2 * Copyright (c) 2004-2016 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
29 * Copyright (c) 1982, 1989, 1993
30 * The Regents of the University of California. All rights reserved.
32 * Redistribution and use in source and binary forms, with or without
33 * modification, are permitted provided that the following conditions
35 * 1. Redistributions of source code must retain the above copyright
36 * notice, this list of conditions and the following disclaimer.
37 * 2. Redistributions in binary form must reproduce the above copyright
38 * notice, this list of conditions and the following disclaimer in the
39 * documentation and/or other materials provided with the distribution.
40 * 3. All advertising materials mentioning features or use of this software
41 * must display the following acknowledgement:
42 * This product includes software developed by the University of
43 * California, Berkeley and its contributors.
44 * 4. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
62 #include <kern/debug.h>
63 #include <netinet/in_arp.h>
64 #include <sys/types.h>
65 #include <sys/param.h>
66 #include <sys/kernel_types.h>
67 #include <sys/syslog.h>
68 #include <sys/systm.h>
70 #include <sys/kernel.h>
72 #include <sys/sysctl.h>
73 #include <sys/mcache.h>
74 #include <sys/protosw.h>
76 #include <net/if_arp.h>
77 #include <net/if_dl.h>
79 #include <net/if_types.h>
80 #include <net/if_llreach.h>
81 #include <net/route.h>
83 #include <netinet/if_ether.h>
84 #include <netinet/in_var.h>
85 #include <kern/zalloc.h>
87 #include <kern/thread.h>
88 #include <kern/sched_prim.h>
90 #define CONST_LLADDR(s) ((const u_char*)((s)->sdl_data + (s)->sdl_nlen))
92 static const size_t MAX_HW_LEN
= 10;
95 * Synchronization notes:
97 * The global list of ARP entries are stored in llinfo_arp; an entry
98 * gets inserted into the list when the route is created and gets
99 * removed from the list when it is deleted; this is done as part
100 * of RTM_ADD/RTM_RESOLVE/RTM_DELETE in arp_rtrequest().
102 * Because rnh_lock and rt_lock for the entry are held during those
103 * operations, the same locks (and thus lock ordering) must be used
104 * elsewhere to access the relevant data structure fields:
106 * la_le.{le_next,le_prev}, la_rt
108 * - Routing lock (rnh_lock)
110 * la_holdq, la_asked, la_llreach, la_lastused, la_flags
112 * - Routing entry lock (rt_lock)
114 * Due to the dependency on rt_lock, llinfo_arp has the same lifetime
115 * as the route entry itself. When a route is deleted (RTM_DELETE),
116 * it is simply removed from the global list but the memory is not
117 * freed until the route itself is freed.
121 * The following are protected by rnh_lock
123 LIST_ENTRY(llinfo_arp
) la_le
;
124 struct rtentry
*la_rt
;
126 * The following are protected by rt_lock
128 class_queue_t la_holdq
; /* packets awaiting resolution */
129 struct if_llreach
*la_llreach
; /* link-layer reachability record */
130 u_int64_t la_lastused
; /* last used timestamp */
131 u_int32_t la_asked
; /* # of requests sent */
132 u_int32_t la_maxtries
; /* retry limit */
133 u_int64_t la_probeexp
; /* probe deadline timestamp */
135 #define LLINFO_RTRFAIL_EVTSENT 0x1 /* sent an ARP event */
136 #define LLINFO_PROBING 0x2 /* waiting for an ARP reply */
138 static LIST_HEAD(, llinfo_arp
) llinfo_arp
;
140 static thread_call_t arp_timeout_tcall
;
141 static int arp_timeout_run
; /* arp_timeout is scheduled to run */
142 static void arp_timeout(thread_call_param_t arg0
, thread_call_param_t arg1
);
143 static void arp_sched_timeout(struct timeval
*);
145 static thread_call_t arp_probe_tcall
;
146 static int arp_probe_run
; /* arp_probe is scheduled to run */
147 static void arp_probe(thread_call_param_t arg0
, thread_call_param_t arg1
);
148 static void arp_sched_probe(struct timeval
*);
150 static void arptfree(struct llinfo_arp
*, void *);
151 static errno_t
arp_lookup_route(const struct in_addr
*, int,
152 int, route_t
*, unsigned int);
153 static int arp_getstat SYSCTL_HANDLER_ARGS
;
155 static struct llinfo_arp
*arp_llinfo_alloc(int);
156 static void arp_llinfo_free(void *);
157 static uint32_t arp_llinfo_flushq(struct llinfo_arp
*);
158 static void arp_llinfo_purge(struct rtentry
*);
159 static void arp_llinfo_get_ri(struct rtentry
*, struct rt_reach_info
*);
160 static void arp_llinfo_get_iflri(struct rtentry
*, struct ifnet_llreach_info
*);
161 static void arp_llinfo_refresh(struct rtentry
*);
163 static __inline
void arp_llreach_use(struct llinfo_arp
*);
164 static __inline
int arp_llreach_reachable(struct llinfo_arp
*);
165 static void arp_llreach_alloc(struct rtentry
*, struct ifnet
*, void *,
166 unsigned int, boolean_t
);
168 extern int tvtohz(struct timeval
*);
170 static int arpinit_done
;
172 SYSCTL_DECL(_net_link_ether
);
173 SYSCTL_NODE(_net_link_ether
, PF_INET
, inet
, CTLFLAG_RW
|CTLFLAG_LOCKED
, 0, "");
175 static int arpt_prune
= (5*60*1); /* walk list every 5 minutes */
176 SYSCTL_INT(_net_link_ether_inet
, OID_AUTO
, prune_intvl
,
177 CTLFLAG_RW
| CTLFLAG_LOCKED
, &arpt_prune
, 0, "");
179 #define ARP_PROBE_TIME 7 /* seconds */
180 static u_int32_t arpt_probe
= ARP_PROBE_TIME
;
181 SYSCTL_UINT(_net_link_ether_inet
, OID_AUTO
, probe_intvl
,
182 CTLFLAG_RW
| CTLFLAG_LOCKED
, &arpt_probe
, 0, "");
184 static int arpt_keep
= (20*60); /* once resolved, good for 20 more minutes */
185 SYSCTL_INT(_net_link_ether_inet
, OID_AUTO
, max_age
,
186 CTLFLAG_RW
| CTLFLAG_LOCKED
, &arpt_keep
, 0, "");
188 static int arpt_down
= 20; /* once declared down, don't send for 20 sec */
189 SYSCTL_INT(_net_link_ether_inet
, OID_AUTO
, host_down_time
,
190 CTLFLAG_RW
| CTLFLAG_LOCKED
, &arpt_down
, 0, "");
192 static int arp_llreach_base
= 120; /* seconds */
193 SYSCTL_INT(_net_link_ether_inet
, OID_AUTO
, arp_llreach_base
,
194 CTLFLAG_RW
| CTLFLAG_LOCKED
, &arp_llreach_base
, 0,
195 "default ARP link-layer reachability max lifetime (in seconds)");
197 #define ARP_UNICAST_LIMIT 3 /* # of probes until ARP refresh broadcast */
198 static u_int32_t arp_unicast_lim
= ARP_UNICAST_LIMIT
;
199 SYSCTL_INT(_net_link_ether_inet
, OID_AUTO
, arp_unicast_lim
,
200 CTLFLAG_RW
| CTLFLAG_LOCKED
, &arp_unicast_lim
, ARP_UNICAST_LIMIT
,
201 "number of unicast ARP refresh probes before using broadcast");
203 static u_int32_t arp_maxtries
= 5;
204 SYSCTL_INT(_net_link_ether_inet
, OID_AUTO
, maxtries
,
205 CTLFLAG_RW
| CTLFLAG_LOCKED
, &arp_maxtries
, 0, "");
207 static u_int32_t arp_maxhold
= 16;
208 SYSCTL_UINT(_net_link_ether_inet
, OID_AUTO
, maxhold
,
209 CTLFLAG_RW
| CTLFLAG_LOCKED
, &arp_maxhold
, 0, "");
211 static int useloopback
= 1; /* use loopback interface for local traffic */
212 SYSCTL_INT(_net_link_ether_inet
, OID_AUTO
, useloopback
,
213 CTLFLAG_RW
| CTLFLAG_LOCKED
, &useloopback
, 0, "");
215 static int arp_proxyall
= 0;
216 SYSCTL_INT(_net_link_ether_inet
, OID_AUTO
, proxyall
,
217 CTLFLAG_RW
| CTLFLAG_LOCKED
, &arp_proxyall
, 0, "");
219 static int arp_sendllconflict
= 0;
220 SYSCTL_INT(_net_link_ether_inet
, OID_AUTO
, sendllconflict
,
221 CTLFLAG_RW
| CTLFLAG_LOCKED
, &arp_sendllconflict
, 0, "");
223 static int log_arp_warnings
= 0; /* Thread safe: no accumulated state */
224 SYSCTL_INT(_net_link_ether_inet
, OID_AUTO
, log_arp_warnings
,
225 CTLFLAG_RW
| CTLFLAG_LOCKED
,
226 &log_arp_warnings
, 0,
227 "log arp warning messages");
229 static int keep_announcements
= 1; /* Thread safe: no aging of state */
230 SYSCTL_INT(_net_link_ether_inet
, OID_AUTO
, keep_announcements
,
231 CTLFLAG_RW
| CTLFLAG_LOCKED
,
232 &keep_announcements
, 0,
233 "keep arp announcements");
235 static int send_conflicting_probes
= 1; /* Thread safe: no accumulated state */
236 SYSCTL_INT(_net_link_ether_inet
, OID_AUTO
, send_conflicting_probes
,
237 CTLFLAG_RW
| CTLFLAG_LOCKED
,
238 &send_conflicting_probes
, 0,
239 "send conflicting link-local arp probes");
241 static int arp_verbose
;
242 SYSCTL_INT(_net_link_ether_inet
, OID_AUTO
, verbose
,
243 CTLFLAG_RW
| CTLFLAG_LOCKED
, &arp_verbose
, 0, "");
246 * Generally protected by rnh_lock; use atomic operations on fields
247 * that are also modified outside of that lock (if needed).
