2 * Copyright (c) 2013-2014 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
28 #include <sys/param.h>
29 #include <sys/systm.h>
30 #include <sys/kernel.h>
31 #include <sys/protosw.h>
32 #include <sys/socketvar.h>
33 #include <sys/syslog.h>
35 #include <net/route.h>
36 #include <netinet/in.h>
37 #include <netinet/in_systm.h>
38 #include <netinet/ip.h>
41 #include <netinet/ip6.h>
44 #include <netinet/ip_var.h>
45 #include <netinet/tcp.h>
46 #include <netinet/tcp_timer.h>
47 #include <netinet/tcp_var.h>
48 #include <netinet/tcp_fsm.h>
49 #include <netinet/tcp_var.h>
50 #include <netinet/tcp_cc.h>
51 #include <netinet/tcpip.h>
52 #include <netinet/tcp_seq.h>
53 #include <kern/task.h>
54 #include <libkern/OSAtomic.h>
56 static int tcp_cubic_init(struct tcpcb
*tp
);
57 static int tcp_cubic_cleanup(struct tcpcb
*tp
);
58 static void tcp_cubic_cwnd_init_or_reset(struct tcpcb
*tp
);
59 static void tcp_cubic_congestion_avd(struct tcpcb
*tp
, struct tcphdr
*th
);
60 static void tcp_cubic_ack_rcvd(struct tcpcb
*tp
, struct tcphdr
*th
);
61 static void tcp_cubic_pre_fr(struct tcpcb
*tp
);
62 static void tcp_cubic_post_fr(struct tcpcb
*tp
, struct tcphdr
*th
);
63 static void tcp_cubic_after_timeout(struct tcpcb
*tp
);
64 static int tcp_cubic_delay_ack(struct tcpcb
*tp
, struct tcphdr
*th
);
65 static void tcp_cubic_switch_cc(struct tcpcb
*tp
, u_int16_t old_index
);
66 static uint32_t tcp_cubic_update(struct tcpcb
*tp
, u_int32_t rtt
);
67 static uint32_t tcp_cubic_tcpwin(struct tcpcb
*tp
, struct tcphdr
*th
);
68 static inline void tcp_cubic_clear_state(struct tcpcb
*tp
);
71 extern float cbrtf(float x
);
73 struct tcp_cc_algo tcp_cc_cubic
= {
75 .init
= tcp_cubic_init
,
76 .cleanup
= tcp_cubic_cleanup
,
77 .cwnd_init
= tcp_cubic_cwnd_init_or_reset
,
78 .congestion_avd
= tcp_cubic_congestion_avd
,
79 .ack_rcvd
= tcp_cubic_ack_rcvd
,
80 .pre_fr
= tcp_cubic_pre_fr
,
81 .post_fr
= tcp_cubic_post_fr
,
82 .after_idle
= tcp_cubic_cwnd_init_or_reset
,
83 .after_timeout
= tcp_cubic_after_timeout
,
84 .delay_ack
= tcp_cubic_delay_ack
,
85 .switch_to
= tcp_cubic_switch_cc
88 const float tcp_cubic_backoff
= 0.2; /* multiplicative decrease factor */
89 const float tcp_cubic_coeff
= 0.4;
90 const float tcp_cubic_fast_convergence_factor
= 0.875;
92 static int tcp_cubic_tcp_friendliness
= 0;
93 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, cubic_tcp_friendliness
,
94 CTLFLAG_RW
| CTLFLAG_LOCKED
, &tcp_cubic_tcp_friendliness
, 0,
95 "Enable TCP friendliness");
97 static int tcp_cubic_fast_convergence
= 0;
98 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, cubic_fast_convergence
,
99 CTLFLAG_RW
| CTLFLAG_LOCKED
, &tcp_cubic_fast_convergence
, 0,
100 "Enable fast convergence");
102 static int tcp_cubic_use_minrtt
= 0;
103 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, cubic_use_minrtt
,
104 CTLFLAG_RW
