER_WANTS_EXTENDED_INFO;
1719 break;
1720 }
1721
1722 case FSEVENTS_GET_CURRENT_ID: {
1723 *(uint64_t *)data = fseh->watcher->max_event_id;
1724 ret = 0;
1725 break;
1726 }
1727
1728 case OLD_FSEVENTS_DEVICE_FILTER:
1729 case NEW_FSEVENTS_DEVICE_FILTER: {
1730 int new_num_devices;
1731 dev_t *devices_not_to_watch, *tmp=NULL;
1732
1733 if (devfilt_args->num_devices > 256) {
1734 ret = EINVAL;
1735 break;
1736 }
1737
1738 new_num_devices = devfilt_args->num_devices;
1739 if (new_num_devices == 0) {
1740 tmp = fseh->watcher->devices_not_to_watch;
1741
1742 lock_watch_table();
1743 fseh->watcher->devices_not_to_watch = NULL;
1744 fseh->watcher->num_devices = new_num_devices;
1745 unlock_watch_table();
1746
1747 if (tmp) {
1748 FREE(tmp, M_TEMP);
1749 }
1750 break;
1751 }
1752
1753 MALLOC(devices_not_to_watch, dev_t *,
1754 new_num_devices * sizeof(dev_t),
1755 M_TEMP, M_WAITOK);
1756 if (devices_not_to_watch == NULL) {
1757 ret = ENOMEM;
1758 break;
1759 }
1760
1761 ret = copyin(devfilt_args->devices,
1762 (void *)devices_not_to_watch,
1763 new_num_devices * sizeof(dev_t));
1764 if (ret) {
1765 FREE(devices_not_to_watch, M_TEMP);
1766 break;
1767 }
1768
1769 lock_watch_table();
1770 fseh->watcher->num_devices = new_num_devices;
1771 tmp = fseh->watcher->devices_not_to_watch;
1772 fseh->watcher->devices_not_to_watch = devices_not_to_watch;
1773 unlock_watch_table();
1774
1775 if (tmp) {
1776 FREE(tmp, M_TEMP);
1777 }
1778
1779 break;
1780 }
1781
1782 default:
1783 ret = EINVAL;
1784 break;
1785 }
1786
1787 OSAddAtomic(-1, &fseh->active);
1788 return (ret);
1789 }
1790
1791
1792 static int
1793 fseventsf_select(struct fileproc *fp, int which, __unused void *wql, vfs_context_t ctx)
1794 {
1795 fsevent_handle *fseh = (struct fsevent_handle *)fp->f_fglob->fg_data;
1796 int ready = 0;
1797
1798 if ((which != FREAD) || (fseh->watcher->flags & WATCHER_CLOSING)) {
1799 return 0;
1800 }
1801
1802
1803 // if there's nothing in the queue, we're not ready
1804 if (fseh->watcher->rd != fseh->watcher->wr) {
1805 ready = 1;
1806 }
1807
1808 if (!ready) {
1809 selrecord(vfs_context_proc(ctx), &fseh->si, wql);
1810 }
1811
1812 return ready;
1813 }
1814
1815
1816 #if NOTUSED
1817 static int
1818 fseventsf_stat(__unused struct fileproc *fp, __unused struct stat *sb, __unused vfs_context_t ctx)
1819 {
1820 return ENOTSUP;
1821 }
1822 #endif
1823
1824 static int
1825 fseventsf_close(struct fileglob *fg, __unused vfs_context_t ctx)
1826 {
1827 fsevent_handle *fseh = (struct fsevent_handle *)fg->fg_data;
1828 fs_event_watcher *watcher;
1829
1830 OSBitOrAtomic(FSEH_CLOSING, &fseh->flags);
1831 while (OSAddAtomic(0, &fseh->active) > 0) {
1832 tsleep((caddr_t)fseh->watcher, PRIBIO, "fsevents-close", 1);
1833 }
1834
1835 watcher = fseh->watcher;
1836 fg->fg_data = NULL;
1837 fseh->watcher = NULL;
1838
1839 remove_watcher(watcher);
1840 FREE(fseh, M_TEMP);
1841
1842 return 0;
1843 }
1844
1845 static void
1846 filt_fsevent_detach(struct knote *kn)
1847 {
1848 fsevent_handle *fseh = (struct fsevent_handle *)kn->kn_hook;
1849
1850 lock_watch_table();
1851
1852 KNOTE_DETACH(&fseh->knotes, kn);
1853
1854 unlock_watch_table();
1855 }
1856
1857 /*
1858 * Determine whether this knote should be active
1859 *
1860 * This is kind of subtle.