249 struct arpstat arpstat
__attribute__((aligned(sizeof (uint64_t))));
250 SYSCTL_PROC(_net_link_ether_inet
, OID_AUTO
, stats
,
251 CTLTYPE_STRUCT
| CTLFLAG_RD
| CTLFLAG_LOCKED
,
252 0, 0, arp_getstat
, "S,arpstat",
253 "ARP statistics (struct arpstat, net/if_arp.h)");
255 static struct zone
*llinfo_arp_zone
;
256 #define LLINFO_ARP_ZONE_MAX 256 /* maximum elements in zone */
257 #define LLINFO_ARP_ZONE_NAME "llinfo_arp" /* name for zone */
262 VERIFY(!arpinit_done
);
264 LIST_INIT(&llinfo_arp
);
266 llinfo_arp_zone
= zinit(sizeof (struct llinfo_arp
),
267 LLINFO_ARP_ZONE_MAX
* sizeof (struct llinfo_arp
), 0,
268 LLINFO_ARP_ZONE_NAME
);
269 if (llinfo_arp_zone
== NULL
)
270 panic("%s: failed allocating llinfo_arp_zone", __func__
);
272 zone_change(llinfo_arp_zone
, Z_EXPAND
, TRUE
);
273 zone_change(llinfo_arp_zone
, Z_CALLERACCT
, FALSE
);
278 static struct llinfo_arp
*
279 arp_llinfo_alloc(int how
)
281 struct llinfo_arp
*la
;
283 la
= (how
== M_WAITOK
) ? zalloc(llinfo_arp_zone
) :
284 zalloc_noblock(llinfo_arp_zone
);
286 bzero(la
, sizeof (*la
));
288 * The type of queue (Q_DROPHEAD) here is just a hint;
289 * the actual logic that works on this queue performs
290 * a head drop, details in arp_llinfo_addq().
292 _qinit(&la
->la_holdq
, Q_DROPHEAD
, (arp_maxhold
== 0) ?
293 (uint32_t)-1 : arp_maxhold
);
300 arp_llinfo_free(void *arg
)
302 struct llinfo_arp
*la
= arg
;
304 if (la
->la_le
.le_next
!= NULL
|| la
->la_le
.le_prev
!= NULL
) {
305 panic("%s: trying to free %p when it is in use", __func__
, la
);
309 /* Free any held packets */
310 (void) arp_llinfo_flushq(la
);
312 /* Purge any link-layer info caching */
313 VERIFY(la
->la_rt
->rt_llinfo
== la
);
314 if (la
->la_rt
->rt_llinfo_purge
!= NULL
)
315 la
->la_rt
->rt_llinfo_purge(la
->la_rt
);
317 zfree(llinfo_arp_zone
, la
);
321 arp_llinfo_addq(struct llinfo_arp
*la
, struct mbuf
*m
)
323 if (qlen(&la
->la_holdq
) >= qlimit(&la
->la_holdq
)) {
325 /* prune less than CTL, else take what's at the head */
326 _m
= _getq_scidx_lt(&la
->la_holdq
, SCIDX_CTL
);
328 _m
= _getq(&la
->la_holdq
);
331 log(LOG_DEBUG
, "%s: dropping packet (scidx %u)\n",
332 __func__
, MBUF_SCIDX(mbuf_get_service_class(_m
)));
335 atomic_add_32(&arpstat
.dropped
, 1);
336 atomic_add_32(&arpstat
.held
, -1);
338 _addq(&la
->la_holdq
, m
);
339 atomic_add_32(&arpstat
.held
, 1);
341 log(LOG_DEBUG
, "%s: enqueued packet (scidx %u), qlen now %u\n",
342 __func__
, MBUF_SCIDX(mbuf_get_service_class(m
)),
343 qlen(&la
->la_holdq
));
348 arp_llinfo_flushq(struct llinfo_arp
*la
)
350 uint32_t held
= qlen(&la
->la_holdq
);
352 atomic_add_32(&arpstat
.purged
, held
);
353 atomic_add_32(&arpstat
.held
, -held
);
354 _flushq(&la
->la_holdq
);
355 VERIFY(qempty(&la
->la_holdq
));
361 arp_llinfo_purge(struct rtentry
*rt
)
363 struct llinfo_arp
*la
= rt
->rt_llinfo
;
365 RT_LOCK_ASSERT_HELD(rt
);
366 VERIFY(rt
->rt_llinfo_purge
== arp_llinfo_purge
&& la
!= NULL
);
368 if (la
->la_llreach
!= NULL
) {
370 ifnet_llreach_free(la
->la_llreach
);
371 la
->la_llreach
= NULL
;
377 arp_llinfo_get_ri(struct rtentry
*rt
, struct rt_reach_info
*ri
)
379 struct llinfo_arp
*la
= rt
->rt_llinfo
;
380 struct if_llreach
*lr
= la
->la_llreach
;
383 bzero(ri
, sizeof (*ri
));
384 ri
->ri_rssi
= IFNET_RSSI_UNKNOWN
;
385 ri
->ri_lqm
= IFNET_LQM_THRESH_OFF
;
386 ri
->ri_npm
= IFNET_NPM_THRESH_UNKNOWN
;
389 /* Export to rt_reach_info structure */
391 /* Export ARP send expiration (calendar) time */
393 ifnet_llreach_up2calexp(lr
, la
->la_lastused
);
399 arp_llinfo_get_iflri(struct rtentry
*rt
, struct ifnet_llreach_info
*iflri
)
401 struct llinfo_arp
*la
= rt
->rt_llinfo
;
402 struct if_llreach
*lr
= la
->la_llreach
;
405 bzero(iflri
, sizeof (*iflri
));
406 iflri
->iflri_rssi
= IFNET_RSSI_UNKNOWN
;
407 iflri
->iflri_lqm
= IFNET_LQM_THRESH_OFF
;
408 iflri
->iflri_npm
= IFNET_NPM_THRESH_UNKNOWN
;
411 /* Export to ifnet_llreach_info structure */
412 ifnet_lr2iflri(lr
, iflri
);
413 /* Export ARP send expiration (uptime) time */
414 iflri
->iflri_snd_expire
=
415 ifnet_llreach_up2upexp(lr
, la
->la_lastused
);
421 arp_llinfo_refresh(struct rtentry
*rt
)
423 uint64_t timenow
= net_uptime();
425 * If route entry is permanent or if expiry is less
426 * than timenow and extra time taken for unicast probe
427 * we can't expedite the refresh
429 if ((rt
->rt_expire
== 0) ||
430 (rt
->rt_flags
& RTF_STATIC
) ||
431 !(rt
->rt_flags
& RTF_LLINFO
)) {
435 if (rt
->rt_expire
> timenow
)
436 rt
->rt_expire
= timenow
;
441 arp_llreach_set_reachable(struct ifnet
*ifp
, void *addr
, unsigned int alen
)
443 /* Nothing more to do if it's disabled */
444 if (arp_llreach_base
== 0)
447 ifnet_llreach_set_reachable(ifp
, ETHERTYPE_IP
, addr
, alen
);
451 arp_llreach_use(struct llinfo_arp
*la
)
453 if (la
->la_llreach
!= NULL
)
454 la
->la_lastused
= net_uptime();
458 arp_llreach_reachable(struct llinfo_arp
*la
)
460 struct if_llreach
*lr
;
461 const char *why
= NULL
;
463 /* Nothing more to do if it's disabled; pretend it's reachable */
464 if (arp_llreach_base
== 0)
467 if ((lr
= la
->la_llreach
) == NULL
) {
469 * Link-layer reachability record isn't present for this
470 * ARP entry; pretend it's reachable and use it as is.
473 } else if (ifnet_llreach_reachable(lr
)) {
475 * Record is present, it's not shared with other ARP
476 * entries and a packet has recently been received
477 * from the remote host; consider it reachable.
479 if (lr
->lr_reqcnt
== 1)
482 /* Prime it up, if this is the first time */
483 if (la
->la_lastused
== 0) {
484 VERIFY(la
->la_llreach
!= NULL
);
489 * Record is present and shared with one or more ARP
490 * entries, and a packet has recently been received
491 * from the remote host. Since it's shared by more
492 * than one IP addresses, we can't rely on the link-
493 * layer reachability alone; consider it reachable if
494 * this ARP entry has been used "recently."
496 if (ifnet_llreach_reachable_delta(lr
, la
->la_lastused
))
499 why
= "has alias(es) and hasn't been used in a while";
501 why
= "haven't heard from it in a while";
504 if (arp_verbose
> 1) {
505 char tmp
[MAX_IPv4_STR_LEN
];
506 u_int64_t now
= net_uptime();
508 log(LOG_DEBUG
, "%s: ARP probe(s) needed for %s; "
509 "%s [lastused %lld, lastrcvd %lld] secs ago\n",
510 if_name(lr
->lr_ifp
), inet_ntop(AF_INET
,
511 &SIN(rt_key(la
->la_rt
))->sin_addr
, tmp
, sizeof (tmp
)), why
,
512 (la
->la_lastused
? (int64_t)(now
- la
->la_lastused
) : -1),
513 (lr
->lr_lastrcvd
? (int64_t)(now
- lr
->lr_lastrcvd
) : -1));
520 * Obtain a link-layer source cache entry for the sender.
