]> git.saurik.com Git - apple/xnu.git/blob - bsd/sys/dtrace.h
xnu-3789.60.24.tar.gz
[apple/xnu.git] / bsd / sys / dtrace.h
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Portions copyright (c) 2013, Joyent, Inc. All rights reserved.
24 * Portions Copyright (c) 2013 by Delphix. All rights reserved.
25 */
26
27 /*
28 * Copyright 2007 Sun Microsystems, Inc. All rights reserved.
29 * Use is subject to license terms.
30 *
31 * Portions Copyright (c) 2012 by Delphix. All rights reserved.
32 */
33
34 #ifndef _SYS_DTRACE_H
35 #define _SYS_DTRACE_H
36
37 /* #pragma ident "@(#)dtrace.h 1.37 07/06/05 SMI" */
38
39 #ifdef __cplusplus
40 extern "C" {
41 #endif
42
43 /*
44 * DTrace Dynamic Tracing Software: Kernel Interfaces
45 *
46 * Note: The contents of this file are private to the implementation of the
47 * Solaris system and DTrace subsystem and are subject to change at any time
48 * without notice. Applications and drivers using these interfaces will fail
49 * to run on future releases. These interfaces should not be used for any
50 * purpose except those expressly outlined in dtrace(7D) and libdtrace(3LIB).
51 * Please refer to the "Solaris Dynamic Tracing Guide" for more information.
52 */
53
54 #ifndef _ASM
55
56 #if !defined(__APPLE__)
57 #include <sys/types.h>
58 #include <sys/modctl.h>
59 #include <sys/processor.h>
60 #include <sys/systm.h>
61 #include <sys/ctf_api.h>
62 #include <sys/cyclic.h>
63 #include <sys/int_limits.h>
64 #else /* is Apple Mac OS X */
65
66 #if defined(__LP64__)
67 #if !defined(_LP64)
68 #define _LP64 /* Solaris vs. Darwin */
69 #endif
70 #else
71 #if !defined(_ILP32)
72 #define _ILP32 /* Solaris vs. Darwin */
73 #endif
74 #endif
75
76 #ifdef KERNEL
77 #ifndef _KERNEL
78 #define _KERNEL /* Solaris vs. Darwin */
79 #endif
80 #endif
81
82 #if defined(__BIG_ENDIAN__)
83 #if !defined(_BIG_ENDIAN)
84 #define _BIG_ENDIAN /* Solaris vs. Darwin */
85 #endif
86 #elif defined(__LITTLE_ENDIAN__)
87 #if !defined(_LITTLE_ENDIAN)
88 #define _LITTLE_ENDIAN /* Solaris vs. Darwin */
89 #endif
90 #else
91 #error Unknown endian-ness
92 #endif
93
94 #include <sys/types.h>
95 #include <sys/param.h>
96 #include <stdint.h>
97
98 #ifndef NULL
99 #define NULL ((void *)0) /* quiets many warnings */
100 #endif
101
102 #define SEC 1
103 #define MILLISEC 1000
104 #define MICROSEC 1000000
105 #define NANOSEC 1000000000
106
107 #define S_ROUND(x, a) ((x) + (((a) ? (a) : 1) - 1) & ~(((a) ? (a) : 1) - 1))
108 #define P2ROUNDUP(x, align) (-(-(x) & -(align)))
109 #define P2PHASEUP(x, align, phase) ((phase) - (((phase) - (x)) & -(align)))
110
111 #define CTF_MODEL_ILP32 1 /* object data model is ILP32 */
112 #define CTF_MODEL_LP64 2 /* object data model is LP64 */
113 #ifdef __LP64__
114 #define CTF_MODEL_NATIVE CTF_MODEL_LP64
115 #else
116 #define CTF_MODEL_NATIVE CTF_MODEL_ILP32
117 #endif
118
119 typedef uint8_t uchar_t;
120 typedef uint16_t ushort_t;
121 typedef uint32_t uint_t;
122 typedef unsigned long ulong_t;
123 typedef uint64_t u_longlong_t;
124 typedef int64_t longlong_t;
125 typedef int64_t off64_t;
126 typedef int processorid_t;
127 typedef int64_t hrtime_t;
128
129 typedef enum { B_FALSE = 0, B_TRUE = 1 } _dtrace_boolean;
130
131 typedef uint8_t UUID[16]; /* For modctl use in dtrace.h */
132
133 struct modctl; /* In lieu of Solaris <sys/modctl.h> */
134 /* NOTHING */ /* In lieu of Solaris <sys/processor.h> */
135 #include <sys/ioctl.h> /* In lieu of Solaris <sys/systm.h> */
136 #ifdef KERNEL
137 /* NOTHING */ /* In lieu of Solaris <sys/ctf_api.h> */
138 #else
139 /* In lieu of Solaris <sys/ctf_api.h> */
140 typedef struct ctf_file ctf_file_t;
141 typedef long ctf_id_t;
142 #endif
143 /* NOTHING */ /* In lieu of Solaris <sys/cyclic.h> */
144 /* NOTHING */ /* In lieu of Solaris <sys/int_limits.h> */
145
146 typedef uint32_t zoneid_t;
147
148 #include <sys/dtrace_glue.h>
149
150 #include <stdarg.h>
151 typedef va_list __va_list;
152
153 /* Solaris proc_t is the struct. Darwin's proc_t is a pointer to it. */
154 #define proc_t struct proc /* Steer clear of the Darwin typedef for proc_t */
155 #endif /* __APPLE__ */
156
157 /*
158 * DTrace Universal Constants and Typedefs
159 */
160 #define DTRACE_CPUALL -1 /* all CPUs */
161 #define DTRACE_IDNONE 0 /* invalid probe identifier */
162 #define DTRACE_EPIDNONE 0 /* invalid enabled probe identifier */
163 #define DTRACE_AGGIDNONE 0 /* invalid aggregation identifier */
164 #define DTRACE_AGGVARIDNONE 0 /* invalid aggregation variable ID */
165 #define DTRACE_CACHEIDNONE 0 /* invalid predicate cache */
166 #define DTRACE_PROVNONE 0 /* invalid provider identifier */
167 #define DTRACE_METAPROVNONE 0 /* invalid meta-provider identifier */
168 #define DTRACE_ARGNONE -1 /* invalid argument index */
169
170 #define DTRACE_PROVNAMELEN 64
171 #define DTRACE_MODNAMELEN 64
172 #define DTRACE_FUNCNAMELEN 128
173 #define DTRACE_NAMELEN 64
174 #define DTRACE_FULLNAMELEN (DTRACE_PROVNAMELEN + DTRACE_MODNAMELEN + \
175 DTRACE_FUNCNAMELEN + DTRACE_NAMELEN + 4)
176 #define DTRACE_ARGTYPELEN 128
177
178 typedef uint32_t dtrace_id_t; /* probe identifier */
179 typedef uint32_t dtrace_epid_t; /* enabled probe identifier */
180 typedef uint32_t dtrace_aggid_t; /* aggregation identifier */
181 typedef int64_t dtrace_aggvarid_t; /* aggregation variable identifier */
182 typedef uint16_t dtrace_actkind_t; /* action kind */
183 typedef int64_t dtrace_optval_t; /* option value */
184 typedef uint32_t dtrace_cacheid_t; /* predicate cache identifier */
185
186 typedef enum dtrace_probespec {
187 DTRACE_PROBESPEC_NONE = -1,
188 DTRACE_PROBESPEC_PROVIDER = 0,
189 DTRACE_PROBESPEC_MOD,
190 DTRACE_PROBESPEC_FUNC,
191 DTRACE_PROBESPEC_NAME
192 } dtrace_probespec_t;
193
194 /*
195 * DTrace Intermediate Format (DIF)
196 *
197 * The following definitions describe the DTrace Intermediate Format (DIF), a
198 * a RISC-like instruction set and program encoding used to represent
199 * predicates and actions that can be bound to DTrace probes. The constants
200 * below defining the number of available registers are suggested minimums; the
201 * compiler should use DTRACEIOC_CONF to dynamically obtain the number of
202 * registers provided by the current DTrace implementation.
203 */
204 #define DIF_VERSION_1 1 /* DIF version 1: Solaris 10 Beta */
205 #define DIF_VERSION_2 2 /* DIF version 2: Solaris 10 FCS */
206 #define DIF_VERSION DIF_VERSION_2 /* latest DIF instruction set version */
207 #define DIF_DIR_NREGS 8 /* number of DIF integer registers */
208 #define DIF_DTR_NREGS 8 /* number of DIF tuple registers */
209
210 #define DIF_OP_OR 1 /* or r1, r2, rd */
211 #define DIF_OP_XOR 2 /* xor r1, r2, rd */
212 #define DIF_OP_AND 3 /* and r1, r2, rd */
213 #define DIF_OP_SLL 4 /* sll r1, r2, rd */
214 #define DIF_OP_SRL 5 /* srl r1, r2, rd */
215 #define DIF_OP_SUB 6 /* sub r1, r2, rd */
216 #define DIF_OP_ADD 7 /* add r1, r2, rd */
217 #define DIF_OP_MUL 8 /* mul r1, r2, rd */
218 #define DIF_OP_SDIV 9 /* sdiv r1, r2, rd */
219 #define DIF_OP_UDIV 10 /* udiv r1, r2, rd */
220 #define DIF_OP_SREM 11 /* srem r1, r2, rd */
221 #define DIF_OP_UREM 12 /* urem r1, r2, rd */
222 #define DIF_OP_NOT 13 /* not r1, rd */
223 #define DIF_OP_MOV 14 /* mov r1, rd */
224 #define DIF_OP_CMP 15 /* cmp r1, r2 */
225 #define DIF_OP_TST 16 /* tst r1 */
226 #define DIF_OP_BA 17 /* ba label */
227 #define DIF_OP_BE 18 /* be label */
228 #define DIF_OP_BNE 19 /* bne label */
229 #define DIF_OP_BG 20 /* bg label */
230 #define DIF_OP_BGU 21 /* bgu label */
231 #define DIF_OP_BGE 22 /* bge label */
232 #define DIF_OP_BGEU 23 /* bgeu label */
233 #define DIF_OP_BL 24 /* bl label */
234 #define DIF_OP_BLU 25 /* blu label */
235 #define DIF_OP_BLE 26 /* ble label */
236 #define DIF_OP_BLEU 27 /* bleu label */
237 #define DIF_OP_LDSB 28 /* ldsb [r1], rd */
238 #define DIF_OP_LDSH 29 /* ldsh [r1], rd */
239 #define DIF_OP_LDSW 30 /* ldsw [r1], rd */
240 #define DIF_OP_LDUB 31 /* ldub [r1], rd */
241 #define DIF_OP_LDUH 32 /* lduh [r1], rd */
242 #define DIF_OP_LDUW 33 /* lduw [r1], rd */
243 #define DIF_OP_LDX 34 /* ldx [r1], rd */
244 #define DIF_OP_RET 35 /* ret rd */
245 #define DIF_OP_NOP 36 /* nop */
246 #define DIF_OP_SETX 37 /* setx intindex, rd */
247 #define DIF_OP_SETS 38 /* sets strindex, rd */
248 #define DIF_OP_SCMP 39 /* scmp r1, r2 */
249 #define DIF_OP_LDGA 40 /* ldga var, ri, rd */
250 #define DIF_OP_LDGS 41 /* ldgs var, rd */
251 #define DIF_OP_STGS 42 /* stgs var, rs */
252 #define DIF_OP_LDTA 43 /* ldta var, ri, rd */
253 #define DIF_OP_LDTS 44 /* ldts var, rd */
254 #define DIF_OP_STTS 45 /* stts var, rs */
255 #define DIF_OP_SRA 46 /* sra r1, r2, rd */
256 #define DIF_OP_CALL 47 /* call subr, rd */
257 #define DIF_OP_PUSHTR 48 /* pushtr type, rs, rr */
258 #define DIF_OP_PUSHTV 49 /* pushtv type, rs, rv */
259 #define DIF_OP_POPTS 50 /* popts */
260 #define DIF_OP_FLUSHTS 51 /* flushts */
261 #define DIF_OP_LDGAA 52 /* ldgaa var, rd */
262 #define DIF_OP_LDTAA 53 /* ldtaa var, rd */
263 #define DIF_OP_STGAA 54 /* stgaa var, rs */
264 #define DIF_OP_STTAA 55 /* sttaa var, rs */
265 #define DIF_OP_LDLS 56 /* ldls var, rd */
266 #define DIF_OP_STLS 57 /* stls var, rs */
267 #define DIF_OP_ALLOCS 58 /* allocs r1, rd */
268 #define DIF_OP_COPYS 59 /* copys r1, r2, rd */
269 #define DIF_OP_STB 60 /* stb r1, [rd] */
270 #define DIF_OP_STH 61 /* sth r1, [rd] */
271 #define DIF_OP_STW 62 /* stw r1, [rd] */
272 #define DIF_OP_STX 63 /* stx r1, [rd] */
273 #define DIF_OP_ULDSB 64 /* uldsb [r1], rd */
274 #define DIF_OP_ULDSH 65 /* uldsh [r1], rd */
275 #define DIF_OP_ULDSW 66 /* uldsw [r1], rd */
276 #define DIF_OP_ULDUB 67 /* uldub [r1], rd */
277 #define DIF_OP_ULDUH 68 /* ulduh [r1], rd */
278 #define DIF_OP_ULDUW 69 /* ulduw [r1], rd */
279 #define DIF_OP_ULDX 70 /* uldx [r1], rd */
280 #define DIF_OP_RLDSB 71 /* rldsb [r1], rd */
281 #define DIF_OP_RLDSH 72 /* rldsh [r1], rd */
282 #define DIF_OP_RLDSW 73 /* rldsw [r1], rd */
283 #define DIF_OP_RLDUB 74 /* rldub [r1], rd */
284 #define DIF_OP_RLDUH 75 /* rlduh [r1], rd */
285 #define DIF_OP_RLDUW 76 /* rlduw [r1], rd */
286 #define DIF_OP_RLDX 77 /* rldx [r1], rd */
287 #define DIF_OP_XLATE 78 /* xlate xlrindex, rd */
288 #define DIF_OP_XLARG 79 /* xlarg xlrindex, rd */
289
290 #define DIF_INTOFF_MAX 0xffff /* highest integer table offset */
291 #define DIF_STROFF_MAX 0xffff /* highest string table offset */
292 #define DIF_REGISTER_MAX 0xff /* highest register number */
293 #define DIF_VARIABLE_MAX 0xffff /* highest variable identifier */
294 #define DIF_SUBROUTINE_MAX 0xffff /* highest subroutine code */
295
296 #define DIF_VAR_ARRAY_MIN 0x0000 /* lowest numbered array variable */
297 #define DIF_VAR_ARRAY_UBASE 0x0080 /* lowest user-defined array */
298 #define DIF_VAR_ARRAY_MAX 0x00ff /* highest numbered array variable */
299
300 #define DIF_VAR_OTHER_MIN 0x0100 /* lowest numbered scalar or assc */
301 #define DIF_VAR_OTHER_UBASE 0x0500 /* lowest user-defined scalar or assc */
302 #define DIF_VAR_OTHER_MAX 0xffff /* highest numbered scalar or assc */
303
304 #define DIF_VAR_ARGS 0x0000 /* arguments array */
305 #define DIF_VAR_REGS 0x0001 /* registers array */
306 #define DIF_VAR_UREGS 0x0002 /* user registers array */
307 #define DIF_VAR_CURTHREAD 0x0100 /* thread pointer */
308 #define DIF_VAR_TIMESTAMP 0x0101 /* timestamp */
309 #define DIF_VAR_VTIMESTAMP 0x0102 /* virtual timestamp */
310 #define DIF_VAR_IPL 0x0103 /* interrupt priority level */
311 #define DIF_VAR_EPID 0x0104 /* enabled probe ID */
312 #define DIF_VAR_ID 0x0105 /* probe ID */
313 #define DIF_VAR_ARG0 0x0106 /* first argument */
314 #define DIF_VAR_ARG1 0x0107 /* second argument */
315 #define DIF_VAR_ARG2 0x0108 /* third argument */
316 #define DIF_VAR_ARG3 0x0109 /* fourth argument */