| CTLFLAG_LOCKED
, &tcp_cubic_use_minrtt
, 0,
105 "use a min of 5 sec rtt");
107 static int tcp_cubic_init(struct tcpcb
*tp
)
109 OSIncrementAtomic((volatile SInt32
*)&tcp_cc_cubic
.num_sockets
);
111 VERIFY(tp
->t_ccstate
!= NULL
);
112 tcp_cubic_clear_state(tp
);
116 static int tcp_cubic_cleanup(struct tcpcb
*tp
)
119 OSDecrementAtomic((volatile SInt32
*)&tcp_cc_cubic
.num_sockets
);
124 * Initialize the congestion window at the beginning of a connection or
127 static void tcp_cubic_cwnd_init_or_reset(struct tcpcb
*tp
)
129 VERIFY(tp
->t_ccstate
!= NULL
);
131 tcp_cubic_clear_state(tp
);
132 tcp_cc_cwnd_init_or_reset(tp
);
135 * slow start threshold could get initialized to a lower value
136 * when there is a cached value in the route metrics. In this case,
137 * the connection can enter congestion avoidance without any packet
138 * loss and Cubic will enter steady-state too early. It is better
139 * to always probe to find the initial slow-start threshold.
141 if (tp
->t_inpcb
->inp_stat
->txbytes
<= TCP_CC_CWND_INIT_BYTES
142 && tp
->snd_ssthresh
< (TCP_MAXWIN
<< TCP_MAX_WINSHIFT
))
143 tp
->snd_ssthresh
= TCP_MAXWIN
<< TCP_MAX_WINSHIFT
;
145 /* Initialize cubic last max to be same as ssthresh */
146 tp
->t_ccstate
->cub_last_max
= tp
->snd_ssthresh
;
148 /* If stretch ack was auto-disabled, re-evaluate it */
149 tcp_cc_after_idle_stretchack(tp
);
153 * Compute the target congestion window for the next RTT according to
154 * cubic equation when an ack is received.
156 * W(t) = C(t-K)^3 + W(last_max)
159 tcp_cubic_update(struct tcpcb
*tp
, u_int32_t rtt
)
162 u_int32_t elapsed_time
, win
;
164 win
= min(tp
->snd_cwnd
, tp
->snd_wnd
);
165 if (tp
->t_ccstate
->cub_last_max
== 0)
166 tp
->t_ccstate
->cub_last_max
= tp
->snd_ssthresh
;
168 if (tp
->t_ccstate
->cub_epoch_start
== 0) {
170 * This is the beginning of a new epoch, initialize some of
171 * the variables that we need to use for computing the
172 * congestion window later.
174 tp
->t_ccstate
->cub_epoch_start
= tcp_now
;
175 if (tp
->t_ccstate
->cub_epoch_start
== 0)
176 tp
->t_ccstate
->cub_epoch_start
= 1;
177 if (win
< tp
->t_ccstate
->cub_last_max
) {
179 VERIFY(current_task() == kernel_task
);
182 * Compute cubic epoch period, this is the time
183 * period that the window will take to increase to
184 * last_max again after backoff due to loss.
186 K
= (tp
->t_ccstate
->cub_last_max
- win
)
187 / tp
->t_maxseg
/ tcp_cubic_coeff
;
189 tp
->t_ccstate
->cub_epoch_period
= K
* TCP_RETRANSHZ
;
191 tp
->t_ccstate
->cub_origin_point
=
192 tp
->t_ccstate
->cub_last_max
;
194 tp
->t_ccstate
->cub_epoch_period
= 0;
195 tp
->t_ccstate
->cub_origin_point
= win
;
197 tp
->t_ccstate
->cub_target_win
= 0;
200 VERIFY(tp
->t_ccstate
->cub_origin_point
> 0);
202 * Compute the target window for the next RTT using smoothed RTT
203 * as an estimate for next RTT.