522 * NOTE: This is currently only for ARP/Ethernet.
525 arp_llreach_alloc(struct rtentry
*rt
, struct ifnet
*ifp
, void *addr
,
526 unsigned int alen
, boolean_t solicited
)
528 VERIFY(rt
->rt_expire
== 0 || rt
->rt_rmx
.rmx_expire
!= 0);
529 VERIFY(rt
->rt_expire
!= 0 || rt
->rt_rmx
.rmx_expire
== 0);
531 if (arp_llreach_base
!= 0 && rt
->rt_expire
!= 0 &&
532 !(rt
->rt_ifp
->if_flags
& IFF_LOOPBACK
) &&
533 ifp
->if_addrlen
== IF_LLREACH_MAXLEN
&& /* Ethernet */
534 alen
== ifp
->if_addrlen
) {
535 struct llinfo_arp
*la
= rt
->rt_llinfo
;
536 struct if_llreach
*lr
;
537 const char *why
= NULL
, *type
= "";
539 /* Become a regular mutex, just in case */
542 if ((lr
= la
->la_llreach
) != NULL
) {
543 type
= (solicited
? "ARP reply" : "ARP announcement");
545 * If target has changed, create a new record;
546 * otherwise keep existing record.
549 if (bcmp(addr
, lr
->lr_key
.addr
, alen
) != 0) {
551 /* Purge any link-layer info caching */
552 VERIFY(rt
->rt_llinfo_purge
!= NULL
);
553 rt
->rt_llinfo_purge(rt
);
555 why
= " for different target HW address; "
556 "using new llreach record";
558 lr
->lr_probes
= 0; /* reset probe count */
561 why
= " for same target HW address; "
562 "keeping existing llreach record";
568 lr
= la
->la_llreach
= ifnet_llreach_alloc(ifp
,
569 ETHERTYPE_IP
, addr
, alen
, arp_llreach_base
);
571 lr
->lr_probes
= 0; /* reset probe count */
573 why
= "creating new llreach record";
577 if (arp_verbose
> 1 && lr
!= NULL
&& why
!= NULL
) {
578 char tmp
[MAX_IPv4_STR_LEN
];
580 log(LOG_DEBUG
, "%s: %s%s for %s\n", if_name(ifp
),
581 type
, why
, inet_ntop(AF_INET
,
582 &SIN(rt_key(rt
))->sin_addr
, tmp
, sizeof (tmp
)));
602 arptfree(struct llinfo_arp
*la
, void *arg
)
604 struct arptf_arg
*ap
= arg
;
605 struct rtentry
*rt
= la
->la_rt
;
608 lck_mtx_assert(rnh_lock
, LCK_MTX_ASSERT_OWNED
);
610 /* rnh_lock acquired by caller protects rt from going away */
613 VERIFY(rt
->rt_expire
== 0 || rt
->rt_rmx
.rmx_expire
!= 0);
614 VERIFY(rt
->rt_expire
!= 0 || rt
->rt_rmx
.rmx_expire
== 0);
617 timenow
= net_uptime();
619 /* If we're probing, flush out held packets upon probe expiration */
620 if (ap
->probing
&& (la
->la_flags
& LLINFO_PROBING
) &&
621 la
->la_probeexp
<= timenow
) {
622 struct sockaddr_dl
*sdl
= SDL(rt
->rt_gateway
);
625 (void) arp_llinfo_flushq(la
);
628 ap
->qlen
+= qlen(&la
->la_holdq
);
629 ap
->qsize
+= qsize(&la
->la_holdq
);
631 if (rt
->rt_expire
== 0 || (rt
->rt_flags
& RTF_STATIC
)) {
633 /* ARP entry is permanent? */
634 if (rt
->rt_expire
== 0) {
640 /* ARP entry hasn't expired and we're not draining? */
641 if (!ap
->draining
&& rt
->rt_expire
> timenow
) {
647 if (rt
->rt_refcnt
> 0) {
649 * ARP entry has expired, with outstanding refcnt.
650 * If we're not draining, force ARP query to be
651 * generated next time this entry is used.
653 if (!ap
->draining
&& !ap
->probing
) {
654 struct sockaddr_dl
*sdl
= SDL(rt
->rt_gateway
);
658 rt
->rt_flags
&= ~RTF_REJECT
;
661 } else if (!(rt
->rt_flags
& RTF_STATIC
) && !ap
->probing
) {
663 * ARP entry has no outstanding refcnt, and we're either
664 * draining or it has expired; delete it from the routing
665 * table. Safe to drop rt_lock and use rt_key, since holding
666 * rnh_lock here prevents another thread from calling
667 * rt_setgate() on this route.
670 rtrequest_locked(RTM_DELETE
, rt_key(rt
), NULL
,
671 rt_mask(rt
), 0, NULL
);
675 /* ARP entry is static; let it linger */
681 in_arpdrain(void *arg
)
684 struct llinfo_arp
*la
, *ola
;
685 struct arptf_arg farg
;
688 log(LOG_DEBUG
, "%s: draining ARP entries\n", __func__
);
690 lck_mtx_lock(rnh_lock
);
691 la
= llinfo_arp
.lh_first
;
692 bzero(&farg
, sizeof (farg
));
693 farg
.draining
= TRUE
;
694 while ((ola
= la
) != NULL
) {
695 la
= la
->la_le
.le_next
;
696 arptfree(ola
, &farg
);
699 log(LOG_DEBUG
, "%s: found %u, aging %u, sticky %u, killed %u; "
700 "%u pkts held (%u bytes)\n", __func__
, farg
.found
,
701 farg
.aging
, farg
.sticky
, farg
.killed
, farg
.qlen
,
704 lck_mtx_unlock(rnh_lock
);
708 * Timeout routine. Age arp_tab entries periodically.
711 arp_timeout(thread_call_param_t arg0
, thread_call_param_t arg1
)
713 #pragma unused(arg0, arg1)
714 struct llinfo_arp
*la
, *ola
;
716 struct arptf_arg farg
;
718 lck_mtx_lock(rnh_lock
);
719 la
= llinfo_arp
.lh_first
;
720 bzero(&farg
, sizeof (farg
));
721 while ((ola
= la
) != NULL
) {
722 la
= la
->la_le
.le_next
;
723 arptfree(ola
, &farg
);
726 log(LOG_DEBUG
, "%s: found %u, aging %u, sticky %u, killed %u; "
727 "%u pkts held (%u bytes)\n", __func__
, farg
.found
,
728 farg
.aging
, farg
.sticky
, farg
.killed
, farg
.qlen
,
732 atv
.tv_sec
= MAX(arpt_prune
, 5);
733 /* re-arm the timer if there's work to do */
736 arp_sched_timeout(&atv
);
737 else if (arp_verbose
)
738 log(LOG_DEBUG
, "%s: not rescheduling timer\n", __func__
);
739 lck_mtx_unlock(rnh_lock
);
743 arp_sched_timeout(struct timeval
*atv
)
745 lck_mtx_assert(rnh_lock
, LCK_MTX_ASSERT_OWNED
);
747 if (!arp_timeout_run
) {
749 uint64_t deadline
= 0;
751 if (arp_timeout_tcall
== NULL
) {
753 thread_call_allocate(arp_timeout
, NULL
);
754 VERIFY(arp_timeout_tcall
!= NULL
);
759 tv
.tv_sec
= MAX(arpt_prune
/ 5, 1);
763 log(LOG_DEBUG
, "%s: timer scheduled in "
764 "T+%llus.%lluu\n", __func__
,
765 (uint64_t)atv
->tv_sec
, (uint64_t)atv
->tv_usec
);
769 clock_deadline_for_periodic_event(atv
->tv_sec
* NSEC_PER_SEC
,
770 mach_absolute_time(), &deadline
);
771 (void) thread_call_enter_delayed(arp_timeout_tcall
, deadline
);
779 arp_probe(thread_call_param_t arg0
, thread_call_param_t arg1
)
781 #pragma unused(arg0, arg1)
782 struct llinfo_arp
*la
, *ola
;
784 struct arptf_arg farg
;
786 lck_mtx_lock(rnh_lock
);
787 la
= llinfo_arp
.lh_first
;
788 bzero(&farg
, sizeof (farg
));
790 while ((ola
= la
) != NULL
) {
791 la
= la
->la_le
.le_next
;
792 arptfree(ola
, &farg
);
795 log(LOG_DEBUG
, "%s: found %u, aging %u, sticky %u, killed %u; "
796 "%u pkts held (%u bytes)\n", __func__
, farg
.found
,
797 farg
.aging
, farg
.sticky
, farg
.killed
, farg
.qlen
,
801 atv
.tv_sec
= MAX(arpt_probe
, ARP_PROBE_TIME
);
802 /* re-arm the probe if there's work to do */
805 arp_sched_probe(&atv
);
806 else if (arp_verbose
)
807 log(LOG_DEBUG
, "%s: not rescheduling probe\n", __func__
);
808 lck_mtx_unlock(rnh_lock
);
812 arp_sched_probe(struct timeval
*atv
)
814 lck_mtx_assert(rnh_lock
, LCK_MTX_ASSERT_OWNED
);
816 if (!arp_probe_run
) {
818 uint64_t deadline
= 0;
820 if (arp_probe_tcall
== NULL
) {
822 thread_call_allocate(arp_probe
, NULL
);
823 VERIFY(arp_probe_tcall
!= NULL
);
828 tv
.tv_sec
= MAX(arpt_probe
, ARP_PROBE_TIME
);
832 log(LOG_DEBUG
, "%s: probe scheduled in "
833 "T+%llus.%lluu\n", __func__
,
834 (uint64_t)atv
->tv_sec
, (uint64_t)atv
->tv_usec
);
838 clock_deadline_for_periodic_event(atv
->tv_sec
* NSEC_PER_SEC
,
839 mach_absolute_time(), &deadline
);
840 (void) thread_call_enter_delayed(arp_probe_tcall
, deadline
);
845 * ifa_rtrequest() callback
848 arp_rtrequest(int req
, struct rtentry
*rt
, struct sockaddr
*sa
)
851 struct sockaddr
*gate
= rt
->rt_gateway
;
852 struct llinfo_arp
*la
= rt
->rt_llinfo
;
853 static struct sockaddr_dl null_sdl
=
854 { .sdl_len
= sizeof (null_sdl
), .sdl_family
= AF_LINK
};
856 char buf
[MAX_IPv4_STR_LEN
];
858 VERIFY(arpinit_done
);
859 lck_mtx_assert(rnh_lock
, LCK_MTX_ASSERT_OWNED
);
860 RT_LOCK_ASSERT_HELD(rt
);
862 if (rt
->rt_flags
& RTF_GATEWAY
)
865 timenow
= net_uptime();
869 * XXX: If this is a manually added route to interface
870 * such as older version of routed or gated might provide,
871 * restore cloning bit.