317 #define DIF_VAR_ARG4 0x010a /* fifth argument */
318 #define DIF_VAR_ARG5 0x010b /* sixth argument */
319 #define DIF_VAR_ARG6 0x010c /* seventh argument */
320 #define DIF_VAR_ARG7 0x010d /* eighth argument */
321 #define DIF_VAR_ARG8 0x010e /* ninth argument */
322 #define DIF_VAR_ARG9 0x010f /* tenth argument */
323 #define DIF_VAR_STACKDEPTH 0x0110 /* stack depth */
324 #define DIF_VAR_CALLER 0x0111 /* caller */
325 #define DIF_VAR_PROBEPROV 0x0112 /* probe provider */
326 #define DIF_VAR_PROBEMOD 0x0113 /* probe module */
327 #define DIF_VAR_PROBEFUNC 0x0114 /* probe function */
328 #define DIF_VAR_PROBENAME 0x0115 /* probe name */
329 #define DIF_VAR_PID 0x0116 /* process ID */
330 #define DIF_VAR_TID 0x0117 /* (per-process) thread ID */
331 #define DIF_VAR_EXECNAME 0x0118 /* name of executable */
332 #define DIF_VAR_ZONENAME 0x0119 /* zone name associated with process */
333 #define DIF_VAR_WALLTIMESTAMP 0x011a /* wall-clock timestamp */
334 #define DIF_VAR_USTACKDEPTH 0x011b /* user-land stack depth */
335 #define DIF_VAR_UCALLER 0x011c /* user-level caller */
336 #define DIF_VAR_PPID 0x011d /* parent process ID */
337 #define DIF_VAR_UID 0x011e /* process user ID */
338 #define DIF_VAR_GID 0x011f /* process group ID */
339 #define DIF_VAR_ERRNO 0x0120 /* thread errno */
340 #if defined(__APPLE__)
341 #define DIF_VAR_PTHREAD_SELF 0x0200 /* Apple specific PTHREAD_SELF (Not currently supported!) */
342 #define DIF_VAR_DISPATCHQADDR 0x0201 /* Apple specific dispatch queue addr */
343 #define DIF_VAR_MACHTIMESTAMP 0x0202 /* mach_absolute_timestamp() */
344 #define DIF_VAR_CPU 0x0203 /* cpu number */
345 #endif /* __APPLE __ */
346
347 #define DIF_SUBR_RAND 0
348 #define DIF_SUBR_MUTEX_OWNED 1
349 #define DIF_SUBR_MUTEX_OWNER 2
350 #define DIF_SUBR_MUTEX_TYPE_ADAPTIVE 3
351 #define DIF_SUBR_MUTEX_TYPE_SPIN 4
352 #define DIF_SUBR_RW_READ_HELD 5
353 #define DIF_SUBR_RW_WRITE_HELD 6
354 #define DIF_SUBR_RW_ISWRITER 7
355 #define DIF_SUBR_COPYIN 8
356 #define DIF_SUBR_COPYINSTR 9
357 #define DIF_SUBR_SPECULATION 10
358 #define DIF_SUBR_PROGENYOF 11
359 #define DIF_SUBR_STRLEN 12
360 #define DIF_SUBR_COPYOUT 13
361 #define DIF_SUBR_COPYOUTSTR 14
362 #define DIF_SUBR_ALLOCA 15
363 #define DIF_SUBR_BCOPY 16
364 #define DIF_SUBR_COPYINTO 17
365 #define DIF_SUBR_MSGDSIZE 18
366 #define DIF_SUBR_MSGSIZE 19
367 #define DIF_SUBR_GETMAJOR 20
368 #define DIF_SUBR_GETMINOR 21
369 #define DIF_SUBR_DDI_PATHNAME 22
370 #define DIF_SUBR_STRJOIN 23
371 #define DIF_SUBR_LLTOSTR 24
372 #define DIF_SUBR_BASENAME 25
373 #define DIF_SUBR_DIRNAME 26
374 #define DIF_SUBR_CLEANPATH 27
375 #define DIF_SUBR_STRCHR 28
376 #define DIF_SUBR_STRRCHR 29
377 #define DIF_SUBR_STRSTR 30
378 #define DIF_SUBR_STRTOK 31
379 #define DIF_SUBR_SUBSTR 32
380 #define DIF_SUBR_INDEX 33
381 #define DIF_SUBR_RINDEX 34
382 #define DIF_SUBR_HTONS 35
383 #define DIF_SUBR_HTONL 36
384 #define DIF_SUBR_HTONLL 37
385 #define DIF_SUBR_NTOHS 38
386 #define DIF_SUBR_NTOHL 39
387 #define DIF_SUBR_NTOHLL 40
388 #define DIF_SUBR_INET_NTOP 41
389 #define DIF_SUBR_INET_NTOA 42
390 #define DIF_SUBR_INET_NTOA6 43
391 #define DIF_SUBR_TOUPPER 44
392 #define DIF_SUBR_TOLOWER 45
393 #define DIF_SUBR_MAX 46 /* max subroutine value */
394
395 /* Apple-specific subroutines */
396 #if defined(__APPLE__)
397 #define DIF_SUBR_APPLE_MIN 200 /* min apple-specific subroutine value */
398 #define DIF_SUBR_VM_KERNEL_ADDRPERM 200
399 #define DIF_SUBR_KDEBUG_TRACE 201
400 #define DIF_SUBR_KDEBUG_TRACE_STRING 202
401 #define DIF_SUBR_APPLE_MAX 202 /* max apple-specific subroutine value */
402 #endif /* __APPLE__ */
403
404 typedef uint32_t dif_instr_t;
405
406 #define DIF_INSTR_OP(i) (((i) >> 24) & 0xff)
407 #define DIF_INSTR_R1(i) (((i) >> 16) & 0xff)
408 #define DIF_INSTR_R2(i) (((i) >> 8) & 0xff)
409 #define DIF_INSTR_RD(i) ((i) & 0xff)
410 #define DIF_INSTR_RS(i) ((i) & 0xff)
411 #define DIF_INSTR_LABEL(i) ((i) & 0xffffff)
412 #define DIF_INSTR_VAR(i) (((i) >> 8) & 0xffff)
413 #define DIF_INSTR_INTEGER(i) (((i) >> 8) & 0xffff)
414 #define DIF_INSTR_STRING(i) (((i) >> 8) & 0xffff)
415 #define DIF_INSTR_SUBR(i) (((i) >> 8) & 0xffff)
416 #define DIF_INSTR_TYPE(i) (((i) >> 16) & 0xff)
417 #define DIF_INSTR_XLREF(i) (((i) >> 8) & 0xffff)
418
419 #define DIF_INSTR_FMT(op, r1, r2, d) \
420 (((op) << 24) | ((r1) << 16) | ((r2) << 8) | (d))
421
422 #define DIF_INSTR_NOT(r1, d) (DIF_INSTR_FMT(DIF_OP_NOT, r1, 0, d))
423 #define DIF_INSTR_MOV(r1, d) (DIF_INSTR_FMT(DIF_OP_MOV, r1, 0, d))
424 #define DIF_INSTR_CMP(op, r1, r2) (DIF_INSTR_FMT(op, r1, r2, 0))
425 #define DIF_INSTR_TST(r1) (DIF_INSTR_FMT(DIF_OP_TST, r1, 0, 0))
426 #define DIF_INSTR_BRANCH(op, label) (((op) << 24) | (label))
427 #define DIF_INSTR_LOAD(op, r1, d) (DIF_INSTR_FMT(op, r1, 0, d))
428 #define DIF_INSTR_STORE(op, r1, d) (DIF_INSTR_FMT(op, r1, 0, d))
429 #define DIF_INSTR_SETX(i, d) ((DIF_OP_SETX << 24) | ((i) << 8) | (d))
430 #define DIF_INSTR_SETS(s, d) ((DIF_OP_SETS << 24) | ((s) << 8) | (d))
431 #define DIF_INSTR_RET(d) (DIF_INSTR_FMT(DIF_OP_RET, 0, 0, d))
432 #define DIF_INSTR_NOP (DIF_OP_NOP << 24)
433 #define DIF_INSTR_LDA(op, v, r, d) (DIF_INSTR_FMT(op, v, r, d))
434 #define DIF_INSTR_LDV(op, v, d) (((op) << 24) | ((v) << 8) | (d))
435 #define DIF_INSTR_STV(op, v, rs) (((op) << 24) | ((v) << 8) | (rs))
436 #define DIF_INSTR_CALL(s, d) ((DIF_OP_CALL << 24) | ((s) << 8) | (d))
437 #define DIF_INSTR_PUSHTS(op, t, r2, rs) (DIF_INSTR_FMT(op, t, r2, rs))
438 #define DIF_INSTR_POPTS (DIF_OP_POPTS << 24)
439 #define DIF_INSTR_FLUSHTS (DIF_OP_FLUSHTS << 24)
440 #define DIF_INSTR_ALLOCS(r1, d) (DIF_INSTR_FMT(DIF_OP_ALLOCS, r1, 0, d))
441 #define DIF_INSTR_COPYS(r1, r2, d) (DIF_INSTR_FMT(DIF_OP_COPYS, r1, r2, d))
442 #define DIF_INSTR_XLATE(op, r, d) (((op) << 24) | ((r) << 8) | (d))
443
444 #define DIF_REG_R0 0 /* %r0 is always set to zero */
445
446 /*
447 * A DTrace Intermediate Format Type (DIF Type) is used to represent the types
448 * of variables, function and associative array arguments, and the return type
449 * for each DIF object (shown below). It contains a description of the type,
450 * its size in bytes, and a module identifier.
451 */
452 typedef struct dtrace_diftype {
453 uint8_t dtdt_kind; /* type kind (see below) */
454 uint8_t dtdt_ckind; /* type kind in CTF */
455 uint8_t dtdt_flags; /* type flags (see below) */
456 uint8_t dtdt_pad; /* reserved for future use */
457 uint32_t dtdt_size; /* type size in bytes (unless string) */
458 } dtrace_diftype_t;
459
460 #define DIF_TYPE_CTF 0 /* type is a CTF type */
461 #define DIF_TYPE_STRING 1 /* type is a D string */
462
463 #define DIF_TF_BYREF 0x1 /* type is passed by reference */
464 #define DIF_TF_BYUREF 0x2 /* user type is passed by reference */
465
466 /*
467 * A DTrace Intermediate Format variable record is used to describe each of the
468 * variables referenced by a given DIF object. It contains an integer variable
469 * identifier along with variable scope and properties, as shown below. The
470 * size of this structure must be sizeof (int) aligned.
471 */
472 typedef struct dtrace_difv {
473 uint32_t dtdv_name; /* variable name index in dtdo_strtab */
474 uint32_t dtdv_id; /* variable reference identifier */
475 uint8_t dtdv_kind; /* variable kind (see below) */
476 uint8_t dtdv_scope; /* variable scope (see below) */
477 uint16_t dtdv_flags; /* variable flags (see below) */
478 dtrace_diftype_t dtdv_type; /* variable type (see above) */
479 } dtrace_difv_t;
480
481 #define DIFV_KIND_ARRAY 0 /* variable is an array of quantities */
482 #define DIFV_KIND_SCALAR 1 /* variable is a scalar quantity */
483
484 #define DIFV_SCOPE_GLOBAL 0 /* variable has global scope */
485 #define DIFV_SCOPE_THREAD 1 /* variable has thread scope */
486 #define DIFV_SCOPE_LOCAL 2 /* variable has local scope */
487
488 #define DIFV_F_REF 0x1 /* variable is referenced by DIFO */
489 #define DIFV_F_MOD 0x2 /* variable is written by DIFO */
490
491 /*
492 * DTrace Actions
493 *
494 * The upper byte determines the class of the action; the low bytes determines
495 * the specific action within that class. The classes of actions are as
496 * follows:
497 *
498 * [ no class ] <= May record process- or kernel-related data
499 * DTRACEACT_PROC <= Only records process-related data
500 * DTRACEACT_PROC_DESTRUCTIVE <= Potentially destructive to processes
501 * DTRACEACT_KERNEL <= Only records kernel-related data
502 * DTRACEACT_KERNEL_DESTRUCTIVE <= Potentially destructive to the kernel
503 * DTRACEACT_SPECULATIVE <= Speculation-related action
504 * DTRACEACT_AGGREGATION <= Aggregating action
505 */
506 #define DTRACEACT_NONE 0 /* no action */
507 #define DTRACEACT_DIFEXPR 1 /* action is DIF expression */
508 #define DTRACEACT_EXIT 2 /* exit() action */
509 #define DTRACEACT_PRINTF 3 /* printf() action */
510 #define DTRACEACT_PRINTA 4 /* printa() action */
511 #define DTRACEACT_LIBACT 5 /* library-controlled action */
512 #define DTRACEACT_TRACEMEM 6 /* tracemem() action */
513 #define DTRACEACT_TRACEMEM_DYNSIZE 7 /* dynamic tracemem() size */
514
515 #if defined(__APPLE__)
516 #define DTRACEACT_APPLEBINARY 50 /* Apple DT perf. tool action */
517 #endif /* __APPLE__ */
518
519 #define DTRACEACT_PROC 0x0100
520 #define DTRACEACT_USTACK (DTRACEACT_PROC + 1)
521 #define DTRACEACT_JSTACK (DTRACEACT_PROC + 2)
522 #define DTRACEACT_USYM (DTRACEACT_PROC + 3)
523 #define DTRACEACT_UMOD (DTRACEACT_PROC + 4)
524 #define DTRACEACT_UADDR (DTRACEACT_PROC + 5)
525
526 #define DTRACEACT_PROC_DESTRUCTIVE 0x0200
527 #define DTRACEACT_STOP (DTRACEACT_PROC_DESTRUCTIVE + 1)
528 #define DTRACEACT_RAISE (DTRACEACT_PROC_DESTRUCTIVE + 2)
529 #define DTRACEACT_SYSTEM (DTRACEACT_PROC_DESTRUCTIVE + 3)
530 #define DTRACEACT_FREOPEN (DTRACEACT_PROC_DESTRUCTIVE + 4)
531
532 #if defined(__APPLE__)
533 /*
534 * Dtrace stop() will task_suspend the currently running process.
535 * Dtrace pidresume(pid) will task_resume it.
536 */
537
538 #define DTRACEACT_PIDRESUME (DTRACEACT_PROC_DESTRUCTIVE + 50)
539 #endif /* __APPLE__ */
540
541 #define DTRACEACT_PROC_CONTROL 0x0300
542
543 #define DTRACEACT_KERNEL 0x0400
544 #define DTRACEACT_STACK (DTRACEACT_KERNEL + 1)
545 #define DTRACEACT_SYM (DTRACEACT_KERNEL + 2)
546 #define DTRACEACT_MOD (DTRACEACT_KERNEL + 3)
547
548 #define DTRACEACT_KERNEL_DESTRUCTIVE 0x0500
549 #define DTRACEACT_BREAKPOINT (DTRACEACT_KERNEL_DESTRUCTIVE + 1)
550 #define DTRACEACT_PANIC (DTRACEACT_KERNEL_DESTRUCTIVE + 2)
551 #define DTRACEACT_CHILL (DTRACEACT_KERNEL_DESTRUCTIVE + 3)
552
553 #define DTRACEACT_SPECULATIVE 0x0600
554 #define DTRACEACT_SPECULATE (DTRACEACT_SPECULATIVE + 1)
555 #define DTRACEACT_COMMIT (DTRACEACT_SPECULATIVE + 2)
556 #define DTRACEACT_DISCARD (DTRACEACT_SPECULATIVE + 3)
557
558 #define DTRACEACT_CLASS(x) ((x) & 0xff00)
559
560 #define DTRACEACT_ISDESTRUCTIVE(x) \
561 (DTRACEACT_CLASS(x) == DTRACEACT_PROC_DESTRUCTIVE || \
562 DTRACEACT_CLASS(x) == DTRACEACT_KERNEL_DESTRUCTIVE)
563
564 #define DTRACEACT_ISSPECULATIVE(x) \
565 (DTRACEACT_CLASS(x) == DTRACEACT_SPECULATIVE)
566
567 #define DTRACEACT_ISPRINTFLIKE(x) \
568 ((x) == DTRACEACT_PRINTF || (x) == DTRACEACT_PRINTA || \
569 (x) == DTRACEACT_SYSTEM || (x) == DTRACEACT_FREOPEN)
570
571 /*
572 * DTrace Aggregating Actions
573 *
574 * These are functions f(x) for which the following is true:
575 *
576 * f(f(x_0) U f(x_1) U ... U f(x_n)) = f(x_0 U x_1 U ... U x_n)
577 *
578 * where x_n is a set of arbitrary data. Aggregating actions are in their own
579 * DTrace action class, DTTRACEACT_AGGREGATION. The macros provided here allow
580 * for easier processing of the aggregation argument and data payload for a few
581 * aggregating actions (notably: quantize(), lquantize(), and ustack()).