1861 * --First, notice if the vnode has been revoked: in so, override hint
1862 * --EVFILT_READ knotes are checked no matter what the hint is
1863 * --Other knotes activate based on hint.
1864 * --If hint is revoke, set special flags and activate
1865 */
1866 static int
1867 filt_fsevent(struct knote *kn, long hint)
1868 {
1869 fsevent_handle *fseh = (struct fsevent_handle *)kn->kn_hook;
1870 int activate = 0;
1871 int32_t rd, wr, amt;
1872
1873 if (NOTE_REVOKE == hint) {
1874 kn->kn_flags |= (EV_EOF | EV_ONESHOT);
1875 activate = 1;
1876 }
1877
1878 rd = fseh->watcher->rd;
1879 wr = fseh->watcher->wr;
1880 if (rd <= wr) {
1881 amt = wr - rd;
1882 } else {
1883 amt = fseh->watcher->eventq_size - (rd - wr);
1884 }
1885
1886 switch(kn->kn_filter) {
1887 case EVFILT_READ:
1888 kn->kn_data = amt;
1889
1890 if (kn->kn_data != 0) {
1891 activate = 1;
1892 }
1893 break;
1894 case EVFILT_VNODE:
1895 /* Check events this note matches against the hint */
1896 if (kn->kn_sfflags & hint) {
1897 kn->kn_fflags |= hint; /* Set which event occurred */
1898 }
1899 if (kn->kn_fflags != 0) {
1900 activate = 1;
1901 }
1902 break;
1903 default: {
1904 // nothing to do...
1905 break;
1906 }
1907 }
1908
1909 return (activate);
1910 }
1911
1912
1913 struct filterops fsevent_filtops = {
1914 .f_isfd = 1,
1915 .f_attach = NULL,
1916 .f_detach = filt_fsevent_detach,
1917 .f_event = filt_fsevent
1918 };
1919
1920 static int
1921 fseventsf_kqfilter(__unused struct fileproc *fp, __unused struct knote *kn, __unused vfs_context_t ctx)
1922 {
1923 fsevent_handle *fseh = (struct fsevent_handle *)fp->f_fglob->fg_data;
1924
1925 kn->kn_hook = (void*)fseh;
1926 kn->kn_hookid = 1;
1927 kn->kn_fop = &fsevent_filtops;
1928
1929 lock_watch_table();
1930
1931 KNOTE_ATTACH(&fseh->knotes, kn);
1932
1933 unlock_watch_table();
1934 return 0;
1935 }
1936
1937
1938 static int
1939 fseventsf_drain(struct fileproc *fp, __unused vfs_context_t ctx)
1940 {
1941 int counter = 0;
1942 fsevent_handle *fseh = (struct fsevent_handle *)fp->f_fglob->fg_data;
1943
1944 fseh->watcher->flags |= WATCHER_CLOSING;
1945
1946 // if there are people still waiting, sleep for 10ms to
1947 // let them clean up and get out of there. however we
1948 // also don't want to get stuck forever so if they don't
1949 // exit after 5 seconds we're tearing things down anyway.