873 if (!(rt
->rt_flags
& RTF_HOST
) && rt_mask(rt
) != NULL
&&
874 SIN(rt_mask(rt
))->sin_addr
.s_addr
!= INADDR_BROADCAST
)
875 rt
->rt_flags
|= RTF_CLONING
;
877 if (rt
->rt_flags
& RTF_CLONING
) {
879 * Case 1: This route should come from a route to iface.
881 if (rt_setgate(rt
, rt_key(rt
), SA(&null_sdl
)) == 0) {
882 gate
= rt
->rt_gateway
;
883 SDL(gate
)->sdl_type
= rt
->rt_ifp
->if_type
;
884 SDL(gate
)->sdl_index
= rt
->rt_ifp
->if_index
;
886 * In case we're called before 1.0 sec.
889 rt_setexpire(rt
, MAX(timenow
, 1));
893 /* Announce a new entry if requested. */
894 if (rt
->rt_flags
& RTF_ANNOUNCE
) {
896 arp_llreach_use(la
); /* Mark use timestamp */
898 dlil_send_arp(rt
->rt_ifp
, ARPOP_REQUEST
,
899 SDL(gate
), rt_key(rt
), NULL
, rt_key(rt
), 0);
901 arpstat
.txannounces
++;
905 if (gate
->sa_family
!= AF_LINK
||
906 gate
->sa_len
< sizeof (null_sdl
)) {
907 arpstat
.invalidreqs
++;
908 log(LOG_ERR
, "%s: route to %s has bad gateway address "
909 "(sa_family %u sa_len %u) on %s\n",
910 __func__
, inet_ntop(AF_INET
,
911 &SIN(rt_key(rt
))->sin_addr
.s_addr
, buf
,
912 sizeof (buf
)), gate
->sa_family
, gate
->sa_len
,
913 if_name(rt
->rt_ifp
));
916 SDL(gate
)->sdl_type
= rt
->rt_ifp
->if_type
;
917 SDL(gate
)->sdl_index
= rt
->rt_ifp
->if_index
;
920 break; /* This happens on a route change */
923 * Case 2: This route may come from cloning, or a manual route
924 * add with a LL address.
926 rt
->rt_llinfo
= la
= arp_llinfo_alloc(M_WAITOK
);
931 rt
->rt_llinfo_get_ri
= arp_llinfo_get_ri
;
932 rt
->rt_llinfo_get_iflri
= arp_llinfo_get_iflri
;
933 rt
->rt_llinfo_purge
= arp_llinfo_purge
;
934 rt
->rt_llinfo_free
= arp_llinfo_free
;
935 rt
->rt_llinfo_refresh
= arp_llinfo_refresh
;
936 rt
->rt_flags
|= RTF_LLINFO
;
938 LIST_INSERT_HEAD(&llinfo_arp
, la
, la_le
);
941 /* We have at least one entry; arm the timer if not already */
942 arp_sched_timeout(NULL
);
945 * This keeps the multicast addresses from showing up
946 * in `arp -a' listings as unresolved. It's not actually
947 * functional. Then the same for broadcast. For IPv4
948 * link-local address, keep the entry around even after
951 if (IN_MULTICAST(ntohl(SIN(rt_key(rt
))->sin_addr
.s_addr
))) {
953 dlil_resolve_multi(rt
->rt_ifp
, rt_key(rt
), gate
,
954 sizeof (struct sockaddr_dl
));
957 } else if (in_broadcast(SIN(rt_key(rt
))->sin_addr
,
959 struct sockaddr_dl
*gate_ll
= SDL(gate
);
960 size_t broadcast_len
;
961 ifnet_llbroadcast_copy_bytes(rt
->rt_ifp
,
962 LLADDR(gate_ll
), sizeof (gate_ll
->sdl_data
),
964 gate_ll
->sdl_alen
= broadcast_len
;
965 gate_ll
->sdl_family
= AF_LINK
;
966 gate_ll
->sdl_len
= sizeof (struct sockaddr_dl
);
967 /* In case we're called before 1.0 sec. has elapsed */
968 rt_setexpire(rt
, MAX(timenow
, 1));
969 } else if (IN_LINKLOCAL(ntohl(SIN(rt_key(rt
))->
971 rt
->rt_flags
|= RTF_STATIC
;
974 /* Set default maximum number of retries */
975 la
->la_maxtries
= arp_maxtries
;
977 /* Become a regular mutex, just in case */
979 IFA_LOCK_SPIN(rt
->rt_ifa
);
980 if (SIN(rt_key(rt
))->sin_addr
.s_addr
==
981 (IA_SIN(rt
->rt_ifa
))->sin_addr
.s_addr
) {
982 IFA_UNLOCK(rt
->rt_ifa
);
984 * This test used to be
985 * if (loif.if_flags & IFF_UP)
986 * It allowed local traffic to be forced through the
987 * hardware by configuring the loopback down. However,
988 * it causes problems during network configuration
989 * for boards that can't receive packets they send.
990 * It is now necessary to clear "useloopback" and
991 * remove the route to force traffic out to the
995 ifnet_lladdr_copy_bytes(rt
->rt_ifp
, LLADDR(SDL(gate
)),
996 SDL(gate
)->sdl_alen
= rt
->rt_ifp
->if_addrlen
);
998 if (rt
->rt_ifp
!= lo_ifp
) {
1000 * Purge any link-layer info caching.
1002 if (rt
->rt_llinfo_purge
!= NULL
)
1003 rt
->rt_llinfo_purge(rt
);
1006 * Adjust route ref count for the
1009 if (rt
->rt_if_ref_fn
!= NULL
) {
1010 rt
->rt_if_ref_fn(lo_ifp
, 1);
1011 rt
->rt_if_ref_fn(rt
->rt_ifp
, -1);
1014 rt
->rt_ifp
= lo_ifp
;
1016 * If rmx_mtu is not locked, update it
1017 * to the MTU used by the new interface.
1019 if (!(rt
->rt_rmx
.rmx_locks
& RTV_MTU
))
1020 rt
->rt_rmx
.rmx_mtu
= rt
->rt_ifp
->if_mtu
;
1023 IFA_UNLOCK(rt
->rt_ifa
);
1031 * Unchain it but defer the actual freeing until the route
1032 * itself is to be freed. rt->rt_llinfo still points to
1033 * llinfo_arp, and likewise, la->la_rt still points to this
1034 * route entry, except that RTF_LLINFO is now cleared.
1036 LIST_REMOVE(la
, la_le
);
1037 la
->la_le
.le_next
= NULL
;
1038 la
->la_le
.le_prev
= NULL
;
1042 * Purge any link-layer info caching.
1044 if (rt
->rt_llinfo_purge
!= NULL
)
1045 rt
->rt_llinfo_purge(rt
);
1047 rt
->rt_flags
&= ~RTF_LLINFO
;
1048 (void) arp_llinfo_flushq(la
);
1053 * convert hardware address to hex string for logging errors.
1056 sdl_addr_to_hex(const struct sockaddr_dl
*sdl
, char *orig_buf
, int buflen
)
1058 char *buf
= orig_buf
;
1060 const u_char
*lladdr
= (u_char
*)(size_t)sdl
->sdl_data
;
1061 int maxbytes
= buflen
/ 3;
1063 if (maxbytes
> sdl
->sdl_alen
) {
1064 maxbytes
= sdl
->sdl_alen
;
1067 for (i
= 0; i
< maxbytes
; i
++) {
1068 snprintf(buf
, 3, "%02x", lladdr
[i
]);
1070 *buf
= (i
== maxbytes
- 1) ? '\0' : ':';
1077 * arp_lookup_route will lookup the route for a given address.
1079 * The address must be for a host on a local network on this interface.
1080 * If the returned route is non-NULL, the route is locked and the caller
1081 * is responsible for unlocking it and releasing its reference.