582 */
583 #define DTRACEACT_AGGREGATION 0x0700
584 #define DTRACEAGG_COUNT (DTRACEACT_AGGREGATION + 1)
585 #define DTRACEAGG_MIN (DTRACEACT_AGGREGATION + 2)
586 #define DTRACEAGG_MAX (DTRACEACT_AGGREGATION + 3)
587 #define DTRACEAGG_AVG (DTRACEACT_AGGREGATION + 4)
588 #define DTRACEAGG_SUM (DTRACEACT_AGGREGATION + 5)
589 #define DTRACEAGG_STDDEV (DTRACEACT_AGGREGATION + 6)
590 #define DTRACEAGG_QUANTIZE (DTRACEACT_AGGREGATION + 7)
591 #define DTRACEAGG_LQUANTIZE (DTRACEACT_AGGREGATION + 8)
592 #define DTRACEAGG_LLQUANTIZE (DTRACEACT_AGGREGATION + 9)
593
594 #define DTRACEACT_ISAGG(x) \
595 (DTRACEACT_CLASS(x) == DTRACEACT_AGGREGATION)
596
597 #if !defined(__APPLE__) /* Quiet compiler warning. */
598 #define DTRACE_QUANTIZE_NBUCKETS \
599 (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1)
600
601 #define DTRACE_QUANTIZE_ZEROBUCKET ((sizeof (uint64_t) * NBBY) - 1)
602 #else
603 #define DTRACE_QUANTIZE_NBUCKETS \
604 (int)(((sizeof (uint64_t) * NBBY) - 1) * 2 + 1)
605
606 #define DTRACE_QUANTIZE_ZEROBUCKET (int64_t)((sizeof (uint64_t) * NBBY) - 1)
607 #endif /* __APPLE __*/
608
609 #define DTRACE_QUANTIZE_BUCKETVAL(buck) \
610 (int64_t)((buck) < DTRACE_QUANTIZE_ZEROBUCKET ? \
611 -(1LL << (DTRACE_QUANTIZE_ZEROBUCKET - 1 - (buck))) : \
612 (buck) == DTRACE_QUANTIZE_ZEROBUCKET ? 0 : \
613 1LL << ((buck) - DTRACE_QUANTIZE_ZEROBUCKET - 1))
614
615 #define DTRACE_LQUANTIZE_STEPSHIFT 48
616 #define DTRACE_LQUANTIZE_STEPMASK ((uint64_t)UINT16_MAX << 48)
617 #define DTRACE_LQUANTIZE_LEVELSHIFT 32
618 #define DTRACE_LQUANTIZE_LEVELMASK ((uint64_t)UINT16_MAX << 32)
619 #define DTRACE_LQUANTIZE_BASESHIFT 0
620 #define DTRACE_LQUANTIZE_BASEMASK UINT32_MAX
621
622 #define DTRACE_LQUANTIZE_STEP(x) \
623 (uint16_t)(((x) & DTRACE_LQUANTIZE_STEPMASK) >> \
624 DTRACE_LQUANTIZE_STEPSHIFT)
625
626 #define DTRACE_LQUANTIZE_LEVELS(x) \
627 (uint16_t)(((x) & DTRACE_LQUANTIZE_LEVELMASK) >> \
628 DTRACE_LQUANTIZE_LEVELSHIFT)
629
630 #define DTRACE_LQUANTIZE_BASE(x) \
631 (int32_t)(((x) & DTRACE_LQUANTIZE_BASEMASK) >> \
632 DTRACE_LQUANTIZE_BASESHIFT)
633
634 #define DTRACE_LLQUANTIZE_FACTORSHIFT 48
635 #define DTRACE_LLQUANTIZE_FACTORMASK ((uint64_t)UINT16_MAX << 48)
636 #define DTRACE_LLQUANTIZE_LOWSHIFT 32
637 #define DTRACE_LLQUANTIZE_LOWMASK ((uint64_t)UINT16_MAX << 32)
638 #define DTRACE_LLQUANTIZE_HIGHSHIFT 16
639 #define DTRACE_LLQUANTIZE_HIGHMASK ((uint64_t)UINT16_MAX << 16)
640 #define DTRACE_LLQUANTIZE_NSTEPSHIFT 0
641 #define DTRACE_LLQUANTIZE_NSTEPMASK UINT16_MAX
642
643 #define DTRACE_LLQUANTIZE_FACTOR(x) \
644 (uint16_t)(((x) & DTRACE_LLQUANTIZE_FACTORMASK) >> \
645 DTRACE_LLQUANTIZE_FACTORSHIFT)
646
647 #define DTRACE_LLQUANTIZE_LOW(x) \
648 (uint16_t)(((x) & DTRACE_LLQUANTIZE_LOWMASK) >> \
649 DTRACE_LLQUANTIZE_LOWSHIFT)
650
651 #define DTRACE_LLQUANTIZE_HIGH(x) \
652 (uint16_t)(((x) & DTRACE_LLQUANTIZE_HIGHMASK) >> \
653 DTRACE_LLQUANTIZE_HIGHSHIFT)
654
655 #define DTRACE_LLQUANTIZE_NSTEP(x) \
656 (uint16_t)(((x) & DTRACE_LLQUANTIZE_NSTEPMASK) >> \
657 DTRACE_LLQUANTIZE_NSTEPSHIFT)
658
659 #define DTRACE_USTACK_NFRAMES(x) (uint32_t)((x) & UINT32_MAX)
660 #define DTRACE_USTACK_STRSIZE(x) (uint32_t)((x) >> 32)
661 #define DTRACE_USTACK_ARG(x, y) \
662 ((((uint64_t)(y)) << 32) | ((x) & UINT32_MAX))
663
664 #if !defined(__APPLE__)
665
666 #ifndef _LP64
667 #ifndef _LITTLE_ENDIAN
668 #define DTRACE_PTR(type, name) uint32_t name##pad; type *name
669 #else
670 #define DTRACE_PTR(type, name) type *name; uint32_t name##pad
671 #endif
672 #else
673 #define DTRACE_PTR(type, name) type *name
674 #endif
675
676 #else
677
678 #ifndef _LP64
679 #define DTRACE_PTR(type, name) user_addr_t name
680 #else
681 #define DTRACE_PTR(type, name) type *name
682 #endif
683
684 #endif /* __APPLE__ */
685
686 /*
687 * DTrace Object Format (DOF)
688 *
689 * DTrace programs can be persistently encoded in the DOF format so that they
690 * may be embedded in other programs (for example, in an ELF file) or in the
691 * dtrace driver configuration file for use in anonymous tracing. The DOF
692 * format is versioned and extensible so that it can be revised and so that
693 * internal data structures can be modified or extended compatibly. All DOF
694 * structures use fixed-size types, so the 32-bit and 64-bit representations
695 * are identical and consumers can use either data model transparently.
696 *
697 * The file layout is structured as follows:
698 *
699 * +---------------+-------------------+----- ... ----+---- ... ------+
700 * | dof_hdr_t | dof_sec_t[ ... ] | loadable | non-loadable |
701 * | (file header) | (section headers) | section data | section data |
702 * +---------------+-------------------+----- ... ----+---- ... ------+
703 * |<------------ dof_hdr.dofh_loadsz --------------->| |
704 * |<------------ dof_hdr.dofh_filesz ------------------------------->|
705 *
706 * The file header stores meta-data including a magic number, data model for
707 * the instrumentation, data encoding, and properties of the DIF code within.
708 * The header describes its own size and the size of the section headers. By
709 * convention, an array of section headers follows the file header, and then
710 * the data for all loadable sections and unloadable sections. This permits
711 * consumer code to easily download the headers and all loadable data into the
712 * DTrace driver in one contiguous chunk, omitting other extraneous sections.
713 *
714 * The section headers describe the size, offset, alignment, and section type
715 * for each section. Sections are described using a set of #defines that tell
716 * the consumer what kind of data is expected. Sections can contain links to
717 * other sections by storing a dof_secidx_t, an index into the section header
718 * array, inside of the section data structures. The section header includes
719 * an entry size so that sections with data arrays can grow their structures.
720 *
721 * The DOF data itself can contain many snippets of DIF (i.e. >1 DIFOs), which
722 * are represented themselves as a collection of related DOF sections. This
723 * permits us to change the set of sections associated with a DIFO over time,
724 * and also permits us to encode DIFOs that contain different sets of sections.
725 * When a DOF section wants to refer to a DIFO, it stores the dof_secidx_t of a
726 * section of type DOF_SECT_DIFOHDR. This section's data is then an array of
727 * dof_secidx_t's which in turn denote the sections associated with this DIFO.
728 *
729 * This loose coupling of the file structure (header and sections) to the
730 * structure of the DTrace program itself (ECB descriptions, action
731 * descriptions, and DIFOs) permits activities such as relocation processing
732 * to occur in a single pass without having to understand D program structure.
733 *
734 * Finally, strings are always stored in ELF-style string tables along with a
735 * string table section index and string table offset. Therefore strings in
736 * DOF are always arbitrary-length and not bound to the current implementation.
737 */
738
739 #define DOF_ID_SIZE 16 /* total size of dofh_ident[] in bytes */
740
741 typedef struct dof_hdr {
742 uint8_t dofh_ident[DOF_ID_SIZE]; /* identification bytes (see below) */
743 uint32_t dofh_flags; /* file attribute flags (if any) */
744 uint32_t dofh_hdrsize; /* size of file header in bytes */
745 uint32_t dofh_secsize; /* size of section header in bytes */
746 uint32_t dofh_secnum; /* number of section headers */
747 uint64_t dofh_secoff; /* file offset of section headers */
748 uint64_t dofh_loadsz; /* file size of loadable portion */
749 uint64_t dofh_filesz; /* file size of entire DOF file */
750 uint64_t dofh_pad; /* reserved for future use */
751 } dof_hdr_t;
752
753 #define DOF_ID_MAG0 0 /* first byte of magic number */
754 #define DOF_ID_MAG1 1 /* second byte of magic number */
755 #define DOF_ID_MAG2 2 /* third byte of magic number */
756 #define DOF_ID_MAG3 3 /* fourth byte of magic number */
757 #define DOF_ID_MODEL 4 /* DOF data model (see below) */
758 #define DOF_ID_ENCODING 5 /* DOF data encoding (see below) */
759 #define DOF_ID_VERSION 6 /* DOF file format major version (see below) */
760 #define DOF_ID_DIFVERS 7 /* DIF instruction set version */
761 #define DOF_ID_DIFIREG 8 /* DIF integer registers used by compiler */
762 #define DOF_ID_DIFTREG 9 /* DIF tuple registers used by compiler */
763 #define DOF_ID_PAD 10 /* start of padding bytes (all zeroes) */
764
765 #define DOF_MAG_MAG0 0x7F /* DOF_ID_MAG[0-3] */
766 #define DOF_MAG_MAG1 'D'
767 #define DOF_MAG_MAG2 'O'
768 #define DOF_MAG_MAG3 'F'
769
770 #define DOF_MAG_STRING "\177DOF"
771 #define DOF_MAG_STRLEN 4
772
773 #define DOF_MODEL_NONE 0 /* DOF_ID_MODEL */
774 #define DOF_MODEL_ILP32 1
775 #define DOF_MODEL_LP64 2
776
777 #ifdef _LP64
778 #define DOF_MODEL_NATIVE DOF_MODEL_LP64
779 #else
780 #define DOF_MODEL_NATIVE DOF_MODEL_ILP32
781 #endif
782
783 #define DOF_ENCODE_NONE 0 /* DOF_ID_ENCODING */
784 #define DOF_ENCODE_LSB 1
785 #define DOF_ENCODE_MSB 2
786
787 #ifdef _BIG_ENDIAN
788 #define DOF_ENCODE_NATIVE DOF_ENCODE_MSB
789 #else
790 #define DOF_ENCODE_NATIVE DOF_ENCODE_LSB
791 #endif
792
793 #define DOF_VERSION_1 1 /* DOF version 1: Solaris 10 FCS */
794 #define DOF_VERSION_2 2 /* DOF version 2: Solaris Express 6/06 */
795 #if !defined(__APPLE__)
796 #define DOF_VERSION DOF_VERSION_2 /* Latest DOF version */
797 #else
798 #define DOF_VERSION_3 3 /* DOF version 3: Minimum version for Leopard */
799 #define DOF_VERSION DOF_VERSION_3 /* Latest DOF version */
800 #endif /* __APPLE__ */
801
802 #define DOF_FL_VALID 0 /* mask of all valid dofh_flags bits */
803
804 typedef uint32_t dof_secidx_t; /* section header table index type */
805 typedef uint32_t dof_stridx_t; /* string table index type */
806
807 #define DOF_SECIDX_NONE (-1U) /* null value for section indices */
808 #define DOF_STRIDX_NONE (-1U) /* null value for string indices */
809
810 typedef struct dof_sec {
811 uint32_t dofs_type; /* section type (see below) */
812 uint32_t dofs_align; /* section data memory alignment */
813 uint32_t dofs_flags; /* section flags (if any) */
814 uint32_t dofs_entsize; /* size of section entry (if table) */
815 uint64_t dofs_offset; /* offset of section data within file */
816 uint64_t dofs_size; /* size of section data in bytes */
817 } dof_sec_t;
818
819 #define DOF_SECT_NONE 0 /* null section */
820 #define DOF_SECT_COMMENTS 1 /* compiler comments */
821 #define DOF_SECT_SOURCE 2 /* D program source code */
822 #define DOF_SECT_ECBDESC 3 /* dof_ecbdesc_t */
823 #define DOF_SECT_PROBEDESC 4 /* dof_probedesc_t */
824 #define DOF_SECT_ACTDESC 5 /* dof_actdesc_t array */
825 #define DOF_SECT_DIFOHDR 6 /* dof_difohdr_t (variable length) */
826 #define DOF_SECT_DIF 7 /* uint32_t array of byte code */
827 #define DOF_SECT_STRTAB 8 /* string table */
828 #define DOF_SECT_VARTAB 9 /* dtrace_difv_t array */
829 #define DOF_SECT_RELTAB 10 /* dof_relodesc_t array */
830 #define DOF_SECT_TYPTAB 11 /* dtrace_diftype_t array */
831 #define DOF_SECT_URELHDR 12 /* dof_relohdr_t (user relocations) */
832 #define DOF_SECT_KRELHDR 13 /* dof_relohdr_t (kernel relocations) */
833 #define DOF_SECT_OPTDESC 14 /* dof_optdesc_t array */
834 #define DOF_SECT_PROVIDER 15 /* dof_provider_t */
835 #define DOF_SECT_PROBES 16 /* dof_probe_t array */
836 #define DOF_SECT_PRARGS 17 /* uint8_t array (probe arg mappings) */
837 #define DOF_SECT_PROFFS 18 /* uint32_t array (probe arg offsets) */
838 #define DOF_SECT_INTTAB 19 /* uint64_t array */
839 #define DOF_SECT_UTSNAME 20 /* struct utsname */
840 #define DOF_SECT_XLTAB 21 /* dof_xlref_t array */
841 #define DOF_SECT_XLMEMBERS 22 /* dof_xlmember_t array */
842 #define DOF_SECT_XLIMPORT 23 /* dof_xlator_t */
843 #define DOF_SECT_XLEXPORT 24 /* dof_xlator_t */
844 #define DOF_SECT_PREXPORT 25 /* dof_secidx_t array (exported objs) */
845 #define DOF_SECT_PRENOFFS 26 /* uint32_t array (enabled offsets) */
846
847 #define DOF_SECF_LOAD 1 /* section should be loaded */
848
849 typedef struct dof_ecbdesc {
850 dof_secidx_t dofe_probes; /* link to DOF_SECT_PROBEDESC */
851 dof_secidx_t dofe_pred; /* link to DOF_SECT_DIFOHDR */
852 dof_secidx_t dofe_actions; /* link to DOF_SECT_ACTDESC */
853 uint32_t dofe_pad; /* reserved for future use */
854 uint64_t dofe_uarg; /* user-supplied library argument */
855 } dof_ecbdesc_t;
856
857 typedef struct dof_probedesc {
858 dof_secidx_t dofp_strtab; /* link to DOF_SECT_STRTAB section */
859 dof_stridx_t dofp_provider; /* provider string */
860 dof_stridx_t dofp_mod; /* module string */
861 dof_stridx_t dofp_func; /* function string */
862 dof_stridx_t dofp_name; /* name string */
863 uint32_t dofp_id; /* probe identifier (or zero) */
864 } dof_probedesc_t;
865
866 typedef struct dof_actdesc {
867 dof_secidx_t dofa_difo; /* link to DOF_SECT_DIFOHDR */
868 dof_secidx_t dofa_strtab; /* link to DOF_SECT_STRTAB section */
869 uint32_t dofa_kind; /* action kind (DTRACEACT_* constant) */
870 uint32_t dofa_ntuple; /* number of subsequent tuple actions */
871 uint64_t dofa_arg; /* kind-specific argument */
872 uint64_t dofa_uarg; /* user-supplied argument */
873 } dof_actdesc_t;
874
875 typedef struct dof_difohdr {
876 dtrace_diftype_t dofd_rtype; /* return type for this fragment */
877 dof_secidx_t dofd_links[1]; /* variable length array of indices */
878 } dof_difohdr_t;
879
880 typedef struct dof_relohdr {
881 dof_secidx_t dofr_strtab; /* link to DOF_SECT_STRTAB for names */
882 dof_secidx_t dofr_relsec; /* link to DOF_SECT_RELTAB for relos */
883 dof_secidx_t dofr_tgtsec; /* link to section we are relocating */
884 } dof_relohdr_t;
885
886 typedef struct dof_relodesc {
887 dof_stridx_t dofr_name; /* string name of relocation symbol */
888 uint32_t dofr_type; /* relo type (DOF_RELO_* constant) */
889 uint64_t dofr_offset; /* byte offset for relocation */
890 uint64_t dofr_data; /* additional type-specific data */
891 } dof_relodesc_t;
892
893 #define DOF_RELO_NONE 0 /* empty relocation entry */
894 #define DOF_RELO_SETX 1 /* relocate setx value */
895
896 typedef struct dof_optdesc {
897 uint32_t dofo_option; /* option identifier */
898 dof_secidx_t dofo_strtab; /* string table, if string option */
899 uint64_t dofo_value; /* option value or string index */
900 } dof_optdesc_t;
901
902 typedef uint32_t dof_attr_t; /* encoded stability attributes */
903
904 #define DOF_ATTR(n, d, c) (((n) << 24) | ((d) << 16) | ((c) << 8))
905 #define DOF_ATTR_NAME(a) (((a) >> 24) & 0xff)
906 #define DOF_ATTR_DATA(a) (((a) >> 16) & 0xff)
907 #define DOF_ATTR_CLASS(a) (((a) >> 8) & 0xff)
908
909 typedef struct dof_provider {
910 dof_secidx_t dofpv_strtab; /* link to DOF_SECT_STRTAB section */
911 dof_secidx_t dofpv_probes; /* link to DOF_SECT_PROBES section */
912 dof_secidx_t dofpv_prargs; /* link to DOF_SECT_PRARGS section */
913 dof_secidx_t dofpv_proffs; /* link to DOF_SECT_PROFFS section */
914 dof_stridx_t dofpv_name; /* provider name string */
915 dof_attr_t dofpv_provattr; /* provider attributes */
916 dof_attr_t dofpv_modattr; /* module attributes */
917 dof_attr_t dofpv_funcattr; /* function attributes */
918 dof_attr_t dofpv_nameattr; /* name attributes */
919 dof_attr_t dofpv_argsattr; /* args attributes */
920 dof_secidx_t dofpv_prenoffs; /* link to DOF_SECT_PRENOFFS section */
921 } dof_provider_t;
922
923 typedef struct dof_probe {
924 uint64_t dofpr_addr; /* probe base address or offset */
925 dof_stridx_t dofpr_func; /* probe function string */
926 dof_stridx_t dofpr_name; /* probe name string */
927 dof_stridx_t dofpr_nargv; /* native argument type strings */
928 dof_stridx_t dofpr_xargv; /* translated argument type strings */
929 uint32_t dofpr_argidx; /* index of first argument mapping */
930 uint32_t dofpr_offidx; /* index of first offset entry */
931 uint8_t dofpr_nargc; /* native argument count */
932 uint8_t dofpr_xargc; /* translated argument count */
933 uint16_t dofpr_noffs; /* number of offset entries for probe */
934 uint32_t dofpr_enoffidx; /* index of first is-enabled offset */
935 uint16_t dofpr_nenoffs; /* number of is-enabled offsets */
936 uint16_t dofpr_pad1; /* reserved for future use */
937 uint32_t dofpr_pad2; /* reserved for future use */
938 } dof_probe_t;
939
940 typedef struct dof_xlator {
941 dof_secidx_t dofxl_members; /* link to DOF_SECT_XLMEMBERS section */
942 dof_secidx_t dofxl_strtab; /* link to DOF_SECT_STRTAB section */
943 dof_stridx_t dofxl_argv; /* input parameter type strings */
944 uint32_t dofxl_argc; /* input parameter list length */
945 dof_stridx_t dofxl_type; /* output type string name */
946 dof_attr_t dofxl_attr; /* output stability attributes */
947 } dof_xlator_t;
948
949 typedef struct dof_xlmember {
950 dof_secidx_t dofxm_difo; /* member link to DOF_SECT_DIFOHDR */
951 dof_stridx_t dofxm_name; /* member name */
952 dtrace_diftype_t dofxm_type; /* member type */
953 } dof_xlmember_t;
954
955 typedef struct dof_xlref {
956 dof_secidx_t dofxr_xlator; /* link to DOF_SECT_XLATORS section */
957 uint32_t dofxr_member; /* index of referenced dof_xlmember */
958 uint32_t dofxr_argn; /* index of argument for DIF_OP_XLARG */
959 } dof_xlref_t;
960
961 /*
962 * DTrace Intermediate Format Object (DIFO)
963 *
964 * A DIFO is used to store the compiled DIF for a D expression, its return
965 * type, and its string and variable tables. The string table is a single
966 * buffer of character data into which sets instructions and variable
967 * references can reference strings using a byte offset. The variable table
968 * is an array of dtrace_difv_t structures that describe the name and type of
969 * each variable and the id used in the DIF code. This structure is described
970 * above in the DIF section of this header file. The DIFO is used at both
971 * user-level (in the library) and in the kernel, but the structure is never
972 * passed between the two: the DOF structures form the only interface. As a
973 * result, the definition can change depending on the presence of _KERNEL.