205 elapsed_time
= timer_diff(tcp_now
, 0,
206 tp
->t_ccstate
->cub_epoch_start
, 0);
208 if (tcp_cubic_use_minrtt
)
209 elapsed_time
+= max(tcp_cubic_use_minrtt
, rtt
);
212 var
= (elapsed_time
- tp
->t_ccstate
->cub_epoch_period
) / TCP_RETRANSHZ
;
213 var
= var
* var
* var
* (tcp_cubic_coeff
* tp
->t_maxseg
);
215 tp
->t_ccstate
->cub_target_win
= tp
->t_ccstate
->cub_origin_point
+ var
;
216 return (tp
->t_ccstate
->cub_target_win
);
220 * Standard TCP utilizes bandwidth well in low RTT and low BDP connections
221 * even when there is some packet loss. Enabling TCP mode will help Cubic
222 * to achieve this kind of utilization.
224 * But if there is a bottleneck link in the path with a fixed size queue
225 * and fixed bandwidth, TCP Cubic will help to reduce packet loss at this
226 * link because of the steady-state behavior. Using average and mean
227 * absolute deviation of W(lastmax), we try to detect if the congestion
228 * window is close to the bottleneck bandwidth. In that case, disabling
229 * TCP mode will help to minimize packet loss at this link.
231 * Disable TCP mode if the W(lastmax) (the window where previous packet
232 * loss happened) is within a small range from the average last max
235 #define TCP_CUBIC_ENABLE_TCPMODE(_tp_) \
236 ((!soissrcrealtime((_tp_)->t_inpcb->inp_socket) && \
237 (_tp_)->t_ccstate->cub_mean_dev > (tp->t_maxseg << 1)) ? 1 : 0)
240 * Compute the window growth if standard TCP (AIMD) was used with
241 * a backoff of 0.5 and additive increase of 1 packet per RTT.
243 * TCP window at time t can be calculated using the following equation
246 * W(t) <- Wmax * beta + 3 * ((1 - beta)/(1 + beta)) * t/RTT
250 tcp_cubic_tcpwin(struct tcpcb
*tp
, struct tcphdr
*th
)
252 if (tp
->t_ccstate
->cub_tcp_win
== 0) {
253 tp
->t_ccstate
->cub_tcp_win
= min(tp
->snd_cwnd
, tp
->snd_wnd
);
254 tp
->t_ccstate
->cub_tcp_bytes_acked
= 0;
256 tp
->t_ccstate
->cub_tcp_bytes_acked
+=
258 if (tp
->t_ccstate
->cub_tcp_bytes_acked
>=
259 tp
->t_ccstate
->cub_tcp_win
) {
260 tp
->t_ccstate
->cub_tcp_bytes_acked
-=
261 tp
->t_ccstate
->cub_tcp_win
;
262 tp
->t_ccstate
->cub_tcp_win
+= tp
->t_maxseg
;
265 return (tp
->t_ccstate
->cub_tcp_win
);
269 * Handle an in-sequence ack during congestion avoidance phase.
272 tcp_cubic_congestion_avd(struct tcpcb
*tp
, struct tcphdr
*th
)
274 u_int32_t cubic_target_win
, tcp_win
, rtt
;
276 tp
->t_bytes_acked
+= BYTES_ACKED(th
, tp
);
278 rtt
= get_base_rtt(tp
);
280 * First compute cubic window. If cubic variables are not
281 * initialized (after coming out of recovery), this call will
284 cubic_target_win
= tcp_cubic_update(tp
, rtt
);
286 /* Compute TCP window if a multiplicative decrease of 0.2 is used */
287 tcp_win
= tcp_cubic_tcpwin(tp
, th
);
289 if (tp
->snd_cwnd
< tcp_win
&&
290 (tcp_cubic_tcp_friendliness
== 1 ||
291 TCP_CUBIC_ENABLE_TCPMODE(tp
))) {
292 /* this connection is in TCP-friendly region */
293 if (tp
->t_bytes_acked
>= tp
->snd_cwnd
) {
294 tp
->t_bytes_acked
-= tp
->snd_cwnd
;
295 tp
->snd_cwnd
= min(tcp_win
, TCP_MAXWIN
<< tp
->snd_scale
);
298 if (cubic_target_win
> tp
->snd_cwnd
) {
300 * The target win is computed for the next RTT.