1950 while(fseh->watcher->blockers && counter++ < 500) {
1951 // issue wakeup in case anyone is blocked waiting for an event
1952 // do this each time we wakeup in case the blocker missed
1953 // the wakeup due to the unprotected test of WATCHER_CLOSING
1954 // and decision to tsleep in fmod_watch... this bit of
1955 // latency is a decent tradeoff against not having to
1956 // take and drop a lock in fmod_watch
1957 lock_watch_table();
1958 fsevents_wakeup(fseh->watcher);
1959 unlock_watch_table();
1960
1961 tsleep((caddr_t)fseh->watcher, PRIBIO, "watcher-close", 1);
1962 }
1963
1964 return 0;
1965 }
1966
1967
1968 static int
1969 fseventsopen(__unused dev_t dev, __unused int flag, __unused int mode, __unused struct proc *p)
1970 {
1971 if (!kauth_cred_issuser(kauth_cred_get())) {
1972 return EPERM;
1973 }
1974
1975 return 0;
1976 }
1977
1978 static int
1979 fseventsclose(__unused dev_t dev, __unused int flag, __unused int mode, __unused struct proc *p)
1980 {
1981 return 0;
1982 }
1983
1984 static int
1985 fseventsread(__unused dev_t dev, __unused struct uio *uio, __unused int ioflag)
1986 {
1987 return EIO;
1988 }
1989
1990
1991 static int
1992 parse_buffer_and_add_events(const char *buffer, int bufsize, vfs_context_t ctx, long *remainder)
1993 {
1994 const fse_info *finfo, *dest_finfo;
1995 const char *path, *ptr, *dest_path, *event_start=buffer;
1996 int path_len, type, dest_path_len, err = 0;
1997
1998
1999 ptr = buffer;
2000 while ((ptr+sizeof(int)+sizeof(fse_info)+1) < buffer+bufsize) {
2001 type = *(const int *)ptr;
2002 if (type < 0 || type >= FSE_MAX_EVENTS) {
2003 err = EINVAL;
2004 break;
2005 }
2006
2007 ptr += sizeof(int);
2008
2009 finfo = (const fse_info *)ptr;
2010 ptr += sizeof(fse_info);
2011
2012 path = ptr;
2013 while(ptr < buffer+bufsize && *ptr != '\0') {
2014 ptr++;
2015 }
2016
2017 if (ptr >= buffer+bufsize) {
2018 break;
2019 }
2020
2021 ptr++; // advance over the trailing '\0'
2022
2023 path_len = ptr - path;
2024
2025 if (type != FSE_RENAME && type != FSE_EXCHANGE) {
2026 event_start = ptr; // record where the next event starts
2027
2028 err = add_fsevent(type, ctx, FSE_ARG_STRING, path_len, path, FSE_ARG_FINFO, finfo, FSE_ARG_DONE);
2029 if (err) {
2030 break;
2031 }
2032 continue;
2033 }
2034
2035 //
2036 // if we're here we have to slurp up the destination finfo
2037 // and path so that we can pass them to the add_fsevent()
2038 // call. basically it's a copy of the above code.
2039 //
2040 dest_finfo = (const fse_info *)ptr;
2041 ptr += sizeof(fse_info);
2042
2043 dest_path = ptr;
2044 while(ptr < buffer+bufsize && *ptr != '\0') {
2045 ptr++;
2046 }
2047
2048 if (ptr >= buffer+bufsize) {
2049 break;
2050 }
2051
2052 ptr++; // advance over the trailing '\0'
2053 event_start = ptr; // record where the next event starts
2054
2055 dest_path_len = ptr - dest_path;
2056 //
2057 // If the destination inode number is non-zero, generate a rename
2058 // with both source and destination FSE_ARG_FINFO. Otherwise generate
2059 // a rename with only one FSE_ARG_FINFO. If you need to inject an
2060 // exchange with an inode of zero, just make that inode (and its path)
2061 // come in as the first one, not the second.
2062 //
2063 if (dest_finfo->ino) {
2064 err = add_fsevent(type, ctx,
2065 FSE_ARG_STRING, path_len, path, FSE_ARG_FINFO, finfo,
2066 FSE_ARG_STRING, dest_path_len, dest_path, FSE_ARG_FINFO, dest_finfo,
2067 FSE_ARG_DONE);
2068 } else {
2069 err = add_fsevent(type, ctx,
2070 FSE_ARG_STRING, path_len, path, FSE_ARG_FINFO, finfo,
2071 FSE_ARG_STRING, dest_path_len, dest_path,
2072 FSE_ARG_DONE);
2073 }
2074
2075 if (err) {
2076 break;
2077 }
2078
2079 }
2080
2081 // if the last event wasn't complete, set the remainder
2082 // to be the last event start boundary.