974 */
975 typedef struct dtrace_difo {
976 dif_instr_t *dtdo_buf; /* instruction buffer */
977 uint64_t *dtdo_inttab; /* integer table (optional) */
978 char *dtdo_strtab; /* string table (optional) */
979 dtrace_difv_t *dtdo_vartab; /* variable table (optional) */
980 uint_t dtdo_len; /* length of instruction buffer */
981 uint_t dtdo_intlen; /* length of integer table */
982 uint_t dtdo_strlen; /* length of string table */
983 uint_t dtdo_varlen; /* length of variable table */
984 dtrace_diftype_t dtdo_rtype; /* return type */
985 uint_t dtdo_refcnt; /* owner reference count */
986 uint_t dtdo_destructive; /* invokes destructive subroutines */
987 #ifndef _KERNEL
988 dof_relodesc_t *dtdo_kreltab; /* kernel relocations */
989 dof_relodesc_t *dtdo_ureltab; /* user relocations */
990 struct dt_node **dtdo_xlmtab; /* translator references */
991 uint_t dtdo_krelen; /* length of krelo table */
992 uint_t dtdo_urelen; /* length of urelo table */
993 uint_t dtdo_xlmlen; /* length of translator table */
994 #endif
995 } dtrace_difo_t;
996
997 /*
998 * DTrace Enabling Description Structures
999 *
1000 * When DTrace is tracking the description of a DTrace enabling entity (probe,
1001 * predicate, action, ECB, record, etc.), it does so in a description
1002 * structure. These structures all end in "desc", and are used at both
1003 * user-level and in the kernel -- but (with the exception of
1004 * dtrace_probedesc_t) they are never passed between them. Typically,
1005 * user-level will use the description structures when assembling an enabling.
1006 * It will then distill those description structures into a DOF object (see
1007 * above), and send it into the kernel. The kernel will again use the
1008 * description structures to create a description of the enabling as it reads
1009 * the DOF. When the description is complete, the enabling will be actually
1010 * created -- turning it into the structures that represent the enabling
1011 * instead of merely describing it. Not surprisingly, the description
1012 * structures bear a strong resemblance to the DOF structures that act as their
1013 * conduit.
1014 */
1015 struct dtrace_predicate;
1016
1017 typedef struct dtrace_probedesc {
1018 dtrace_id_t dtpd_id; /* probe identifier */
1019 char dtpd_provider[DTRACE_PROVNAMELEN]; /* probe provider name */
1020 char dtpd_mod[DTRACE_MODNAMELEN]; /* probe module name */
1021 char dtpd_func[DTRACE_FUNCNAMELEN]; /* probe function name */
1022 char dtpd_name[DTRACE_NAMELEN]; /* probe name */
1023 } dtrace_probedesc_t;
1024
1025 typedef struct dtrace_repldesc {
1026 dtrace_probedesc_t dtrpd_match; /* probe descr. to match */
1027 dtrace_probedesc_t dtrpd_create; /* probe descr. to create */
1028 } dtrace_repldesc_t;
1029
1030 typedef struct dtrace_preddesc {
1031 dtrace_difo_t *dtpdd_difo; /* pointer to DIF object */
1032 struct dtrace_predicate *dtpdd_predicate; /* pointer to predicate */
1033 } dtrace_preddesc_t;
1034
1035 typedef struct dtrace_actdesc {
1036 dtrace_difo_t *dtad_difo; /* pointer to DIF object */
1037 struct dtrace_actdesc *dtad_next; /* next action */
1038 dtrace_actkind_t dtad_kind; /* kind of action */
1039 uint32_t dtad_ntuple; /* number in tuple */
1040 uint64_t dtad_arg; /* action argument */
1041 uint64_t dtad_uarg; /* user argument */
1042 int dtad_refcnt; /* reference count */
1043 } dtrace_actdesc_t;
1044
1045
1046 typedef struct dtrace_ecbdesc {
1047 dtrace_actdesc_t *dted_action; /* action description(s) */
1048 dtrace_preddesc_t dted_pred; /* predicate description */
1049 dtrace_probedesc_t dted_probe; /* probe description */
1050 uint64_t dted_uarg; /* library argument */
1051 int dted_refcnt; /* reference count */
1052 uint64_t dted_probegen; /* matched probe generation */
1053 } dtrace_ecbdesc_t;
1054
1055 /*
1056 * APPLE NOTE: The kernel always rebuild dtrace_ecbdesc structures
1057 * coming from userspace, so there is no dted_probegen manipulation risk
1058 */
1059
1060 /*
1061 * DTrace Metadata Description Structures
1062 *
1063 * DTrace separates the trace data stream from the metadata stream. The only
1064 * metadata tokens placed in the data stream are the dtrace_rechdr_t (EPID +
1065 * timestamp) or (in the case of aggregations) aggregation identifiers. To
1066 * determine the structure of the data, DTrace consumers pass the token to the
1067 * kernel, and receive in return a corresponding description of the enabled
1068 * probe (via the dtrace_eprobedesc structure) or the aggregation (via the
1069 * dtrace_aggdesc structure). Both of these structures are expressed in terms
1070 * of record descriptions (via the dtrace_recdesc structure) that describe the
1071 * exact structure of the data. Some record descriptions may also contain a
1072 * format identifier; this additional bit of metadata can be retrieved from the
1073 * kernel, for which a format description is returned via the dtrace_fmtdesc
1074 * structure. Note that all four of these structures must be bitness-neutral
1075 * to allow for a 32-bit DTrace consumer on a 64-bit kernel.
1076 */
1077 typedef struct dtrace_recdesc {
1078 dtrace_actkind_t dtrd_action; /* kind of action */
1079 uint32_t dtrd_size; /* size of record */
1080 uint32_t dtrd_offset; /* offset in ECB's data */
1081 uint16_t dtrd_alignment; /* required alignment */
1082 uint16_t dtrd_format; /* format, if any */
1083 uint64_t dtrd_arg; /* action argument */
1084 uint64_t dtrd_uarg; /* user argument */
1085 } dtrace_recdesc_t;
1086
1087 typedef struct dtrace_eprobedesc {
1088 dtrace_epid_t dtepd_epid; /* enabled probe ID */
1089 dtrace_id_t dtepd_probeid; /* probe ID */
1090 uint64_t dtepd_uarg; /* library argument */
1091 uint32_t dtepd_size; /* total size */
1092 int dtepd_nrecs; /* number of records */
1093 dtrace_recdesc_t dtepd_rec[1]; /* records themselves */
1094 } dtrace_eprobedesc_t;
1095
1096 typedef struct dtrace_aggdesc {
1097 DTRACE_PTR(char, dtagd_name); /* not filled in by kernel */
1098 dtrace_aggvarid_t dtagd_varid; /* not filled in by kernel */
1099 int dtagd_flags; /* not filled in by kernel */
1100 dtrace_aggid_t dtagd_id; /* aggregation ID */
1101 dtrace_epid_t dtagd_epid; /* enabled probe ID */
1102 uint32_t dtagd_size; /* size in bytes */
1103 int dtagd_nrecs; /* number of records */
1104 uint32_t dtagd_pad; /* explicit padding */
1105 dtrace_recdesc_t dtagd_rec[1]; /* record descriptions */
1106 } dtrace_aggdesc_t;
1107
1108 typedef struct dtrace_fmtdesc {
1109 DTRACE_PTR(char, dtfd_string); /* format string */
1110 int dtfd_length; /* length of format string */
1111 uint16_t dtfd_format; /* format identifier */
1112 } dtrace_fmtdesc_t;
1113
1114 #define DTRACE_SIZEOF_EPROBEDESC(desc) \
1115 (sizeof (dtrace_eprobedesc_t) + ((desc)->dtepd_nrecs ? \
1116 (((desc)->dtepd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0))
1117
1118 #define DTRACE_SIZEOF_AGGDESC(desc) \
1119 (sizeof (dtrace_aggdesc_t) + ((desc)->dtagd_nrecs ? \
1120 (((desc)->dtagd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0))
1121
1122 /*
1123 * DTrace Option Interface
1124 *
1125 * Run-time DTrace options are set and retrieved via DOF_SECT_OPTDESC sections
1126 * in a DOF image. The dof_optdesc structure contains an option identifier and
1127 * an option value. The valid option identifiers are found below; the mapping
1128 * between option identifiers and option identifying strings is maintained at
1129 * user-level. Note that the value of DTRACEOPT_UNSET is such that all of the
1130 * following are potentially valid option values: all positive integers, zero
1131 * and negative one. Some options (notably "bufpolicy" and "bufresize") take
1132 * predefined tokens as their values; these are defined with
1133 * DTRACEOPT_{option}_{token}.
1134 */
1135 #define DTRACEOPT_BUFSIZE 0 /* buffer size */
1136 #define DTRACEOPT_BUFPOLICY 1 /* buffer policy */
1137 #define DTRACEOPT_DYNVARSIZE 2 /* dynamic variable size */
1138 #define DTRACEOPT_AGGSIZE 3 /* aggregation size */
1139 #define DTRACEOPT_SPECSIZE 4 /* speculation size */
1140 #define DTRACEOPT_NSPEC 5 /* number of speculations */
1141 #define DTRACEOPT_STRSIZE 6 /* string size */
1142 #define DTRACEOPT_CLEANRATE 7 /* dynvar cleaning rate */
1143 #define DTRACEOPT_CPU 8 /* CPU to trace */
1144 #define DTRACEOPT_BUFRESIZE 9 /* buffer resizing policy */
1145 #define DTRACEOPT_GRABANON 10 /* grab anonymous state, if any */
1146 #define DTRACEOPT_FLOWINDENT 11 /* indent function entry/return */
1147 #define DTRACEOPT_QUIET 12 /* only output explicitly traced data */
1148 #define DTRACEOPT_STACKFRAMES 13 /* number of stack frames */
1149 #define DTRACEOPT_USTACKFRAMES 14 /* number of user stack frames */
1150 #define DTRACEOPT_AGGRATE 15 /* aggregation snapshot rate */
1151 #define DTRACEOPT_SWITCHRATE 16 /* buffer switching rate */
1152 #define DTRACEOPT_STATUSRATE 17 /* status rate */
1153 #define DTRACEOPT_DESTRUCTIVE 18 /* destructive actions allowed */
1154 #define DTRACEOPT_STACKINDENT 19 /* output indent for stack traces */
1155 #define DTRACEOPT_RAWBYTES 20 /* always print bytes in raw form */
1156 #define DTRACEOPT_JSTACKFRAMES 21 /* number of jstack() frames */
1157 #define DTRACEOPT_JSTACKSTRSIZE 22 /* size of jstack() string table */
1158 #define DTRACEOPT_AGGSORTKEY 23 /* sort aggregations by key */
1159 #define DTRACEOPT_AGGSORTREV 24 /* reverse-sort aggregations */
1160 #define DTRACEOPT_AGGSORTPOS 25 /* agg. position to sort on */
1161 #define DTRACEOPT_AGGSORTKEYPOS 26 /* agg. key position to sort on */
1162 #define DTRACEOPT_AGGHIST 27 /* histogram aggregation output */
1163 #define DTRACEOPT_AGGPACK 28 /* packed aggregation output */
1164 #define DTRACEOPT_AGGZOOM 29 /* zoomed aggregation scaling */
1165 #define DTRACEOPT_TEMPORAL 30 /* temporally ordered output */
1166 #if !defined(__APPLE__)
1167 #define DTRACEOPT_MAX 31 /* number of options */
1168 #else
1169 #define DTRACEOPT_STACKSYMBOLS 31 /* clear to prevent stack symbolication */
1170 #define DTRACEOPT_BUFLIMIT 32 /* buffer signaling limit in % of the size */
1171 #define DTRACEOPT_MAX 33 /* number of options */
1172 #endif /* __APPLE__ */
1173
1174 #define DTRACEOPT_UNSET (dtrace_optval_t)-2 /* unset option */
1175
1176 #define DTRACEOPT_BUFPOLICY_RING 0 /* ring buffer */
1177 #define DTRACEOPT_BUFPOLICY_FILL 1 /* fill buffer, then stop */
1178 #define DTRACEOPT_BUFPOLICY_SWITCH 2 /* switch buffers */
1179
1180 #define DTRACEOPT_BUFRESIZE_AUTO 0 /* automatic resizing */
1181 #define DTRACEOPT_BUFRESIZE_MANUAL 1 /* manual resizing */
1182
1183 /*
1184 * DTrace Buffer Interface
1185 *
1186 * In order to get a snapshot of the principal or aggregation buffer,
1187 * user-level passes a buffer description to the kernel with the dtrace_bufdesc
1188 * structure. This describes which CPU user-level is interested in, and
1189 * where user-level wishes the kernel to snapshot the buffer to (the
1190 * dtbd_data field). The kernel uses the same structure to pass back some
1191 * information regarding the buffer: the size of data actually copied out, the
1192 * number of drops, the number of errors, the offset of the oldest record,
1193 * and the time of the snapshot.
1194 *
1195 * If the buffer policy is a "switch" policy, taking a snapshot of the
1196 * principal buffer has the additional effect of switching the active and
1197 * inactive buffers. Taking a snapshot of the aggregation buffer _always_ has
1198 * the additional effect of switching the active and inactive buffers.
1199 */
1200 typedef struct dtrace_bufdesc {
1201 uint64_t dtbd_size; /* size of buffer */
1202 uint32_t dtbd_cpu; /* CPU or DTRACE_CPUALL */
1203 uint32_t dtbd_errors; /* number of errors */
1204 uint64_t dtbd_drops; /* number of drops */
1205 DTRACE_PTR(char, dtbd_data); /* data */
1206 uint64_t dtbd_oldest; /* offset of oldest record */
1207 uint64_t dtbd_timestamp; /* hrtime of snapshot */
1208 } dtrace_bufdesc_t;
1209
1210 /*
1211 * Each record in the buffer (dtbd_data) begins with a header that includes
1212 * the epid and a timestamp. The timestamp is split into two 4-byte parts
1213 * so that we do not require 8-byte alignment.