1084 arp_lookup_route(const struct in_addr
*addr
, int create
, int proxy
,
1085 route_t
*route
, unsigned int ifscope
)
1087 struct sockaddr_inarp sin
=
1088 { sizeof (sin
), AF_INET
, 0, { 0 }, { 0 }, 0, 0 };
1089 const char *why
= NULL
;
1095 sin
.sin_addr
.s_addr
= addr
->s_addr
;
1096 sin
.sin_other
= proxy
? SIN_PROXY
: 0;
1099 * If the destination is a link-local address, don't
1100 * constrain the lookup (don't scope it).
1102 if (IN_LINKLOCAL(ntohl(addr
->s_addr
)))
1103 ifscope
= IFSCOPE_NONE
;
1105 rt
= rtalloc1_scoped((struct sockaddr
*)&sin
, create
, 0, ifscope
);
1107 return (ENETUNREACH
);
1111 if (rt
->rt_flags
& RTF_GATEWAY
) {
1112 why
= "host is not on local network";
1113 error
= ENETUNREACH
;
1114 } else if (!(rt
->rt_flags
& RTF_LLINFO
)) {
1115 why
= "could not allocate llinfo";
1117 } else if (rt
->rt_gateway
->sa_family
!= AF_LINK
) {
1118 why
= "gateway route is not ours";
1119 error
= EPROTONOSUPPORT
;
1123 if (create
&& (arp_verbose
|| log_arp_warnings
)) {
1124 char tmp
[MAX_IPv4_STR_LEN
];
1125 log(LOG_DEBUG
, "%s: link#%d %s failed: %s\n",
1126 __func__
, ifscope
, inet_ntop(AF_INET
, addr
, tmp
,
1127 sizeof (tmp
)), why
);
1131 * If there are no references to this route, and it is
1132 * a cloned route, and not static, and ARP had created
1133 * the route, then purge it from the routing table as
1134 * it is probably bogus.
1136 if (rt
->rt_refcnt
== 1 &&
1137 (rt
->rt_flags
& (RTF_WASCLONED
| RTF_STATIC
)) ==
1140 * Prevent another thread from modiying rt_key,
1141 * rt_gateway via rt_setgate() after rt_lock is
1142 * dropped by marking the route as defunct.
1144 rt
->rt_flags
|= RTF_CONDEMNED
;
1146 rtrequest(RTM_DELETE
, rt_key(rt
), rt
->rt_gateway
,
1147 rt_mask(rt
), rt
->rt_flags
, NULL
);
1150 RT_REMREF_LOCKED(rt
);
1157 * Caller releases reference and does RT_UNLOCK(rt).
1164 * This is the ARP pre-output routine; care must be taken to ensure that
1165 * the "hint" route never gets freed via rtfree(), since the caller may
1166 * have stored it inside a struct route with a reference held for that
1170 arp_lookup_ip(ifnet_t ifp
, const struct sockaddr_in
*net_dest
,
1171 struct sockaddr_dl
*ll_dest
, size_t ll_dest_len
, route_t hint
,
1174 route_t route
= NULL
; /* output route */
1176 struct sockaddr_dl
*gateway
;
1177 struct llinfo_arp
*llinfo
= NULL
;
1178 boolean_t usable
, probing
= FALSE
;
1180 struct if_llreach
*lr
;
1181 struct ifaddr
*rt_ifa
;
1182 struct sockaddr
*sa
;
1184 struct sockaddr_dl sdl
;
1186 if (ifp
== NULL
|| net_dest
== NULL
)
1189 if (net_dest
->sin_family
!= AF_INET
)
1190 return (EAFNOSUPPORT
);
1192 if ((ifp
->if_flags
& (IFF_UP
|IFF_RUNNING
)) != (IFF_UP
|IFF_RUNNING
))
1196 * If we were given a route, verify the route and grab the gateway
1200 * Callee holds a reference on the route and returns
1201 * with the route entry locked, upon success.
1203 result
= route_to_gwroute((const struct sockaddr
*)
1204 net_dest
, hint
, &route
);
1208 RT_LOCK_ASSERT_HELD(route
);
1211 if ((packet
!= NULL
&& (packet
->m_flags
& M_BCAST
)) ||
1212 in_broadcast(net_dest
->sin_addr
, ifp
)) {
1213 size_t broadcast_len
;
1214 bzero(ll_dest
, ll_dest_len
);
1215 result
= ifnet_llbroadcast_copy_bytes(ifp
, LLADDR(ll_dest
),
1216 ll_dest_len
- offsetof(struct sockaddr_dl
, sdl_data
),
1219 ll_dest
->sdl_alen
= broadcast_len
;
1220 ll_dest
->sdl_family
= AF_LINK
;
1221 ll_dest
->sdl_len
= sizeof (struct sockaddr_dl
);
1225 if ((packet
!= NULL
&& (packet
->m_flags
& M_MCAST
)) ||
1226 ((ifp
->if_flags
& IFF_MULTICAST
) &&
1227 IN_MULTICAST(ntohl(net_dest
->sin_addr
.s_addr
)))) {
1230 result
= dlil_resolve_multi(ifp
,
1231 (const struct sockaddr
*)net_dest
,
1232 (struct sockaddr
*)ll_dest
, ll_dest_len
);
1239 * If we didn't find a route, or the route doesn't have
1240 * link layer information, trigger the creation of the
1241 * route and link layer information.
1243 if (route
== NULL
|| route
->rt_llinfo
== NULL
) {
1244 /* Clean up now while we can */
1245 if (route
!= NULL
) {
1246 if (route
== hint
) {
1247 RT_REMREF_LOCKED(route
);
1255 * Callee holds a reference on the route and returns
1256 * with the route entry locked, upon success.
1258 result
= arp_lookup_route(&net_dest
->sin_addr
, 1, 0, &route
,
1261 RT_LOCK_ASSERT_HELD(route
);
1264 if (result
|| route
== NULL
|| (llinfo
= route
->rt_llinfo
) == NULL
) {
1265 /* In case result is 0 but no route, return an error */
1267 result
= EHOSTUNREACH
;
1269 if (route
!= NULL
&& route
->rt_llinfo
== NULL
) {
1270 char tmp
[MAX_IPv4_STR_LEN
];
1271 log(LOG_ERR
, "%s: can't allocate llinfo for %s\n",
1272 __func__
, inet_ntop(AF_INET
, &net_dest
->sin_addr
,
1273 tmp
, sizeof (tmp
)));
1279 * Now that we have the right route, is it filled in?
1281 gateway
= SDL(route
->rt_gateway
);
1282 timenow
= net_uptime();
1283 VERIFY(route
->rt_expire
== 0 || route
->rt_rmx
.rmx_expire
!= 0);
1284 VERIFY(route
->rt_expire
!= 0 || route
->rt_rmx
.rmx_expire
== 0);
1286 usable
= ((route
->rt_expire
== 0 || route
->rt_expire
> timenow
) &&
1287 gateway
!= NULL
&& gateway
->sdl_family
== AF_LINK
&&
1288 gateway
->sdl_alen
!= 0);
1291 boolean_t unreachable
= !arp_llreach_reachable(llinfo
);
1293 /* Entry is usable, so fill in info for caller */
1294 bcopy(gateway
, ll_dest
, MIN(gateway
->sdl_len
, ll_dest_len
));
1296 arp_llreach_use(llinfo
); /* Mark use timestamp */
1298 lr
= llinfo
->la_llreach
;
1301 rt_ifa
= route
->rt_ifa
;
1303 /* Become a regular mutex, just in case */
1304 RT_CONVERT_LOCK(route
);
1307 if ((unreachable
|| (llinfo
->la_flags
& LLINFO_PROBING
)) &&
1308 lr
->lr_probes
< arp_unicast_lim
) {
1310 * Thus mark the entry with la_probeexp deadline to
1311 * trigger the probe timer to be scheduled (if not
1312 * already). This gets cleared the moment we get
1316 if (lr
->lr_probes
== 0) {
1317 llinfo
->la_probeexp
= (timenow
+ arpt_probe
);
1318 llinfo
->la_flags
|= LLINFO_PROBING
;
1322 * Start the unicast probe and anticipate a reply;
1323 * afterwards, return existing entry to caller and
1324 * let it be used anyway. If peer is non-existent
1325 * we'll broadcast ARP next time around.
1328 bzero(&sdl
, sizeof (sdl
));
1329 sdl
.sdl_alen
= ifp
->if_addrlen
;
1330 bcopy(&lr
->lr_key
.addr
, LLADDR(&sdl
),
1333 IFA_LOCK_SPIN(rt_ifa
);
1334 IFA_ADDREF_LOCKED(rt_ifa
);
1335 sa
= rt_ifa
->ifa_addr
;
1337 rtflags
= route
->rt_flags
;
1339 dlil_send_arp(ifp
, ARPOP_REQUEST
, NULL
, sa
,
1340 (const struct sockaddr_dl
*)&sdl
,
1341 (const struct sockaddr
*)net_dest
, rtflags
);
1348 !(llinfo
->la_flags
& LLINFO_PROBING
)) {
1350 * Normal case where peer is still reachable,
1351 * we're not probing and if_addrlen is anything
1352 * but IF_LLREACH_MAXLEN.
1359 if (ifp
->if_flags
& IFF_NOARP
) {
1365 * Route wasn't complete/valid; we need to send out ARP request.