2083 //
2084 *remainder = (long)((buffer+bufsize) - event_start);
2085
2086 return err;
2087 }
2088
2089
2090 //
2091 // Note: this buffer size can not ever be less than
2092 // 2*MAXPATHLEN + 2*sizeof(fse_info) + sizeof(int)
2093 // because that is the max size for a single event.
2094 // I made it 4k to be a "nice" size. making it
2095 // smaller is not a good idea.
2096 //
2097 #define WRITE_BUFFER_SIZE 4096
2098 char *write_buffer=NULL;
2099
2100 static int
2101 fseventswrite(__unused dev_t dev, struct uio *uio, __unused int ioflag)
2102 {
2103 int error=0, count;
2104 vfs_context_t ctx = vfs_context_current();
2105 long offset=0, remainder;
2106
2107 lck_mtx_lock(&event_writer_lock);
2108
2109 if (write_buffer == NULL) {
2110 if (kmem_alloc(kernel_map, (vm_offset_t *)&write_buffer, WRITE_BUFFER_SIZE)) {
2111 lck_mtx_unlock(&event_writer_lock);
2112 return ENOMEM;
2113 }
2114 }
2115
2116 //
2117 // this loop copies in and processes the events written.
2118 // it takes care to copy in reasonable size chunks and
2119 // process them. if there is an event that spans a chunk
2120 // boundary we're careful to copy those bytes down to the
2121 // beginning of the buffer and read the next chunk in just
2122 // after it.
2123 //
2124 while(uio_resid(uio)) {
2125 if (uio_resid(uio) > (WRITE_BUFFER_SIZE-offset)) {
2126 count = WRITE_BUFFER_SIZE - offset;
2127 } else {
2128 count = uio_resid(uio);
2129 }
2130
2131 error = uiomove(write_buffer+offset, count, uio);
2132 if (error) {
2133 break;
2134 }
2135
2136 // printf("fsevents: write: copied in %d bytes (offset: %ld)\n", count, offset);
2137 error = parse_buffer_and_add_events(write_buffer, offset+count, ctx, &remainder);
2138 if (error) {
2139 break;
2140 }
2141
2142 //
2143 // if there's any remainder, copy it down to the beginning
2144 // of the buffer so that it will get processed the next time
2145 // through the loop. note that the remainder always starts
2146 // at an event boundary.
2147 //
2148 if (remainder != 0) {
2149 // printf("fsevents: write: an event spanned a %d byte boundary. remainder: %ld\n",
2150 // WRITE_BUFFER_SIZE, remainder);
2151 memmove(write_buffer, (write_buffer+count+offset) - remainder, remainder);
2152 offset = remainder;
2153 } else {
2154 offset = 0;
2155 }
2156 }
2157
2158 lck_mtx_unlock(&event_writer_lock);
2159
2160 return error;
2161 }
2162
2163
2164 static const struct fileops fsevents_fops = {
2165 DTYPE_FSEVENTS,
2166 fseventsf_read,
2167 fseventsf_write,
2168 fseventsf_ioctl,
2169 fseventsf_select,
2170 fseventsf_close,
2171 fseventsf_kqfilter,
2172 fseventsf_drain
2173 };
2174
2175 typedef struct ext_fsevent_clone_args {
2176 user_addr_t event_list;
2177 int32_t num_events;
2178 int32_t event_queue_depth;
2179 user_addr_t fd;
2180 } ext_fsevent_clone_args;
2181
2182 typedef struct old_fsevent_clone_args {
2183 uint32_t event_list;
2184 int32_t num_events;
2185 int32_t event_queue_depth;
2186 uint32_t fd;
2187 } old_fsevent_clone_args;
2188
2189 #define OLD_FSEVENTS_CLONE _IOW('s', 1, old_fsevent_clone_args)
2190
2191 static int
2192 fseventsioctl(__unused dev_t dev, u_long cmd, caddr_t data, __unused int flag, struct proc *p)
2193 {
2194 struct fileproc *f;
2195 int fd, error;
2196 fsevent_handle *fseh = NULL;
2197 ext_fsevent_clone_args *fse_clone_args, _fse_clone;