1214 */
1215 typedef struct dtrace_rechdr {
1216 dtrace_epid_t dtrh_epid; /* enabled probe id */
1217 uint32_t dtrh_timestamp_hi; /* high bits of hrtime_t */
1218 uint32_t dtrh_timestamp_lo; /* low bits of hrtime_t */
1219 } dtrace_rechdr_t;
1220
1221 #define DTRACE_RECORD_LOAD_TIMESTAMP(dtrh) \
1222 ((dtrh)->dtrh_timestamp_lo + \
1223 ((uint64_t)(dtrh)->dtrh_timestamp_hi << 32))
1224
1225 #define DTRACE_RECORD_STORE_TIMESTAMP(dtrh, hrtime) { \
1226 (dtrh)->dtrh_timestamp_lo = (uint32_t)hrtime; \
1227 (dtrh)->dtrh_timestamp_hi = hrtime >> 32; \
1228 }
1229
1230 /*
1231 * DTrace Status
1232 *
1233 * The status of DTrace is relayed via the dtrace_status structure. This
1234 * structure contains members to count drops other than the capacity drops
1235 * available via the buffer interface (see above). This consists of dynamic
1236 * drops (including capacity dynamic drops, rinsing drops and dirty drops), and
1237 * speculative drops (including capacity speculative drops, drops due to busy
1238 * speculative buffers and drops due to unavailable speculative buffers).
1239 * Additionally, the status structure contains a field to indicate the number
1240 * of "fill"-policy buffers have been filled and a boolean field to indicate
1241 * that exit() has been called. If the dtst_exiting field is non-zero, no
1242 * further data will be generated until tracing is stopped (at which time any
1243 * enablings of the END action will be processed); if user-level sees that
1244 * this field is non-zero, tracing should be stopped as soon as possible.
1245 */
1246 typedef struct dtrace_status {
1247 uint64_t dtst_dyndrops; /* dynamic drops */
1248 uint64_t dtst_dyndrops_rinsing; /* dyn drops due to rinsing */
1249 uint64_t dtst_dyndrops_dirty; /* dyn drops due to dirty */
1250 uint64_t dtst_specdrops; /* speculative drops */
1251 uint64_t dtst_specdrops_busy; /* spec drops due to busy */
1252 uint64_t dtst_specdrops_unavail; /* spec drops due to unavail */
1253 uint64_t dtst_errors; /* total errors */
1254 uint64_t dtst_filled; /* number of filled bufs */
1255 uint64_t dtst_stkstroverflows; /* stack string tab overflows */
1256 uint64_t dtst_dblerrors; /* errors in ERROR probes */
1257 char dtst_killed; /* non-zero if killed */
1258 char dtst_exiting; /* non-zero if exit() called */
1259 char dtst_pad[6]; /* pad out to 64-bit align */
1260 } dtrace_status_t;
1261
1262 /*
1263 * DTrace Configuration
1264 *
1265 * User-level may need to understand some elements of the kernel DTrace
1266 * configuration in order to generate correct DIF. This information is
1267 * conveyed via the dtrace_conf structure.
1268 */
1269 typedef struct dtrace_conf {
1270 uint_t dtc_difversion; /* supported DIF version */
1271 uint_t dtc_difintregs; /* # of DIF integer registers */
1272 uint_t dtc_diftupregs; /* # of DIF tuple registers */
1273 uint_t dtc_ctfmodel; /* CTF data model */
1274 uint_t dtc_pad[8]; /* reserved for future use */
1275 } dtrace_conf_t;
1276
1277 /*
1278 * DTrace Faults
1279 *
1280 * The constants below DTRACEFLT_LIBRARY indicate probe processing faults;
1281 * constants at or above DTRACEFLT_LIBRARY indicate faults in probe
1282 * postprocessing at user-level. Probe processing faults induce an ERROR
1283 * probe and are replicated in unistd.d to allow users' ERROR probes to decode
1284 * the error condition using thse symbolic labels.
1285 */
1286 #define DTRACEFLT_UNKNOWN 0 /* Unknown fault */
1287 #define DTRACEFLT_BADADDR 1 /* Bad address */
1288 #define DTRACEFLT_BADALIGN 2 /* Bad alignment */
1289 #define DTRACEFLT_ILLOP 3 /* Illegal operation */
1290 #define DTRACEFLT_DIVZERO 4 /* Divide-by-zero */
1291 #define DTRACEFLT_NOSCRATCH 5 /* Out of scratch space */
1292 #define DTRACEFLT_KPRIV 6 /* Illegal kernel access */
1293 #define DTRACEFLT_UPRIV 7 /* Illegal user access */
1294 #define DTRACEFLT_TUPOFLOW 8 /* Tuple stack overflow */
1295 #define DTRACEFLT_BADSTACK 9 /* Bad stack */
1296
1297 #define DTRACEFLT_LIBRARY 1000 /* Library-level fault */
1298
1299 /*
1300 * DTrace Argument Types
1301 *
1302 * Because it would waste both space and time, argument types do not reside
1303 * with the probe. In order to determine argument types for args[X]
1304 * variables, the D compiler queries for argument types on a probe-by-probe
1305 * basis. (This optimizes for the common case that arguments are either not
1306 * used or used in an untyped fashion.) Typed arguments are specified with a
1307 * string of the type name in the dtragd_native member of the argument
1308 * description structure. Typed arguments may be further translated to types
1309 * of greater stability; the provider indicates such a translated argument by
1310 * filling in the dtargd_xlate member with the string of the translated type.
1311 * Finally, the provider may indicate which argument value a given argument
1312 * maps to by setting the dtargd_mapping member -- allowing a single argument
1313 * to map to multiple args[X] variables.
1314 */
1315 typedef struct dtrace_argdesc {
1316 dtrace_id_t dtargd_id; /* probe identifier */
1317 int dtargd_ndx; /* arg number (-1 iff none) */
1318 int dtargd_mapping; /* value mapping */
1319 char dtargd_native[DTRACE_ARGTYPELEN]; /* native type name */
1320 char dtargd_xlate[DTRACE_ARGTYPELEN]; /* translated type name */
1321 } dtrace_argdesc_t;
1322
1323 /*
1324 * DTrace Stability Attributes
1325 *
1326 * Each DTrace provider advertises the name and data stability of each of its
1327 * probe description components, as well as its architectural dependencies.
1328 * The D compiler can query the provider attributes (dtrace_pattr_t below) in
1329 * order to compute the properties of an input program and report them.
1330 */
1331 typedef uint8_t dtrace_stability_t; /* stability code (see attributes(5)) */
1332 typedef uint8_t dtrace_class_t; /* architectural dependency class */
1333
1334 #define DTRACE_STABILITY_INTERNAL 0 /* private to DTrace itself */
1335 #define DTRACE_STABILITY_PRIVATE 1 /* private to Sun (see docs) */
1336 #define DTRACE_STABILITY_OBSOLETE 2 /* scheduled for removal */
1337 #define DTRACE_STABILITY_EXTERNAL 3 /* not controlled by Sun */
1338 #define DTRACE_STABILITY_UNSTABLE 4 /* new or rapidly changing */
1339 #define DTRACE_STABILITY_EVOLVING 5 /* less rapidly changing */
1340 #define DTRACE_STABILITY_STABLE 6 /* mature interface from Sun */
1341 #define DTRACE_STABILITY_STANDARD 7 /* industry standard */
1342 #define DTRACE_STABILITY_MAX 7 /* maximum valid stability */
1343
1344 #define DTRACE_CLASS_UNKNOWN 0 /* unknown architectural dependency */
1345 #define DTRACE_CLASS_CPU 1 /* CPU-module-specific */
1346 #define DTRACE_CLASS_PLATFORM 2 /* platform-specific (uname -i) */
1347 #define DTRACE_CLASS_GROUP 3 /* hardware-group-specific (uname -m) */
1348 #define DTRACE_CLASS_ISA 4 /* ISA-specific (uname -p) */
1349 #define DTRACE_CLASS_COMMON 5 /* common to all systems */
1350 #define DTRACE_CLASS_MAX 5 /* maximum valid class */
1351
1352 #define DTRACE_PRIV_NONE 0x0000
1353 #define DTRACE_PRIV_KERNEL 0x0001
1354 #define DTRACE_PRIV_USER 0x0002
1355 #define DTRACE_PRIV_PROC 0x0004
1356 #define DTRACE_PRIV_OWNER 0x0008
1357 #define DTRACE_PRIV_ZONEOWNER 0x0010
1358
1359 #define DTRACE_PRIV_ALL \
1360 (DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER | \
1361 DTRACE_PRIV_PROC | DTRACE_PRIV_OWNER | DTRACE_PRIV_ZONEOWNER)
1362
1363 typedef struct dtrace_ppriv {
1364 uint32_t dtpp_flags; /* privilege flags */
1365 uid_t dtpp_uid; /* user ID */
1366 zoneid_t dtpp_zoneid; /* zone ID */
1367 } dtrace_ppriv_t;
1368
1369 typedef struct dtrace_attribute {
1370 dtrace_stability_t dtat_name; /* entity name stability */
1371 dtrace_stability_t dtat_data; /* entity data stability */
1372 dtrace_class_t dtat_class; /* entity data dependency */
1373 } dtrace_attribute_t;
1374
1375 typedef struct dtrace_pattr {
1376 dtrace_attribute_t dtpa_provider; /* provider attributes */
1377 dtrace_attribute_t dtpa_mod; /* module attributes */
1378 dtrace_attribute_t dtpa_func; /* function attributes */
1379 dtrace_attribute_t dtpa_name; /* name attributes */
1380 dtrace_attribute_t dtpa_args; /* args[] attributes */
1381 } dtrace_pattr_t;
1382
1383 typedef struct dtrace_providerdesc {
1384 char dtvd_name[DTRACE_PROVNAMELEN]; /* provider name */
1385 dtrace_pattr_t dtvd_attr; /* stability attributes */
1386 dtrace_ppriv_t dtvd_priv; /* privileges required */
1387 } dtrace_providerdesc_t;
1388
1389 /*
1390 * DTrace Pseudodevice Interface
1391 *
1392 * DTrace is controlled through ioctl(2)'s to the in-kernel dtrace:dtrace
1393 * pseudodevice driver. These ioctls comprise the user-kernel interface to
1394 * DTrace.
1395 */
1396 #if !defined(__APPLE__)
1397 #define DTRACEIOC (('d' << 24) | ('t' << 16) | ('r' << 8))
1398 #define DTRACEIOC_PROVIDER (DTRACEIOC | 1) /* provider query */
1399 #define DTRACEIOC_PROBES (DTRACEIOC | 2) /* probe query */
1400 #define DTRACEIOC_BUFSNAP (DTRACEIOC | 4) /* snapshot buffer */
1401 #define DTRACEIOC_PROBEMATCH (DTRACEIOC | 5) /* match probes */
1402 #define DTRACEIOC_ENABLE (DTRACEIOC | 6) /* enable probes */
1403 #define DTRACEIOC_AGGSNAP (DTRACEIOC | 7) /* snapshot agg. */
1404 #define DTRACEIOC_EPROBE (DTRACEIOC | 8) /* get eprobe desc. */
1405 #define DTRACEIOC_PROBEARG (DTRACEIOC | 9) /* get probe arg */
1406 #define DTRACEIOC_CONF (DTRACEIOC | 10) /* get config. */
1407 #define DTRACEIOC_STATUS (DTRACEIOC | 11) /* get status */
1408 #define DTRACEIOC_GO (DTRACEIOC | 12) /* start tracing */
1409 #define DTRACEIOC_STOP (DTRACEIOC | 13) /* stop tracing */
1410 #define DTRACEIOC_AGGDESC (DTRACEIOC | 15) /* get agg. desc. */
1411 #define DTRACEIOC_FORMAT (DTRACEIOC | 16) /* get format str */
1412 #define DTRACEIOC_DOFGET (DTRACEIOC | 17) /* get DOF */
1413 #define DTRACEIOC_REPLICATE (DTRACEIOC | 18) /* replicate enab */
1414 #else
1415 /* coding this as IOC_VOID allows this driver to handle its own copyin/copuout */
1416 #define DTRACEIOC _IO('d',0)
1417 #define DTRACEIOC_PROVIDER (DTRACEIOC | 1) /* provider query */
1418 #define DTRACEIOC_PROBES (DTRACEIOC | 2) /* probe query */
1419 #define DTRACEIOC_BUFSNAP (DTRACEIOC | 4) /* snapshot buffer */
1420 #define DTRACEIOC_PROBEMATCH (DTRACEIOC | 5) /* match probes */
1421 #define DTRACEIOC_ENABLE (DTRACEIOC | 6) /* enable probes */
1422 #define DTRACEIOC_AGGSNAP (DTRACEIOC | 7) /* snapshot agg. */
1423 #define DTRACEIOC_EPROBE (DTRACEIOC | 8) /* get eprobe desc. */
1424 #define DTRACEIOC_PROBEARG (DTRACEIOC | 9) /* get probe arg */
1425 #define DTRACEIOC_CONF (DTRACEIOC | 10) /* get config. */
1426 #define DTRACEIOC_STATUS (DTRACEIOC | 11) /* get status */
1427 #define DTRACEIOC_GO (DTRACEIOC | 12) /* start tracing */
1428 #define DTRACEIOC_STOP (DTRACEIOC | 13) /* stop tracing */
1429 #define DTRACEIOC_AGGDESC (DTRACEIOC | 15) /* get agg. desc. */
1430 #define DTRACEIOC_FORMAT (DTRACEIOC | 16) /* get format str */
1431 #define DTRACEIOC_DOFGET (DTRACEIOC | 17) /* get DOF */
1432 #define DTRACEIOC_REPLICATE (DTRACEIOC | 18) /* replicate enab */
1433 #define DTRACEIOC_MODUUIDSLIST (DTRACEIOC | 30) /* APPLE ONLY, query for modules with missing symbols */
1434 #define DTRACEIOC_PROVMODSYMS (DTRACEIOC | 31) /* APPLE ONLY, provide missing symbols for a given module */
1435 #define DTRACEIOC_PROCWAITFOR (DTRACEIOC | 32) /* APPLE ONLY, wait for process exec */
1436 #define DTRACEIOC_SLEEP (DTRACEIOC | 33) /* APPLE ONLY, sleep */
1437 #define DTRACEIOC_SIGNAL (DTRACEIOC | 34) /* APPLE ONLY, signal sleeping process */
1438
1439 /*
1440 * The following structs are used to provide symbol information to the kernel from userspace.
1441 */
1442
1443 typedef struct dtrace_symbol {
1444 uint64_t dtsym_addr; /* address of the symbol */
1445 uint64_t dtsym_size; /* size of the symbol, must be uint64_t to maintain alignment when called by 64b uproc in i386 kernel */
1446 char dtsym_name[DTRACE_FUNCNAMELEN]; /* symbol name */
1447 } dtrace_symbol_t;
1448
1449 typedef struct dtrace_module_symbols {
1450 UUID dtmodsyms_uuid;
1451 uint64_t dtmodsyms_count;
1452 dtrace_symbol_t dtmodsyms_symbols[1];
1453 } dtrace_module_symbols_t;
1454
1455 #define DTRACE_MODULE_SYMBOLS_SIZE(count) (sizeof(dtrace_module_symbols_t) + ((count - 1) * sizeof(dtrace_symbol_t)))
1456
1457 typedef struct dtrace_module_uuids_list {
1458 uint64_t dtmul_count;
1459 UUID dtmul_uuid[1];
1460 } dtrace_module_uuids_list_t;
1461
1462 #define DTRACE_MODULE_UUIDS_LIST_SIZE(count) (sizeof(dtrace_module_uuids_list_t) + ((count - 1) * sizeof(UUID)))
1463
1464 typedef struct dtrace_procdesc {
1465 /* Must be specified by user-space */
1466 char p_name[128];
1467 /* Set or modified by the Kernel */
1468 int p_name_length;
1469 pid_t p_pid;
1470 } dtrace_procdesc_t;
1471
1472 /**
1473 * DTrace wake reasons.
1474 * This is used in userspace to determine what's the reason why it woke up,
1475 * to start aggregating / switching buffer right away if it is because a buffer
1476 * got over its limit
1477 */
1478 #define DTRACE_WAKE_TIMEOUT 0 /* dtrace client woke up because of a timeout */
1479 #define DTRACE_WAKE_BUF_LIMIT 1 /* dtrace client woke up because of a over limit buffer */
1480
1481 #endif /* __APPLE__ */
1482
1483 /*
1484 * DTrace Helpers
1485 *
1486 * In general, DTrace establishes probes in processes and takes actions on
1487 * processes without knowing their specific user-level structures. Instead of
1488 * existing in the framework, process-specific knowledge is contained by the
1489 * enabling D program -- which can apply process-specific knowledge by making
1490 * appropriate use of DTrace primitives like copyin() and copyinstr() to
1491 * operate on user-level data. However, there may exist some specific probes
1492 * of particular semantic relevance that the application developer may wish to
1493 * explicitly export. For example, an application may wish to export a probe
1494 * at the point that it begins and ends certain well-defined transactions. In
1495 * addition to providing probes, programs may wish to offer assistance for
1496 * certain actions. For example, in highly dynamic environments (e.g., Java),
1497 * it may be difficult to obtain a stack trace in terms of meaningful symbol
1498 * names (the translation from instruction addresses to corresponding symbol
1499 * names may only be possible in situ); these environments may wish to define
1500 * a series of actions to be applied in situ to obtain a meaningful stack
1501 * trace.