1366 * If we've exceeded the limit of la_holdq, drop from the head
1367 * of queue and add this packet to the tail. If we end up with
1368 * RTF_REJECT below, we'll dequeue this from tail and have the
1369 * caller free the packet instead. It's safe to do that since
1370 * we still hold the route's rt_lock.
1373 arp_llinfo_addq(llinfo
, packet
);
1376 * Regardless of permanent vs. expirable entry, we need to
1377 * avoid having packets sit in la_holdq forever; thus mark the
1378 * entry with la_probeexp deadline to trigger the probe timer
1379 * to be scheduled (if not already). This gets cleared the
1380 * moment we get an ARP reply.
1383 if (qlen(&llinfo
->la_holdq
) == 1) {
1384 llinfo
->la_probeexp
= (timenow
+ arpt_probe
);
1385 llinfo
->la_flags
|= LLINFO_PROBING
;
1387 if (route
->rt_expire
) {
1388 route
->rt_flags
&= ~RTF_REJECT
;
1389 if (llinfo
->la_asked
== 0 || route
->rt_expire
!= timenow
) {
1390 rt_setexpire(route
, timenow
);
1391 if (llinfo
->la_asked
++ < llinfo
->la_maxtries
) {
1392 struct kev_msg ev_msg
;
1393 struct kev_in_arpfailure in_arpfailure
;
1394 boolean_t sendkev
= FALSE
;
1396 rt_ifa
= route
->rt_ifa
;
1397 lr
= llinfo
->la_llreach
;
1398 /* Become a regular mutex, just in case */
1399 RT_CONVERT_LOCK(route
);
1400 /* Update probe count, if applicable */
1406 if (ifp
->if_addrlen
== IF_LLREACH_MAXLEN
&&
1407 route
->rt_flags
& RTF_ROUTER
&&
1408 llinfo
->la_asked
> 1) {
1410 llinfo
->la_flags
|= LLINFO_RTRFAIL_EVTSENT
;
1412 IFA_LOCK_SPIN(rt_ifa
);
1413 IFA_ADDREF_LOCKED(rt_ifa
);
1414 sa
= rt_ifa
->ifa_addr
;
1416 arp_llreach_use(llinfo
); /* Mark use tstamp */
1417 rtflags
= route
->rt_flags
;
1419 dlil_send_arp(ifp
, ARPOP_REQUEST
, NULL
, sa
,
1420 NULL
, (const struct sockaddr
*)net_dest
,
1424 bzero(&ev_msg
, sizeof(ev_msg
));
1425 bzero(&in_arpfailure
,
1426 sizeof(in_arpfailure
));
1427 in_arpfailure
.link_data
.if_family
=
1429 in_arpfailure
.link_data
.if_unit
=
1431 strlcpy(in_arpfailure
.link_data
.if_name
,
1432 ifp
->if_name
, IFNAMSIZ
);
1433 ev_msg
.vendor_code
= KEV_VENDOR_APPLE
;
1434 ev_msg
.kev_class
= KEV_NETWORK_CLASS
;
1435 ev_msg
.kev_subclass
= KEV_INET_SUBCLASS
;
1437 KEV_INET_ARPRTRFAILURE
;
1438 ev_msg
.dv
[0].data_ptr
= &in_arpfailure
;
1439 ev_msg
.dv
[0].data_length
=
1442 dlil_post_complete_msg(NULL
, &ev_msg
);
1444 result
= EJUSTRETURN
;
1448 route
->rt_flags
|= RTF_REJECT
;
1450 route
->rt_expire
+ arpt_down
);
1451 llinfo
->la_asked
= 0;
1453 * Remove the packet that was just added above;
1454 * don't free it since we're not returning
1455 * EJUSTRETURN. The caller will handle the
1456 * freeing. Since we haven't dropped rt_lock
1457 * from the time of _addq() above, this packet
1458 * must be at the tail.
1460 if (packet
!= NULL
) {
1462 _getq_tail(&llinfo
->la_holdq
);
1463 atomic_add_32(&arpstat
.held
, -1);
1464 VERIFY(_m
== packet
);
1466 result
= EHOSTUNREACH
;
1472 /* The packet is now held inside la_holdq */
1473 result
= EJUSTRETURN
;
1476 if (result
== EHOSTUNREACH
)
1477 atomic_add_32(&arpstat
.dropped
, 1);
1479 if (route
!= NULL
) {
1480 if (route
== hint
) {
1481 RT_REMREF_LOCKED(route
);
1489 /* Do this after we drop rt_lock to preserve ordering */
1490 lck_mtx_lock(rnh_lock
);
1491 arp_sched_probe(NULL
);
1492 lck_mtx_unlock(rnh_lock
);
1498 arp_ip_handle_input(ifnet_t ifp
, u_short arpop
,
1499 const struct sockaddr_dl
*sender_hw
, const struct sockaddr_in
*sender_ip
,
1500 const struct sockaddr_in
*target_ip
)
1502 char ipv4str
[MAX_IPv4_STR_LEN
];
1503 struct sockaddr_dl proxied
;
1504 struct sockaddr_dl
*gateway
, *target_hw
= NULL
;
1506 struct in_ifaddr
*ia
;
1507 struct in_ifaddr
*best_ia
= NULL
;
1508 struct sockaddr_in best_ia_sin
;
1509 route_t route
= NULL
;
1510 char buf
[3 * MAX_HW_LEN
]; /* enough for MAX_HW_LEN byte hw address */
1511 struct llinfo_arp
*llinfo
;
1513 int created_announcement
= 0;
1514 int bridged
= 0, is_bridge
= 0;
1517 * Here and other places within this routine where we don't hold
1518 * rnh_lock, trade accuracy for speed for the common scenarios
1519 * and avoid the use of atomic updates.
1523 /* Do not respond to requests for 0.0.0.0 */
1524 if (target_ip
->sin_addr
.s_addr
== INADDR_ANY
&& arpop
== ARPOP_REQUEST
)
1529 if (ifp
->if_type
== IFT_BRIDGE
)
1532 if (arpop
== ARPOP_REPLY
)
1533 arpstat
.rxreplies
++;
1536 * Determine if this ARP is for us
1537 * For a bridge, we want to check the address irrespective
1538 * of the receive interface.
1540 lck_rw_lock_shared(in_ifaddr_rwlock
);
1541 TAILQ_FOREACH(ia
, INADDR_HASH(target_ip
->sin_addr
.s_addr
), ia_hash
) {
1542 IFA_LOCK_SPIN(&ia
->ia_ifa
);
1543 if (((bridged
&& ia
->ia_ifp
->if_bridge
!= NULL
) ||
1544 (ia
->ia_ifp
== ifp
)) &&
1545 ia
->ia_addr
.sin_addr
.s_addr
== target_ip
->sin_addr
.s_addr
) {
1547 best_ia_sin
= best_ia
->ia_addr
;
1548 IFA_ADDREF_LOCKED(&ia
->ia_ifa
);
1549 IFA_UNLOCK(&ia
->ia_ifa
);
1550 lck_rw_done(in_ifaddr_rwlock
);
1553 IFA_UNLOCK(&ia
->ia_ifa
);
1556 TAILQ_FOREACH(ia
, INADDR_HASH(sender_ip
->sin_addr
.s_addr
), ia_hash
) {
1557 IFA_LOCK_SPIN(&ia
->ia_ifa
);
1558 if (((bridged
&& ia
->ia_ifp
->if_bridge
!= NULL
) ||
1559 (ia
->ia_ifp
== ifp
)) &&
1560 ia
->ia_addr
.sin_addr
.s_addr
== sender_ip
->sin_addr
.s_addr
) {
1562 best_ia_sin
= best_ia
->ia_addr
;
1563 IFA_ADDREF_LOCKED(&ia
->ia_ifa
);
1564 IFA_UNLOCK(&ia
->ia_ifa
);
1565 lck_rw_done(in_ifaddr_rwlock
);
1568 IFA_UNLOCK(&ia
->ia_ifa
);
1571 #define BDG_MEMBER_MATCHES_ARP(addr, ifp, ia) \
1572 (ia->ia_ifp->if_bridge == ifp->if_softc && \
1573 bcmp(IF_LLADDR(ia->ia_ifp), IF_LLADDR(ifp), ifp->if_addrlen) == 0 && \
1574 addr == ia->ia_addr.sin_addr.s_addr)
1576 * Check the case when bridge shares its MAC address with
1577 * some of its children, so packets are claimed by bridge
1578 * itself (bridge_input() does it first), but they are really
1579 * meant to be destined to the bridge member.
1582 TAILQ_FOREACH(ia
, INADDR_HASH(target_ip
->sin_addr
.s_addr
),
1584 IFA_LOCK_SPIN(&ia
->ia_ifa
);
1585 if (BDG_MEMBER_MATCHES_ARP(target_ip
->sin_addr
.s_addr
,
1589 best_ia_sin
= best_ia
->ia_addr
;
1590 IFA_ADDREF_LOCKED(&ia
->ia_ifa
);
1591 IFA_UNLOCK(&ia
->ia_ifa
);
1592 lck_rw_done(in_ifaddr_rwlock
);
1595 IFA_UNLOCK(&ia
->ia_ifa
);
1598 #undef BDG_MEMBER_MATCHES_ARP
1599 lck_rw_done(in_ifaddr_rwlock
);
1602 * No match, use the first inet address on the receive interface
1603 * as a dummy address for the rest of the function; we may be
1604 * proxying for another address.
