]> git.saurik.com Git - apple/xnu.git/blob - osfmk/x86_64/machine_routines_asm.s
xnu-3789.60.24.tar.gz
[apple/xnu.git] / osfmk / x86_64 / machine_routines_asm.s
1 /*
2 * Copyright (c) 2000-2010 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28
29 #include <i386/asm.h>
30 #include <i386/rtclock_asm.h>
31 #include <i386/proc_reg.h>
32 #include <i386/eflags.h>
33
34 #include <i386/postcode.h>
35 #include <i386/apic.h>
36 #include <i386/vmx/vmx_asm.h>
37 #include <assym.s>
38
39 /*
40 ** ml_get_timebase()
41 **
42 ** Returns TSC in RAX
43 **
44 */
45 ENTRY(ml_get_timebase)
46
47 lfence
48 rdtsc
49 lfence
50 shlq $32,%rdx
51 orq %rdx,%rax
52
53 ret
54
55 /*
56 * Convert between various timer units
57 *
58 * This code converts 64-bit time units to other units.
59 * For example, the TSC is converted to HPET units.
60 *
61 * Time is a 64-bit integer that is some number of ticks.
62 * Conversion is 64-bit fixed point number which is composed
63 * of a 32 bit integer and a 32 bit fraction.
64 *
65 * The time ticks are multiplied by the conversion factor. The
66 * calculations are done as a 128-bit value but both the high
67 * and low words are dropped. The high word is overflow and the
68 * low word is the fraction part of the result.
69 *
70 * We return a 64-bit value.
71 *
72 * Note that we can use this function to multiply 2 conversion factors.
73 * We do this in order to calculate the multiplier used to convert
74 * directly between any two units.
75 *
76 * uint64_t tmrCvt(uint64_t time, // %rdi
77 * uint64_t conversion) // %rsi
78 *
79 */
80 ENTRY(tmrCvt)
81 cmpq $1,%rsi /* check for unity fastpath */
82 je 1f
83 movq %rdi,%rax
84 mulq %rsi /* result is %rdx:%rax */
85 shrdq $32,%rdx,%rax /* %rdx:%rax >>= 32 */
86 ret
87 1:
88 mov %rdi,%rax
89 ret
90
91 /*
92 * void _rtc_nanotime_adjust(
93 * uint64_t tsc_base_delta, // %rdi
94 * rtc_nanotime_t *dst); // %rsi
95 */
96 ENTRY(_rtc_nanotime_adjust)
97 movl RNT_GENERATION(%rsi),%eax /* get current generation */
98 movl $0,RNT_GENERATION(%rsi) /* flag data as being updated */
99 addq %rdi,RNT_TSC_BASE(%rsi)
100
101 incl %eax /* next generation */
102 jnz 1f
103 incl %eax /* skip 0, which is a flag */
104 1: movl %eax,RNT_GENERATION(%rsi) /* update generation */
105
106 ret
107
108 /*
109 * uint64_t _rtc_nanotime_read(rtc_nanotime_t *rntp);
110 *
111 * This is the same as the commpage nanotime routine, except that it uses the
112 * kernel internal "rtc_nanotime_info" data instead of the commpage data.
113 * These two copies of data are kept in sync by rtc_clock_napped().
114 *
115 * Warning! There are several copies of this code in the trampolines found in
116 * osfmk/x86_64/idt64.s, coming from the various TIMER macros in rtclock_asm.h.
117 * They're all kept in sync by using the RTC_NANOTIME_READ() macro.
118 *
119 * The algorithm we use is:
120 *
121 * ns = ((((rdtsc - rnt_tsc_base)<<rnt_shift)*rnt_tsc_scale) / 2**32) + rnt_ns_base;
122 *
123 * rnt_shift, a constant computed during initialization, is the smallest value for which:
124 *
125 * (tscFreq << rnt_shift) > SLOW_TSC_THRESHOLD
126 *
127 * Where SLOW_TSC_THRESHOLD is about 10e9. Since most processor's tscFreqs are greater
128 * than 1GHz, rnt_shift is usually 0. rnt_tsc_scale is also a 32-bit constant:
129 *
130 * rnt_tsc_scale = (10e9 * 2**32) / (tscFreq << rnt_shift);
131 *
132 * On 64-bit processors this algorithm could be simplified by doing a 64x64 bit
133 * multiply of rdtsc by tscFCvtt2n:
134 *
135 * ns = (((rdtsc - rnt_tsc_base) * tscFCvtt2n) / 2**32) + rnt_ns_base;
136 *
137 * We don't do so in order to use the same algorithm in 32- and 64-bit mode.