1502 *
1503 * These two mechanisms -- user-level statically defined tracing and assisting
1504 * DTrace actions -- are provided via DTrace _helpers_. Helpers are specified
1505 * via DOF, but unlike enabling DOF, helper DOF may contain definitions of
1506 * providers, probes and their arguments. If a helper wishes to provide
1507 * action assistance, probe descriptions and corresponding DIF actions may be
1508 * specified in the helper DOF. For such helper actions, however, the probe
1509 * description describes the specific helper: all DTrace helpers have the
1510 * provider name "dtrace" and the module name "helper", and the name of the
1511 * helper is contained in the function name (for example, the ustack() helper
1512 * is named "ustack"). Any helper-specific name may be contained in the name
1513 * (for example, if a helper were to have a constructor, it might be named
1514 * "dtrace:helper:<helper>:init"). Helper actions are only called when the
1515 * action that they are helping is taken. Helper actions may only return DIF
1516 * expressions, and may only call the following subroutines:
1517 *
1518 * alloca() <= Allocates memory out of the consumer's scratch space
1519 * bcopy() <= Copies memory to scratch space
1520 * copyin() <= Copies memory from user-level into consumer's scratch
1521 * copyinto() <= Copies memory into a specific location in scratch
1522 * copyinstr() <= Copies a string into a specific location in scratch
1523 *
1524 * Helper actions may only access the following built-in variables:
1525 *
1526 * curthread <= Current kthread_t pointer
1527 * tid <= Current thread identifier
1528 * pid <= Current process identifier
1529 * ppid <= Parent process identifier
1530 * uid <= Current user ID
1531 * gid <= Current group ID
1532 * execname <= Current executable name
1533 * zonename <= Current zone name
1534 *
1535 * Helper actions may not manipulate or allocate dynamic variables, but they
1536 * may have clause-local and statically-allocated global variables. The
1537 * helper action variable state is specific to the helper action -- variables
1538 * used by the helper action may not be accessed outside of the helper
1539 * action, and the helper action may not access variables that like outside
1540 * of it. Helper actions may not load from kernel memory at-large; they are
1541 * restricting to loading current user state (via copyin() and variants) and
1542 * scratch space. As with probe enablings, helper actions are executed in
1543 * program order. The result of the helper action is the result of the last
1544 * executing helper expression.
1545 *
1546 * Helpers -- composed of either providers/probes or probes/actions (or both)
1547 * -- are added by opening the "helper" minor node, and issuing an ioctl(2)
1548 * (DTRACEHIOC_ADDDOF) that specifies the dof_helper_t structure. This
1549 * encapsulates the name and base address of the user-level library or
1550 * executable publishing the helpers and probes as well as the DOF that
1551 * contains the definitions of those helpers and probes.
1552 *
1553 * The DTRACEHIOC_ADD and DTRACEHIOC_REMOVE are left in place for legacy
1554 * helpers and should no longer be used. No other ioctls are valid on the
1555 * helper minor node.
1556 */
1557 #if !defined(__APPLE__)
1558 #define DTRACEHIOC (('d' << 24) | ('t' << 16) | ('h' << 8))
1559 #define DTRACEHIOC_ADD (DTRACEHIOC | 1) /* add helper */
1560 #define DTRACEHIOC_REMOVE (DTRACEHIOC | 2) /* remove helper */
1561 #define DTRACEHIOC_ADDDOF (DTRACEHIOC | 3) /* add helper DOF */
1562 #else
1563 #define DTRACEHIOC_REMOVE _IO('h', 2) /* remove helper */
1564 #define DTRACEHIOC_ADDDOF _IOW('h', 4, user_addr_t) /* add helper DOF */
1565 #endif /* __APPLE__ */
1566
1567 typedef struct dof_helper {
1568 char dofhp_mod[DTRACE_MODNAMELEN]; /* executable or library name */
1569 uint64_t dofhp_addr; /* base address of object */
1570 uint64_t dofhp_dof; /* address of helper DOF */
1571 } dof_helper_t;
1572
1573 #if defined(__APPLE__)
1574 /*
1575 * This structure is used to register one or more dof_helper_t(s).
1576 * For counts greater than one, malloc the structure as if the
1577 * dofiod_helpers field was "count" sized. The kernel will copyin
1578 * data of size:
1579 *
1580 * sizeof(dof_ioctl_data_t) + ((count - 1) * sizeof(dof_helper_t))
1581 */
1582 typedef struct dof_ioctl_data {
1583 /*
1584 * This field must be 64 bits to keep the alignment the same
1585 * when 64 bit user procs are sending data to 32 bit xnu
1586 */
1587 uint64_t dofiod_count;
1588 dof_helper_t dofiod_helpers[1];
1589 } dof_ioctl_data_t;
1590
1591 #define DOF_IOCTL_DATA_T_SIZE(count) (sizeof(dof_ioctl_data_t) + ((count - 1) * sizeof(dof_helper_t)))
1592
1593 #endif
1594
1595 #define DTRACEMNR_DTRACE "dtrace" /* node for DTrace ops */
1596 #if !defined(__APPLE__)
1597 #define DTRACEMNR_HELPER "helper" /* node for helpers */
1598 #else
1599 #define DTRACEMNR_HELPER "dtracehelper" /* node for helpers */
1600 #endif /* __APPLE__ */
1601 #define DTRACEMNRN_DTRACE 0 /* minor for DTrace ops */
1602 #define DTRACEMNRN_HELPER 1 /* minor for helpers */
1603 #define DTRACEMNRN_CLONE 2 /* first clone minor */
1604
1605 #ifdef _KERNEL
1606
1607 /*
1608 * DTrace Provider API
1609 *
1610 * The following functions are implemented by the DTrace framework and are
1611 * used to implement separate in-kernel DTrace providers. Common functions
1612 * are provided in uts/common/os/dtrace.c. ISA-dependent subroutines are
1613 * defined in uts/<isa>/dtrace/dtrace_asm.s or uts/<isa>/dtrace/dtrace_isa.c.
1614 *
1615 * The provider API has two halves: the API that the providers consume from
1616 * DTrace, and the API that providers make available to DTrace.
1617 *
1618 * 1 Framework-to-Provider API
1619 *
1620 * 1.1 Overview
1621 *
1622 * The Framework-to-Provider API is represented by the dtrace_pops structure
1623 * that the provider passes to the framework when registering itself. This
1624 * structure consists of the following members:
1625 *
1626 * dtps_provide() <-- Provide all probes, all modules
1627 * dtps_provide_module() <-- Provide all probes in specified module
1628 * dtps_enable() <-- Enable specified probe
1629 * dtps_disable() <-- Disable specified probe
1630 * dtps_suspend() <-- Suspend specified probe
1631 * dtps_resume() <-- Resume specified probe
1632 * dtps_getargdesc() <-- Get the argument description for args[X]
1633 * dtps_getargval() <-- Get the value for an argX or args[X] variable
1634 * dtps_usermode() <-- Find out if the probe was fired in user mode
1635 * dtps_destroy() <-- Destroy all state associated with this probe
1636 *
1637 * 1.2 void dtps_provide(void *arg, const dtrace_probedesc_t *spec)
1638 *
1639 * 1.2.1 Overview
1640 *
1641 * Called to indicate that the provider should provide all probes. If the
1642 * specified description is non-NULL, dtps_provide() is being called because
1643 * no probe matched a specified probe -- if the provider has the ability to
1644 * create custom probes, it may wish to create a probe that matches the
1645 * specified description.
1646 *
1647 * 1.2.2 Arguments and notes
1648 *
1649 * The first argument is the cookie as passed to dtrace_register(). The
1650 * second argument is a pointer to a probe description that the provider may
1651 * wish to consider when creating custom probes. The provider is expected to
1652 * call back into the DTrace framework via dtrace_probe_create() to create
1653 * any necessary probes. dtps_provide() may be called even if the provider
1654 * has made available all probes; the provider should check the return value
1655 * of dtrace_probe_create() to handle this case. Note that the provider need
1656 * not implement both dtps_provide() and dtps_provide_module(); see
1657 * "Arguments and Notes" for dtrace_register(), below.
1658 *
1659 * 1.2.3 Return value
1660 *
1661 * None.
1662 *
1663 * 1.2.4 Caller's context
1664 *
1665 * dtps_provide() is typically called from open() or ioctl() context, but may
1666 * be called from other contexts as well. The DTrace framework is locked in
1667 * such a way that providers may not register or unregister. This means that
1668 * the provider may not call any DTrace API that affects its registration with
1669 * the framework, including dtrace_register(), dtrace_unregister(),
1670 * dtrace_invalidate(), and dtrace_condense(). However, the context is such
1671 * that the provider may (and indeed, is expected to) call probe-related
1672 * DTrace routines, including dtrace_probe_create(), dtrace_probe_lookup(),
1673 * and dtrace_probe_arg().
1674 *
1675 * 1.3 void dtps_provide_module(void *arg, struct modctl *mp)
1676 *
1677 * 1.3.1 Overview
1678 *
1679 * Called to indicate that the provider should provide all probes in the
1680 * specified module.
1681 *
1682 * 1.3.2 Arguments and notes
1683 *
1684 * The first argument is the cookie as passed to dtrace_register(). The
1685 * second argument is a pointer to a modctl structure that indicates the
1686 * module for which probes should be created.
1687 *
1688 * 1.3.3 Return value
1689 *
1690 * None.
1691 *
1692 * 1.3.4 Caller's context
1693 *
1694 * dtps_provide_module() may be called from open() or ioctl() context, but
1695 * may also be called from a module loading context. mod_lock is held, and
1696 * the DTrace framework is locked in such a way that providers may not
1697 * register or unregister. This means that the provider may not call any
1698 * DTrace API that affects its registration with the framework, including
1699 * dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and
1700 * dtrace_condense(). However, the context is such that the provider may (and
1701 * indeed, is expected to) call probe-related DTrace routines, including
1702 * dtrace_probe_create(), dtrace_probe_lookup(), and dtrace_probe_arg(). Note
1703 * that the provider need not implement both dtps_provide() and
1704 * dtps_provide_module(); see "Arguments and Notes" for dtrace_register(),
1705 * below.
1706 *
1707 * 1.4 int dtps_enable(void *arg, dtrace_id_t id, void *parg)
1708 *
1709 * 1.4.1 Overview
1710 *
1711 * Called to enable the specified probe.
1712 *
1713 * 1.4.2 Arguments and notes
1714 *
1715 * The first argument is the cookie as passed to dtrace_register(). The
1716 * second argument is the identifier of the probe to be enabled. The third
1717 * argument is the probe argument as passed to dtrace_probe_create().
1718 * dtps_enable() will be called when a probe transitions from not being
1719 * enabled at all to having one or more ECB. The number of ECBs associated
1720 * with the probe may change without subsequent calls into the provider.
1721 * When the number of ECBs drops to zero, the provider will be explicitly
1722 * told to disable the probe via dtps_disable(). dtrace_probe() should never
1723 * be called for a probe identifier that hasn't been explicitly enabled via
1724 * dtps_enable().
1725 *
1726 * 1.4.3 Return value
1727 *
1728 * On success, dtps_enable() should return 0. On failure, -1 should be
1729 * returned.
1730 *
1731 * 1.4.4 Caller's context
1732 *
1733 * The DTrace framework is locked in such a way that it may not be called
1734 * back into at all. cpu_lock is held. mod_lock is not held and may not
1735 * be acquired.
1736 *
1737 * 1.5 void dtps_disable(void *arg, dtrace_id_t id, void *parg)
1738 *
1739 * 1.5.1 Overview
1740 *
1741 * Called to disable the specified probe.
1742 *
1743 * 1.5.2 Arguments and notes
1744 *
1745 * The first argument is the cookie as passed to dtrace_register(). The
1746 * second argument is the identifier of the probe to be disabled. The third
1747 * argument is the probe argument as passed to dtrace_probe_create().
1748 * dtps_disable() will be called when a probe transitions from being enabled
1749 * to having zero ECBs. dtrace_probe() should never be called for a probe
1750 * identifier that has been explicitly enabled via dtps_disable().
1751 *
1752 * 1.5.3 Return value
1753 *
1754 * None.
1755 *
1756 * 1.5.4 Caller's context
1757 *
1758 * The DTrace framework is locked in such a way that it may not be called
1759 * back into at all. cpu_lock is held. mod_lock is not held and may not
1760 * be acquired.
1761 *
1762 * 1.6 void dtps_suspend(void *arg, dtrace_id_t id, void *parg)
1763 *
1764 * 1.6.1 Overview
1765 *
1766 * Called to suspend the specified enabled probe. This entry point is for
1767 * providers that may need to suspend some or all of their probes when CPUs
1768 * are being powered on or when the boot monitor is being entered for a
1769 * prolonged period of time.
1770 *
1771 * 1.6.2 Arguments and notes
1772 *
1773 * The first argument is the cookie as passed to dtrace_register(). The
1774 * second argument is the identifier of the probe to be suspended. The
1775 * third argument is the probe argument as passed to dtrace_probe_create().
1776 * dtps_suspend will only be called on an enabled probe. Providers that
1777 * provide a dtps_suspend entry point will want to take roughly the action
1778 * that it takes for dtps_disable.
1779 *
1780 * 1.6.3 Return value
1781 *
1782 * None.
1783 *
1784 * 1.6.4 Caller's context
1785 *
1786 * Interrupts are disabled. The DTrace framework is in a state such that the
1787 * specified probe cannot be disabled or destroyed for the duration of
1788 * dtps_suspend(). As interrupts are disabled, the provider is afforded
1789 * little latitude; the provider is expected to do no more than a store to
1790 * memory.
1791 *
1792 * 1.7 void dtps_resume(void *arg, dtrace_id_t id, void *parg)
1793 *
1794 * 1.7.1 Overview
1795 *
1796 * Called to resume the specified enabled probe. This entry point is for
1797 * providers that may need to resume some or all of their probes after the
1798 * completion of an event that induced a call to dtps_suspend().
1799 *
1800 * 1.7.2 Arguments and notes
1801 *
1802 * The first argument is the cookie as passed to dtrace_register(). The
1803 * second argument is the identifier of the probe to be resumed. The
1804 * third argument is the probe argument as passed to dtrace_probe_create().
1805 * dtps_resume will only be called on an enabled probe. Providers that
1806 * provide a dtps_resume entry point will want to take roughly the action
1807 * that it takes for dtps_enable.
1808 *
1809 * 1.7.3 Return value
1810 *
1811 * None.
1812 *
1813 * 1.7.4 Caller's context
1814 *
1815 * Interrupts are disabled. The DTrace framework is in a state such that the
1816 * specified probe cannot be disabled or destroyed for the duration of
1817 * dtps_resume(). As interrupts are disabled, the provider is afforded
1818 * little latitude; the provider is expected to do no more than a store to
1819 * memory.
1820 *
1821 * 1.8 void dtps_getargdesc(void *arg, dtrace_id_t id, void *parg,
1822 * dtrace_argdesc_t *desc)
1823 *
1824 * 1.8.1 Overview
1825 *
1826 * Called to retrieve the argument description for an args[X] variable.
1827 *
1828 * 1.8.2 Arguments and notes
1829 *
1830 * The first argument is the cookie as passed to dtrace_register(). The
1831 * second argument is the identifier of the current probe. The third
1832 * argument is the probe argument as passed to dtrace_probe_create(). The
1833 * fourth argument is a pointer to the argument description. This
1834 * description is both an input and output parameter: it contains the
1835 * index of the desired argument in the dtargd_ndx field, and expects
1836 * the other fields to be filled in upon return. If there is no argument
1837 * corresponding to the specified index, the dtargd_ndx field should be set
1838 * to DTRACE_ARGNONE.
1839 *
1840 * 1.8.3 Return value
1841 *
1842 * None. The dtargd_ndx, dtargd_native, dtargd_xlate and dtargd_mapping
1843 * members of the dtrace_argdesc_t structure are all output values.
1844 *
1845 * 1.8.4 Caller's context
1846 *
1847 * dtps_getargdesc() is called from ioctl() context. mod_lock is held, and
1848 * the DTrace framework is locked in such a way that providers may not
1849 * register or unregister. This means that the provider may not call any
1850 * DTrace API that affects its registration with the framework, including
1851 * dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and
1852 * dtrace_condense().
1853 *
1854 * 1.9 uint64_t dtps_getargval(void *arg, dtrace_id_t id, void *parg,
1855 * int argno, int aframes)
1856 *
1857 * 1.9.1 Overview
1858 *
1859 * Called to retrieve a value for an argX or args[X] variable.
1860 *
1861 * 1.9.2 Arguments and notes
1862 *
1863 * The first argument is the cookie as passed to dtrace_register(). The
1864 * second argument is the identifier of the current probe. The third
1865 * argument is the probe argument as passed to dtrace_probe_create(). The
1866 * fourth argument is the number of the argument (the X in the example in
1867 * 1.9.1). The fifth argument is the number of stack frames that were used
1868 * to get from the actual place in the code that fired the probe to
1869 * dtrace_probe() itself, the so-called artificial frames. This argument may
1870 * be used to descend an appropriate number of frames to find the correct
1871 * values. If this entry point is left NULL, the dtrace_getarg() built-in
1872 * function is used.