2198 int8_t *event_list;
2199 int is64bit = proc_is64bit(p);
2200
2201 switch (cmd) {
2202 case OLD_FSEVENTS_CLONE: {
2203 old_fsevent_clone_args *old_args = (old_fsevent_clone_args *)data;
2204
2205 fse_clone_args = &_fse_clone;
2206 memset(fse_clone_args, 0, sizeof(ext_fsevent_clone_args));
2207
2208 fse_clone_args->event_list = CAST_USER_ADDR_T(old_args->event_list);
2209 fse_clone_args->num_events = old_args->num_events;
2210 fse_clone_args->event_queue_depth = old_args->event_queue_depth;
2211 fse_clone_args->fd = CAST_USER_ADDR_T(old_args->fd);
2212 goto handle_clone;
2213 }
2214
2215 case FSEVENTS_CLONE:
2216 if (is64bit) {
2217 fse_clone_args = (ext_fsevent_clone_args *)data;
2218 } else {
2219 fsevent_clone_args *ufse_clone = (fsevent_clone_args *)data;
2220
2221 fse_clone_args = &_fse_clone;
2222 memset(fse_clone_args, 0, sizeof(ext_fsevent_clone_args));
2223
2224 fse_clone_args->event_list = CAST_USER_ADDR_T(ufse_clone->event_list);
2225 fse_clone_args->num_events = ufse_clone->num_events;
2226 fse_clone_args->event_queue_depth = ufse_clone->event_queue_depth;
2227 fse_clone_args->fd = CAST_USER_ADDR_T(ufse_clone->fd);
2228 }
2229
2230 handle_clone:
2231 if (fse_clone_args->num_events < 0 || fse_clone_args->num_events > 4096) {
2232 return EINVAL;
2233 }
2234
2235 MALLOC(fseh, fsevent_handle *, sizeof(fsevent_handle),
2236 M_TEMP, M_WAITOK);
2237 if (fseh == NULL) {
2238 return ENOMEM;
2239 }
2240 memset(fseh, 0, sizeof(fsevent_handle));
2241
2242 klist_init(&fseh->knotes);
2243
2244 MALLOC(event_list, int8_t *,
2245 fse_clone_args->num_events * sizeof(int8_t),
2246 M_TEMP, M_WAITOK);
2247 if (event_list == NULL) {
2248 FREE(fseh, M_TEMP);
2249 return ENOMEM;
2250 }
2251
2252 error = copyin(fse_clone_args->event_list,
2253 (void *)event_list,
2254 fse_clone_args->num_events * sizeof(int8_t));
2255 if (error) {
2256 FREE(event_list, M_TEMP);
2257 FREE(fseh, M_TEMP);
2258 return error;
2259 }
2260
2261 error = add_watcher(event_list,
2262 fse_clone_args->num_events,
2263 fse_clone_args->event_queue_depth,
2264 &fseh->watcher,
2265 fseh);
2266 if (error) {
2267 FREE(event_list, M_TEMP);
2268 FREE(fseh, M_TEMP);
2269 return error;
2270 }
2271
2272 fseh->watcher->fseh = fseh;
2273
2274 error = falloc(p, &f, &fd, vfs_context_current());
2275 if (error) {
2276 remove_watcher(fseh->watcher);
2277 FREE(event_list, M_TEMP);
2278 FREE(fseh, M_TEMP);
2279 return (error);
2280 }
2281 proc_fdlock(p);
2282 f->f_fglob->fg_flag = FREAD | FWRITE;
2283 f->f_fglob->fg_ops = &fsevents_fops;
2284 f->f_fglob->fg_data = (caddr_t) fseh;
2285 proc_fdunlock(p);
2286 error = copyout((void *)&fd, fse_clone_args->fd, sizeof(int32_t));
2287 if (error != 0) {
2288 fp_free(p, fd, f);
2289 } else {
2290 proc_fdlock(p);
2291 procfdtbl_releasefd(p, fd, NULL);
2292 fp_drop(p, fd, f, 1);
2293 proc_fdunlock(p);
2294 }
2295 break;
2296
2297 default:
2298 error = EINVAL;
2299 break;
2300 }
2301
2302 return error;
2303 }
2304
2305 static void
2306 fsevents_wakeup(fs_event_watcher *watcher)
2307 {
2308 selwakeup(&watcher->fseh->si);
2309 KNOTE(&watcher->fseh->knotes, NOTE_WRITE|NOTE_NONE);
2310 wakeup((caddr_t)watcher);
2311 }
2312
2313
2314 /*
2315 * A struct describing which functions will get invoked for certain
2316 * actions.