301 * To reach this value, cwnd will have to be updated
302 * one segment at a time. Compute how many bytes
303 * need to be acknowledged before we can increase
304 * the cwnd by one segment.
307 incr_win
= tp
->snd_cwnd
* tp
->t_maxseg
;
308 incr_win
/= (cubic_target_win
- tp
->snd_cwnd
);
310 tp
->t_bytes_acked
>= incr_win
) {
311 tp
->t_bytes_acked
-= incr_win
;
313 min((tp
->snd_cwnd
+ tp
->t_maxseg
),
314 TCP_MAXWIN
<< tp
->snd_scale
);
321 tcp_cubic_ack_rcvd(struct tcpcb
*tp
, struct tcphdr
*th
)
323 if (tp
->snd_cwnd
>= tp
->snd_ssthresh
) {
324 /* Congestion avoidance phase */
325 tcp_cubic_congestion_avd(tp
, th
);
328 * Use 2*SMSS as limit on increment as suggested
329 * by RFC 3465 section 2.3
331 uint32_t acked
, abc_lim
, incr
;
332 acked
= BYTES_ACKED(th
, tp
);
333 abc_lim
= (tcp_do_rfc3465_lim2
&&
334 tp
->snd_nxt
== tp
->snd_max
) ?
335 2 * tp
->t_maxseg
: tp
->t_maxseg
;
336 incr
= min(acked
, abc_lim
);
338 tp
->snd_cwnd
+= incr
;
339 tp
->snd_cwnd
= min(tp
->snd_cwnd
,
340 TCP_MAXWIN
<< tp
->snd_scale
);
345 tcp_cubic_pre_fr(struct tcpcb
*tp
)
349 tp
->t_ccstate
->cub_epoch_start
= 0;
350 tp
->t_ccstate
->cub_tcp_win
= 0;
351 tp
->t_ccstate
->cub_target_win
= 0;
352 tp
->t_ccstate
->cub_tcp_bytes_acked
= 0;
354 win
= min(tp
->snd_cwnd
, tp
->snd_wnd
);
356 * Note the congestion window at which packet loss occurred as
359 * If the congestion window is less than the last max window when
360 * loss occurred, it indicates that capacity available in the
361 * network has gone down. This can happen if a new flow has started
362 * and it is capturing some of the bandwidth. To reach convergence
363 * quickly, backoff a little more. Disable fast convergence to
364 * disable this behavior.
366 if (win
< tp
->t_ccstate
->cub_last_max
&&
367 tcp_cubic_fast_convergence
== 1)
368 tp
->t_ccstate
->cub_last_max
= win
*
369 tcp_cubic_fast_convergence_factor
;
371 tp
->t_ccstate
->cub_last_max
= win
;
373 if (tp
->t_ccstate
->cub_last_max
== 0) {
375 * If last_max is zero because snd_wnd is zero or for
376 * any other reason, initialize it to the amount of data
379 tp
->t_ccstate
->cub_last_max
= tp
->snd_max
- tp
->snd_una
;
383 * Compute average and mean absolute deviation of the
384 * window at which packet loss occurred.