1873 *
1874 * 1.9.3 Return value
1875 *
1876 * The value of the argument.
1877 *
1878 * 1.9.4 Caller's context
1879 *
1880 * This is called from within dtrace_probe() meaning that interrupts
1881 * are disabled. No locks should be taken within this entry point.
1882 *
1883 * 1.10 int dtps_usermode(void *arg, dtrace_id_t id, void *parg)
1884 *
1885 * 1.10.1 Overview
1886 *
1887 * Called to determine if the probe was fired in a user context.
1888 *
1889 * 1.10.2 Arguments and notes
1890 *
1891 * The first argument is the cookie as passed to dtrace_register(). The
1892 * second argument is the identifier of the current probe. The third
1893 * argument is the probe argument as passed to dtrace_probe_create(). This
1894 * entry point must not be left NULL for providers whose probes allow for
1895 * mixed mode tracing, that is to say those probes that can fire during
1896 * kernel- _or_ user-mode execution
1897 *
1898 * 1.10.3 Return value
1899 *
1900 * A boolean value.
1901 *
1902 * 1.10.4 Caller's context
1903 *
1904 * This is called from within dtrace_probe() meaning that interrupts
1905 * are disabled. No locks should be taken within this entry point.
1906 *
1907 * 1.11 void dtps_destroy(void *arg, dtrace_id_t id, void *parg)
1908 *
1909 * 1.11.1 Overview
1910 *
1911 * Called to destroy the specified probe.
1912 *
1913 * 1.11.2 Arguments and notes
1914 *
1915 * The first argument is the cookie as passed to dtrace_register(). The
1916 * second argument is the identifier of the probe to be destroyed. The third
1917 * argument is the probe argument as passed to dtrace_probe_create(). The
1918 * provider should free all state associated with the probe. The framework
1919 * guarantees that dtps_destroy() is only called for probes that have either
1920 * been disabled via dtps_disable() or were never enabled via dtps_enable().
1921 * Once dtps_disable() has been called for a probe, no further call will be
1922 * made specifying the probe.
1923 *
1924 * 1.11.3 Return value
1925 *
1926 * None.
1927 *
1928 * 1.11.4 Caller's context
1929 *
1930 * The DTrace framework is locked in such a way that it may not be called
1931 * back into at all. mod_lock is held. cpu_lock is not held, and may not be
1932 * acquired.
1933 *
1934 *
1935 * 2 Provider-to-Framework API
1936 *
1937 * 2.1 Overview
1938 *
1939 * The Provider-to-Framework API provides the mechanism for the provider to
1940 * register itself with the DTrace framework, to create probes, to lookup
1941 * probes and (most importantly) to fire probes. The Provider-to-Framework
1942 * consists of:
1943 *
1944 * dtrace_register() <-- Register a provider with the DTrace framework
1945 * dtrace_unregister() <-- Remove a provider's DTrace registration
1946 * dtrace_invalidate() <-- Invalidate the specified provider
1947 * dtrace_condense() <-- Remove a provider's unenabled probes
1948 * dtrace_attached() <-- Indicates whether or not DTrace has attached
1949 * dtrace_probe_create() <-- Create a DTrace probe
1950 * dtrace_probe_lookup() <-- Lookup a DTrace probe based on its name
1951 * dtrace_probe_arg() <-- Return the probe argument for a specific probe
1952 * dtrace_probe() <-- Fire the specified probe
1953 *
1954 * 2.2 int dtrace_register(const char *name, const dtrace_pattr_t *pap,
1955 * uint32_t priv, cred_t *cr, const dtrace_pops_t *pops, void *arg,
1956 * dtrace_provider_id_t *idp)
1957 *
1958 * 2.2.1 Overview
1959 *
1960 * dtrace_register() registers the calling provider with the DTrace
1961 * framework. It should generally be called by DTrace providers in their
1962 * attach(9E) entry point.
1963 *
1964 * 2.2.2 Arguments and Notes
1965 *
1966 * The first argument is the name of the provider. The second argument is a
1967 * pointer to the stability attributes for the provider. The third argument
1968 * is the privilege flags for the provider, and must be some combination of:
1969 *
1970 * DTRACE_PRIV_NONE <= All users may enable probes from this provider
1971 *
1972 * DTRACE_PRIV_PROC <= Any user with privilege of PRIV_DTRACE_PROC may
1973 * enable probes from this provider
1974 *
1975 * DTRACE_PRIV_USER <= Any user with privilege of PRIV_DTRACE_USER may
1976 * enable probes from this provider
1977 *
1978 * DTRACE_PRIV_KERNEL <= Any user with privilege of PRIV_DTRACE_KERNEL
1979 * may enable probes from this provider
1980 *
1981 * DTRACE_PRIV_OWNER <= This flag places an additional constraint on
1982 * the privilege requirements above. These probes
1983 * require either (a) a user ID matching the user
1984 * ID of the cred passed in the fourth argument
1985 * or (b) the PRIV_PROC_OWNER privilege.
1986 *
1987 * DTRACE_PRIV_ZONEOWNER<= This flag places an additional constraint on
1988 * the privilege requirements above. These probes
1989 * require either (a) a zone ID matching the zone
1990 * ID of the cred passed in the fourth argument
1991 * or (b) the PRIV_PROC_ZONE privilege.
1992 *
1993 * Note that these flags designate the _visibility_ of the probes, not
1994 * the conditions under which they may or may not fire.
1995 *
1996 * The fourth argument is the credential that is associated with the
1997 * provider. This argument should be NULL if the privilege flags don't
1998 * include DTRACE_PRIV_OWNER or DTRACE_PRIV_ZONEOWNER. If non-NULL, the
1999 * framework stashes the uid and zoneid represented by this credential
2000 * for use at probe-time, in implicit predicates. These limit visibility
2001 * of the probes to users and/or zones which have sufficient privilege to
2002 * access them.
2003 *
2004 * The fifth argument is a DTrace provider operations vector, which provides
2005 * the implementation for the Framework-to-Provider API. (See Section 1,
2006 * above.) This must be non-NULL, and each member must be non-NULL. The
2007 * exceptions to this are (1) the dtps_provide() and dtps_provide_module()
2008 * members (if the provider so desires, _one_ of these members may be left
2009 * NULL -- denoting that the provider only implements the other) and (2)
2010 * the dtps_suspend() and dtps_resume() members, which must either both be
2011 * NULL or both be non-NULL.
2012 *
2013 * The sixth argument is a cookie to be specified as the first argument for
2014 * each function in the Framework-to-Provider API. This argument may have
2015 * any value.
2016 *
2017 * The final argument is a pointer to dtrace_provider_id_t. If
2018 * dtrace_register() successfully completes, the provider identifier will be
2019 * stored in the memory pointed to be this argument. This argument must be
2020 * non-NULL.
2021 *
2022 * 2.2.3 Return value
2023 *
2024 * On success, dtrace_register() returns 0 and stores the new provider's
2025 * identifier into the memory pointed to by the idp argument. On failure,
2026 * dtrace_register() returns an errno:
2027 *
2028 * EINVAL The arguments passed to dtrace_register() were somehow invalid.
2029 * This may because a parameter that must be non-NULL was NULL,
2030 * because the name was invalid (either empty or an illegal
2031 * provider name) or because the attributes were invalid.
2032 *
2033 * No other failure code is returned.
2034 *
2035 * 2.2.4 Caller's context
2036 *
2037 * dtrace_register() may induce calls to dtrace_provide(); the provider must
2038 * hold no locks across dtrace_register() that may also be acquired by
2039 * dtrace_provide(). cpu_lock and mod_lock must not be held.
2040 *
2041 * 2.3 int dtrace_unregister(dtrace_provider_t id)
2042 *
2043 * 2.3.1 Overview
2044 *
2045 * Unregisters the specified provider from the DTrace framework. It should
2046 * generally be called by DTrace providers in their detach(9E) entry point.
2047 *
2048 * 2.3.2 Arguments and Notes
2049 *
2050 * The only argument is the provider identifier, as returned from a
2051 * successful call to dtrace_register(). As a result of calling
2052 * dtrace_unregister(), the DTrace framework will call back into the provider
2053 * via the dtps_destroy() entry point. Once dtrace_unregister() successfully
2054 * completes, however, the DTrace framework will no longer make calls through
2055 * the Framework-to-Provider API.
2056 *
2057 * 2.3.3 Return value
2058 *
2059 * On success, dtrace_unregister returns 0. On failure, dtrace_unregister()
2060 * returns an errno:
2061 *
2062 * EBUSY There are currently processes that have the DTrace pseudodevice
2063 * open, or there exists an anonymous enabling that hasn't yet
2064 * been claimed.
2065 *
2066 * No other failure code is returned.
2067 *
2068 * 2.3.4 Caller's context
2069 *
2070 * Because a call to dtrace_unregister() may induce calls through the
2071 * Framework-to-Provider API, the caller may not hold any lock across
2072 * dtrace_register() that is also acquired in any of the Framework-to-
2073 * Provider API functions. Additionally, mod_lock may not be held.
2074 *
2075 * 2.4 void dtrace_invalidate(dtrace_provider_id_t id)
2076 *
2077 * 2.4.1 Overview
2078 *
2079 * Invalidates the specified provider. All subsequent probe lookups for the
2080 * specified provider will fail, but its probes will not be removed.
2081 *
2082 * 2.4.2 Arguments and note
2083 *
2084 * The only argument is the provider identifier, as returned from a
2085 * successful call to dtrace_register(). In general, a provider's probes
2086 * always remain valid; dtrace_invalidate() is a mechanism for invalidating
2087 * an entire provider, regardless of whether or not probes are enabled or
2088 * not. Note that dtrace_invalidate() will _not_ prevent already enabled
2089 * probes from firing -- it will merely prevent any new enablings of the
2090 * provider's probes.
2091 *
2092 * 2.5 int dtrace_condense(dtrace_provider_id_t id)
2093 *
2094 * 2.5.1 Overview
2095 *
2096 * Removes all the unenabled probes for the given provider. This function is
2097 * not unlike dtrace_unregister(), except that it doesn't remove the
2098 * provider just as many of its associated probes as it can.
2099 *
2100 * 2.5.2 Arguments and Notes
2101 *
2102 * As with dtrace_unregister(), the sole argument is the provider identifier
2103 * as returned from a successful call to dtrace_register(). As a result of
2104 * calling dtrace_condense(), the DTrace framework will call back into the
2105 * given provider's dtps_destroy() entry point for each of the provider's
2106 * unenabled probes.
2107 *
2108 * 2.5.3 Return value
2109 *
2110 * Currently, dtrace_condense() always returns 0. However, consumers of this
2111 * function should check the return value as appropriate; its behavior may
2112 * change in the future.
2113 *
2114 * 2.5.4 Caller's context
2115 *
2116 * As with dtrace_unregister(), the caller may not hold any lock across
2117 * dtrace_condense() that is also acquired in the provider's entry points.
2118 * Also, mod_lock may not be held.
2119 *
2120 * 2.6 int dtrace_attached()
2121 *
2122 * 2.6.1 Overview
2123 *
2124 * Indicates whether or not DTrace has attached.
2125 *
2126 * 2.6.2 Arguments and Notes
2127 *
2128 * For most providers, DTrace makes initial contact beyond registration.
2129 * That is, once a provider has registered with DTrace, it waits to hear
2130 * from DTrace to create probes. However, some providers may wish to
2131 * proactively create probes without first being told by DTrace to do so.
2132 * If providers wish to do this, they must first call dtrace_attached() to
2133 * determine if DTrace itself has attached. If dtrace_attached() returns 0,
2134 * the provider must not make any other Provider-to-Framework API call.
2135 *
2136 * 2.6.3 Return value
2137 *
2138 * dtrace_attached() returns 1 if DTrace has attached, 0 otherwise.
2139 *
2140 * 2.7 int dtrace_probe_create(dtrace_provider_t id, const char *mod,
2141 * const char *func, const char *name, int aframes, void *arg)
2142 *
2143 * 2.7.1 Overview
2144 *
2145 * Creates a probe with specified module name, function name, and name.
2146 *
2147 * 2.7.2 Arguments and Notes
2148 *
2149 * The first argument is the provider identifier, as returned from a
2150 * successful call to dtrace_register(). The second, third, and fourth
2151 * arguments are the module name, function name, and probe name,
2152 * respectively. Of these, module name and function name may both be NULL
2153 * (in which case the probe is considered to be unanchored), or they may both
2154 * be non-NULL. The name must be non-NULL, and must point to a non-empty
2155 * string.
2156 *
2157 * The fifth argument is the number of artificial stack frames that will be
2158 * found on the stack when dtrace_probe() is called for the new probe. These
2159 * artificial frames will be automatically be pruned should the stack() or
2160 * stackdepth() functions be called as part of one of the probe's ECBs. If
2161 * the parameter doesn't add an artificial frame, this parameter should be
2162 * zero.
2163 *
2164 * The final argument is a probe argument that will be passed back to the
2165 * provider when a probe-specific operation is called. (e.g., via
2166 * dtps_enable(), dtps_disable(), etc.)
2167 *
2168 * Note that it is up to the provider to be sure that the probe that it
2169 * creates does not already exist -- if the provider is unsure of the probe's
2170 * existence, it should assure its absence with dtrace_probe_lookup() before
2171 * calling dtrace_probe_create().
2172 *
2173 * 2.7.3 Return value
2174 *
2175 * dtrace_probe_create() always succeeds, and always returns the identifier
2176 * of the newly-created probe.
2177 *
2178 * 2.7.4 Caller's context
2179 *
2180 * While dtrace_probe_create() is generally expected to be called from
2181 * dtps_provide() and/or dtps_provide_module(), it may be called from other
2182 * non-DTrace contexts. Neither cpu_lock nor mod_lock may be held.
2183 *
2184 * 2.8 dtrace_id_t dtrace_probe_lookup(dtrace_provider_t id, const char *mod,
2185 * const char *func, const char *name)
2186 *
2187 * 2.8.1 Overview
2188 *
2189 * Looks up a probe based on provdider and one or more of module name,
2190 * function name and probe name.
2191 *
2192 * 2.8.2 Arguments and Notes
2193 *
2194 * The first argument is the provider identifier, as returned from a
2195 * successful call to dtrace_register(). The second, third, and fourth
2196 * arguments are the module name, function name, and probe name,
2197 * respectively. Any of these may be NULL; dtrace_probe_lookup() will return
2198 * the identifier of the first probe that is provided by the specified
2199 * provider and matches all of the non-NULL matching criteria.
2200 * dtrace_probe_lookup() is generally used by a provider to be check the
2201 * existence of a probe before creating it with dtrace_probe_create().
2202 *
2203 * 2.8.3 Return value
2204 *
2205 * If the probe exists, returns its identifier. If the probe does not exist,
2206 * return DTRACE_IDNONE.
2207 *
2208 * 2.8.4 Caller's context
2209 *
2210 * While dtrace_probe_lookup() is generally expected to be called from
2211 * dtps_provide() and/or dtps_provide_module(), it may also be called from
2212 * other non-DTrace contexts. Neither cpu_lock nor mod_lock may be held.
2213 *
2214 * 2.9 void *dtrace_probe_arg(dtrace_provider_t id, dtrace_id_t probe)
2215 *
2216 * 2.9.1 Overview
2217 *
2218 * Returns the probe argument associated with the specified probe.
2219 *
2220 * 2.9.2 Arguments and Notes
2221 *
2222 * The first argument is the provider identifier, as returned from a
2223 * successful call to dtrace_register(). The second argument is a probe
2224 * identifier, as returned from dtrace_probe_lookup() or
2225 * dtrace_probe_create(). This is useful if a probe has multiple
2226 * provider-specific components to it: the provider can create the probe
2227 * once with provider-specific state, and then add to the state by looking
2228 * up the probe based on probe identifier.
2229 *
2230 * 2.9.3 Return value
2231 *
2232 * Returns the argument associated with the specified probe. If the
2233 * specified probe does not exist, or if the specified probe is not provided
2234 * by the specified provider, NULL is returned.
2235 *
2236 * 2.9.4 Caller's context
2237 *
2238 * While dtrace_probe_arg() is generally expected to be called from
2239 * dtps_provide() and/or dtps_provide_module(), it may also be called from
2240 * other non-DTrace contexts. Neither cpu_lock nor mod_lock may be held.
2241 *
2242 * 2.10 void dtrace_probe(dtrace_id_t probe, uintptr_t arg0, uintptr_t arg1,
2243 * uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
2244 *
2245 * 2.10.1 Overview
2246 *
2247 * The epicenter of DTrace: fires the specified probes with the specified
2248 * arguments.
2249 *
2250 * 2.10.2 Arguments and Notes
2251 *
2252 * The first argument is a probe identifier as returned by
2253 * dtrace_probe_create() or dtrace_probe_lookup(). The second through sixth
2254 * arguments are the values to which the D variables "arg0" through "arg4"
2255 * will be mapped.
2256 *
2257 * dtrace_probe() should be called whenever the specified probe has fired --
2258 * however the provider defines it.
2259 *
2260 * 2.10.3 Return value
2261 *
2262 * None.