2317 */
2318 static struct cdevsw fsevents_cdevsw =
2319 {
2320 fseventsopen, /* open */
2321 fseventsclose, /* close */
2322 fseventsread, /* read */
2323 fseventswrite, /* write */
2324 fseventsioctl, /* ioctl */
2325 (stop_fcn_t *)&nulldev, /* stop */
2326 (reset_fcn_t *)&nulldev, /* reset */
2327 NULL, /* tty's */
2328 eno_select, /* select */
2329 eno_mmap, /* mmap */
2330 eno_strat, /* strategy */
2331 eno_getc, /* getc */
2332 eno_putc, /* putc */
2333 0 /* type */
2334 };
2335
2336
2337 /*
2338 * Called to initialize our device,
2339 * and to register ourselves with devfs
2340 */
2341
2342 void
2343 fsevents_init(void)
2344 {
2345 int ret;
2346
2347 if (fsevents_installed) {
2348 return;
2349 }
2350
2351 fsevents_installed = 1;
2352
2353 ret = cdevsw_add(-1, &fsevents_cdevsw);
2354 if (ret < 0) {
2355 fsevents_installed = 0;
2356 return;
2357 }
2358
2359 devfs_make_node(makedev (ret, 0), DEVFS_CHAR,
2360 UID_ROOT, GID_WHEEL, 0644, "fsevents", 0);
2361
2362 fsevents_internal_init();
2363 }
2364
2365
2366 char *
2367 get_pathbuff(void)
2368 {
2369 char *path;
2370
2371 MALLOC_ZONE(path, char *, MAXPATHLEN, M_NAMEI, M_WAITOK);
2372 return path;
2373 }
2374
2375 void
2376 release_pathbuff(char *path)
2377 {
2378
2379 if (path == NULL) {
2380 return;
2381 }
2382 FREE_ZONE(path, MAXPATHLEN, M_NAMEI);
2383 }
2384
2385 int
2386 get_fse_info(struct vnode *vp, fse_info *fse, __unused vfs_context_t ctx)
2387 {
2388 struct vnode_attr va;
2389
2390 VATTR_INIT(&va);
2391 VATTR_WANTED(&va, va_fsid);
2392 VATTR_WANTED(&va, va_fileid);
2393 VATTR_WANTED(&va, va_mode);
2394 VATTR_WANTED(&va, va_uid);
2395 VATTR_WANTED(&va, va_gid);
2396 if (vp->v_flag & VISHARDLINK) {
2397 if (vp->v_type == VDIR) {
2398 VATTR_WANTED(&va, va_dirlinkcount);
2399 } else {
2400 VATTR_WANTED(&va, va_nlink);
2401 }
2402 }
2403
2404 if (vnode_getattr(vp, &va, vfs_context_kernel()) != 0) {
2405 memset(fse, 0, sizeof(fse_info));
2406 return -1;
2407 }
2408
2409 return vnode_get_fse_info_from_vap(vp, fse, &va);
2410 }
2411
2412 int
2413 vnode_get_fse_info_from_vap(vnode_t vp, fse_info *fse, struct vnode_attr *vap)
2414 {
2415 fse->ino = (ino64_t)vap->va_fileid;
2416 fse->dev = (dev_t)vap->va_fsid;
2417 fse->mode = (int32_t)vnode_vttoif(vnode_vtype(vp)) | vap->va_mode;
2418 fse->uid = (uid_t)vap->va_uid;
2419 fse->gid = (gid_t)vap->va_gid;
2420 if (vp->v_flag & VISHARDLINK) {
2421 fse->mode |= FSE_MODE_HLINK;
2422 if (vp->v_type == VDIR) {
2423 fse->nlink = (uint64_t)vap->va_dirlinkcount;
2424 } else {
2425 fse->nlink = (uint64_t)vap->va_nlink;
2426 }
2427 }
2428
2429 return 0;
2430 }
2431