138 * When U32 goes away, we should reconsider.
139 *
140 * Since this routine is not synchronized and can be called in any context,
141 * we use a generation count to guard against seeing partially updated data.
142 * In addition, the _rtc_nanotime_store() routine zeroes the generation before
143 * updating the data, and stores the nonzero generation only after all fields
144 * have been stored. Because IA32 guarantees that stores by one processor
145 * must be seen in order by another, we can avoid using a lock. We spin while
146 * the generation is zero.
147 *
148 * unint64_t _rtc_nanotime_read(
149 * rtc_nanotime_t *rntp); // %rdi
150 *
151 */
152 ENTRY(_rtc_nanotime_read)
153
154 PAL_RTC_NANOTIME_READ_FAST()
155
156 ret
157
158 /*
159 * extern uint64_t _rtc_tsc_to_nanoseconds(
160 * uint64_t value, // %rdi
161 * pal_rtc_nanotime_t *rntp); // %rsi
162 *
163 * Converts TSC units to nanoseconds, using an abbreviated form of the above
164 * algorithm. Note that while we could have simply used tmrCvt(value,tscFCvtt2n),
165 * which would avoid the need for this asm, doing so is a bit more risky since
166 * we'd be using a different algorithm with possibly different rounding etc.
167 */
168
169 ENTRY(_rtc_tsc_to_nanoseconds)
170 movq %rdi,%rax /* copy value (in TSC units) to convert */
171 movl RNT_SHIFT(%rsi),%ecx
172 movl RNT_SCALE(%rsi),%edx
173 shlq %cl,%rax /* tscUnits << shift */
174 mulq %rdx /* (tscUnits << shift) * scale */
175 shrdq $32,%rdx,%rax /* %rdx:%rax >>= 32 */
176 ret
177
178
179
180 Entry(call_continuation)
181 movq %rdi,%rcx /* get continuation */
182 movq %rsi,%rdi /* continuation param */
183 movq %rdx,%rsi /* wait result */
184 movq %gs:CPU_KERNEL_STACK,%rsp /* set the stack */
185 xorq %rbp,%rbp /* zero frame pointer */
186 call *%rcx /* call continuation */
187 movq %gs:CPU_ACTIVE_THREAD,%rdi
188 call EXT(thread_terminate)
189
190 Entry(x86_init_wrapper)
191 xor %rbp, %rbp
192 movq %rsi, %rsp
193 callq *%rdi
194
195 #if CONFIG_VMX
196
197 /*
198 * __vmxon -- Enter VMX Operation
199 * int __vmxon(addr64_t v);
200 */
201 Entry(__vmxon)
202 FRAME
203 push %rdi
204
205 mov $(VMX_FAIL_INVALID), %ecx
206 mov $(VMX_FAIL_VALID), %edx
207 mov $(VMX_SUCCEED), %eax
208 vmxon (%rsp)
209 cmovcl %ecx, %eax /* CF = 1, ZF = 0 */
210 cmovzl %edx, %eax /* CF = 0, ZF = 1 */
211
212 pop %rdi
213 EMARF
214 ret
215
216 /*
217 * __vmxoff -- Leave VMX Operation
218 * int __vmxoff(void);
219 */
220 Entry(__vmxoff)
221 FRAME
222
223 mov $(VMX_FAIL_INVALID), %ecx
224 mov $(VMX_FAIL_VALID), %edx
225 mov $(VMX_SUCCEED), %eax
226 vmxoff
227 cmovcl %ecx, %eax /* CF = 1, ZF = 0 */
228 cmovzl %edx, %eax /* CF = 0, ZF = 1 */
229
230 EMARF
231 ret
232
233 #endif /* CONFIG_VMX */
234
235 /*
236 * mfence -- Memory Barrier
237 * Use out-of-line assembly to get
238 * standard x86-64 ABI guarantees
239 * about what the caller's codegen
240 * has in registers vs. memory
241 */
242 Entry(do_mfence)
243 mfence
244 ret