386 if (tp
->t_ccstate
->cub_avg_lastmax
== 0) {
387 tp
->t_ccstate
->cub_avg_lastmax
= tp
->t_ccstate
->cub_last_max
;
390 * Average is computed by taking 63 parts of
391 * history and one part of the most recent value
393 avg
= tp
->t_ccstate
->cub_avg_lastmax
;
394 avg
= (avg
<< 6) - avg
;
395 tp
->t_ccstate
->cub_avg_lastmax
=
396 (avg
+ tp
->t_ccstate
->cub_last_max
) >> 6;
399 /* caluclate deviation from average */
400 dev
= tp
->t_ccstate
->cub_avg_lastmax
- tp
->t_ccstate
->cub_last_max
;
402 /* Take the absolute value */
406 if (tp
->t_ccstate
->cub_mean_dev
== 0) {
407 tp
->t_ccstate
->cub_mean_dev
= dev
;
409 dev
= dev
+ ((tp
->t_ccstate
->cub_mean_dev
<< 4)
410 - tp
->t_ccstate
->cub_mean_dev
);
411 tp
->t_ccstate
->cub_mean_dev
= dev
>> 4;
414 /* Backoff congestion window by tcp_cubic_backoff factor */
415 win
= win
- (win
* tcp_cubic_backoff
);
416 win
= (win
/ tp
->t_maxseg
);
419 tp
->snd_ssthresh
= win
* tp
->t_maxseg
;
420 tcp_cc_resize_sndbuf(tp
);
424 tcp_cubic_post_fr(struct tcpcb
*tp
, struct tcphdr
*th
)
426 uint32_t flight_size
= 0;
428 if (SEQ_LEQ(th
->th_ack
, tp
->snd_max
))
429 flight_size
= tp
->snd_max
- th
->th_ack
;
431 * Complete ack. The current window was inflated for fast recovery.
432 * It has to be deflated post recovery.
434 * Window inflation should have left us with approx snd_ssthresh
435 * outstanding data. If the flight size is zero or one segment,
436 * make congestion window to be at least as big as 2 segments to
437 * avoid delayed acknowledgements. This is according to RFC 6582.
439 if (flight_size
< tp
->snd_ssthresh
)
440 tp
->snd_cwnd
= max(flight_size
, tp
->t_maxseg
)
443 tp
->snd_cwnd
= tp
->snd_ssthresh
;
444 tp
->t_ccstate
->cub_tcp_win
= 0;
445 tp
->t_ccstate
->cub_target_win
= 0;
446 tp
->t_ccstate
->cub_tcp_bytes_acked
= 0;
450 tcp_cubic_after_timeout(struct tcpcb
*tp
)
452 VERIFY(tp
->t_ccstate
!= NULL
);
453 if (!IN_FASTRECOVERY(tp
)) {
454 tcp_cubic_clear_state(tp
);
455 tcp_cubic_pre_fr(tp
);
459 * Close the congestion window down to one segment as a retransmit
460 * timeout might indicate severe congestion.
462 tp
->snd_cwnd
= tp
->t_maxseg
;
466 tcp_cubic_delay_ack(struct tcpcb
*tp
, struct tcphdr
*th
)
468 return (tcp_cc_delay_ack(tp
, th
));
472 * When switching from a different CC it is better for Cubic to start
473 * fresh. The state required for Cubic calculation might be stale and it
474 * might not represent the current state of the network. If it starts as
475 * a new connection it will probe and learn the existing network conditions.
478 tcp_cubic_switch_cc(struct tcpcb
*tp
, uint16_t old_cc_index
)
480 #pragma unused(old_cc_index)
481 tcp_cubic_cwnd_init_or_reset(tp
);
482 /* Start counting bytes for RFC 3465 again */
483 tp
->t_bytes_acked
= 0;
485 OSIncrementAtomic((volatile SInt32
*)&tcp_cc_cubic
.num_sockets
);
488 static inline void tcp_cubic_clear_state(struct tcpcb
*tp
)
490 tp
->t_ccstate
->cub_last_max
= 0;
491 tp
->t_ccstate
->cub_epoch_start
= 0;
492 tp
->t_ccstate
->cub_origin_point
= 0;
493 tp
->t_ccstate
->cub_tcp_win
= 0;
494 tp
->t_ccstate
->cub_tcp_bytes_acked
= 0;
495 tp
->t_ccstate
->cub_epoch_period
= 0;
496 tp
->t_ccstate
->cub_target_win
= 0;