2263 *
2264 * 2.10.4 Caller's context
2265 *
2266 * dtrace_probe() may be called in virtually any context: kernel, user,
2267 * interrupt, high-level interrupt, with arbitrary adaptive locks held, with
2268 * dispatcher locks held, with interrupts disabled, etc. The only latitude
2269 * that must be afforded to DTrace is the ability to make calls within
2270 * itself (and to its in-kernel subroutines) and the ability to access
2271 * arbitrary (but mapped) memory. On some platforms, this constrains
2272 * context. For example, on UltraSPARC, dtrace_probe() cannot be called
2273 * from any context in which TL is greater than zero. dtrace_probe() may
2274 * also not be called from any routine which may be called by dtrace_probe()
2275 * -- which includes functions in the DTrace framework and some in-kernel
2276 * DTrace subroutines. All such functions "dtrace_"; providers that
2277 * instrument the kernel arbitrarily should be sure to not instrument these
2278 * routines.
2279 */
2280 typedef struct dtrace_pops {
2281 void (*dtps_provide)(void *arg, const dtrace_probedesc_t *spec);
2282 void (*dtps_provide_module)(void *arg, struct modctl *mp);
2283 int (*dtps_enable)(void *arg, dtrace_id_t id, void *parg);
2284 void (*dtps_disable)(void *arg, dtrace_id_t id, void *parg);
2285 void (*dtps_suspend)(void *arg, dtrace_id_t id, void *parg);
2286 void (*dtps_resume)(void *arg, dtrace_id_t id, void *parg);
2287 void (*dtps_getargdesc)(void *arg, dtrace_id_t id, void *parg,
2288 dtrace_argdesc_t *desc);
2289 uint64_t (*dtps_getargval)(void *arg, dtrace_id_t id, void *parg,
2290 int argno, int aframes);
2291 int (*dtps_usermode)(void *arg, dtrace_id_t id, void *parg);
2292 void (*dtps_destroy)(void *arg, dtrace_id_t id, void *parg);
2293 } dtrace_pops_t;
2294
2295 typedef uintptr_t dtrace_provider_id_t;
2296
2297 extern int dtrace_register(const char *, const dtrace_pattr_t *, uint32_t,
2298 cred_t *, const dtrace_pops_t *, void *, dtrace_provider_id_t *);
2299 extern int dtrace_unregister(dtrace_provider_id_t);
2300 extern int dtrace_condense(dtrace_provider_id_t);
2301 extern void dtrace_invalidate(dtrace_provider_id_t);
2302 extern dtrace_id_t dtrace_probe_lookup(dtrace_provider_id_t, const char *,
2303 const char *, const char *);
2304 extern dtrace_id_t dtrace_probe_create(dtrace_provider_id_t, const char *,
2305 const char *, const char *, int, void *);
2306 extern void *dtrace_probe_arg(dtrace_provider_id_t, dtrace_id_t);
2307 #if !defined(__APPLE__)
2308 extern void dtrace_probe(dtrace_id_t, uintptr_t arg0, uintptr_t arg1,
2309 uintptr_t arg2, uintptr_t arg3, uintptr_t arg4);
2310 #else
2311 extern void dtrace_probe(dtrace_id_t, uint64_t arg0, uint64_t arg1,
2312 uint64_t arg2, uint64_t arg3, uint64_t arg4);
2313 #endif /* __APPLE__ */
2314
2315 /*
2316 * DTrace Meta Provider API
2317 *
2318 * The following functions are implemented by the DTrace framework and are
2319 * used to implement meta providers. Meta providers plug into the DTrace
2320 * framework and are used to instantiate new providers on the fly. At
2321 * present, there is only one type of meta provider and only one meta
2322 * provider may be registered with the DTrace framework at a time. The
2323 * sole meta provider type provides user-land static tracing facilities
2324 * by taking meta probe descriptions and adding a corresponding provider
2325 * into the DTrace framework.
2326 *
2327 * 1 Framework-to-Provider
2328 *
2329 * 1.1 Overview
2330 *
2331 * The Framework-to-Provider API is represented by the dtrace_mops structure
2332 * that the meta provider passes to the framework when registering itself as
2333 * a meta provider. This structure consists of the following members:
2334 *
2335 * dtms_create_probe() <-- Add a new probe to a created provider
2336 * dtms_provide_proc() <-- Create a new provider for a given process
2337 * dtms_remove_proc() <-- Remove a previously created provider
2338 *
2339 * 1.2 void dtms_create_probe(void *arg, void *parg,
2340 * dtrace_helper_probedesc_t *probedesc);
2341 *
2342 * 1.2.1 Overview
2343 *
2344 * Called by the DTrace framework to create a new probe in a provider
2345 * created by this meta provider.
2346 *
2347 * 1.2.2 Arguments and notes
2348 *
2349 * The first argument is the cookie as passed to dtrace_meta_register().
2350 * The second argument is the provider cookie for the associated provider;
2351 * this is obtained from the return value of dtms_provide_proc(). The third
2352 * argument is the helper probe description.
2353 *
2354 * 1.2.3 Return value
2355 *
2356 * None
2357 *
2358 * 1.2.4 Caller's context
2359 *
2360 * dtms_create_probe() is called from either ioctl() or module load context.
2361 * The DTrace framework is locked in such a way that meta providers may not
2362 * register or unregister. This means that the meta provider cannot call
2363 * dtrace_meta_register() or dtrace_meta_unregister(). However, the context is
2364 * such that the provider may (and is expected to) call provider-related
2365 * DTrace provider APIs including dtrace_probe_create().
2366 *
2367 * 1.3 void *dtms_provide_proc(void *arg, dtrace_meta_provider_t *mprov,
2368 * proc_t *proc)
2369 *
2370 * 1.3.1 Overview
2371 *
2372 * Called by the DTrace framework to instantiate a new provider given the
2373 * description of the provider and probes in the mprov argument. The
2374 * meta provider should call dtrace_register() to insert the new provider
2375 * into the DTrace framework.
2376 *
2377 * 1.3.2 Arguments and notes
2378 *
2379 * The first argument is the cookie as passed to dtrace_meta_register().
2380 * The second argument is a pointer to a structure describing the new
2381 * helper provider. The third argument is the process identifier for
2382 * process associated with this new provider. Note that the name of the
2383 * provider as passed to dtrace_register() should be the contatenation of
2384 * the dtmpb_provname member of the mprov argument and the processs
2385 * identifier as a string.
2386 *
2387 * 1.3.3 Return value
2388 *
2389 * The cookie for the provider that the meta provider creates. This is
2390 * the same value that it passed to dtrace_register().
2391 *
2392 * 1.3.4 Caller's context
2393 *
2394 * dtms_provide_proc() is called from either ioctl() or module load context.
2395 * The DTrace framework is locked in such a way that meta providers may not
2396 * register or unregister. This means that the meta provider cannot call
2397 * dtrace_meta_register() or dtrace_meta_unregister(). However, the context
2398 * is such that the provider may -- and is expected to -- call
2399 * provider-related DTrace provider APIs including dtrace_register().
2400 *
2401 * 1.4 void dtms_remove_proc(void *arg, dtrace_meta_provider_t *mprov,
2402 * proc_t proc)
2403 *
2404 * 1.4.1 Overview
2405 *
2406 * Called by the DTrace framework to remove a provider that had previously
2407 * been instantiated via the dtms_provide_pid() entry point. The meta
2408 * provider need not remove the provider immediately, but this entry
2409 * point indicates that the provider should be removed as soon as possible
2410 * using the dtrace_unregister() API.
2411 *
2412 * 1.4.2 Arguments and notes
2413 *
2414 * The first argument is the cookie as passed to dtrace_meta_register().
2415 * The second argument is a pointer to a structure describing the helper
2416 * provider. The third argument is the process identifier for process
2417 * associated with this new provider.
2418 *
2419 * 1.4.3 Return value
2420 *
2421 * None
2422 *
2423 * 1.4.4 Caller's context
2424 *
2425 * dtms_remove_proc() is called from either ioctl() or exit() context.
2426 * The DTrace framework is locked in such a way that meta providers may not
2427 * register or unregister. This means that the meta provider cannot call
2428 * dtrace_meta_register() or dtrace_meta_unregister(). However, the context
2429 * is such that the provider may -- and is expected to -- call
2430 * provider-related DTrace provider APIs including dtrace_unregister().
2431 */
2432 typedef struct dtrace_helper_probedesc {
2433 char *dthpb_mod; /* probe module */
2434 char *dthpb_func; /* probe function */
2435 char *dthpb_name; /* probe name */
2436 uint64_t dthpb_base; /* base address */
2437 #if !defined(__APPLE__)
2438 uint32_t *dthpb_offs; /* offsets array */
2439 uint32_t *dthpb_enoffs; /* is-enabled offsets array */
2440 #else
2441 int32_t *dthpb_offs; /* (signed) offsets array */
2442 int32_t *dthpb_enoffs; /* (signed) is-enabled offsets array */
2443 #endif
2444 uint32_t dthpb_noffs; /* offsets count */
2445 uint32_t dthpb_nenoffs; /* is-enabled offsets count */
2446 uint8_t *dthpb_args; /* argument mapping array */
2447 uint8_t dthpb_xargc; /* translated argument count */
2448 uint8_t dthpb_nargc; /* native argument count */
2449 char *dthpb_xtypes; /* translated types strings */
2450 char *dthpb_ntypes; /* native types strings */
2451 } dtrace_helper_probedesc_t;
2452
2453 typedef struct dtrace_helper_provdesc {
2454 char *dthpv_provname; /* provider name */
2455 dtrace_pattr_t dthpv_pattr; /* stability attributes */
2456 } dtrace_helper_provdesc_t;
2457
2458 /*
2459 * APPLE NOTE: dtms_provide_pid and dtms_remove_pid are replaced with
2460 * dtms_provide_proc on Darwin, and a proc reference need to be held
2461 * for the duration of the call.
2462 *
2463 * This is due to the fact that proc_find is not re-entrant on Darwin.
2464 */
2465
2466 typedef struct dtrace_mops {
2467 void (*dtms_create_probe)(void *, void *, dtrace_helper_probedesc_t *);
2468 void *(*dtms_provide_proc)(void *, dtrace_helper_provdesc_t *, proc_t*);
2469 void (*dtms_remove_proc)(void *, dtrace_helper_provdesc_t *, proc_t*);
2470 char* (*dtms_provider_name)(void *);
2471 } dtrace_mops_t;
2472
2473 typedef uintptr_t dtrace_meta_provider_id_t;
2474
2475 extern int dtrace_meta_register(const char *, const dtrace_mops_t *, void *,
2476 dtrace_meta_provider_id_t *);
2477 extern int dtrace_meta_unregister(dtrace_meta_provider_id_t);
2478
2479 /*
2480 * DTrace Kernel Hooks
2481 *
2482 * The following functions are implemented by the base kernel and form a set of
2483 * hooks used by the DTrace framework. DTrace hooks are implemented in either
2484 * uts/common/os/dtrace_subr.c, an ISA-specific assembly file, or in a
2485 * uts/<platform>/os/dtrace_subr.c corresponding to each hardware platform.
2486 */
2487
2488 typedef enum dtrace_vtime_state {
2489 DTRACE_VTIME_INACTIVE = 0, /* No DTrace, no TNF */
2490 DTRACE_VTIME_ACTIVE, /* DTrace virtual time, no TNF */
2491 DTRACE_VTIME_INACTIVE_TNF, /* No DTrace, TNF active */
2492 DTRACE_VTIME_ACTIVE_TNF /* DTrace virtual time _and_ TNF */
2493 } dtrace_vtime_state_t;
2494
2495 extern dtrace_vtime_state_t dtrace_vtime_active;
2496 extern void dtrace_vtime_switch(kthread_t *next);
2497 extern void dtrace_vtime_enable_tnf(void);
2498 extern void dtrace_vtime_disable_tnf(void);
2499 extern void dtrace_vtime_enable(void);
2500 extern void dtrace_vtime_disable(void);
2501
2502 #if !defined(__APPLE__)
2503 struct regs;
2504
2505 extern int (*dtrace_pid_probe_ptr)(struct regs *);
2506 extern int (*dtrace_return_probe_ptr)(struct regs *);
2507 #else
2508 #if defined (__i386__) || defined(__x86_64__)
2509 extern int (*dtrace_pid_probe_ptr)(x86_saved_state_t *regs);
2510 extern int (*dtrace_return_probe_ptr)(x86_saved_state_t* regs);
2511 #else
2512 #error architecture not supported
2513 #endif
2514 #endif /* __APPLE__ */
2515 extern void (*dtrace_fasttrap_fork_ptr)(proc_t *, proc_t *);
2516 extern void (*dtrace_fasttrap_exec_ptr)(proc_t *);
2517 extern void (*dtrace_fasttrap_exit_ptr)(proc_t *);
2518 extern void dtrace_fasttrap_fork(proc_t *, proc_t *);
2519
2520 typedef uintptr_t dtrace_icookie_t;
2521 typedef void (*dtrace_xcall_t)(void *);
2522
2523 extern dtrace_icookie_t dtrace_interrupt_disable(void);
2524 extern void dtrace_interrupt_enable(dtrace_icookie_t);
2525
2526 extern void dtrace_membar_producer(void);
2527 extern void dtrace_membar_consumer(void);
2528
2529 extern void (*dtrace_cpu_init)(processorid_t);
2530 #if !defined(__APPLE__)
2531 extern void (*dtrace_modload)(struct modctl *);
2532 extern void (*dtrace_modunload)(struct modctl *);
2533 #else
2534 extern int (*dtrace_modload)(struct kmod_info *, uint32_t);
2535 extern int (*dtrace_modunload)(struct kmod_info *);
2536 #endif /* __APPLE__ */
2537 extern void (*dtrace_helpers_cleanup)(proc_t*);
2538 extern void (*dtrace_helpers_fork)(proc_t *parent, proc_t *child);
2539 extern void (*dtrace_cpustart_init)(void);
2540 extern void (*dtrace_cpustart_fini)(void);
2541
2542 extern void (*dtrace_kreloc_init)(void);
2543 extern void (*dtrace_kreloc_fini)(void);
2544
2545 extern void (*dtrace_debugger_init)(void);
2546 extern void (*dtrace_debugger_fini)(void);
2547 extern dtrace_cacheid_t dtrace_predcache_id;
2548
2549 extern hrtime_t dtrace_gethrtime(void);
2550 extern void dtrace_sync(void);
2551 extern void dtrace_toxic_ranges(void (*)(uintptr_t, uintptr_t));
2552 extern void dtrace_xcall(processorid_t, dtrace_xcall_t, void *);
2553
2554 extern int dtrace_safe_defer_signal(void);
2555 extern void dtrace_safe_synchronous_signal(void);
2556
2557 extern int dtrace_mach_aframes(void);
2558
2559 #if !defined(__APPLE__)
2560 #if defined(__i386) || defined(__amd64)
2561 extern int dtrace_instr_size(uchar_t *instr);
2562 extern int dtrace_instr_size_isa(uchar_t *, model_t, int *);
2563 extern void dtrace_invop_add(int (*)(uintptr_t, uintptr_t *, uintptr_t));
2564 extern void dtrace_invop_remove(int (*)(uintptr_t, uintptr_t *, uintptr_t));
2565 extern void dtrace_invop_callsite(void);
2566 #endif
2567
2568 #ifdef __sparc
2569 extern int dtrace_blksuword32(uintptr_t, uint32_t *, int);
2570 extern void dtrace_getfsr(uint64_t *);
2571 #endif
2572 #else
2573 #if defined(__i386__) || defined(__x86_64__)
2574 extern int dtrace_instr_size(uchar_t *instr);
2575 extern int dtrace_instr_size_isa(uchar_t *, model_t, int *);
2576 extern void dtrace_invop_add(int (*)(uintptr_t, uintptr_t *, uintptr_t));
2577 extern void dtrace_invop_remove(int (*)(uintptr_t, uintptr_t *, uintptr_t));
2578 extern void *dtrace_invop_callsite_pre;
2579 extern void *dtrace_invop_callsite_post;
2580 #endif
2581
2582
2583 #undef proc_t
2584 #endif /* __APPLE__ */
2585
2586 #define DTRACE_CPUFLAG_ISSET(flag) \
2587 (cpu_core[CPU->cpu_id].cpuc_dtrace_flags & (flag))
2588
2589 #define DTRACE_CPUFLAG_SET(flag) \
2590 (cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= (flag))
2591
2592 #define DTRACE_CPUFLAG_CLEAR(flag) \
2593 (cpu_core[CPU->cpu_id].cpuc_dtrace_flags &= ~(flag))
2594
2595 #endif /* _KERNEL */
2596
2597 #endif /* _ASM */
2598
2599 #if !defined(__APPLE__)
2600 #if defined(__i386) || defined(__amd64)
2601
2602 #define DTRACE_INVOP_PUSHL_EBP 1
2603 #define DTRACE_INVOP_POPL_EBP 2
2604 #define DTRACE_INVOP_LEAVE 3
2605 #define DTRACE_INVOP_NOP 4
2606 #define DTRACE_INVOP_RET 5
2607
2608 #endif
2609 #else
2610 #if defined(__i386__) || defined(__x86_64__)
2611
2612 #define DTRACE_INVOP_PUSHL_EBP 1
2613 #define DTRACE_INVOP_POPL_EBP 2
2614 #define DTRACE_INVOP_LEAVE 3
2615 #define DTRACE_INVOP_NOP 4
2616 #define DTRACE_INVOP_RET 5
2617
2618 #endif
2619
2620
2621 #endif /* __APPLE__ */
2622
2623 #ifdef __cplusplus
2624 }
2625 #endif
2626
2627 #endif /* _SYS_DTRACE_H */