1606 ifnet_lock_shared(ifp
);
1607 TAILQ_FOREACH(ifa
, &ifp
->if_addrhead
, ifa_link
) {
1609 if (ifa
->ifa_addr
->sa_family
!= AF_INET
) {
1613 best_ia
= (struct in_ifaddr
*)ifa
;
1614 best_ia_sin
= best_ia
->ia_addr
;
1615 IFA_ADDREF_LOCKED(ifa
);
1617 ifnet_lock_done(ifp
);
1620 ifnet_lock_done(ifp
);
1623 * If we're not a bridge member, or if we are but there's no
1624 * IPv4 address to use for the interface, drop the packet.
1626 if (!bridged
|| best_ia
== NULL
)
1630 /* If the packet is from this interface, ignore the packet */
1631 if (bcmp(CONST_LLADDR(sender_hw
), IF_LLADDR(ifp
),
1632 sender_hw
->sdl_alen
) == 0)
1635 /* Check for a conflict */
1637 sender_ip
->sin_addr
.s_addr
== best_ia_sin
.sin_addr
.s_addr
) {
1638 struct kev_msg ev_msg
;
1639 struct kev_in_collision
*in_collision
;
1640 u_char storage
[sizeof (struct kev_in_collision
) + MAX_HW_LEN
];
1642 bzero(&ev_msg
, sizeof (struct kev_msg
));
1643 bzero(storage
, (sizeof (struct kev_in_collision
) + MAX_HW_LEN
));
1644 in_collision
= (struct kev_in_collision
*)(void *)storage
;
1645 log(LOG_ERR
, "%s duplicate IP address %s sent from "
1646 "address %s\n", if_name(ifp
),
1647 inet_ntop(AF_INET
, &sender_ip
->sin_addr
, ipv4str
,
1648 sizeof (ipv4str
)), sdl_addr_to_hex(sender_hw
, buf
,
1651 /* Send a kernel event so anyone can learn of the conflict */
1652 in_collision
->link_data
.if_family
= ifp
->if_family
;
1653 in_collision
->link_data
.if_unit
= ifp
->if_unit
;
1654 strlcpy(&in_collision
->link_data
.if_name
[0],
1655 ifp
->if_name
, IFNAMSIZ
);
1656 in_collision
->ia_ipaddr
= sender_ip
->sin_addr
;
1657 in_collision
->hw_len
= (sender_hw
->sdl_alen
< MAX_HW_LEN
) ?
1658 sender_hw
->sdl_alen
: MAX_HW_LEN
;
1659 bcopy(CONST_LLADDR(sender_hw
), (caddr_t
)in_collision
->hw_addr
,
1660 in_collision
->hw_len
);
1661 ev_msg
.vendor_code
= KEV_VENDOR_APPLE
;
1662 ev_msg
.kev_class
= KEV_NETWORK_CLASS
;
1663 ev_msg
.kev_subclass
= KEV_INET_SUBCLASS
;
1664 ev_msg
.event_code
= KEV_INET_ARPCOLLISION
;
1665 ev_msg
.dv
[0].data_ptr
= in_collision
;
1666 ev_msg
.dv
[0].data_length
=
1667 sizeof (struct kev_in_collision
) + in_collision
->hw_len
;
1668 ev_msg
.dv
[1].data_length
= 0;
1669 dlil_post_complete_msg(NULL
, &ev_msg
);
1670 atomic_add_32(&arpstat
.dupips
, 1);
1675 * Look up the routing entry. If it doesn't exist and we are the
1676 * target, and the sender isn't 0.0.0.0, go ahead and create one.
1677 * Callee holds a reference on the route and returns with the route
1678 * entry locked, upon success.
1680 error
= arp_lookup_route(&sender_ip
->sin_addr
,
1681 (target_ip
->sin_addr
.s_addr
== best_ia_sin
.sin_addr
.s_addr
&&
1682 sender_ip
->sin_addr
.s_addr
!= 0), 0, &route
, ifp
->if_index
);
1685 RT_LOCK_ASSERT_HELD(route
);
1687 if (error
|| route
== NULL
|| route
->rt_gateway
== NULL
) {
1688 if (arpop
!= ARPOP_REQUEST
)
1691 if (arp_sendllconflict
&& send_conflicting_probes
!= 0 &&
1692 (ifp
->if_eflags
& IFEF_ARPLL
) &&
1693 IN_LINKLOCAL(ntohl(target_ip
->sin_addr
.s_addr
)) &&
1694 sender_ip
->sin_addr
.s_addr
== INADDR_ANY
) {
1696 * Verify this ARP probe doesn't conflict with
1697 * an IPv4LL we know of on another interface.
1699 if (route
!= NULL
) {
1700 RT_REMREF_LOCKED(route
);
1705 * Callee holds a reference on the route and returns
1706 * with the route entry locked, upon success.
1708 error
= arp_lookup_route(&target_ip
->sin_addr
, 0, 0,
1709 &route
, ifp
->if_index
);
1711 if (error
!= 0 || route
== NULL
||
1712 route
->rt_gateway
== NULL
)
1715 RT_LOCK_ASSERT_HELD(route
);
1717 gateway
= SDL(route
->rt_gateway
);
1718 if (route
->rt_ifp
!= ifp
&& gateway
->sdl_alen
!= 0 &&
1719 (gateway
->sdl_alen
!= sender_hw
->sdl_alen
||
1720 bcmp(CONST_LLADDR(gateway
), CONST_LLADDR(sender_hw
),
1721 gateway
->sdl_alen
) != 0)) {
1723 * A node is probing for an IPv4LL we know
1724 * exists on a different interface. We respond
1725 * with a conflicting probe to force the new
1726 * device to pick a different IPv4LL address.
1728 if (arp_verbose
|| log_arp_warnings
) {
1729 log(LOG_INFO
, "arp: %s on %s sent "
1730 "probe for %s, already on %s\n",
1731 sdl_addr_to_hex(sender_hw
, buf
,
1732 sizeof (buf
)), if_name(ifp
),
1734 &target_ip
->sin_addr
, ipv4str
,
1736 if_name(route
->rt_ifp
));
1737 log(LOG_INFO
, "arp: sending "
1738 "conflicting probe to %s on %s\n",
1739 sdl_addr_to_hex(sender_hw
, buf
,
1740 sizeof (buf
)), if_name(ifp
));
1742 /* Mark use timestamp */
1743 if (route
->rt_llinfo
!= NULL
)
1744 arp_llreach_use(route
->rt_llinfo
);
1745 /* We're done with the route */
1746 RT_REMREF_LOCKED(route
);
1750 * Send a conservative unicast "ARP probe".
1751 * This should force the other device to pick
1752 * a new number. This will not force the
1753 * device to pick a new number if the device
1754 * has already assigned that number. This will
1755 * not imply to the device that we own that
1756 * address. The link address is always
1757 * present; it's never freed.
1759 ifnet_lock_shared(ifp
);
1760 ifa
= ifp
->if_lladdr
;
1762 ifnet_lock_done(ifp
);
1763 dlil_send_arp_internal(ifp
, ARPOP_REQUEST
,
1765 (const struct sockaddr
*)sender_ip
,
1767 (const struct sockaddr
*)target_ip
);
1770 atomic_add_32(&arpstat
.txconflicts
, 1);
1773 } else if (keep_announcements
!= 0 &&
1774 target_ip
->sin_addr
.s_addr
== sender_ip
->sin_addr
.s_addr
) {
1776 * Don't create entry if link-local address and
1777 * link-local is disabled
1779 if (!IN_LINKLOCAL(ntohl(sender_ip
->sin_addr
.s_addr
)) ||
1780 (ifp
->if_eflags
& IFEF_ARPLL
)) {
1781 if (route
!= NULL
) {
1782 RT_REMREF_LOCKED(route
);
1787 * Callee holds a reference on the route and
1788 * returns with the route entry locked, upon
1791 error
= arp_lookup_route(&sender_ip
->sin_addr
,
1792 1, 0, &route
, ifp
->if_index
);
1795 RT_LOCK_ASSERT_HELD(route
);
1797 if (error
== 0 && route
!= NULL
&&
1798 route
->rt_gateway
!= NULL
)
1799 created_announcement
= 1;
1801 if (created_announcement
== 0)
1808 RT_LOCK_ASSERT_HELD(route
);
1809 VERIFY(route
->rt_expire
== 0 || route
->rt_rmx
.rmx_expire
!= 0);
1810 VERIFY(route
->rt_expire
!= 0 || route
->rt_rmx
.rmx_expire
== 0);
1812 gateway
= SDL(route
->rt_gateway
);
1813 if (!bridged
&& route
->rt_ifp
!= ifp
) {
1814 if (!IN_LINKLOCAL(ntohl(sender_ip
->sin_addr
.s_addr
)) ||
1815 !(ifp
->if_eflags
& IFEF_ARPLL
)) {
1816 if (arp_verbose
|| log_arp_warnings
)
1817 log(LOG_ERR
, "arp: %s is on %s but got "
1818 "reply from %s on %s\n",
1819 inet_ntop(AF_INET
, &sender_ip
->sin_addr
,
1820 ipv4str
, sizeof (ipv4str
)),
1821 if_name(route
->rt_ifp
),
1822 sdl_addr_to_hex(sender_hw
, buf
,
1823 sizeof (buf
)), if_name(ifp
));
1826 /* Don't change a permanent address */
1827 if (route
->rt_expire
== 0)
1831 * We're about to check and/or change the route's ifp
1832 * and ifa, so do the lock dance: drop rt_lock, hold
1833 * rnh_lock and re-hold rt_lock to avoid violating the
1834 * lock ordering. We have an extra reference on the
1835 * route, so it won't go away while we do this.