2432 void
2433 create_fsevent_from_kevent(vnode_t vp, uint32_t kevents, struct vnode_attr *vap)
2434 {
2435 int fsevent_type=FSE_CONTENT_MODIFIED, len; // the default is the most pessimistic
2436 char pathbuf[MAXPATHLEN];
2437 fse_info fse;
2438
2439
2440 if (kevents & VNODE_EVENT_DELETE) {
2441 fsevent_type = FSE_DELETE;
2442 } else if (kevents & (VNODE_EVENT_EXTEND|VNODE_EVENT_WRITE)) {
2443 fsevent_type = FSE_CONTENT_MODIFIED;
2444 } else if (kevents & VNODE_EVENT_LINK) {
2445 fsevent_type = FSE_CREATE_FILE;
2446 } else if (kevents & VNODE_EVENT_RENAME) {
2447 fsevent_type = FSE_CREATE_FILE; // XXXdbg - should use FSE_RENAME but we don't have the destination info;
2448 } else if (kevents & (VNODE_EVENT_FILE_CREATED|VNODE_EVENT_FILE_REMOVED|VNODE_EVENT_DIR_CREATED|VNODE_EVENT_DIR_REMOVED)) {
2449 fsevent_type = FSE_STAT_CHANGED; // XXXdbg - because vp is a dir and the thing created/removed lived inside it
2450 } else { // a catch all for VNODE_EVENT_PERMS, VNODE_EVENT_ATTRIB and anything else
2451 fsevent_type = FSE_STAT_CHANGED;
2452 }
2453
2454 // printf("convert_kevent: kevents 0x%x fsevent type 0x%x (for %s)\n", kevents, fsevent_type, vp->v_name ? vp->v_name : "(no-name)");
2455
2456 fse.dev = vap->va_fsid;
2457 fse.ino = vap->va_fileid;
2458 fse.mode = vnode_vttoif(vnode_vtype(vp)) | (uint32_t)vap->va_mode;
2459 if (vp->v_flag & VISHARDLINK) {
2460 fse.mode |= FSE_MODE_HLINK;
2461 if (vp->v_type == VDIR) {
2462 fse.nlink = vap->va_dirlinkcount;
2463 } else {
2464 fse.nlink = vap->va_nlink;
2465 }
2466 }
2467
2468 if (vp->v_type == VDIR) {
2469 fse.mode |= FSE_REMOTE_DIR_EVENT;
2470 }
2471
2472
2473 fse.uid = vap->va_uid;
2474 fse.gid = vap->va_gid;
2475
2476 len = sizeof(pathbuf);
2477 if (vn_getpath(vp, pathbuf, &len) == 0) {
2478 add_fsevent(fsevent_type, vfs_context_current(), FSE_ARG_STRING, len, pathbuf, FSE_ARG_FINFO, &fse, FSE_ARG_DONE);
2479 }
2480 return;
2481 }
2482
2483 #else /* CONFIG_FSE */
2484 /*
2485 * The get_pathbuff and release_pathbuff routines are used in places not
2486 * related to fsevents, and it's a handy abstraction, so define trivial
2487 * versions that don't cache a pool of buffers. This way, we don't have
2488 * to conditionalize the callers, and they still get the advantage of the
2489 * pool of buffers if CONFIG_FSE is turned on.
2490 */
2491 char *
2492 get_pathbuff(void)
2493 {
2494 char *path;
2495 MALLOC_ZONE(path, char *, MAXPATHLEN, M_NAMEI, M_WAITOK);
2496 return path;
2497 }
2498
2499 void
2500 release_pathbuff(char *path)
2501 {
2502 FREE_ZONE(path, MAXPATHLEN, M_NAMEI);
2503 }
2504 #endif /* CONFIG_FSE */