1838 lck_mtx_lock(rnh_lock
);
1841 * Don't change the cloned route away from the
1842 * parent's interface if the address did resolve
1843 * or if the route is defunct. rt_ifp on both
1844 * the parent and the clone can now be freely
1845 * accessed now that we have acquired rnh_lock.
1847 gateway
= SDL(route
->rt_gateway
);
1848 if ((gateway
->sdl_alen
!= 0 &&
1849 route
->rt_parent
!= NULL
&&
1850 route
->rt_parent
->rt_ifp
== route
->rt_ifp
) ||
1851 (route
->rt_flags
& RTF_CONDEMNED
)) {
1852 RT_REMREF_LOCKED(route
);
1855 lck_mtx_unlock(rnh_lock
);
1858 if (route
->rt_ifp
!= ifp
) {
1860 * Purge any link-layer info caching.
1862 if (route
->rt_llinfo_purge
!= NULL
)
1863 route
->rt_llinfo_purge(route
);
1865 /* Adjust route ref count for the interfaces */
1866 if (route
->rt_if_ref_fn
!= NULL
) {
1867 route
->rt_if_ref_fn(ifp
, 1);
1868 route
->rt_if_ref_fn(route
->rt_ifp
, -1);
1871 /* Change the interface when the existing route is on */
1872 route
->rt_ifp
= ifp
;
1874 * If rmx_mtu is not locked, update it
1875 * to the MTU used by the new interface.
1877 if (!(route
->rt_rmx
.rmx_locks
& RTV_MTU
))
1878 route
->rt_rmx
.rmx_mtu
= route
->rt_ifp
->if_mtu
;
1880 rtsetifa(route
, &best_ia
->ia_ifa
);
1881 gateway
->sdl_index
= ifp
->if_index
;
1883 lck_mtx_unlock(rnh_lock
);
1885 /* Don't bother if the route is down */
1886 if (!(route
->rt_flags
& RTF_UP
))
1888 /* Refresh gateway pointer */
1889 gateway
= SDL(route
->rt_gateway
);
1891 RT_LOCK_ASSERT_HELD(route
);
1894 if (gateway
->sdl_alen
!= 0 && bcmp(LLADDR(gateway
),
1895 CONST_LLADDR(sender_hw
), gateway
->sdl_alen
) != 0) {
1896 if (route
->rt_expire
!= 0 &&
1897 (arp_verbose
|| log_arp_warnings
)) {
1898 char buf2
[3 * MAX_HW_LEN
];
1899 log(LOG_INFO
, "arp: %s moved from %s to %s on %s\n",
1900 inet_ntop(AF_INET
, &sender_ip
->sin_addr
, ipv4str
,
1902 sdl_addr_to_hex(gateway
, buf
, sizeof (buf
)),
1903 sdl_addr_to_hex(sender_hw
, buf2
, sizeof (buf2
)),
1905 } else if (route
->rt_expire
== 0) {
1906 if (arp_verbose
|| log_arp_warnings
) {
1907 log(LOG_ERR
, "arp: %s attempts to modify "
1908 "permanent entry for %s on %s\n",
1909 sdl_addr_to_hex(sender_hw
, buf
,
1911 inet_ntop(AF_INET
, &sender_ip
->sin_addr
,
1912 ipv4str
, sizeof (ipv4str
)),
1919 /* Copy the sender hardware address in to the route's gateway address */
1920 gateway
->sdl_alen
= sender_hw
->sdl_alen
;
1921 bcopy(CONST_LLADDR(sender_hw
), LLADDR(gateway
), gateway
->sdl_alen
);
1923 /* Update the expire time for the route and clear the reject flag */
1924 if (route
->rt_expire
!= 0)
1925 rt_setexpire(route
, net_uptime() + arpt_keep
);
1926 route
->rt_flags
&= ~RTF_REJECT
;
1928 /* cache the gateway (sender HW) address */
1929 arp_llreach_alloc(route
, ifp
, LLADDR(gateway
), gateway
->sdl_alen
,
1930 (arpop
== ARPOP_REPLY
));
1932 llinfo
= route
->rt_llinfo
;
1933 /* send a notification that the route is back up */
1934 if (ifp
->if_addrlen
== IF_LLREACH_MAXLEN
&&
1935 route
->rt_flags
& RTF_ROUTER
&&
1936 llinfo
->la_flags
& LLINFO_RTRFAIL_EVTSENT
) {
1937 struct kev_msg ev_msg
;
1938 struct kev_in_arpalive in_arpalive
;
1940 llinfo
->la_flags
&= ~LLINFO_RTRFAIL_EVTSENT
;
1942 bzero(&ev_msg
, sizeof(ev_msg
));
1943 bzero(&in_arpalive
, sizeof(in_arpalive
));
1944 in_arpalive
.link_data
.if_family
= ifp
->if_family
;
1945 in_arpalive
.link_data
.if_unit
= ifp
->if_unit
;
1946 strlcpy(in_arpalive
.link_data
.if_name
, ifp
->if_name
, IFNAMSIZ
);
1947 ev_msg
.vendor_code
= KEV_VENDOR_APPLE
;
1948 ev_msg
.kev_class
= KEV_NETWORK_CLASS
;
1949 ev_msg
.kev_subclass
= KEV_INET_SUBCLASS
;
1950 ev_msg
.event_code
= KEV_INET_ARPRTRALIVE
;
1951 ev_msg
.dv
[0].data_ptr
= &in_arpalive
;
1952 ev_msg
.dv
[0].data_length
= sizeof(struct kev_in_arpalive
);
1953 dlil_post_complete_msg(NULL
, &ev_msg
);
1956 /* Update the llinfo, send out all queued packets at once */
1957 llinfo
->la_asked
= 0;
1958 llinfo
->la_flags
&= ~LLINFO_PROBING
;
1959 if (!qempty(&llinfo
->la_holdq
)) {
1962 _getq_all(&llinfo
->la_holdq
, NULL
, &held
, NULL
);
1964 log(LOG_DEBUG
, "%s: sending %u held packets\n",
1967 atomic_add_32(&arpstat
.held
, -held
);
1968 VERIFY(qempty(&llinfo
->la_holdq
));
1970 dlil_output(ifp
, PF_INET
, m0
, (caddr_t
)route
,
1971 rt_key(route
), 0, NULL
);
1978 if (route
!= NULL
) {
1979 /* Mark use timestamp if we're going to send a reply */
1980 if (arpop
== ARPOP_REQUEST
&& route
->rt_llinfo
!= NULL
)
1981 arp_llreach_use(route
->rt_llinfo
);
1982 RT_REMREF_LOCKED(route
);
1987 if (arpop
!= ARPOP_REQUEST
)
1990 /* See comments at the beginning of this routine */
1991 arpstat
.rxrequests
++;
1993 /* If we are not the target, check if we should proxy */
1994 if (target_ip
->sin_addr
.s_addr
!= best_ia_sin
.sin_addr
.s_addr
) {
1996 * Find a proxy route; callee holds a reference on the
1997 * route and returns with the route entry locked, upon
2000 error
= arp_lookup_route(&target_ip
->sin_addr
, 0, SIN_PROXY
,
2001 &route
, ifp
->if_index
);
2004 RT_LOCK_ASSERT_HELD(route
);
2006 * Return proxied ARP replies only on the interface
2007 * or bridge cluster where this network resides.
2008 * Otherwise we may conflict with the host we are
2011 if (route
->rt_ifp
!= ifp
&&
2012 (route
->rt_ifp
->if_bridge
!= ifp
->if_bridge
||
2013 ifp
->if_bridge
== NULL
)) {
2014 RT_REMREF_LOCKED(route
);
2018 proxied
= *SDL(route
->rt_gateway
);
2019 target_hw
= &proxied
;
2022 * We don't have a route entry indicating we should
2023 * use proxy. If we aren't supposed to proxy all,
2030 * See if we have a route to the target ip before
2033 route
= rtalloc1_scoped((struct sockaddr
*)
2034 (size_t)target_ip
, 0, 0, ifp
->if_index
);
2039 * Don't proxy for hosts already on the same interface.
2042 if (route
->rt_ifp
== ifp
) {
2048 /* Mark use timestamp */
2049 if (route
->rt_llinfo
!= NULL
)
2050 arp_llreach_use(route
->rt_llinfo
);
2051 RT_REMREF_LOCKED(route
);
2055 dlil_send_arp(ifp
, ARPOP_REPLY
,
2056 target_hw
, (const struct sockaddr
*)target_ip
,
2057 sender_hw
, (const struct sockaddr
*)sender_ip
, 0);
2060 if (best_ia
!= NULL
)
2061 IFA_REMREF(&best_ia
->ia_ifa
);
2066 arp_ifinit(struct ifnet
*ifp
, struct ifaddr
*ifa
)
2068 struct sockaddr
*sa
;
2071 ifa
->ifa_rtrequest
= arp_rtrequest
;
2072 ifa
->ifa_flags
|= RTF_CLONING
;
2075 dlil_send_arp(ifp
, ARPOP_REQUEST
, NULL
, sa
, NULL
, sa
, 0);
2079 arp_getstat SYSCTL_HANDLER_ARGS
2081 #pragma unused(oidp, arg1, arg2)
2082 if (req
->oldptr
== USER_ADDR_NULL
)
2083 req
->oldlen
= (size_t)sizeof (struct arpstat
);
2085 return (SYSCTL_OUT(req
, &arpstat
, MIN(sizeof (arpstat
), req
->oldlen
)));